Abstract

Optical spectroscopy has seen expanding use for the study of biological cells in recent years. An overview of relevant spectroscopic techniques is presented, and applications to biological cells are reviewed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
    [CrossRef] [PubMed]
  2. L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
    [CrossRef]
  3. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  4. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
    [CrossRef]
  5. C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
    [CrossRef] [PubMed]
  6. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
    [CrossRef] [PubMed]
  7. I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
    [CrossRef] [PubMed]
  8. K.-H. Lim, S. Salahuddin, L. Qiu, H. Fang, E. Vitkin, I. C. Ghiran, M. D. Modell, T. Takoudes, I. Itzkan, E. B. Hanlon, B. P. Sachs, and L. T. Perelman, “Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: may lead to noninvasive prenatal diagnosis,” Opt. Lett. 34(9), 1483–1485 (2009).
    [CrossRef] [PubMed]
  9. L. Yang, W.-T. Liu, H. Wu, C. Wang, B. Ping, and D.-R. Shi, “Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo,” J. Biomed. Biotechnol. 2011, 214781 (2011).
    [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  11. F. E. Robles, “Light scattering and absorption spectroscopy in three dimensions using quantitative low coherence interferometry for biomedical applications,” Ph.D. Thesis (Duke University: Durham, N.C., 2011).
  12. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
    [CrossRef] [PubMed]
  13. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28(14), 1230–1232 (2003).
    [CrossRef] [PubMed]
  14. R. N. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13(12), 4693–4698 (2005).
    [CrossRef] [PubMed]
  15. F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett. 35(3), 360–362 (2010).
    [CrossRef] [PubMed]
  16. R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
    [CrossRef] [PubMed]
  17. F. E. Robles, Y. Zhu, J. Lee, S. Sharma, and A. Wax, “Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry,” Biomed. Opt. Express 1(2), 736–745 (2010).
    [CrossRef] [PubMed]
  18. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).
    [CrossRef] [PubMed]
  19. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  20. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
    [CrossRef] [PubMed]
  21. S. B. Haley and P. Erdös, “Wave propagation in one-dimensional disordered structures,” Phys. Rev. B Condens. Matter 45(15), 8572–8584 (1992).
    [CrossRef] [PubMed]
  22. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34(4), 518–520 (2009).
    [CrossRef] [PubMed]
  23. D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
    [CrossRef] [PubMed]
  24. G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975).
    [PubMed]
  25. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
    [CrossRef] [PubMed]
  26. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
    [CrossRef] [PubMed]
  27. S. Holler, Y. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, and D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23(18), 1489–1491 (1998).
    [CrossRef] [PubMed]
  28. J.-C. Auger, K. B. Aptowicz, R. G. Pinnick, Y.-L. Pan, and R. K. Chang, “Angularly resolved light scattering from aerosolized spores: observations and calculations,” Opt. Lett. 32(22), 3358–3360 (2007).
    [CrossRef] [PubMed]
  29. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
    [CrossRef]
  30. Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
    [CrossRef]
  31. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
    [CrossRef]
  32. H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004).
    [CrossRef] [PubMed]
  33. A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
    [CrossRef] [PubMed]
  34. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  35. J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11(25), 3473–3484 (2003).
    [CrossRef] [PubMed]
  36. J. W. Pyhtila and A. Wax, “Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry,” Opt. Express 12(25), 6178–6183 (2004).
    [CrossRef] [PubMed]
  37. J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
    [CrossRef]
  38. K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
    [CrossRef] [PubMed]
  39. K. J. Chalut, K. Kulangara, M. G. Giacomelli, A. Wax, and K. W. Leong, “Deformation of stem cell nuclei by nanotopographical cues,” Soft Matter 6(8), 1675–1681 (2010).
    [CrossRef] [PubMed]
  40. K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
    [CrossRef] [PubMed]
  41. S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett. 30(24), 3305–3307 (2005).
    [CrossRef] [PubMed]
  42. T. R. Hillman, S. A. Alexandrov, T. Gutzler, and D. D. Sampson, “Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy,” Opt. Express 14(23), 11088–11102 (2006).
    [CrossRef] [PubMed]
  43. N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83(3), 1691–1700 (2002).
    [CrossRef] [PubMed]
  44. J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17(22), 20401–20414 (2009).
    [CrossRef] [PubMed]
  45. N. N. Boustany, Y. C. Tsai, B. Pfister, W. M. Joiner, G. A. Oyler, and N. V. Thakor, “BCL-xL-dependent light scattering by apoptotic cells,” Biophys. J. 87(6), 4163–4171 (2004).
    [CrossRef] [PubMed]
  46. R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
    [CrossRef] [PubMed]
  47. J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88(4), 2929–2938 (2005).
    [CrossRef] [PubMed]
  48. J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
    [CrossRef] [PubMed]
  49. J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c,” Opt. Lett. 32(17), 2517–2519 (2007).
    [CrossRef] [PubMed]
  50. Z. J. Smith and A. J. Berger, “Integrated Raman- and angular-scattering microscopy,” Opt. Lett. 33(7), 714–716 (2008).
    [CrossRef] [PubMed]
  51. Z. J. Smith and A. J. Berger, “Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells,” Appl. Opt. 48(10), D109–D120 (2009).
    [CrossRef] [PubMed]
  52. Z. J. Smith, J.-C. E. Wang, S. A. Quataert, and A. J. Berger, “Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes,” J. Biomed. Opt. 15(3), 036021 (2010).
    [CrossRef] [PubMed]
  53. C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48(10), D20–D25 (2009).
    [CrossRef] [PubMed]
  54. J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7(1), 93–99 (2002).
    [CrossRef] [PubMed]
  55. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
    [CrossRef] [PubMed]
  56. X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
    [CrossRef] [PubMed]
  57. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37(13), 2735–2748 (1998).
    [CrossRef] [PubMed]
  58. D. D. Duncan and M. E. Thomas, “Particle shape as revealed by spectral depolarization,” Appl. Opt. 46(24), 6185–6191 (2007).
    [CrossRef] [PubMed]
  59. J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32(10), 1326–1328 (2007).
    [CrossRef] [PubMed]
  60. K. J. Chalut, M. G. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25(8), 1866–1874 (2008).
  61. M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering,” Opt. Lett. 33(21), 2452–2454 (2008).
    [CrossRef] [PubMed]
  62. N. G. Khlebtsov, A. G. Melnikov, S. Y. Shchyogolev, V. A. Bogatyrjov, and A. I. Sirota, “Anisotropic and spectral properties of biological scattering objects with the ordered particle orientation,” Proc. SPIE 2082, 33–42 (1994).
    [CrossRef]
  63. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55(5), 535–575 (1996).
    [CrossRef]
  64. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
    [CrossRef]
  65. T. D. Pollard, “The cytoskeleton, cellular motility and the reductionist agenda,” Nature 422(6933), 741–745 (2003).
    [CrossRef] [PubMed]
  66. D. A. Lauffenburger and A. F. Horwitz, “Cell migration: a physically integrated molecular process,” Cell 84(3), 359–369 (1996).
    [CrossRef] [PubMed]
  67. D. Marguet, P.-F. Lenne, H. Rigneault, and H.-T. He, “Dynamics in the plasma membrane: how to combine fluidity and order,” EMBO J. 25(15), 3446–3457 (2006).
    [CrossRef] [PubMed]
  68. C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
    [CrossRef] [PubMed]
  69. F. Jülicher, A. Ajdari, and J. Prost, “Modeling molecular motors,” Rev. Mod. Phys. 69(4), 1269–1282 (1997).
    [CrossRef]
  70. M. C. Watson, E. S. Penev, P. M. Welch, and F. L. H. Brown, “Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers,” J. Chem. Phys. 135(24), 244701 (2011).
    [CrossRef] [PubMed]
  71. N. Gov, “Membrane undulations driven by force fluctuations of active proteins,” Phys. Rev. Lett. 93(26), 268104 (2004).
    [CrossRef] [PubMed]
  72. N. Gov, A. G. Zilman, and S. Safran, “Cytoskeleton confinement and tension of red blood cell membranes,” Phys. Rev. Lett. 90(22), 228101 (2003).
    [CrossRef] [PubMed]
  73. R. M. Hochmuth, P. R. Worthy, and E. A. Evans, “Red cell extensional recovery and the determination of membrane viscosity,” Biophys. J. 26(1), 101–114 (1979).
    [CrossRef] [PubMed]
  74. D. E. Discher, N. Mohandas, and E. A. Evans, “Molecular maps of red cell deformation: hidden elasticity and in situ connectivity,” Science 266(5187), 1032–1035 (1994).
    [CrossRef] [PubMed]
  75. S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
    [CrossRef] [PubMed]
  76. J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
    [CrossRef] [PubMed]
  77. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
    [CrossRef] [PubMed]
  78. Y. Kaizuka and J. T. Groves, “Hydrodynamic damping of membrane thermal fluctuations near surfaces imaged by fluorescence interference microscopy,” Phys. Rev. Lett. 96(11), 118101 (2006).
    [CrossRef] [PubMed]
  79. A. Zilker, M. Ziegler, and E. Sackmann, “Spectral analysis of erythrocyte flickering in the 0.3–4-µm−1 regime by microinterferometry combined with fast image processing,” Phys. Rev. A 46(12), 7998–8001 (1992).
    [CrossRef] [PubMed]
  80. G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
    [CrossRef] [PubMed]
  81. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
    [CrossRef] [PubMed]
  82. F. Brochard and J. F. Lennon, “Frequency spectrum of the flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975).
    [CrossRef]
  83. L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37(2), 231–287 (1965).
    [CrossRef]
  84. G. Popescu, Y. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrane motions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031902 (2007).
    [CrossRef] [PubMed]
  85. T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
    [CrossRef] [PubMed]
  86. G. Popescu, A. Dogariu, and R. Rajagopalan, “Spatially resolved microrheology using localized coherence volumes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041504 (2002).
    [CrossRef] [PubMed]
  87. V. Lucarini, K.-E. Peiponen, J. J. Saarinen, and E. M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).
  88. M. Costa, I. Ghiran, C. K. Peng, A. Nicholson-Weller, and A. Goldberger, “Complex dynamics of human red blood cell flickering: alterations with in vivo aging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 020901(R) (2008).
    [CrossRef]
  89. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
    [CrossRef] [PubMed]
  90. Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
    [CrossRef] [PubMed]
  91. N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
    [CrossRef] [PubMed]
  92. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
    [CrossRef] [PubMed]
  93. K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Express 15(21), 14057–14064 (2007).
    [CrossRef] [PubMed]
  94. M. T. Santini, G. Rainaldi, and P. L. Indovina, “Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids,” Crit. Rev. Oncol. Hematol. 36(2–3), 75–87 (2000).
    [CrossRef] [PubMed]
  95. J. M. Yuhas, A. P. Li, A. O. Martinez, and A. J. Ladman, “A simplified method for production and growth of multicellular tumor spheroids,” Cancer Res. 37(10), 3639–3643 (1977).
    [PubMed]
  96. D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
    [CrossRef] [PubMed]
  97. K. Jeong, J. J. Turek, and D. D. Nolte, “Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography,” J. Biomed. Opt. 15(3), 030514 (2010).
    [CrossRef] [PubMed]
  98. N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
    [CrossRef] [PubMed]
  99. M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
    [CrossRef] [PubMed]
  100. B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
    [CrossRef] [PubMed]
  101. H. C. d. Hulst, Light Scattering by Small Particles (Dover, 1981).
  102. B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).
  103. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
    [CrossRef] [PubMed]
  104. Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
    [CrossRef] [PubMed]
  105. Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
    [CrossRef] [PubMed]
  106. H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
    [CrossRef] [PubMed]
  107. Z. Wang, H. Ding, and G. Popescu, “Scattering-phase theorem,” Opt. Lett. 36(7), 1215–1217 (2011).
    [CrossRef] [PubMed]
  108. H. Ding, Z. Wang, X. Liang, S. A. Boppart, K. Tangella, and G. Popescu, “Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices,” Opt. Lett. 36(12), 2281–2283 (2011).
    [CrossRef] [PubMed]
  109. Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
    [CrossRef] [PubMed]
  110. C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
    [CrossRef] [PubMed]
  111. C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “Phase-dispersion optical tomography,” Opt. Lett. 26(10), 686–688 (2001).
    [CrossRef] [PubMed]
  112. A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a Mach–Zehnder interferometer,” Appl. Opt. 44(7), 1188–1190 (2005).
    [CrossRef] [PubMed]
  113. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
    [CrossRef] [PubMed]
  114. M. A. Lichtman and W. J. Williams, Williams Hematology (McGraw-Hill, 2006).
  115. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010).
    [CrossRef] [PubMed]
  116. F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
    [CrossRef] [PubMed]
  117. R. K. Ahrenkiel, “Modified Kramers–Kronig analysis of optical spectra,” J. Opt. Soc. Am. 61(12), 1651–1655 (1971).
    [CrossRef]
  118. F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett. 35(17), 2843–2845 (2010).
    [CrossRef] [PubMed]
  119. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  120. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  121. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [CrossRef] [PubMed]
  122. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
    [CrossRef] [PubMed]
  123. Y. Zhu, N. T. Shaked, L. L. Satterwhite, and A. Wax, “Spectral-domain differential interference contrast microscopy,” Opt. Lett. 36(4), 430–432 (2011).
    [CrossRef] [PubMed]
  124. Y.-Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23(24), 4539–4543 (1984).
    [CrossRef] [PubMed]
  125. A. Khmaladze, M. Kim, and C.-M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16(15), 10900–10911 (2008).
    [CrossRef] [PubMed]
  126. D. Ghiglia and M. Pritt, Two Dimensional Phase Unwrapping: Theory, Algorithms & Software (Wiley Interscience, 1998).
  127. C. K. Hitzenberger, M. Sticker, R. Leitgeb, and A. F. Fercher, “Differential phase measurements in low-coherence interferometry without 2π ambiguity,” Opt. Lett. 26(23), 1864–1866 (2001).
    [CrossRef] [PubMed]
  128. J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34(21), 3442–3444 (2009).
    [CrossRef] [PubMed]
  129. E. A. V. Ebsworth, D. W. H. Rankin, and S. Cradock, Structural Methods in Inorganic Chemistry, 2nd ed. (CRC Press, 1991).
  130. T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009).
    [CrossRef]
  131. L.-P. i. Choo, M. Jackson, W. C. Halliday, and H. H. Mantsch, “Infrared spectroscopic characterisation of multiple sclerosis plaques in the human central nervous system,” Biochim. Biophys. Acta 1182(3), 333–337 (1993).
    [CrossRef] [PubMed]
  132. M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
    [CrossRef]
  133. Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
    [CrossRef]
  134. G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
    [CrossRef]
  135. S. E. Holton, M. J. Walsh, and R. Bhargava, “Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging,” Analyst (Lond.) 136(14), 2953–2958 (2011).
    [CrossRef]
  136. G. Srinivasan and R. Bhargava, “Fourier transform-infrared spectroscopic imaging: the emerging evolution from a microscopy tool to a cancer imaging modality,” Spectroscopy22(7) (July1, 2007), http://www.spectroscopyonline.com/spectroscopy/FT-IR+Spectroscopy/Fourier-Transform-Infrared-Spectroscopic-Imaging-T/ArticleStandard/Article/detail/443485
  137. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
    [CrossRef] [PubMed]
  138. M. G. Shim, L. M. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
    [PubMed]
  139. M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
    [CrossRef] [PubMed]
  140. S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
    [CrossRef] [PubMed]
  141. A. Downes, R. Mouras, and A. Elfick, “Optical spectroscopy for noninvasive monitoring of stem cell differentiation,” J. Biomed. Biotechnol. 2010, 101864 (2010).
    [CrossRef] [PubMed]
  142. M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
    [CrossRef] [PubMed]
  143. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
    [CrossRef] [PubMed]
  144. J. W. Chan and D. K. Lieu, “Label-free biochemical characterization of stem cells using vibrational spectroscopy,” J. Biophotonics 2(11), 656–668 (2009).
    [CrossRef] [PubMed]
  145. L. B. Kong, P. F. Zhang, J. Yu, P. Setlow, and Y. Q. Li, “Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells,” Appl. Phys. Lett. 98(21), 213703 (2011).
    [CrossRef]
  146. A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman enhancement of organic adsorbates on metal surfaces,” Phys. Rev. Lett. 106(8), 083003 (2011).
    [CrossRef] [PubMed]
  147. M. Okuno and H. O. Hamaguchi, “Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells,” Opt. Lett. 35(24), 4096–4098 (2010).
    [CrossRef] [PubMed]
  148. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 1992).
  149. E. J. Woodbury and W. K. Ng, “Ruby laser operation in near IR,” Proc. Inst. Radio Eng. 50(11), 2367 (1962).
  150. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
    [CrossRef]
  151. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
    [CrossRef]
  152. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  153. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  154. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [CrossRef] [PubMed]
  155. D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
    [CrossRef] [PubMed]
  156. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
    [CrossRef]
  157. J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
    [CrossRef] [PubMed]
  158. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
    [CrossRef] [PubMed]
  159. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
    [CrossRef] [PubMed]
  160. X. L. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
    [CrossRef] [PubMed]
  161. E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
    [CrossRef] [PubMed]
  162. R. Mouras, G. Rischitor, A. Downes, D. Salter, and A. Elfick, “Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging,” J. Raman Spectrosc. 41(8), 848–852 (2010).
    [CrossRef]
  163. H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 11(5), 050502 (2006).
    [CrossRef] [PubMed]
  164. J. Y. Lee, S.-H. Kim, D. W. Moon, and E. S. Lee, “Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region,” Opt. Express 17(25), 22281–22295 (2009).
    [CrossRef] [PubMed]
  165. R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1979).
    [CrossRef]
  166. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  167. J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman-spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
    [CrossRef]
  168. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [CrossRef]
  169. R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
    [CrossRef] [PubMed]
  170. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Rraman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
    [CrossRef] [PubMed]
  171. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
    [CrossRef] [PubMed]
  172. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
    [CrossRef] [PubMed]
  173. X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801(R) (2011).
  174. B. Li, W. S. Warren, and M. C. Fischer, “Phase-cycling coherent anti-Stokes Raman scattering using shaped femtosecond laser pulses,” Opt. Express 18(25), 25825–25832 (2010).
    [CrossRef] [PubMed]
  175. E. T. Garbacik, J. P. Korterik, C. Otto, S. Mukamel, J. L. Herek, and H. L. Offerhaus, “Background-free nonlinear microspectroscopy with vibrational molecular interferometry,” Phys. Rev. Lett. 107(25), 253902 (2011).
    [CrossRef] [PubMed]
  176. J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
    [CrossRef] [PubMed]
  177. W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman-scattering,” Appl. Phys. Lett. 29(3), 174–176 (1976).
    [CrossRef]
  178. J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent Anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
    [CrossRef]
  179. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
    [CrossRef] [PubMed]
  180. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
    [CrossRef] [PubMed]
  181. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
    [CrossRef] [PubMed]
  182. T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump–probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
    [CrossRef] [PubMed]
  183. D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt. 13(4), 040503 (2008).
    [CrossRef] [PubMed]
  184. I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A 114(43), 11483–11491 (2010).
    [CrossRef] [PubMed]
  185. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump–probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
    [CrossRef] [PubMed]
  186. I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
    [CrossRef] [PubMed]
  187. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
    [PubMed]
  188. A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1–2), 146–158 (2009).
    [CrossRef]
  189. A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
    [CrossRef] [PubMed]
  190. M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
    [CrossRef] [PubMed]
  191. J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
    [CrossRef] [PubMed]
  192. J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. José-Yacamán, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express 16(3), 2153–2167 (2008).
    [CrossRef] [PubMed]
  193. M. J. Crow, K. Seekell, and A. Wax, “Polarization mapping of nanoparticle plasmonic coupling,” Opt. Lett. 36(5), 757–759 (2011).
    [CrossRef] [PubMed]
  194. K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
    [CrossRef] [PubMed]
  195. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
    [CrossRef] [PubMed]
  196. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
    [CrossRef] [PubMed]
  197. D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
    [CrossRef] [PubMed]
  198. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
    [CrossRef]
  199. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [CrossRef] [PubMed]
  200. J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
    [CrossRef] [PubMed]
  201. A. Rosencwaig, “Photoacoustic spectroscopy of biological materials,” Science 181(4100), 657–658 (1973).
    [CrossRef] [PubMed]
  202. A. Rosencwaig and A. Gersho, “Photoacoustic effect with solids—theoretical treatment,” Science 190(4214), 556–557 (1975).
  203. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [CrossRef] [PubMed]
  204. C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
    [CrossRef] [PubMed]
  205. M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564(756411), 756411-6 (2010).
  206. Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, “Multimodal subcellular imaging with microcavity photoacoustic transducer,” Opt. Express 19(3), 2426–2431 (2011).
    [CrossRef] [PubMed]
  207. Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
    [CrossRef] [PubMed]
  208. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
    [CrossRef] [PubMed]
  209. A. Wax and V. Backman, Biomedical Applications of Light Scattering. Biophotonics, I. Gannot and J. Neev, ed. (McGraw-Hill, 2010).

