Abstract

Surface plasmons (SPs) are electromagnetic excitations existing at the interface between a metal and a dielectric material. Control and manipulation of light based on SPs at the nanometer scale offers significant advantages in nanophotonic devices with very small elements, since the peculiar properties of SPs can be tailored by construction of nanostructures with various interfaces between metals and dielectric materials. Recent progress in nanostructures for SPs is reviewed. Resonance frequencies or wavelengths of SPs can be tuned by design of metal nanostructures, such as nanoparticles, nanorods, nanowires, nanosheets, and nanodisks. Moreover, SP resonance modes can also be tuned by control of the shapes and sizes of nanostructures, where the resonance modes include longitudinal and transversal resonances, dipolar and multipolar resonances, and Fano resonances. Based on SP coupling for metal nanostructures, metal–semiconductor nanostructures, metal–dielectric nanostructures, and metal–polymer nanostructures, propagating and guiding of SP can be achieved through the metal nanostructures and the hybrid structures. Additionally, metal nanostructures exhibit remarkable field enhancement effects (e.g., local near-field enhancement, and optical transmission enhancement) due to SP coupling. Furthermore, SP nanostructures perform unique focusing and imaging characteristics at the nanometer scale beyond the diffraction limit. Tailoring SPs by control of the nanostructures is expected to be used for design and development of high-performance optical components and circuits, which offer both potential and challenges for new generations of nanophotonic devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. J. X. Zhang, L. D. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 113001 (2012).
    [CrossRef]
  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
    [CrossRef]
  5. D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [CrossRef]
  6. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [CrossRef]
  7. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
    [CrossRef]
  8. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
    [CrossRef]
  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  10. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  11. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  12. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
    [CrossRef] [PubMed]
  13. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  14. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
    [CrossRef]
  15. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
    [CrossRef] [PubMed]
  16. Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
    [CrossRef] [PubMed]
  17. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  18. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  19. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  20. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
    [CrossRef] [PubMed]
  21. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [CrossRef]
  22. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12(3), 788–800 (1996).
    [CrossRef]
  23. L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
    [CrossRef] [PubMed]
  24. B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
    [CrossRef]
  25. R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
    [CrossRef] [PubMed]
  26. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
    [CrossRef] [PubMed]
  27. V. Bastys, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. Vaisnoras, and L. M. Liz-Marzan, “Formation of silver nanoprisms with surface plasmons at communication wavelengths,” Adv. Funct. Mater. 16(6), 766–773 (2006).
    [CrossRef]
  28. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
    [CrossRef]
  29. C. Jeanguillaume and C. Colliex, “Spectrum-image: The next step in EELS digital acquisition and processing,” Ultramicroscopy 28(1–4), 252–257 (1989).
    [CrossRef]
  30. F. Ouyang, P. Batson, and M. Isaacson, “Quantum sizes effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy,” Phys. Rev. B 46(23), 15421–15425 (1992).
    [CrossRef]
  31. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
    [CrossRef]
  32. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
    [CrossRef]
  33. T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet–visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
    [CrossRef]
  34. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
    [CrossRef]
  35. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [CrossRef]
  36. L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
    [CrossRef] [PubMed]
  37. E. M. Hicks, O. Lyandres, W. P. Hall, S. L. Zou, M. R. Glucksberg, and R. P. Van Duyne, “Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography,” J. Phys. Chem. C 111(11), 4116–4124 (2007).
    [CrossRef]
  38. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
    [CrossRef]
  39. R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
    [CrossRef]
  40. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [CrossRef] [PubMed]
  41. Y. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
    [CrossRef] [PubMed]
  42. B. Wiley, Y. G. Sun, B. Mayers, and Y. N. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
    [CrossRef] [PubMed]
  43. Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
    [CrossRef] [PubMed]
  44. E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. N. Xia, J. X. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
    [CrossRef]
  45. Q. Zhang, W. Li, L.-P. Wen, J. Chen, and Y. Xia, “Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF(3)COOAg as a precursor,” Chemistry 16(33), 10234–10239 (2010).
    [CrossRef] [PubMed]
  46. F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
    [CrossRef]
  47. Y. Y. Ma, W. Y. Li, E. C. Cho, Z. Y. Li, T. K. Yu, J. Zeng, Z. X. Xie, and Y. N. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
    [CrossRef] [PubMed]
  48. A. R. Siekkinen, J. M. McLellan, J. Y. Chen, and Y. N. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4–6), 491–496 (2006).
    [CrossRef] [PubMed]
  49. Y. G. Sun and Y. N. Xia, “Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium,” J. Am. Chem. Soc. 126(12), 3892–3901 (2004).