2012

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

2011

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801(R) (2011).

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump–probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[CrossRef] [PubMed]

S. E. Holton, M. J. Walsh, and R. Bhargava, “Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging,” Analyst (Lond.) 136(14), 2953–2958 (2011).
[CrossRef]

L. B. Kong, P. F. Zhang, J. Yu, P. Setlow, and Y. Q. Li, “Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells,” Appl. Phys. Lett. 98(21), 213703 (2011).
[CrossRef]

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman enhancement of organic adsorbates on metal surfaces,” Phys. Rev. Lett. 106(8), 083003 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

E. T. Garbacik, J. P. Korterik, C. Otto, S. Mukamel, J. L. Herek, and H. L. Offerhaus, “Background-free nonlinear microspectroscopy with vibrational molecular interferometry,” Phys. Rev. Lett. 107(25), 253902 (2011).
[CrossRef] [PubMed]

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
[CrossRef] [PubMed]

L. Yang, W.-T. Liu, H. Wu, C. Wang, B. Ping, and D.-R. Shi, “Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo,” J. Biomed. Biotechnol. 2011, 214781 (2011).
[PubMed]

M. C. Watson, E. S. Penev, P. M. Welch, and F. L. H. Brown, “Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers,” J. Chem. Phys. 135(24), 244701 (2011).
[CrossRef] [PubMed]

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[CrossRef] [PubMed]

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[CrossRef] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[CrossRef] [PubMed]

Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, “Multimodal subcellular imaging with microcavity photoacoustic transducer,” Opt. Express 19(3), 2426–2431 (2011).
[CrossRef] [PubMed]

Y. Zhu, N. T. Shaked, L. L. Satterwhite, and A. Wax, “Spectral-domain differential interference contrast microscopy,” Opt. Lett. 36(4), 430–432 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, and A. Wax, “Polarization mapping of nanoparticle plasmonic coupling,” Opt. Lett. 36(5), 757–759 (2011).
[CrossRef] [PubMed]

Z. Wang, H. Ding, and G. Popescu, “Scattering-phase theorem,” Opt. Lett. 36(7), 1215–1217 (2011).
[CrossRef] [PubMed]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump–probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[CrossRef] [PubMed]

H. Ding, Z. Wang, X. Liang, S. A. Boppart, K. Tangella, and G. Popescu, “Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices,” Opt. Lett. 36(12), 2281–2283 (2011).
[CrossRef] [PubMed]

F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
[CrossRef] [PubMed]

2010

F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett. 35(3), 360–362 (2010).
[CrossRef] [PubMed]

D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010).
[CrossRef] [PubMed]

F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett. 35(17), 2843–2845 (2010).
[CrossRef] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[CrossRef] [PubMed]

F. E. Robles, Y. Zhu, J. Lee, S. Sharma, and A. Wax, “Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry,” Biomed. Opt. Express 1(2), 736–745 (2010).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

R. Selm, M. Winterhalder, A. Zumbusch, G. Krauss, T. Hanke, A. Sell, and A. Leitenstorfer, “Ultrabroadband background-free coherent anti-Stokes Raman scattering microscopy based on a compact Er:fiber laser system,” Opt. Lett. 35(19), 3282–3284 (2010).
[CrossRef] [PubMed]

B. Li, W. S. Warren, and M. C. Fischer, “Phase-cycling coherent anti-Stokes Raman scattering using shaped femtosecond laser pulses,” Opt. Express 18(25), 25825–25832 (2010).
[CrossRef] [PubMed]

M. Okuno and H. O. Hamaguchi, “Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells,” Opt. Lett. 35(24), 4096–4098 (2010).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
[CrossRef]

K. Jeong, J. J. Turek, and D. D. Nolte, “Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography,” J. Biomed. Opt. 15(3), 030514 (2010).
[CrossRef] [PubMed]

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Z. J. Smith, J.-C. E. Wang, S. A. Quataert, and A. J. Berger, “Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes,” J. Biomed. Opt. 15(3), 036021 (2010).
[CrossRef] [PubMed]

K. J. Chalut, K. Kulangara, M. G. Giacomelli, A. Wax, and K. W. Leong, “Deformation of stem cell nuclei by nanotopographical cues,” Soft Matter 6(8), 1675–1681 (2010).
[CrossRef] [PubMed]

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
[CrossRef] [PubMed]

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
[CrossRef] [PubMed]

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564(756411), 756411-6 (2010).

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
[CrossRef]

A. Downes, R. Mouras, and A. Elfick, “Optical spectroscopy for noninvasive monitoring of stem cell differentiation,” J. Biomed. Biotechnol. 2010, 101864 (2010).
[CrossRef] [PubMed]

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[CrossRef] [PubMed]

I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A 114(43), 11483–11491 (2010).
[CrossRef] [PubMed]

R. Mouras, G. Rischitor, A. Downes, D. Salter, and A. Elfick, “Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging,” J. Raman Spectrosc. 41(8), 848–852 (2010).
[CrossRef]

2009

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1–2), 146–158 (2009).
[CrossRef]

J. W. Chan and D. K. Lieu, “Label-free biochemical characterization of stem cells using vibrational spectroscopy,” J. Biophotonics 2(11), 656–668 (2009).
[CrossRef] [PubMed]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[CrossRef] [PubMed]

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[CrossRef] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009).
[CrossRef]

C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48(10), D20–D25 (2009).
[CrossRef] [PubMed]

Z. J. Smith and A. J. Berger, “Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells,” Appl. Opt. 48(10), D109–D120 (2009).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34(4), 518–520 (2009).
[CrossRef] [PubMed]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[CrossRef] [PubMed]

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
[CrossRef] [PubMed]

K.-H. Lim, S. Salahuddin, L. Qiu, H. Fang, E. Vitkin, I. C. Ghiran, M. D. Modell, T. Takoudes, I. Itzkan, E. B. Hanlon, B. P. Sachs, and L. T. Perelman, “Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: may lead to noninvasive prenatal diagnosis,” Opt. Lett. 34(9), 1483–1485 (2009).
[CrossRef] [PubMed]

J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17(22), 20401–20414 (2009).
[CrossRef] [PubMed]

J. Zhang, B. Rao, L. Yu, and Z. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Opt. Lett. 34(21), 3442–3444 (2009).
[CrossRef] [PubMed]

Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
[CrossRef] [PubMed]

J. Y. Lee, S.-H. Kim, D. W. Moon, and E. S. Lee, “Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region,” Opt. Express 17(25), 22281–22295 (2009).
[CrossRef] [PubMed]

2008

J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. José-Yacamán, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express 16(3), 2153–2167 (2008).
[CrossRef] [PubMed]

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

Z. J. Smith and A. J. Berger, “Integrated Raman- and angular-scattering microscopy,” Opt. Lett. 33(7), 714–716 (2008).
[CrossRef] [PubMed]

K. J. Chalut, M. G. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25(8), 1866–1874 (2008).

A. Khmaladze, M. Kim, and C.-M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16(15), 10900–10911 (2008).
[CrossRef] [PubMed]

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering,” Opt. Lett. 33(21), 2452–2454 (2008).
[CrossRef] [PubMed]

Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
[CrossRef]

M. Costa, I. Ghiran, C. K. Peng, A. Nicholson-Weller, and A. Goldberger, “Complex dynamics of human red blood cell flickering: alterations with in vivo aging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 020901(R) (2008).
[CrossRef]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[CrossRef] [PubMed]

A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
[CrossRef] [PubMed]

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt. 13(4), 040503 (2008).
[CrossRef] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

2007

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[CrossRef]

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
[CrossRef] [PubMed]

G. Popescu, Y. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrane motions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031902 (2007).
[CrossRef] [PubMed]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[CrossRef] [PubMed]

J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32(10), 1326–1328 (2007).
[CrossRef] [PubMed]

D. D. Duncan and M. E. Thomas, “Particle shape as revealed by spectral depolarization,” Appl. Opt. 46(24), 6185–6191 (2007).
[CrossRef] [PubMed]

J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c,” Opt. Lett. 32(17), 2517–2519 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Express 15(21), 14057–14064 (2007).
[CrossRef] [PubMed]

J.-C. Auger, K. B. Aptowicz, R. G. Pinnick, Y.-L. Pan, and R. K. Chang, “Angularly resolved light scattering from aerosolized spores: observations and calculations,” Opt. Lett. 32(22), 3358–3360 (2007).
[CrossRef] [PubMed]

2006

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[CrossRef] [PubMed]

C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

T. R. Hillman, S. A. Alexandrov, T. Gutzler, and D. D. Sampson, “Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy,” Opt. Express 14(23), 11088–11102 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Y. Kaizuka and J. T. Groves, “Hydrodynamic damping of membrane thermal fluctuations near surfaces imaged by fluorescence interference microscopy,” Phys. Rev. Lett. 96(11), 118101 (2006).
[CrossRef] [PubMed]

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[CrossRef]

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

D. Marguet, P.-F. Lenne, H. Rigneault, and H.-T. He, “Dynamics in the plasma membrane: how to combine fluidity and order,” EMBO J. 25(15), 3446–3457 (2006).
[CrossRef] [PubMed]

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 11(5), 050502 (2006).
[CrossRef] [PubMed]

2005

I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88(4), 2929–2938 (2005).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a Mach–Zehnder interferometer,” Appl. Opt. 44(7), 1188–1190 (2005).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

R. N. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13(12), 4693–4698 (2005).
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30(16), 2131–2133 (2005).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, and D. D. Sampson, “Spatially resolved Fourier holographic light scattering angular spectroscopy,” Opt. Lett. 30(24), 3305–3307 (2005).
[CrossRef] [PubMed]

2004

J. W. Pyhtila and A. Wax, “Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry,” Opt. Express 12(25), 6178–6183 (2004).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Rraman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[CrossRef] [PubMed]

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

N. N. Boustany, Y. C. Tsai, B. Pfister, W. M. Joiner, G. A. Oyler, and N. V. Thakor, “BCL-xL-dependent light scattering by apoptotic cells,” Biophys. J. 87(6), 4163–4171 (2004).
[CrossRef] [PubMed]

N. Gov, “Membrane undulations driven by force fluctuations of active proteins,” Phys. Rev. Lett. 93(26), 268104 (2004).
[CrossRef] [PubMed]

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

2003

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

X. L. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28(14), 1230–1232 (2003).
[CrossRef] [PubMed]

J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11(25), 3473–3484 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

N. Gov, A. G. Zilman, and S. Safran, “Cytoskeleton confinement and tension of red blood cell membranes,” Phys. Rev. Lett. 90(22), 228101 (2003).
[CrossRef] [PubMed]

T. D. Pollard, “The cytoskeleton, cellular motility and the reductionist agenda,” Nature 422(6933), 741–745 (2003).
[CrossRef] [PubMed]

Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

2002

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[CrossRef] [PubMed]

N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83(3), 1691–1700 (2002).
[CrossRef] [PubMed]

G. Popescu, A. Dogariu, and R. Rajagopalan, “Spatially resolved microrheology using localized coherence volumes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041504 (2002).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7(1), 93–99 (2002).
[CrossRef] [PubMed]

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent Anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

2001

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
[CrossRef] [PubMed]

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “Phase-dispersion optical tomography,” Opt. Lett. 26(10), 686–688 (2001).
[CrossRef] [PubMed]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

C. K. Hitzenberger, M. Sticker, R. Leitgeb, and A. F. Fercher, “Differential phase measurements in low-coherence interferometry without 2π ambiguity,” Opt. Lett. 26(23), 1864–1866 (2001).
[CrossRef] [PubMed]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

2000

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

M. T. Santini, G. Rainaldi, and P. L. Indovina, “Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids,” Crit. Rev. Oncol. Hematol. 36(2–3), 75–87 (2000).
[CrossRef] [PubMed]

C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

M. G. Shim, L. M. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

1999

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

1998

1997

F. Jülicher, A. Ajdari, and J. Prost, “Modeling molecular motors,” Rev. Mod. Phys. 69(4), 1269–1282 (1997).
[CrossRef]

1996

D. A. Lauffenburger and A. F. Horwitz, “Cell migration: a physically integrated molecular process,” Cell 84(3), 359–369 (1996).
[CrossRef] [PubMed]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55(5), 535–575 (1996).
[CrossRef]

1995

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

1994

D. E. Discher, N. Mohandas, and E. A. Evans, “Molecular maps of red cell deformation: hidden elasticity and in situ connectivity,” Science 266(5187), 1032–1035 (1994).
[CrossRef] [PubMed]

N. G. Khlebtsov, A. G. Melnikov, S. Y. Shchyogolev, V. A. Bogatyrjov, and A. I. Sirota, “Anisotropic and spectral properties of biological scattering objects with the ordered particle orientation,” Proc. SPIE 2082, 33–42 (1994).
[CrossRef]

1993

L.-P. i. Choo, M. Jackson, W. C. Halliday, and H. H. Mantsch, “Infrared spectroscopic characterisation of multiple sclerosis plaques in the human central nervous system,” Biochim. Biophys. Acta 1182(3), 333–337 (1993).
[CrossRef] [PubMed]

1992

A. Zilker, M. Ziegler, and E. Sackmann, “Spectral analysis of erythrocyte flickering in the 0.3–4-µm−1 regime by microinterferometry combined with fast image processing,” Phys. Rev. A 46(12), 7998–8001 (1992).
[CrossRef] [PubMed]

S. B. Haley and P. Erdös, “Wave propagation in one-dimensional disordered structures,” Phys. Rev. B Condens. Matter 45(15), 8572–8584 (1992).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1984

1982

1981

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[CrossRef]

1979

J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman-spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
[CrossRef]

R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1979).
[CrossRef]

R. M. Hochmuth, P. R. Worthy, and E. A. Evans, “Red cell extensional recovery and the determination of membrane viscosity,” Biophys. J. 26(1), 101–114 (1979).
[CrossRef] [PubMed]

1977

J. M. Yuhas, A. P. Li, A. O. Martinez, and A. J. Ladman, “A simplified method for production and growth of multicellular tumor spheroids,” Cancer Res. 37(10), 3639–3643 (1977).
[PubMed]

1976

W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman-scattering,” Appl. Phys. Lett. 29(3), 174–176 (1976).
[CrossRef]

1975

A. Rosencwaig and A. Gersho, “Photoacoustic effect with solids—theoretical treatment,” Science 190(4214), 556–557 (1975).

F. Brochard and J. F. Lennon, “Frequency spectrum of the flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975).
[CrossRef]

G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975).
[PubMed]

1973

A. Rosencwaig, “Photoacoustic spectroscopy of biological materials,” Science 181(4100), 657–658 (1973).
[CrossRef] [PubMed]

1971

1965

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37(2), 231–287 (1965).
[CrossRef]

1962

E. J. Woodbury and W. K. Ng, “Ruby laser operation in near IR,” Proc. Inst. Radio Eng. 50(11), 2367 (1962).

Aaron, J.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. José-Yacamán, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express 16(3), 2153–2167 (2008).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Adler, D. C.

Ahn, A.

Ahrenkiel, R. K.

Ajdari, A.

F. Jülicher, A. Ajdari, and J. Prost, “Modeling molecular motors,” Rev. Mod. Phys. 69(4), 1269–1282 (1997).
[CrossRef]

Akkin, T.

Alexandrov, S. A.

Alsholm, P.

Amoozegar, C.

An, R.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[CrossRef] [PubMed]

Andersson, C.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[CrossRef] [PubMed]

Andersson-Engels, S.

Aptowicz, K. B.

Arendt, J. T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Arndt-Jovin, D. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[CrossRef] [PubMed]

Auger, J.-C.

Auth, T.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Backman, V.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34(4), 518–520 (2009).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[CrossRef] [PubMed]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004).
[CrossRef] [PubMed]

A. Wax and V. Backman, Biomedical Applications of Light Scattering. Biophotonics, I. Gannot and J. Neev, ed. (McGraw-Hill, 2010).

Badizadegan, K.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

G. Popescu, Y. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrane motions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031902 (2007).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a Mach–Zehnder interferometer,” Appl. Opt. 44(7), 1188–1190 (2005).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[CrossRef] [PubMed]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

Balla, A.

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[CrossRef] [PubMed]

Bambery, K. R.

M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
[CrossRef]

Bansil, R.

Barber, R. L.

M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
[CrossRef]

Barman, I.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Bashir, R.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Beard, P.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[CrossRef] [PubMed]

Bednarz, M.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Berciaud, S.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Berger, A. J.

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[CrossRef]

Best, C. A.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

Best-Popescu, C. A.

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Bhargava, R.

S. E. Holton, M. J. Walsh, and R. Bhargava, “Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging,” Analyst (Lond.) 136(14), 2953–2958 (2011).
[CrossRef]

G. Srinivasan and R. Bhargava, “Fourier transform-infrared spectroscopic imaging: the emerging evolution from a microscopy tool to a cancer imaging modality,” Spectroscopy22(7) (July1, 2007), http://www.spectroscopyonline.com/spectroscopy/FT-IR+Spectroscopy/Fourier-Transform-Infrared-Spectroscopic-Imaging-T/ArticleStandard/Article/detail/443485

Bigelow, C. E.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88(4), 2929–2938 (2005).
[CrossRef] [PubMed]

Bigio, I.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[CrossRef] [PubMed]

Blab, G. A.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Bogatyrjov, V. A.

N. G. Khlebtsov, A. G. Melnikov, S. Y. Shchyogolev, V. A. Bogatyrjov, and A. I. Sirota, “Anisotropic and spectral properties of biological scattering objects with the ordered particle orientation,” Proc. SPIE 2082, 33–42 (1994).
[CrossRef]

Bokor, J.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman enhancement of organic adsorbates on metal surfaces,” Phys. Rev. Lett. 106(8), 083003 (2011).
[CrossRef] [PubMed]

Bonn, M.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 11(5), 050502 (2006).
[CrossRef] [PubMed]

Book, L. D.

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent Anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

Boone, C. W.

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[CrossRef] [PubMed]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

Boppart, S. A.

Bost, W.

M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564(756411), 756411-6 (2010).

Bottiger, J. R.

Boustany, N. N.

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
[CrossRef] [PubMed]

J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17(22), 20401–20414 (2009).
[CrossRef] [PubMed]

N. N. Boustany, Y. C. Tsai, B. Pfister, W. M. Joiner, G. A. Oyler, and N. V. Thakor, “BCL-xL-dependent light scattering by apoptotic cells,” Biophys. J. 87(6), 4163–4171 (2004).
[CrossRef] [PubMed]

N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83(3), 1691–1700 (2002).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 1992).

Boyer, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Brand, R. E.

Brangwynne, C. P.

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[CrossRef] [PubMed]

Brochard, F.

F. Brochard and J. F. Lennon, “Frequency spectrum of the flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975).
[CrossRef]

Brown, F. L. H.

M. C. Watson, E. S. Penev, P. M. Welch, and F. L. H. Brown, “Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers,” J. Chem. Phys. 135(24), 244701 (2011).
[CrossRef] [PubMed]

Brown, M.

T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009).
[CrossRef]

Bursac, N.

Burt, J.

Cabrini, S.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman enhancement of organic adsorbates on metal surfaces,” Phys. Rev. Lett. 106(8), 083003 (2011).
[CrossRef] [PubMed]

Calkins, D. J.