    [CrossRef] [PubMed]
  50. B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, and Y. N. Xia, “Shape-controlled synthesis of silver and gold nanostructures,” MRS Bull. 30(05), 356–361 (2005).
    [CrossRef]
  51. Y. J. Xiong, B. Wiley, J. Y. Chen, Z. Y. Li, Y. D. Yin, and Y. N. Xia, “Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties,” Angew. Chem. Int. Ed. Engl. 44(48), 7913–7917 (2005).
    [PubMed]
  52. P. Tobiška, O Hugon, A Trouillet, and H. Gagnaire, “An integrated optic hydrogen sensor based on SPR on palladium,” Sens. Actuators B Chem. 74(1–3), 168–172 (2001).
  53. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
    [PubMed]
  54. J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).
  55. S. E. Skrabalak, L. Au, X. D. Li, and Y. N. Xia, “Facile synthesis of Ag nanocubes and Au nanocages,” Nat. Protoc. 2(9), 2182–2190 (2007).
    [PubMed]
  56. S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, and Y. N. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
    [PubMed]
  57. J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
    [PubMed]
  58. E. C. Cho, C. M. Cobley, M. Rycenga, and Y. N. Xia, “Fine tuning the optical properties of Au–Ag nanocages by selectively etching Ag with oxygen and a water-soluble thiol,” J. Mater. Chem. 19(35), 6317–6320 (2009).
    [PubMed]
  59. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).
  60. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).
  61. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [PubMed]
  62. F. Tam, C. Moran, and N. J. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
  63. E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3(4), 543–547 (2003).
  64. Y. F. Chau, Y. J. Lin, and D. P. Tsai, “Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars,” Opt. Express 18(4), 3510–3518 (2010).
    [PubMed]
  65. B. M. I. van der Zande, G. J. M. Koper, and H. N. W. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).
  66. C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96(22), 9001–9007 (1992).
  67. C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266(5193), 1961–1966 (1994).
    [PubMed]
  68. C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8(8), 1739–1746 (1996).
  69. J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of nanomaterials,” J. Mater. Chem. 7(7), 1075–1087 (1997).
  70. B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).
  71. B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).
  72. J. Pérez-Juste, B. Rodríguez-González, P. Mulvaney, and L. M. Liz-Marzán, “Optical control and patterning of gold-nanorod-poly (vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
  73. H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee, and S. F. Hu, “Controlling the length and shape of gold nanorods,” J. Phys. Chem. B 109(42), 19553–19555 (2005).
    [PubMed]
  74. H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. Ming Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15(12), 7132–7139 (2007).
    [PubMed]
  75. H. M. Chen, R. S. Liu, and D. P. Tsai, “A versatile route to the controlled synthesis of gold nanostructures,” Cryst. Growth Des. 9(5), 2079–2087 (2009).
  76. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379–3381 (2000).
  77. G. M. Sando, A. D. Berry, P. M. Campbell, A. P. Baronavski, and J. C. Owrutsky, “Surface plasmon dynamics of high-aspect-ratio gold nanorods,” Plasmonics 2(1), 23–29 (2007).
  78. M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 455–458 (2003).
  79. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
    [PubMed]
  80. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
  81. We have not published this study, but present some observations here.
  82. X. Y. Hu, Z. Y. Wang, T. C. Zhang, X. Y. Zeng, W. Xu, J. X. Zhang, J. Yan, J. P. Zhang, and L. D. Zhang, “Manipulation of optical properties of Ag/Cu alloy nanowire arrays embedded in anodic alumina membranes,” Appl. Surf. Sci. 254(13), 3845–3848 (2008).
  83. X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol. 6(1), 28–32 (2011).
    [PubMed]
  84. S. H. Chen, Z. Y. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).
  85. M. Maillard, P. R. Huang, and L. Brus, “Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+],” Nano Lett. 3(11), 1611–1615 (2003).
  86. M. Maillard, S. Giorgio, and M. P. Pileni, “Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties,” J. Phys. Chem. B 107(11), 2466–2470 (2003).
  87. Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys. 103(1), 014308 (2008).
  88. A. Brioude and M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005).
    [PubMed]
  89. K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006).
  90. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).
  91. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003).
  92. K. H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B Condens. Matter 49(4), 2362–2367 (1994).
    [PubMed]
  93. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
  94. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
    [PubMed]
  95. C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
    [PubMed]
  96. K. Imura, T. Nagahara, and H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
    [PubMed]
  97. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
  98. M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
    [PubMed]
  99. S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).
  100. H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods,” Nano Lett. 8(8), 2265–2270 (2008).
    [PubMed]
  101. H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for gold/silver alloy nanorods,” Langmuir 25(9), 5266–5270 (2009).
    [PubMed]
  102. S. Kim, S. K. Kim, and S. Park, “Bimetallic gold-silver nanorods produce multiple surface plasmon bands,” J. Am. Chem. Soc. 131(24), 8380–8381 (2009).
    [PubMed]
  103. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
    [PubMed]
  104. P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).
  105. G. Schider, J. R. Krenn, W Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
  106. R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004).
  107. G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).
  108. E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
    [PubMed]
  109. J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
    [PubMed]
  110. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
  111. C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett. 4(7), 1323–1327 (2004).
  112. L. M. Liz-Marzan, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).
  113. C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18(3), 3187–3198 (2010).
    [PubMed]
  114. B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007).
  115. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).
  116. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63(4), 381–384 (1996).
  117. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
    [PubMed]
  118. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
  119. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
  120. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [PubMed]
  121. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
    [PubMed]
  122. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
    [PubMed]
  123. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
    [PubMed]
  124. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [PubMed]
  125. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
    [PubMed]
  126. P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express 19(S3 Suppl 3), A303–A311 (2011).
    [PubMed]
  127. S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
    [PubMed]
  128. T. Pakizeh, C. Langhammer, I. Zorić, P. Apell, and M. Käll, “Intrinsic Fano interference of localized plasmons in Pd nanoparticles,” Nano Lett. 9(2), 882–886 (2009).
    [PubMed]
  129. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [PubMed]
  130. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).
  131. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
  132. Z. Fang, J. Cai, Z. Yan, P Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
    [PubMed]
  133. A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).
  134. S. H. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
  135. Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
    [PubMed]
  136. Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au–Ag nanorod heterodimers,” Appl. Phys. Lett. 96(13), 131113 (2010).
  137. Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99(8), 081107 (2011).
  138. W. Chen, G. Y. Chen, and Y. N. Chen, “Controlling Fano resonance of nanowire surface plasmons,” Opt. Lett. 36(18), 3602–3604 (2011).
    [PubMed]
  139. W. Chen, G. Y. Chen, and Y. N. Chen, “Coherent transport of nanowire surface plasmons coupled to quantum dots,” Opt. Express 18(10), 10360–10368 (2010).
    [PubMed]
  140. Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
    [PubMed]
  141. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4–6), 153–164 (2010).
  142. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 61(6), 601–626 (2008).
  143. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
    [PubMed]
  144. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
    [PubMed]
  145. P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008).
    [PubMed]
  146. K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
    [PubMed]
  147. B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2667–2672 (2007).
    [PubMed]
  148. Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 106(42), 17735–17740 (2009).
    [PubMed]
  149. P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007).
    [PubMed]
  150. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [PubMed]
  151. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
    [PubMed]
  152. S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003).
    [PubMed]
  153. M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114(16), 7496–7501 (2010).
  154. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
  155. W. S. Chang, L. S. Slaughter, B. P. Khanal, P. Manna, E. R. Zubarev, and S. Link, “One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures,” Nano Lett. 9(3), 1152–1157 (2009).
    [PubMed]
  156. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
  157. S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
    [PubMed]
  158. T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
  159. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26(14), 1096–1098 (2001).
    [PubMed]
  160. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
    [PubMed]
  161. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
    [PubMed]
  162. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
    [PubMed]
  163. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
  164. L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
    [PubMed]
  165. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001).
    [PubMed]
  166. K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72(7), 075429 (2005).
  167. H. S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, “Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain,” Appl. Phys. Lett. 92(10), 103103 (2008).
  168. H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Tunability and linewidth sharpening of plasmon resonances on a periodic gold nanowire array coupled to a thin textured silver film,” Appl. Phys. B 104(3), 665–672 (2011).
  169. Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).
  170. L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
    [PubMed]
  171. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105(26), 266801 (2010).
    [PubMed]
  172. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [PubMed]
  173. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
    [PubMed]
  174. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
    [PubMed]
  175. Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).
  176. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [PubMed]
  177. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).
  178. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).
  179. I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
    [PubMed]
  180. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
  181. D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
  182. Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal–insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
    [PubMed]
  183. R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
    [PubMed]
  184. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
    [PubMed]
  185. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [PubMed]
  186. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
    [PubMed]
  187. P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
    [PubMed]
  188. X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
    [PubMed]
  189. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [PubMed]
  190. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).
  191. Y. Z. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
    [PubMed]
  192. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
    [PubMed]
  193. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
    [PubMed]
  194. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
    [PubMed]
  195. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
  196. R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
    [PubMed]
  197. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).