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88(4), 2929–2938 (2005).
[CrossRef] [PubMed]

Cano, E.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Capjack, C. E.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[CrossRef] [PubMed]

Capoglu, I. R.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34(4), 518–520 (2009).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Cense, B.

Cha, J. M.

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

Chalut, K. J.

K. J. Chalut, K. Kulangara, M. G. Giacomelli, A. Wax, and K. W. Leong, “Deformation of stem cell nuclei by nanotopographical cues,” Soft Matter 6(8), 1675–1681 (2010).
[CrossRef] [PubMed]

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48(10), D20–D25 (2009).
[CrossRef] [PubMed]

K. J. Chalut, M. G. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25(8), 1866–1874 (2008).

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering,” Opt. Lett. 33(21), 2452–2454 (2008).
[CrossRef] [PubMed]

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[CrossRef] [PubMed]

J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32(10), 1326–1328 (2007).
[CrossRef] [PubMed]

Chan, J. W.

J. W. Chan and D. K. Lieu, “Label-free biochemical characterization of stem cells using vibrational spectroscopy,” J. Biophotonics 2(11), 656–668 (2009).
[CrossRef] [PubMed]

Chang, R. K.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, B. J.

Chen, K.

Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

Chen, S.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[CrossRef] [PubMed]

Chen, X.

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[CrossRef] [PubMed]

Chen, Z.

Cheng, J. X.

X. L. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Cheng, J.-x.

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent Anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

Cheng, Y.-Y.

Cheng, Z.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[CrossRef] [PubMed]

Chilkoti, A.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[CrossRef]

Choi, S. K.

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

Choi, W.

Choma, M.

Choma, M. A.

Chong, S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Choo, H.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman enhancement of organic adsorbates on metal surfaces,” Phys. Rev. Lett. 106(8), 083003 (2011).
[CrossRef] [PubMed]

Choo, L.-P. i.

L.-P. i. Choo, M. Jackson, W. C. Halliday, and H. H. Mantsch, “Infrared spectroscopic characterisation of multiple sclerosis plaques in the human central nervous system,” Biochim. Biophys. Acta 1182(3), 333–337 (1993).
[CrossRef] [PubMed]

Choquet, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Christensen, D. H.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Cipolloni, P. B.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[CrossRef] [PubMed]

Clarke, N. W.

T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009).
[CrossRef]

Cognet, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Colomb, T.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Conti, C.

G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
[CrossRef]

Costa, M.

M. Costa, I. Ghiran, C. K. Peng, A. Nicholson-Weller, and A. Goldberger, “Complex dynamics of human red blood cell flickering: alterations with in vivo aging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 020901(R) (2008).
[CrossRef]

Cottrell, W. J.

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
[CrossRef] [PubMed]

Cradock, S.

E. A. V. Ebsworth, D. W. H. Rankin, and S. Cradock, Structural Methods in Inorganic Chemistry, 2nd ed. (CRC Press, 1991).

Crawford, J. M.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Crawford, J. M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Creazzo, T. L.

Crow, M.

A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
[CrossRef] [PubMed]

Crow, M. J.

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, and A. Wax, “Polarization mapping of nanoparticle plasmonic coupling,” Opt. Lett. 36(5), 757–759 (2011).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef]

Crowell, J. M.

G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975).
[PubMed]

Curry, A. C.

A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
[CrossRef] [PubMed]

Damania, D.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
[CrossRef] [PubMed]

Dantus, M.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

Dasari, R. R.

Dasari, R.

Dasari, R. R.

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010).
[CrossRef] [PubMed]

G. Popescu, Y. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrane motions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031902 (2007).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[CrossRef] [PubMed]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “Phase-dispersion optical tomography,” Opt. Lett. 26(10), 686–688 (2001).
[CrossRef] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

Day, J. P. R.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

de Boeij, W. P.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
[CrossRef] [PubMed]

de Boer, J. F.

de la Rosa, E.

de la Zerda, A.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[CrossRef] [PubMed]

de Mul, F. F. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[CrossRef] [PubMed]

Degan, S.

Delpy, D.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Depeursinge, C.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Diez-Silva, M.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Dillon, C. T.

M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
[CrossRef]

Ding, H.

Discher, D. E.

D. E. Discher, N. Mohandas, and E. A. Evans, “Molecular maps of red cell deformation: hidden elasticity and in situ connectivity,” Science 266(5187), 1032–1035 (1994).
[CrossRef] [PubMed]

Doddi, V.

J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7(1), 93–99 (2002).
[CrossRef] [PubMed]

Dogariu, A.

G. Popescu, A. Dogariu, and R. Rajagopalan, “Spatially resolved microrheology using localized coherence volumes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041504 (2002).
[CrossRef] [PubMed]

Domke, K. F.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Dong, W.

Downes, A.

R. Mouras, G. Rischitor, A. Downes, D. Salter, and A. Elfick, “Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging,” J. Raman Spectrosc. 41(8), 848–852 (2010).
[CrossRef]

A. Downes, R. Mouras, and A. Elfick, “Optical spectroscopy for noninvasive monitoring of stem cell differentiation,” J. Biomed. Biotechnol. 2010, 101864 (2010).
[CrossRef] [PubMed]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Drezek, R.

Dubovik, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Duncan, D. D.

Duncan, M. D.

Dunn, A.

Ebsworth, E. A. V.

E. A. V. Ebsworth, D. W. H. Rankin, and S. Cradock, Structural Methods in Inorganic Chemistry, 2nd ed. (CRC Press, 1991).

Eck, T. F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Eick, A. A.

Elfick, A.

A. Downes, R. Mouras, and A. Elfick, “Optical spectroscopy for noninvasive monitoring of stem cell differentiation,” J. Biomed. Biotechnol. 2010, 101864 (2010).
[CrossRef] [PubMed]

R. Mouras, G. Rischitor, A. Downes, D. Salter, and A. Elfick, “Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging,” J. Raman Spectrosc. 41(8), 848–852 (2010).
[CrossRef]

Ellerbee, A. K.

El-Sayed, I. H.

I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

Elwell, C.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[CrossRef] [PubMed]

Erdös, P.

S. B. Haley and P. Erdös, “Wave propagation in one-dimensional disordered structures,” Phys. Rev. B Condens. Matter 45(15), 8572–8584 (1992).
[CrossRef] [PubMed]

Evans, C. L.

Evans, E. A.

D. E. Discher, N. Mohandas, and E. A. Evans, “Molecular maps of red cell deformation: hidden elasticity and in situ connectivity,” Science 266(5187), 1032–1035 (1994).
[CrossRef] [PubMed]

R. M. Hochmuth, P. R. Worthy, and E. A. Evans, “Red cell extensional recovery and the determination of membrane viscosity,” Biophys. J. 26(1), 101–114 (1979).
[CrossRef] [PubMed]

Fang, H.

Fang-Yen, C.

Favazza, C.

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

Feld, M. S.

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Feld, M.

Feld, M. S.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrane motions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031902 (2007).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a Mach–Zehnder interferometer,” Appl. Opt. 44(7), 1188–1190 (2005).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[CrossRef] [PubMed]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “Phase-dispersion optical tomography,” Opt. Lett. 26(10), 686–688 (2001).
[CrossRef] [PubMed]

C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Fercher, A. F.

Ferraris, P.

G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
[CrossRef]

Finan, J. D.

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
[CrossRef] [PubMed]

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[CrossRef] [PubMed]

Fischer, M. C.

Fitzmaurice, M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Follen, M.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Foster, T. H.

J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c,” Opt. Lett. 32(17), 2517–2519 (2007).
[CrossRef] [PubMed]

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
[CrossRef] [PubMed]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88(4), 2929–2938 (2005).
[CrossRef] [PubMed]

Freedman, S. D.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[CrossRef] [PubMed]

Freudiger, C.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Freyer, J. P.

Fu, D.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010).
[CrossRef] [PubMed]

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt. 13(4), 040503 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gambhir, S. S.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[CrossRef] [PubMed]

Ganikhanov, F.

Garavaglia, M. G.

G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
[CrossRef]

Garbacik, E. T.

E. T. Garbacik, J. P. Korterik, C. Otto, S. Mukamel, J. L. Herek, and H. L. Offerhaus, “Background-free nonlinear microspectroscopy with vibrational molecular interferometry,” Phys. Rev. Lett. 107(25), 253902 (2011).
[CrossRef] [PubMed]

Gardner, P.

T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009).
[CrossRef]

Gazi, E.

T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009).
[CrossRef]

Georgakoudi, I.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

Gersho, A.

A. Rosencwaig and A. Gersho, “Photoacoustic effect with solids—theoretical treatment,” Science 190(4214), 556–557 (1975).

Gheysens, O.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[CrossRef] [PubMed]

Ghiglia, D.

D. Ghiglia and M. Pritt, Two Dimensional Phase Unwrapping: Theory, Algorithms & Software (Wiley Interscience, 1998).

Ghiran, I.

M. Costa, I. Ghiran, C. K. Peng, A. Nicholson-Weller, and A. Goldberger, “Complex dynamics of human red blood cell flickering: alterations with in vivo aging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 020901(R) (2008).
[CrossRef]

Ghiran, I. C.

K.-H. Lim, S. Salahuddin, L. Qiu, H. Fang, E. Vitkin, I. C. Ghiran, M. D. Modell, T. Takoudes, I. Itzkan, E. B. Hanlon, B. P. Sachs, and L. T. Perelman, “Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: may lead to noninvasive prenatal diagnosis,” Opt. Lett. 34(9), 1483–1485 (2009).
[CrossRef] [PubMed]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

Giacomelli, M. G.

K. J. Chalut, K. Kulangara, M. G. Giacomelli, A. Wax, and K. W. Leong, “Deformation of stem cell nuclei by nanotopographical cues,” Soft Matter 6(8), 1675–1681 (2010).
[CrossRef] [PubMed]

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48(10), D20–D25 (2009).
[CrossRef] [PubMed]

K. J. Chalut, M. G. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25(8), 1866–1874 (2008).

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering,” Opt. Lett. 33(21), 2452–2454 (2008).
[CrossRef] [PubMed]

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[CrossRef] [PubMed]

Giesselman, B. R.

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[CrossRef]

Giorgini, E.

G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
[CrossRef]

Gniadecka, M.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Gniadecki, R.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Goda, K.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Goldberg, M. J.

Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004).
[CrossRef] [PubMed]

Goldberger, A.

M. Costa, I. Ghiran, C. K. Peng, A. Nicholson-Weller, and A. Goldberger, “Complex dynamics of human red blood cell flickering: alterations with in vivo aging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 020901(R) (2008).
[CrossRef]

Golding, I.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Gopal, V.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

Gov, N.

N. Gov, “Membrane undulations driven by force fluctuations of active proteins,” Phys. Rev. Lett. 93(26), 268104 (2004).
[CrossRef] [PubMed]

N. Gov, A. G. Zilman, and S. Safran, “Cytoskeleton confinement and tension of red blood cell membranes,” Phys. Rev. Lett. 90(22), 228101 (2003).
[CrossRef] [PubMed]

Gov, N. S.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Graf, R. N.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Greve, J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[CrossRef] [PubMed]

Groc, L.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Groves, J. T.

Y. Kaizuka and J. T. Groves, “Hydrodynamic damping of membrane thermal fluctuations near surfaces imaged by fluorescence interference microscopy,” Phys. Rev. Lett. 96(11), 118101 (2006).
[CrossRef] [PubMed]

Guilak, F.

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
[CrossRef] [PubMed]

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[CrossRef] [PubMed]

Guo, L. N.

Gupta, M.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[CrossRef] [PubMed]

Gurjar, R.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

Gutzler, T.

Haley, S. B.

S. B. Haley and P. Erdös, “Wave propagation in one-dimensional disordered structures,” Phys. Rev. B Condens. Matter 45(15), 8572–8584 (1992).
[CrossRef] [PubMed]

Halliday, W. C.

L.-P. i. Choo, M. Jackson, W. C. Halliday, and H. H. Mantsch, “Infrared spectroscopic characterisation of multiple sclerosis plaques in the human central nervous system,” Biochim. Biophys. Acta 1182(3), 333–337 (1993).
[CrossRef] [PubMed]

Hamaguchi, H. O.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

M. Okuno and H. O. Hamaguchi, “Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells,” Opt. Lett. 35(24), 4096–4098 (2010).
[CrossRef] [PubMed]

Hamano, T.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Hanke, T.

Hanlon, E. B.

K.-H. Lim, S. Salahuddin, L. Qiu, H. Fang, E. Vitkin, I. C. Ghiran, M. D. Modell, T. Takoudes, I. Itzkan, E. B. Hanlon, B. P. Sachs, and L. T. Perelman, “Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: may lead to noninvasive prenatal diagnosis,” Opt. Lett. 34(9), 1483–1485 (2009).
[CrossRef] [PubMed]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[CrossRef] [PubMed]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

Hansen, L. K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Harrison, N.

Harvey, E. C.

M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
[CrossRef]

Harvey, T. J.

T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009).
[CrossRef]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

He, H.-T.

D. Marguet, P.-F. Lenne, H. Rigneault, and H.-T. He, “Dynamics in the plasma membrane: how to combine fluidity and order,” EMBO J. 25(15), 3446–3457 (2006).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heifetz, A.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Heine, M.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Hellwarth, R.

R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1979).
[CrossRef]

Henderson, A.

T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009).
[CrossRef]

Henle, M. L.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Heraud, P.

M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
[CrossRef]

Hercogova, J.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Herek, J. L.