  198. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).
  199. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [PubMed]
  200. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).
  201. M. Fujihira, H. Monobe, N. Yamamoto, H. Muramatsu, N. Chiba, K. Nakajima, and T. Ataka, “Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and atomic force microscope,” Ultramicroscopy 61(1–4), 271–277 (1995).
  202. A. B. Evlyukhin and S. L. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles,” Laser Phys. Lett. 3(8), 396–400 (2006).
  203. A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).
  204. A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B 79(23), 235412 (2009).
  205. X. D. Cui and D. Erni, “Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling,” J. Opt. Soc. Am. A 25(7), 1783–1789 (2008).
  206. I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout,” Opt. Express 19(21), 19973–19986 (2011).
    [PubMed]
  207. S. M. Raeis Zadeh Bajestani, M. Shahabadi, and N. Talebi, “Analysis of plasmon propagation along a chain of metal nanospheres using the generalized multipole technique,” J. Opt. Soc. Am. B 28(4), 937–943 (2011).
  208. V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
  209. N. Yamamoto, K. Araya, and F. García de Abajo, “Photon emission from silver particles induced by a originates electron beam,” Phys. Rev. B 64(20), 205419 (2001).
  210. L. Wang, W. Cai, Y. X. Xiang, X. Z. Zhang, J. J. Xu, and F. J. García de Abajo, “Reduced radiation losses in electron beam excited propagating plasmons,” Opt. Express 19(19), 18713–18720 (2011).
    [PubMed]
  211. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).
  212. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
    [PubMed]
  213. F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91(13), 133107 (2007).
  214. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
    [PubMed]
  215. Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
    [PubMed]
  216. Z. P. Li, K. Bao, Y. R. Fang, Z. Q. Guan, N. J. Halas, P. Nordlander, and H. X. Xu, “Effect of a proximal substrate on plasmon propagation in silver nanowires,” Phys. Rev. B 82(24), 241402 (2010).
  217. Z. P. Li, S. P. Zhang, N. J. Halas, P. Nordlander, and H. X. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
    [PubMed]
  218. W. H. Wang, Q. Yang, F. R. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
    [PubMed]
  219. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
    [PubMed]
  220. D. Solis, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E.R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010).
    [PubMed]
  221. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).
  222. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [PubMed]
  223. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
    [PubMed]
  224. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
  225. K. Tanaka, T. T. Minh, and M. Tanaka, “Analysis of propagation characteristics in the surface plasmon polariton gap waveguides by method of lines,” Opt. Express 17(2), 1078–1092 (2009).
    [PubMed]
  226. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
    [PubMed]
  227. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
  228. S. P. Sundararajan, J. M. Steele, and N. J. Halas, “Propagation of surface plasmons on Ag and Cu extended one-dimensional arrays on silicon substrates,” Appl. Phys. Lett. 88(6), 063115 (2006).
  229. H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Trans. Mod. Phys. 111, 1–133 (1988).
  230. J. Jose, F. B. Segerink, J. P. Korterik, A. Gomez-Casado, J. Huskens, J. L. Herek, and H. L. Offerhaus, “Enhanced surface plasmon polariton propagation length using a buried metal grating,” J. Appl. Phys. 109(6), 064906 (2011).
  231. G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005).
    [PubMed]
  232. P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).
  233. J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).
  234. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
  235. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).
  236. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2(7), 426–429 (2007).
    [PubMed]
  237. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
    [PubMed]
  238. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
  239. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [PubMed]
  240. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, “Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface,” Opt. Lett. 26(10), 734–736 (2001).
    [PubMed]
  241. E. G. Mishchenko, A. V. Shytov, and P. G. Silvestrov, “Guided plasmons in graphene p–n junctions,” Phys. Rev. Lett. 104(15), 156806 (2010).
    [PubMed]
  242. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [PubMed]
  243. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
    [PubMed]
  244. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [PubMed]
  245. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
    [PubMed]
  246. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
    [PubMed]
  247. H. Wei, D. Ratchford, X. E. Li, H. X. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
    [PubMed]
  248. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
  249. D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).
  250. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
  251. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
  252. Z. L. Samson, K. F. MacDonald, and N. I. Zheludev, “Femtosecond active plasmonics: ultrafast control of surface plasmon propagation,” J. Opt. A-Pure Appl. Op. 11, 114031 (2009).
  253. Z. L. Sámson, P. Horak, K. F. MacDonald, and N. I. Zheludev, “Femtosecond surface plasmon pulse propagation,” Opt. Lett. 36(2), 250–252 (2011).
    [PubMed]
  254. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24(15), 1011–1013 (1999).