E. T. Garbacik, J. P. Korterik, C. Otto, S. Mukamel, J. L. Herek, and H. L. Offerhaus, “Background-free nonlinear microspectroscopy with vibrational molecular interferometry,” Phys. Rev. Lett. 107(25), 253902 (2011).
[CrossRef] [PubMed]

Hielscher, A. H.

Hill, S. C.

Hillis, D. B.

Hillman, T. R.

Hisada, T.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hochmuth, R. M.

R. M. Hochmuth, P. R. Worthy, and E. A. Evans, “Red cell extensional recovery and the determination of membrane viscosity,” Biophys. J. 26(1), 101–114 (1979).
[CrossRef] [PubMed]

Holben, B. N.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Holler, S.

Holtom, G.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Holton, S. E.

S. E. Holton, M. J. Walsh, and R. Bhargava, “Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging,” Analyst (Lond.) 136(14), 2953–2958 (2011).
[CrossRef]

Horwitz, A. F.

D. A. Lauffenburger and A. F. Horwitz, “Cell migration: a physically integrated molecular process,” Cell 84(3), 359–369 (1996).
[CrossRef] [PubMed]

Hu, S.

Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
[CrossRef] [PubMed]

Hu, Y. S.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman enhancement of organic adsorbates on metal surfaces,” Phys. Rev. Lett. 106(8), 083003 (2011).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, S. W.

Huang, X. H.

I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

Huber, R.

Hulst, H. C. d.

H. C. d. Hulst, Light Scattering by Small Particles (Dover, 1981).

Ikeda, T.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

Indovina, P. L.

M. T. Santini, G. Rainaldi, and P. L. Indovina, “Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids,” Crit. Rev. Oncol. Hematol. 36(2–3), 75–87 (2000).
[CrossRef] [PubMed]

Itzkan, I.

K.-H. Lim, S. Salahuddin, L. Qiu, H. Fang, E. Vitkin, I. C. Ghiran, M. D. Modell, T. Takoudes, I. Itzkan, E. B. Hanlon, B. P. Sachs, and L. T. Perelman, “Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: may lead to noninvasive prenatal diagnosis,” Opt. Lett. 34(9), 1483–1485 (2009).
[CrossRef] [PubMed]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[CrossRef] [PubMed]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Izatt, J.

Izatt, J. A.

Jackson, M.

L.-P. i. Choo, M. Jackson, W. C. Halliday, and H. H. Mantsch, “Infrared spectroscopic characterisation of multiple sclerosis plaques in the human central nervous system,” Biochim. Biophys. Acta 1182(3), 333–337 (1993).
[CrossRef] [PubMed]

Janowska-Wieczorek, A.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[CrossRef] [PubMed]

Jeong, K.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography,” J. Biomed. Opt. 15(3), 030514 (2010).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Express 15(21), 14057–14064 (2007).
[CrossRef] [PubMed]

Jin, J. Y.

Johnson, T. M.

Johnson, T. M.

J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7(1), 93–99 (2002).
[CrossRef] [PubMed]

Joiner, W. M.

N. N. Boustany, Y. C. Tsai, B. Pfister, W. M. Joiner, G. A. Oyler, and N. V. Thakor, “BCL-xL-dependent light scattering by apoptotic cells,” Biophys. J. 87(6), 4163–4171 (2004).
[CrossRef] [PubMed]

Joo, C.

José-Yacamán, M.

Jovin, T. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[CrossRef] [PubMed]

Jülicher, F.

F. Jülicher, A. Ajdari, and J. Prost, “Modeling molecular motors,” Rev. Mod. Phys. 69(4), 1269–1282 (1997).
[CrossRef]

Kabani, S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Kaizuka, Y.

Y. Kaizuka and J. T. Groves, “Hydrodynamic damping of membrane thermal fluctuations near surfaces imaged by fluorescence interference microscopy,” Phys. Rev. Lett. 96(11), 118101 (2006).
[CrossRef] [PubMed]

Kalashnikov, M.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kano, H.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Karlsson, A.

Katoh, M.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Keates, S. E.

Keener, J. D.

Keren, S.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[CrossRef] [PubMed]

Khlebtsov, N. G.

N. G. Khlebtsov, A. G. Melnikov, S. Y. Shchyogolev, V. A. Bogatyrjov, and A. I. Sirota, “Anisotropic and spectral properties of biological scattering objects with the ordered particle orientation,” Proc. SPIE 2082, 33–42 (1994).
[CrossRef]

Khmaladze, A.

Kim, B.

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

Kim, C.

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

Kim, J.

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

Kim, M.

Kim, S.-H.

Kim, Y. L.

Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004).
[CrossRef] [PubMed]

Kimerer, L. M.

Kimerer, L. M.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

Kirsch, M.

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[CrossRef] [PubMed]

Kline, E.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Koenderink, G. H.

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[CrossRef] [PubMed]

Kolios, M. C.

M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564(756411), 756411-6 (2010).

Kong, L. B.

L. B. Kong, P. F. Zhang, J. Yu, P. Setlow, and Y. Q. Li, “Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells,” Appl. Phys. Lett. 98(21), 213703 (2011).
[CrossRef]

Koo, T. W.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Korterik, J. P.

E. T. Garbacik, J. P. Korterik, C. Otto, S. Mukamel, J. L. Herek, and H. L. Offerhaus, “Background-free nonlinear microspectroscopy with vibrational molecular interferometry,” Phys. Rev. Lett. 107(25), 253902 (2011).
[CrossRef] [PubMed]

Krafft, C.

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[CrossRef] [PubMed]

Kramer, J. R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Krauss, G.

Kromin, A.

Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

Kromine, A. K.

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004).
[CrossRef] [PubMed]

Kühn, J.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Kulangara, K.

K. J. Chalut, K. Kulangara, M. G. Giacomelli, A. Wax, and K. W. Leong, “Deformation of stem cell nuclei by nanotopographical cues,” Soft Matter 6(8), 1675–1681 (2010).
[CrossRef] [PubMed]

Kunte, D.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Kuriabova, T.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

LaBauve, P. M.

G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975).
[PubMed]

Ladman, A. J.

J. M. Yuhas, A. P. Li, A. O. Martinez, and A. J. Ladman, “A simplified method for production and growth of multicellular tumor spheroids,” Cancer Res. 37(10), 3639–3643 (1977).
[PubMed]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[CrossRef]

Laposata, M.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Lapyonok, T.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Lasne, D.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Laufer, J.

J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52(1), 141–168 (2007).
[CrossRef] [PubMed]

Lauffenburger, D. A.

D. A. Lauffenburger and A. F. Horwitz, “Cell migration: a physically integrated molecular process,” Cell 84(3), 359–369 (1996).
[CrossRef] [PubMed]

Lee, E. S.

Lee, J.

Lee, J. Y.

Lee, S. H.

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

Leitenstorfer, A.

Leitgeb, R.

Lemor, R.

M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564(756411), 756411-6 (2010).

Lenne, P.-F.

D. Marguet, P.-F. Lenne, H. Rigneault, and H.-T. He, “Dynamics in the plasma membrane: how to combine fluidity and order,” EMBO J. 25(15), 3446–3457 (2006).
[CrossRef] [PubMed]

Lennon, J. F.

F. Brochard and J. F. Lennon, “Frequency spectrum of the flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975).
[CrossRef]

Leon, J.-F.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Leong, K. W.

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[CrossRef] [PubMed]

Leong, K. W.

K. J. Chalut, K. Kulangara, M. G. Giacomelli, A. Wax, and K. W. Leong, “Deformation of stem cell nuclei by nanotopographical cues,” Soft Matter 6(8), 1675–1681 (2010).
[CrossRef] [PubMed]

Levin, H. S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Levine, A. J.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Li, A. P.

J. M. Yuhas, A. P. Li, A. O. Martinez, and A. J. Ladman, “A simplified method for production and growth of multicellular tumor spheroids,” Cancer Res. 37(10), 3639–3643 (1977).
[PubMed]

Li, B.

Li, X.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Li, Y. Q.

L. B. Kong, P. F. Zhang, J. Yu, P. Setlow, and Y. Q. Li, “Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells,” Appl. Phys. Lett. 98(21), 213703 (2011).
[CrossRef]

Liang, X.

Liao, Y. F.

Lichtman, M. A.

M. A. Lichtman and W. J. Williams, Williams Hematology (McGraw-Hill, 2006).

Lieu, D. K.

J. W. Chan and D. K. Lieu, “Label-free biochemical characterization of stem cells using vibrational spectroscopy,” J. Biophotonics 2(11), 656–668 (2009).
[CrossRef] [PubMed]

Lim, K. H.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

Lim, K.-H.

Lima, C.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, J. A.

Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
[CrossRef] [PubMed]

Liu, W.-T.

L. Yang, W.-T. Liu, H. Wu, C. Wang, B. Ping, and D.-R. Shi, “Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo,” J. Biomed. Biotechnol. 2011, 214781 (2011).
[PubMed]

Liu, Y.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34(4), 518–520 (2009).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004).
[CrossRef] [PubMed]

Lo, C.-M.

Lotan, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Lounis, B.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Lu, F. K.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Lu, S.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Lucarini, V.

V. Lucarini, K.-E. Peiponen, J. J. Saarinen, and E. M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).

Luo, W.

Ma, H.

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[CrossRef]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

MacKintosh, F. C.

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[CrossRef] [PubMed]

Mackowski, D. W.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55(5), 535–575 (1996).
[CrossRef]

Magistretti, P. J.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Malpica, A.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Mandel, L.

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37(2), 231–287 (1965).
[CrossRef]

Manley, S.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

Manoharan, R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Mantsch, H. H.

L.-P. i. Choo, M. Jackson, W. C. Halliday, and H. H. Mantsch, “Infrared spectroscopic characterisation of multiple sclerosis plaques in the human central nervous system,” Biochim. Biophys. Acta 1182(3), 333–337 (1993).
[CrossRef] [PubMed]

Manuccia, T. J.

Marcon, N. E.

M. G. Shim, L. M. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

Marguet, D.

D. Marguet, P.-F. Lenne, H. Rigneault, and H.-T. He, “Dynamics in the plasma membrane: how to combine fluidity and order,” EMBO J. 25(15), 3446–3457 (2006).
[CrossRef] [PubMed]

Marinakos, S.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

Marquet, P.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Marquez-Curtis, L.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[CrossRef] [PubMed]

Martin, J. C.

G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975).
[PubMed]

Martinez, A. O.

J. M. Yuhas, A. P. Li, A. O. Martinez, and A. J. Ladman, “A simplified method for production and growth of multicellular tumor spheroids,” Cancer Res. 37(10), 3639–3643 (1977).
[PubMed]

Maslov, K.

Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

Mason, T. G.

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

Matthews, T. E.

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump–probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[CrossRef] [PubMed]

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump–probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[CrossRef] [PubMed]

I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A 114(43), 11483–11491 (2010).
[CrossRef] [PubMed]

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt. 13(4), 040503 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

McGilligan, J. A.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Melnikov, A. G.

N. G. Khlebtsov, A. G. Melnikov, S. Y. Shchyogolev, V. A. Bogatyrjov, and A. I. Sirota, “Anisotropic and spectral properties of biological scattering objects with the ordered particle orientation,” Proc. SPIE 2082, 33–42 (1994).
[CrossRef]

Min, W.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Mir, M.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Mishchenko, M. I.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55(5), 535–575 (1996).
[CrossRef]

Mitra, S.

Modell, M. D.

Modell, M.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

Modell, M. D.

Mohandas, N.

D. E. Discher, N. Mohandas, and E. A. Evans, “Molecular maps of red cell deformation: hidden elasticity and in situ connectivity,” Science 266(5187), 1032–1035 (1994).
[CrossRef] [PubMed]

Moon, D. W.

Mostowski, J.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[CrossRef]

Motz, J. T.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Mourant, J. R.

Mouras, R.

A. Downes, R. Mouras, and A. Elfick, “Optical spectroscopy for noninvasive monitoring of stem cell differentiation,” J. Biomed. Biotechnol. 2010, 101864 (2010).
[CrossRef] [PubMed]

R. Mouras, G. Rischitor, A. Downes, D. Salter, and A. Elfick, “Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging,” J. Raman Spectrosc. 41(8), 848–852 (2010).
[CrossRef]

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
[CrossRef]

Mueller, M.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

Mukamel, S.

E. T. Garbacik, J. P. Korterik, C. Otto, S. Mukamel, J. L. Herek, and H. L. Offerhaus, “Background-free nonlinear microspectroscopy with vibrational molecular interferometry,” Phys. Rev. Lett. 107(25), 253902 (2011).
[CrossRef] [PubMed]

Mullaney, P. F.

G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975).
[PubMed]

Müller, M. G.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Müller, M.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 11(5), 050502 (2006).
[CrossRef] [PubMed]

Muñoz, O.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Munro, K. L.

M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
[CrossRef]

Nagai, R.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Nan, X. L.

X. L. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Narashimhan, S.

M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564(756411), 756411-6 (2010).

Neaton, J. B.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman enhancement of organic adsorbates on metal surfaces,” Phys. Rev. Lett. 106(8), 083003 (2011).
[CrossRef] [PubMed]

Ng, W. K.

E. J. Woodbury and W. K. Ng, “Ruby laser operation in near IR,” Proc. Inst. Radio Eng. 50(11), 2367 (1962).

Nguyen, F.

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
[CrossRef] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Nicholson-Weller, A.

M. Costa, I. Ghiran, C. K. Peng, A. Nicholson-Weller, and A. Goldberger, “Complex dynamics of human red blood cell flickering: alterations with in vivo aging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 020901(R) (2008).
[CrossRef]

Nielsen, O. F.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Nilsson, A. M. K.

Nishimura, S.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Nolte, D. D.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography,” J. Biomed. Opt. 15(3), 030514 (2010).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Express 15(21), 14057–14064 (2007).
[CrossRef] [PubMed]

Nusrat, A.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Offerhaus, H. L.

E. T. Garbacik, J. P. Korterik, C. Otto, S. Mukamel, J. L. Herek, and H. L. Offerhaus, “Background-free nonlinear microspectroscopy with vibrational molecular interferometry,” Phys. Rev. Lett. 107(25), 253902 (2011).
[CrossRef] [PubMed]

Okuno, M.

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Ostrander, J.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

Ostrander, J. H.

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering,” Opt. Lett. 33(21), 2452–2454 (2008).
[CrossRef] [PubMed]

Otto, C.

E. T. Garbacik, J. P. Korterik, C. Otto, S. Mukamel, J. L. Herek, and H. L. Offerhaus, “Background-free nonlinear microspectroscopy with vibrational molecular interferometry,” Phys. Rev. Lett. 107(25), 253902 (2011).
[CrossRef] [PubMed]

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[CrossRef] [PubMed]

Oudar, J. L.

J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman-spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
[CrossRef]

Oyler, G. A.

N. N. Boustany, Y. C. Tsai, B. Pfister, W. M. Joiner, G. A. Oyler, and N. V. Thakor, “BCL-xL-dependent light scattering by apoptotic cells,” Biophys. J. 87(6), 4163–4171 (2004).
[CrossRef] [PubMed]

Pan, Y.

Pan, Y.-L.

Park, B. H.

Park, J.

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

Park, Y.

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
[CrossRef] [PubMed]

G. Popescu, Y. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrane motions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031902 (2007).
[CrossRef] [PubMed]

Pasternack, R. M.

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
[CrossRef] [PubMed]

J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17(22), 20401–20414 (2009).
[CrossRef] [PubMed]

Pavlova, I.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, 2000).

Peiponen, K.-E.

V. Lucarini, K.-E. Peiponen, J. J. Saarinen, and E. M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).

Penev, E. S.

M. C. Watson, E. S. Penev, P. M. Welch, and F. L. H. Brown, “Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers,” J. Chem. Phys. 135(24), 244701 (2011).
[CrossRef] [PubMed]

Peng, C. K.

M. Costa, I. Ghiran, C. K. Peng, A. Nicholson-Weller, and A. Goldberger, “Complex dynamics of human red blood cell flickering: alterations with in vivo aging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 020901(R) (2008).
[CrossRef]

Perelman, L. T.

Perelman, L.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Perelman, L. T.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Pernik, D. R.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Pfister, B.

N. N. Boustany, Y. C. Tsai, B. Pfister, W. M. Joiner, G. A. Oyler, and N. V. Thakor, “BCL-xL-dependent light scattering by apoptotic cells,” Biophys. J. 87(6), 4163–4171 (2004).
[CrossRef] [PubMed]

Philipsen, P. A.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Piletic, I. R.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump–probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[CrossRef] [PubMed]

I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A 114(43), 11483–11491 (2010).
[CrossRef] [PubMed]

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt. 13(4), 040503 (2008).
[CrossRef] [PubMed]

Ping, B.

L. Yang, W.-T. Liu, H. Wu, C. Wang, B. Ping, and D.-R. Shi, “Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo,” J. Biomed. Biotechnol. 2011, 214781 (2011).
[PubMed]

Pinnick, R. G.

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[CrossRef]

Pollard, T. D.

T. D. Pollard, “The cytoskeleton, cellular motility and the reductionist agenda,” Nature 422(6933), 741–745 (2003).
[CrossRef] [PubMed]

Popescu, G.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[CrossRef] [PubMed]

Z. Wang, H. Ding, and G. Popescu, “Scattering-phase theorem,” Opt. Lett. 36(7), 1215–1217 (2011).
[CrossRef] [PubMed]

H. Ding, Z. Wang, X. Liang, S. A. Boppart, K. Tangella, and G. Popescu, “Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices,” Opt. Lett. 36(12), 2281–2283 (2011).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

H. Ding, F. Nguyen, S. A. Boppart, and G. Popescu, “Optical properties of tissues quantified by Fourier-transform light scattering,” Opt. Lett. 34(9), 1372–1374 (2009).
[CrossRef] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

G. Popescu, Y. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrane motions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 031902 (2007).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97(21), 218101 (2006).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a Mach–Zehnder interferometer,” Appl. Opt. 44(7), 1188–1190 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30(10), 1165–1167 (2005).
[CrossRef] [PubMed]

G. Popescu, A. Dogariu, and R. Rajagopalan, “Spatially resolved microrheology using localized coherence volumes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041504 (2002).
[CrossRef] [PubMed]

Potma, E. O.

Pradhan, P.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34(4), 518–520 (2009).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Prasanth, S. G.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Pritt, M.

D. Ghiglia and M. Pritt, Two Dimensional Phase Unwrapping: Theory, Algorithms & Software (Wiley Interscience, 1998).

Prost, J.

F. Jülicher, A. Ajdari, and J. Prost, “Modeling molecular motors,” Rev. Mod. Phys. 69(4), 1269–1282 (1997).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Puppels, G. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[CrossRef] [PubMed]

Puskar, L.

M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
[CrossRef]

Pyhtila, J. W.

Qiu, L.

Qiu, Y.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[CrossRef] [PubMed]

Quataert, S. A.

Z. J. Smith, J.-C. E. Wang, S. A. Quataert, and A. J. Berger, “Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes,” J. Biomed. Opt. 15(3), 036021 (2010).
[CrossRef] [PubMed]

Rago, G.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Rainaldi, G.

M. T. Santini, G. Rainaldi, and P. L. Indovina, “Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids,” Crit. Rev. Oncol. Hematol. 36(2–3), 75–87 (2000).
[CrossRef] [PubMed]

Rajagopalan, R.

G. Popescu, A. Dogariu, and R. Rajagopalan, “Spatially resolved microrheology using localized coherence volumes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(4), 041504 (2002).
[CrossRef] [PubMed]

Ralston, T. S.

Rankin, D. W. H.

E. A. V. Ebsworth, D. W. H. Rankin, and S. Cradock, Structural Methods in Inorganic Chemistry, 2nd ed. (CRC Press, 1991).

Rao, B.

Rappaz, B.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Raymer, M. G.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24(4), 1980–1993 (1981).
[CrossRef]

Rehman, S.

Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
[CrossRef]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Reintjes, J.

Richards-Kortum, R.

Rigneault, H.

D. Marguet, P.-F. Lenne, H. Rigneault, and H.-T. He, “Dynamics in the plasma membrane: how to combine fluidity and order,” EMBO J. 25(15), 3446–3457 (2006).
[CrossRef] [PubMed]

Rinia, H. A.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 11(5), 050502 (2006).
[CrossRef] [PubMed]

Rischitor, G.

R. Mouras, G. Rischitor, A. Downes, D. Salter, and A. Elfick, “Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging,” J. Raman Spectrosc. 41(8), 848–852 (2010).
[CrossRef]

Robert-Nicoud, M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347(6290), 301–303 (1990).
[CrossRef] [PubMed]

Robles, F.

Robles, F. E.

Rogers, J. D.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34(4), 518–520 (2009).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Roh, W. B.

W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman-scattering,” Appl. Phys. Lett. 29(3), 174–176 (1976).
[CrossRef]

Romero, A.

G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975).
[PubMed]

Rosencwaig, A.

A. Rosencwaig and A. Gersho, “Photoacoustic effect with solids—theoretical treatment,” Science 190(4214), 556–557 (1975).

A. Rosencwaig, “Photoacoustic spectroscopy of biological materials,” Science 181(4100), 657–658 (1973).
[CrossRef] [PubMed]

Rossen, K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Roy, H. K.

Roy, H. K.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004).
[CrossRef] [PubMed]

Roy, R.

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

Rozmus, W.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[CrossRef] [PubMed]

Rubini, C.

G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
[CrossRef]

Rui, M.

M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564(756411), 756411-6 (2010).

Ryu, J.

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

Ryu, S.

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

Saarinen, J. J.

V. Lucarini, K.-E. Peiponen, J. J. Saarinen, and E. M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).

Sabbatini, S.

G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
[CrossRef]

Sachs, B. P.

K.-H. Lim, S. Salahuddin, L. Qiu, H. Fang, E. Vitkin, I. C. Ghiran, M. D. Modell, T. Takoudes, I. Itzkan, E. B. Hanlon, B. P. Sachs, and L. T. Perelman, “Light-scattering spectroscopy differentiates fetal from adult nucleated red blood cells: may lead to noninvasive prenatal diagnosis,” Opt. Lett. 34(9), 1483–1485 (2009).
[CrossRef] [PubMed]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

Sackmann, E.

A. Zilker, M. Ziegler, and E. Sackmann, “Spectral analysis of erythrocyte flickering in the 0.3–4-µm−1 regime by microinterferometry combined with fast image processing,” Phys. Rev. A 46(12), 7998–8001 (1992).
[CrossRef] [PubMed]

Saeki, Y.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Safran, S.

N. Gov, A. G. Zilman, and S. Safran, “Cytoskeleton confinement and tension of red blood cell membranes,” Phys. Rev. Lett. 90(22), 228101 (2003).
[CrossRef] [PubMed]

Safran, S. A.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Salahuddin, S.

Salter, D.

R. Mouras, G. Rischitor, A. Downes, D. Salter, and A. Elfick, “Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging,” J. Raman Spectrosc. 41(8), 848–852 (2010).
[CrossRef]

Salzer, R.

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[CrossRef] [PubMed]

Salzman, G. C.

G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975).
[PubMed]

Sampson, D. D.

Santini, M. T.

M. T. Santini, G. Rainaldi, and P. L. Indovina, “Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids,” Crit. Rev. Oncol. Hematol. 36(2–3), 75–87 (2000).
[CrossRef] [PubMed]

Sarunic, M.

Sarunic, M. V.

Satterwhite, L. L.

Schackert, G.

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[CrossRef] [PubMed]

Schaffer, C. B.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 11(5), 050502 (2006).
[CrossRef] [PubMed]

Schreiber, P. W.

W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman-scattering,” Appl. Phys. Lett. 29(3), 174–176 (1976).
[CrossRef]

Schuck, P. J.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman enhancement of organic adsorbates on metal surfaces,” Phys. Rev. Lett. 106(8), 083003 (2011).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seekell, K.

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, and A. Wax, “Polarization mapping of nanoparticle plasmonic coupling,” Opt. Lett. 36(5), 757–759 (2011).
[CrossRef] [PubMed]

Seiler, M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Selim, M. A.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump–probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[CrossRef] [PubMed]

Sell, A.

Selm, R.

Seo, E.

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

Setlow, P.

L. B. Kong, P. F. Zhang, J. Yu, P. Setlow, and Y. Q. Li, “Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells,” Appl. Phys. Lett. 98(21), 213703 (2011).
[CrossRef]

Shafer, K. E.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[CrossRef] [PubMed]

Shaked, N. T.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[CrossRef] [PubMed]

Y. Zhu, N. T. Shaked, L. L. Satterwhite, and A. Wax, “Spectral-domain differential interference contrast microscopy,” Opt. Lett. 36(4), 430–432 (2011).
[CrossRef] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[CrossRef] [PubMed]

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
[CrossRef] [PubMed]

Shapshay, S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Sharma, S.

Shchyogolev, S. Y.

N. G. Khlebtsov, A. G. Melnikov, S. Y. Shchyogolev, V. A. Bogatyrjov, and A. I. Sirota, “Anisotropic and spectral properties of biological scattering objects with the ordered particle orientation,” Proc. SPIE 2082, 33–42 (1994).
[CrossRef]

Shen, D.

Shen, Y. R.

J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman-spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
[CrossRef]

Shen, Z.

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

Shi, D.-R.

L. Yang, W.-T. Liu, H. Wu, C. Wang, B. Ping, and D.-R. Shi, “Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo,” J. Biomed. Biotechnol. 2011, 214781 (2011).
[PubMed]

Shields, S.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Shim, M. G.

M. G. Shim, L. M. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

Sigurdsson, S.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Simanis, V.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Simnick, A. J.

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[CrossRef]

Simpson, M. J.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump–probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[CrossRef] [PubMed]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump–probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[CrossRef] [PubMed]

Sinyuk, A.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Sirota, A. I.

N. G. Khlebtsov, A. G. Melnikov, S. Y. Shchyogolev, V. A. Bogatyrjov, and A. I. Sirota, “Anisotropic and spectral properties of biological scattering objects with the ordered particle orientation,” Proc. SPIE 2082, 33–42 (1994).
[CrossRef]

Skala, M. C.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef]

Slutsker, I.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Smith, R. W.

J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman-spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
[CrossRef]

Smith, Z. J.

Snook, R. D.

T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009).
[CrossRef]

Sokolov, A. V.

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801(R) (2011).

Sokolov, K.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1–2), 146–158 (2009).
[CrossRef]

J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. José-Yacamán, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express 16(3), 2153–2167 (2008).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Song, L. M.

M. G. Shim, L. M. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

Sorokin, M.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Srinivasan, G.

G. Srinivasan and R. Bhargava, “Fourier transform-infrared spectroscopic imaging: the emerging evolution from a microscopy tool to a cancer imaging modality,” Spectroscopy22(7) (July1, 2007), http://www.spectroscopyonline.com/spectroscopy/FT-IR+Spectroscopy/Fourier-Transform-Infrared-Spectroscopic-Imaging-T/ArticleStandard/Article/detail/443485

Staibano, S.