    [PubMed]
  255. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
  256. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
  257. W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A-Pure Appl. Op. 8, S87–S93 (2006).
  258. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
  259. M. Wegener, G. Dolling, and S. Linden, “Plasmonics: backward waves moving forward,” Nat. Mater. 6(7), 475–476 (2007).
    [PubMed]
  260. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [PubMed]
  261. H. Shin and S. H. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
    [PubMed]
  262. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
  263. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
    [PubMed]
  264. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
    [PubMed]
  265. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [PubMed]
  266. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
  267. K. Kneipp, M. Moskovits, and H. Kneipp, ed., Surface-Enhanced Raman Scattering: Physics and Applications, 2006 (Springer-Verlag).
  268. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [PubMed]
  269. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
    [PubMed]
  270. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).
  271. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
    [PubMed]
  272. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [PubMed]
  273. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
  274. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [PubMed]
  275. E. C. Dreaden, S. Neretina, W. Qian, M. A. El-Sayed, R. A. Hughes, J. S. Preston, and P. Mascher, “Plasmonic enhancement of nonradiative charge carrier relaxation and proposed effects from enhanced radiative electronic processes in semiconductor-gold core-shell nanorod arrays,” J. Phys. Chem. C 115(13), 5578–5583 (2011).
  276. H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84(7–8), 199–229 (2009).
  277. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
    [PubMed]
  278. N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C 112(10), 3766–3773 (2008).
  279. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14(7), 2921–2931 (2006).
    [PubMed]
  280. K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons,” Opt. Express 14(2), 832–846 (2006).
    [PubMed]
  281. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).
  282. K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
    [PubMed]
  283. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
    [PubMed]
  284. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
  285. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
  286. H. Chul Kim and X. Cheng, “Gap surface plasmon polaritons enhanced by a plasmonic lens,” Opt. Lett. 36(16), 3082–3084 (2011).
    [PubMed]
  287. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [PubMed]
  288. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).
  289. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).
  290. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
  291. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
  292. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
    [PubMed]
  293. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film,” Opt. Lett. 29(12), 1414–1416 (2004).
    [PubMed]
  294. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express 19(23), 22743–22754 (2011).
    [PubMed]
  295. J. C. Yang, H. W. Gao, J. Y. Suh, W. Zhou, M. H. Lee, and T. W. Odom, “Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays,” Nano Lett. 10(8), 3173–3178 (2010).
    [PubMed]
  296. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [PubMed]
  297. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A-Pure Appl. Op. 7, S90–S96 (2005).
  298. H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
    [PubMed]
  299. G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
    [PubMed]
  300. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [PubMed]
  301. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).
  302. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [PubMed]
  303. E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).
  304. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
    [PubMed]
  305. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
    [PubMed]
  306. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
    [PubMed]
  307. X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
  308. J. Zhang and G. P. Wang, “Simultaneous realization of transmission enhancement and directional beaming of dual-wavelength light by a metal nanoslit,” Opt. Express 17(12), 9543–9548 (2009).
    [PubMed]
  309. J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25(8), 1356–1361 (2008).
  310. A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).
  311. Q. Q. Gan, L. C. Zhou, V. Dierolf, and F. J. Bartoli, “UV plasmonic structures: direct observations of uv extraordinary optical transmission and localized field enhancement through nanoslits,” IEEE Photonics J. 1(4), 245–253 (2009).
  312. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
  313. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [PubMed]
  314. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
  315. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
    [PubMed]
  316. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
  317. T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
    [PubMed]
  318. C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
    [PubMed]
  319. Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18(14), 14788–14793 (2010).
    [PubMed]
  320. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [PubMed]
  321. Y. T. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19(10), 9434–9444 (2011).
    [PubMed]
  322. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
    [PubMed]
  323. J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
    [PubMed]
  324. I. S. Maksymov and A. E. Miroshnichenko, “Active control over nanofocusing with nanorod plasmonic antennas,” Opt. Express 19(7), 5888–5894 (2011).
    [PubMed]
  325. M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys. 107(4), 044303 (2010).
  326. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).
  327. S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic tip-plasmon focusing for nano-Raman spectroscopy,” J. Phys. Chem. Lett. 1(24), 3427–3432 (2010).
  328. A. Bek, F. De Angelis, G. Das, E. Di Fabrizio, and M. Lazzarino, “Tip enhanced Raman scattering with adiabatic plasmon focusing tips,” Micron 42(4), 313–317 (2011).
  329. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [PubMed]
  330. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
    [PubMed]
  331. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
    [PubMed]
  332. Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5(2), 207–212 (2010).
  333. B. Desiatov