G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
[CrossRef]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stracke, F.

M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564(756411), 756411-6 (2010).

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Stypula, Y.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
[CrossRef] [PubMed]

Su, X.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[CrossRef] [PubMed]

Subramanian, H.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34(4), 518–520 (2009).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Sugiura, S.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Sunagawa, K.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Sung, Y.

Sunney Xie, X.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

Suresh, S.

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Taflove, A.

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. U.S.A. 105(51), 20118–20123 (2008).
[CrossRef] [PubMed]

Takoudes, T.

Tamarat, P.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Tan, W.

Tan, Z. L.

Tang, Z. L.

Tangella, K.

Taran, J. P. E.

W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman-scattering,” Appl. Phys. Lett. 29(3), 174–176 (1976).
[CrossRef]

Tardin, C.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Telen, M. J.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[CrossRef] [PubMed]

Thakor, N. V.

N. N. Boustany, Y. C. Tsai, B. Pfister, W. M. Joiner, G. A. Oyler, and N. V. Thakor, “BCL-xL-dependent light scattering by apoptotic cells,” Biophys. J. 87(6), 4163–4171 (2004).
[CrossRef] [PubMed]

N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83(3), 1691–1700 (2002).
[CrossRef] [PubMed]

Thomas, M. E.

Thomsen, H. K.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Tiwari, A. K.

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
[CrossRef] [PubMed]

Tobin, M. J.

M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
[CrossRef]

Tosi, G.

G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
[CrossRef]

Travis, K.

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55(5), 535–575 (1996).
[CrossRef]

Trujillo, T. T.

G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975).
[PubMed]

Truskey, G. A.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[CrossRef] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Tsai, Y. C.

N. N. Boustany, Y. C. Tsai, B. Pfister, W. M. Joiner, G. A. Oyler, and N. V. Thakor, “BCL-xL-dependent light scattering by apoptotic cells,” Biophys. J. 87(6), 4163–4171 (2004).
[CrossRef] [PubMed]

Tsui, Y. Y.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[CrossRef] [PubMed]

Turek, J.

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[CrossRef] [PubMed]

Turek, J. J.

K. Jeong, J. J. Turek, and D. D. Nolte, “Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography,” J. Biomed. Opt. 15(3), 030514 (2010).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Express 15(21), 14057–14064 (2007).
[CrossRef] [PubMed]

Turner, B. S.

ur Rehman, D. I.

Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
[CrossRef]

Valdez, T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Van Dam, J.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).

van der Zande, W. J.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

van Haastert, P. J. M.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
[CrossRef] [PubMed]

Vartiainen, E. M.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Vartiainen, E. M.

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 11(5), 050502 (2006).
[CrossRef] [PubMed]

V. Lucarini, K.-E. Peiponen, J. J. Saarinen, and E. M. Vartiainen, Kramers–Kronig Relations in Optical Materials Research (Springer-Verlag, 2005).

Veihelmann, B.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Vinegoni, C.

Vitkin, E.

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent Anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

Volten, H.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Wali, R.

Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

Wali, R. K.

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004).
[CrossRef] [PubMed]

Wallace, M.

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Wallace, M. B.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Walsh, M. J.

S. E. Holton, M. J. Walsh, and R. Bhargava, “Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging,” Analyst (Lond.) 136(14), 2953–2958 (2011).
[CrossRef]

Wang, C.

L. Yang, W.-T. Liu, H. Wu, C. Wang, B. Ping, and D.-R. Shi, “Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo,” J. Biomed. Biotechnol. 2011, 214781 (2011).
[PubMed]

Wang, J.-C. E.

Z. J. Smith, J.-C. E. Wang, S. A. Quataert, and A. J. Berger, “Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes,” J. Biomed. Opt. 15(3), 036021 (2010).
[CrossRef] [PubMed]

Wang, K.

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801(R) (2011).

Wang, L. V.

Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
[CrossRef] [PubMed]

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

Wang, X.

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801(R) (2011).

Wang, Y.

Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, H. Ding, and G. Popescu, “Scattering-phase theorem,” Opt. Lett. 36(7), 1215–1217 (2011).
[CrossRef] [PubMed]

H. Ding, Z. Wang, X. Liang, S. A. Boppart, K. Tangella, and G. Popescu, “Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices,” Opt. Lett. 36(12), 2281–2283 (2011).
[CrossRef] [PubMed]

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[CrossRef] [PubMed]

M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. Natl. Acad. Sci. U.S.A. 108(32), 13124–13129 (2011).
[CrossRef] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[CrossRef] [PubMed]

Warren, W. S.

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump–probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[CrossRef] [PubMed]

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump–probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[CrossRef] [PubMed]

I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A 114(43), 11483–11491 (2010).
[CrossRef] [PubMed]

B. Li, W. S. Warren, and M. C. Fischer, “Phase-cycling coherent anti-Stokes Raman scattering using shaped femtosecond laser pulses,” Opt. Express 18(25), 25825–25832 (2010).
[CrossRef] [PubMed]

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt. 13(4), 040503 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

Watson, M. C.

M. C. Watson, E. S. Penev, P. M. Welch, and F. L. H. Brown, “Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers,” J. Chem. Phys. 135(24), 244701 (2011).
[CrossRef] [PubMed]

Wax, A.

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[CrossRef] [PubMed]

Y. Zhu, N. T. Shaked, L. L. Satterwhite, and A. Wax, “Spectral-domain differential interference contrast microscopy,” Opt. Lett. 36(4), 430–432 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, and A. Wax, “Polarization mapping of nanoparticle plasmonic coupling,” Opt. Lett. 36(5), 757–759 (2011).
[CrossRef] [PubMed]

F. E. Robles, L. L. Satterwhite, and A. Wax, “Nonlinear phase dispersion spectroscopy,” Opt. Lett. 36(23), 4665–4667 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

F. E. Robles, Y. Zhu, J. Lee, S. Sharma, and A. Wax, “Detection of early colorectal cancer development in the azoxymethane rat carcinogenesis model with Fourier domain low coherence interferometry,” Biomed. Opt. Express 1(2), 736–745 (2010).
[CrossRef] [PubMed]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1(2), 706–719 (2010).
[CrossRef] [PubMed]

F. E. Robles and A. Wax, “Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,” Opt. Lett. 35(17), 2843–2845 (2010).
[CrossRef] [PubMed]

F. E. Robles and A. Wax, “Measuring morphological features using light-scattering spectroscopy and Fourier-domain low-coherence interferometry,” Opt. Lett. 35(3), 360–362 (2010).
[CrossRef] [PubMed]

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
[CrossRef] [PubMed]

K. J. Chalut, K. Kulangara, M. G. Giacomelli, A. Wax, and K. W. Leong, “Deformation of stem cell nuclei by nanotopographical cues,” Soft Matter 6(8), 1675–1681 (2010).
[CrossRef] [PubMed]

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[CrossRef] [PubMed]

C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48(10), D20–D25 (2009).
[CrossRef] [PubMed]

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[CrossRef] [PubMed]

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1–2), 146–158 (2009).
[CrossRef]

A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef]

K. J. Chalut, M. G. Giacomelli, and A. Wax, “Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries,” J. Opt. Soc. Am. A 25(8), 1866–1874 (2008).

M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering,” Opt. Lett. 33(21), 2452–2454 (2008).
[CrossRef] [PubMed]

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[CrossRef] [PubMed]

J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32(10), 1326–1328 (2007).
[CrossRef] [PubMed]

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[CrossRef]

R. N. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13(12), 4693–4698 (2005).
[CrossRef] [PubMed]

A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a Mach–Zehnder interferometer,” Appl. Opt. 44(7), 1188–1190 (2005).
[CrossRef] [PubMed]

J. W. Pyhtila and A. Wax, “Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry,” Opt. Express 12(25), 6178–6183 (2004).
[CrossRef] [PubMed]

J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11(25), 3473–3484 (2003).
[CrossRef] [PubMed]

A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28(14), 1230–1232 (2003).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[CrossRef] [PubMed]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “Phase-dispersion optical tomography,” Opt. Lett. 26(10), 686–688 (2001).
[CrossRef] [PubMed]

C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25(20), 1526–1528 (2000).
[CrossRef] [PubMed]

A. Wax and V. Backman, Biomedical Applications of Light Scattering. Biophotonics, I. Gannot and J. Neev, ed. (McGraw-Hill, 2010).

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Weiss, E.

M. Rui, S. Narashimhan, W. Bost, F. Stracke, E. Weiss, R. Lemor, and M. C. Kolios, “Gigahertz optoacoustic imaging for cellular imaging,” Proc. SPIE 7564(756411), 756411-6 (2010).

Weitz, D. A.

C. P. Brangwynne, G. H. Koenderink, F. C. MacKintosh, and D. A. Weitz, “Intracellular transport by active diffusion,” Trends Cell Biol. 19(9), 423–427 (2009).
[CrossRef] [PubMed]

T. G. Mason and D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74(7), 1250–1253 (1995).
[CrossRef] [PubMed]

Welch, G. R.

X. Wang, K. Wang, G. R. Welch, and A. V. Sokolov, “Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background,” Phys. Rev. A 84(2), 021801(R) (2011).

Welch, P. M.

M. C. Watson, E. S. Penev, P. M. Welch, and F. L. H. Brown, “Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers,” J. Chem. Phys. 135(24), 244701 (2011).
[CrossRef] [PubMed]

Wessel, S.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Wiersma, D. A.

E. O. Potma, W. P. de Boeij, P. J. M. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98(4), 1577–1582 (2001).
[CrossRef] [PubMed]

Williams, W. J.

M. A. Lichtman and W. J. Williams, Williams Hematology (McGraw-Hill, 2006).

Wilson, B. C.

M. G. Shim, L. M. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72(1), 146–150 (2000).
[PubMed]

Wilson, J. D.

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
[CrossRef] [PubMed]

J. D. Wilson, B. R. Giesselman, S. Mitra, and T. H. Foster, “Lysosome-damage-induced scattering changes coincide with release of cytochrome c,” Opt. Lett. 32(17), 2517–2519 (2007).
[CrossRef] [PubMed]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88(4), 2929–2938 (2005).
[CrossRef] [PubMed]

Wilson, J. W.

Winterhalder, M.

Wolf, E.

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37(2), 231–287 (1965).
[CrossRef]

Wood, B. R.

M. J. Tobin, L. Puskar, R. L. Barber, E. C. Harvey, P. Heraud, B. R. Wood, K. R. Bambery, C. T. Dillon, and K. L. Munro, “FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders,” Vib. Spectrosc. 53(1), 34–38 (2010).
[CrossRef]

Woodbury, E. J.

E. J. Woodbury and W. K. Ng, “Ruby laser operation in near IR,” Proc. Inst. Radio Eng. 50(11), 2367 (1962).

Worthy, P. R.

R. M. Hochmuth, P. R. Worthy, and E. A. Evans, “Red cell extensional recovery and the determination of membrane viscosity,” Biophys. J. 26(1), 101–114 (1979).
[CrossRef] [PubMed]

Wu, H.

L. Yang, W.-T. Liu, H. Wu, C. Wang, B. Ping, and D.-R. Shi, “Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo,” J. Biomed. Biotechnol. 2011, 214781 (2011).
[PubMed]

Wu, Y. B.

Wulf, H. C.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

Wyant, J. C.

Xia, Y. N.

Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
[CrossRef] [PubMed]

Xie, X. S.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Xie, X. S.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009).
[CrossRef] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Rraman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[CrossRef] [PubMed]

X. L. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent Anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Xu, B.

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. Sunney Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5(2), 103–109 (2011).
[CrossRef]

Xu, C.

Yamada, K. P.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Yamashita, H.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Yamauchi, T.

Yang, C.

Yang, C. H.

Yang, L.

L. Yang, W.-T. Liu, H. Wu, C. Wang, B. Ping, and D.-R. Shi, “Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo,” J. Biomed. Biotechnol. 2011, 214781 (2011).
[PubMed]

Yang, L. M.

Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
[CrossRef] [PubMed]

Yang, P.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

Yaqoob, Z.

Yasuda, S.-i.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Ye, T.

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt. 13(4), 040503 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

Yu, J.

L. B. Kong, P. F. Zhang, J. Yu, P. Setlow, and Y. Q. Li, “Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells,” Appl. Phys. Lett. 98(21), 213703 (2011).
[CrossRef]

Yu, L.

Yuhas, J. M.

J. M. Yuhas, A. P. Li, A. O. Martinez, and A. J. Ladman, “A simplified method for production and growth of multicellular tumor spheroids,” Cancer Res. 37(10), 3639–3643 (1977).
[PubMed]

Yurtserver, G.

Yurtsever, G.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

Zaman, M. M.

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[CrossRef] [PubMed]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17255–17260 (2007).
[CrossRef] [PubMed]

Zavaleta, C.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[CrossRef] [PubMed]

Zayak, A. T.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman enhancement of organic adsorbates on metal surfaces,” Phys. Rev. Lett. 106(8), 083003 (2011).
[CrossRef] [PubMed]

Zhang, J. Y.

Zhang, C.

Zhang, J.

Zhang, P. F.

L. B. Kong, P. F. Zhang, J. Yu, P. Setlow, and Y. Q. Li, “Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells,” Appl. Phys. Lett. 98(21), 213703 (2011).
[CrossRef]

Zhang, Q.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

Zhang, X.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

Zhang, Y.

Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
[CrossRef] [PubMed]

Zheng, J.-Y.

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
[CrossRef] [PubMed]

J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17(22), 20401–20414 (2009).
[CrossRef] [PubMed]

Zhu, Y.

Ziegler, M.

A. Zilker, M. Ziegler, and E. Sackmann, “Spectral analysis of erythrocyte flickering in the 0.3–4-µm−1 regime by microinterferometry combined with fast image processing,” Phys. Rev. A 46(12), 7998–8001 (1992).
[CrossRef] [PubMed]

Zilker, A.

A. Zilker, M. Ziegler, and E. Sackmann, “Spectral analysis of erythrocyte flickering in the 0.3–4-µm−1 regime by microinterferometry combined with fast image processing,” Phys. Rev. A 46(12), 7998–8001 (1992).
[CrossRef] [PubMed]

Zilman, A. G.

N. Gov, A. G. Zilman, and S. Safran, “Cytoskeleton confinement and tension of red blood cell membranes,” Phys. Rev. Lett. 90(22), 228101 (2003).
[CrossRef] [PubMed]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[CrossRef]

Zonios, G.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[CrossRef] [PubMed]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80(3), 627–630 (1998).
[CrossRef]

Zumbusch, A.

ACS Nano

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

Acta Cytol.

G. C. Salzman, J. M. Crowell, J. C. Martin, T. T. Trujillo, A. Romero, P. F. Mullaney, and P. M. LaBauve, “Cell classification by laser light scattering: identification and separation of unstained leukocytes,” Acta Cytol. 19(4), 374–377 (1975).
[PubMed]

Am. J. Physiol. Heart Circ. Physiol.

S. Nishimura, S.-i. Yasuda, M. Katoh, K. P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, and S. Sugiura, “Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions,” Am. J. Physiol. Heart Circ. Physiol. 287(1), H196–H202 (2004).
[CrossRef] [PubMed]

Anal. Bioanal. Chem.

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[CrossRef] [PubMed]

Anal. Chem.

J. Park, J. Ryu, S. K. Choi, E. Seo, J. M. Cha, S. Ryu, J. Kim, B. Kim, and S. H. Lee, “Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers,” Anal. Chem. 77(20), 6571–6580 (2005).
[CrossRef] [PubMed]

Analyst (Lond.)

T. J. Harvey, E. Gazi, A. Henderson, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner, “Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy,” Analyst (Lond.) 134(6), 1083–1091 (2009).
[CrossRef]

G. Tosi, C. Conti, E. Giorgini, P. Ferraris, M. G. Garavaglia, S. Sabbatini, S. Staibano, and C. Rubini, “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” Analyst (Lond.) 135(12), 3213–3219 (2010).
[CrossRef]

S. E. Holton, M. J. Walsh, and R. Bhargava, “Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging,” Analyst (Lond.) 136(14), 2953–2958 (2011).
[CrossRef]

Annu Rev Anal Chem (Palo Alto Calif)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Y.-Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23(24), 4539–4543 (1984).
[CrossRef] [PubMed]

A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37(13), 2735–2748 (1998).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38(16), 3651–3661 (1999).
[CrossRef] [PubMed]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
[CrossRef] [PubMed]

A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Harmonic phase-dispersion microscope with a Mach–Zehnder interferometer,” Appl. Opt. 44(7), 1188–1190 (2005).
[CrossRef] [PubMed]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, S. E. Keates, I. Bigio, I. Itzkan, S. D. Freedman, R. Bansil, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[CrossRef] [PubMed]

D. D. Duncan and M. E. Thomas, “Particle shape as revealed by spectral depolarization,” Appl. Opt. 46(24), 6185–6191 (2007).
[CrossRef] [PubMed]

C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48(10), D20–D25 (2009).
[CrossRef] [PubMed]

Z. J. Smith and A. J. Berger, “Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells,” Appl. Opt. 48(10), D109–D120 (2009).
[CrossRef] [PubMed]

Appl. Phys. B

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[CrossRef]

Appl. Phys. Lett.

J. L. Oudar, R. W. Smith, and Y. R. Shen, “Polarization-sensitive coherent anti-Stokes Raman-spectroscopy,” Appl. Phys. Lett. 34(11), 758–760 (1979).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

L. B. Kong, P. F. Zhang, J. Yu, P. Setlow, and Y. Q. Li, “Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells,” Appl. Phys. Lett. 98(21), 213703 (2011).
[CrossRef]

W. B. Roh, P. W. Schreiber, and J. P. E. Taran, “Single-pulse coherent anti-Stokes Raman-scattering,” Appl. Phys. Lett. 29(3), 174–176 (1976).
[CrossRef]

Appl. Spectrosc. Rev.

Z. Movasaghi, S. Rehman, and D. I. ur Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 43(2), 134–179 (2008).
[CrossRef]

Biochim. Biophys. Acta

L.-P. i. Choo, M. Jackson, W. C. Halliday, and H. H. Mantsch, “Infrared spectroscopic characterisation of multiple sclerosis plaques in the human central nervous system,” Biochim. Biophys. Acta 1182(3), 333–337 (1993).
[CrossRef] [PubMed]

Biomed. Opt. Express

Biophys. J.

D. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, and B. Lounis, “Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells,” Biophys. J. 91(12), 4598–4604 (2006).
[CrossRef] [PubMed]

R. M. Hochmuth, P. R. Worthy, and E. A. Evans, “Red cell extensional recovery and the determination of membrane viscosity,” Biophys. J. 26(1), 101–114 (1979).
[CrossRef] [PubMed]

D. Damania, H. Subramanian, A. K. Tiwari, Y. Stypula, D. Kunte, P. Pradhan, H. K. Roy, and V. Backman, “Role of cytoskeleton in controlling the disorder strength of cellular nanoscale architecture,” Biophys. J. 99(3), 989–996 (2010).
[CrossRef] [PubMed]

A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[CrossRef] [PubMed]

K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94(12), 4948–4956 (2008).
[CrossRef] [PubMed]

N. N. Boustany, Y. C. Tsai, B. Pfister, W. M. Joiner, G. A. Oyler, and N. V. Thakor, “BCL-xL-dependent light scattering by apoptotic cells,” Biophys. J. 87(6), 4163–4171 (2004).
[CrossRef] [PubMed]

N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83(3), 1691–1700 (2002).
[CrossRef] [PubMed]

J. D. Wilson, C. E. Bigelow, D. J. Calkins, and T. H. Foster, “Light scattering from intact cells reports oxidative-stress-induced mitochondrial swelling,” Biophys. J. 88(4), 2929–2938 (2005).
[CrossRef] [PubMed]

Cancer Res.

K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res. 69(3), 1199–1204 (2009).
[CrossRef] [PubMed]

J. M. Yuhas, A. P. Li, A. O. Martinez, and A. J. Ladman, “A simplified method for production and growth of multicellular tumor spheroids,” Cancer Res. 37(10), 3639–3643 (1977).
[PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Cell

D. A. Lauffenburger and A. F. Horwitz, “Cell migration: a physically integrated molecular process,” Cell 84(3), 359–369 (1996).
[CrossRef] [PubMed]

Chem. Rev.

C. Kim, C. Favazza, and L. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110(5), 2756–2782 (2010).
[CrossRef] [PubMed]

Crit. Rev. Oncol. Hematol.

M. T. Santini, G. Rainaldi, and P. L. Indovina, “Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids,” Crit. Rev. Oncol. Hematol. 36(2–3), 75–87 (2000).
[CrossRef] [PubMed]

EMBO J.

D. Marguet, P.-F. Lenne, H. Rigneault, and H.-T. He, “Dynamics in the plasma membrane: how to combine fluidity and order,” EMBO J. 25(15), 3446–3457 (2006).
[CrossRef] [PubMed]

Gastroenterology

H. K. Roy, Y. Liu, R. K. Wali, Y. L. Kim, A. K. Kromine, M. J. Goldberg, and V. Backman, “Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis,” Gastroenterology 126(4), 1071–1081, discussion 948 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

Y. L. Kim, Y. Liu, R. Wali, H. K. Roy, M. J. Goldberg, A. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9(2), 243–256 (2003).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7(6), 887–893 (2001).
[CrossRef]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

J. Am. Chem. Soc.

D. Fu, F. K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[CrossRef] [PubMed]

J. Biomed. Biotechnol.

A. Downes, R. Mouras, and A. Elfick, “Optical spectroscopy for noninvasive monitoring of stem cell differentiation,” J. Biomed. Biotechnol. 2010, 101864 (2010).
[CrossRef] [PubMed]

L. Yang, W.-T. Liu, H. Wu, C. Wang, B. Ping, and D.-R. Shi, “Separation of normal and premalignant cervical epithelial cells using confocal light absorption and scattering spectroscopic microscopy ex vivo,” J. Biomed. Biotechnol. 2011, 214781 (2011).
[PubMed]

J. Biomed. Opt.

R. N. Graf, F. E. Robles, X. Chen, and A. Wax, “Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations,” J. Biomed. Opt. 14(6), 064030 (2009).
[CrossRef] [PubMed]

J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry,” J. Biomed. Opt. 11(3), 034022 (2006).
[CrossRef]

R. M. Pasternack, J.-Y. Zheng, and N. N. Boustany, “Optical scatter changes at the onset of apoptosis are spatially associated with mitochondria,” J. Biomed. Opt. 15(4), 040504 (2010).
[CrossRef] [PubMed]

J. D. Wilson, W. J. Cottrell, and T. H. Foster, “Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes,” J. Biomed. Opt. 12(1), 014010 (2007).
[CrossRef] [PubMed]

Z. J. Smith, J.-C. E. Wang, S. A. Quataert, and A. J. Berger, “Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes,” J. Biomed. Opt. 15(3), 036021 (2010).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7(1), 93–99 (2002).
[CrossRef] [PubMed]

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[CrossRef] [PubMed]

G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,” J. Biomed. Opt. 10(6), 060503 (2005).
[CrossRef] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography,” J. Biomed. Opt. 15(3), 030514 (2010).
[CrossRef] [PubMed]

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, “Quantitative phase microscopy of articular chondrocyte dynamics by wide-field digital interferometry,” J. Biomed. Opt. 15(1), 010505 (2010).
[CrossRef] [PubMed]

N. T. Shaked, L. L. Satterwhite, M. J. Telen, G. A. Truskey, and A. Wax, “Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry,” J. Biomed. Opt. 16(3), 030506 (2011).
[CrossRef] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[CrossRef] [PubMed]

Y. Park, M. Diez-Silva, D. Fu, G. Popescu, W. Choi, I. Barman, S. Suresh, and M. S. Feld, “Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells,” J. Biomed. Opt. 15(2), 020506 (2010).
[CrossRef] [PubMed]

Y. Park, C. A. Best-Popescu, R. R. Dasari, and G. Popescu, “Light scattering of human red blood cells during metabolic remodeling of the membrane,” J. Biomed. Opt. 16(1), 011013 (2011).
[CrossRef] [PubMed]

Z. Wang, K. Tangella, A. Balla, and G. Popescu, “Tissue refractive index as marker of disease,” J. Biomed. Opt. 16(11), 116017 (2011).
[CrossRef] [PubMed]

H. A. Rinia, M. Bonn, E. M. Vartiainen, C. B. Schaffer, and M. Müller, “Spectroscopic analysis of the oxygenation state of hemoglobin using coherent anti-Stokes Raman scattering,” J. Biomed. Opt. 11(5), 050502 (2006).
[CrossRef] [PubMed]

Y. Wang, K. Maslov, Y. Zhang, S. Hu, L. M. Yang, Y. N. Xia, J. A. Liu, and L. V. Wang, “Fiber-laser-based photoacoustic microscopy and melanoma cell detection,” J. Biomed. Opt. 16(1), 011014 (2011).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008).
[CrossRef] [PubMed]

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt. 13(4), 040503 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

J. Biophotonics

J. W. Chan and D. K. Lieu, “Label-free biochemical characterization of stem cells using vibrational spectroscopy,” J. Biophotonics 2(11), 656–668 (2009).
[CrossRef] [PubMed]

J. Chem. Phys.

M. C. Watson, E. S. Penev, P. M. Welch, and F. L. H. Brown, “Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers,” J. Chem. Phys. 135(24), 244701 (2011).
[CrossRef] [PubMed]

J. Geophys. Res.

O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Muñoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111(D11), D11208 (2006).
[CrossRef]

J. Invest. Dermatol.

M. Gniadecka, P. A. Philipsen, S. Sigurdsson, S. Wessel, O. F. Nielsen, D. H. Christensen, J. Hercogova, K. Rossen, H. K. Thomsen, R. Gniadecki, L. K. Hansen, and H. C. Wulf, “Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue,” J. Invest. Dermatol. 122(2), 443–449 (2004).
[CrossRef] [PubMed]

J. Lipid Res.

X. L. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys.

F. Brochard and J. F. Lennon, “Frequency spectrum of the flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975).
[CrossRef]

J. Phys. Chem. A

I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A 114(43), 11483–11491 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. B

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent Anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002).
[CrossRef]

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B 115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

J. Quant. Spectrosc. Radiat. Transf.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transf. 55(5), 535–575 (1996).
[CrossRef]

J. Raman Spectrosc.

R. Mouras, G. Rischitor, A. Downes, D. Salter, and A. Elfick, “Nonlinear optical microscopy for drug delivery monitoring and cancer tissue imaging,” J. Raman Spectrosc. 41(8), 848–852 (2010).
[CrossRef]

Laser Photonics Rev.

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photonics Rev. 3(1–2), 146–158 (2009).
[CrossRef]

Nano Lett.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax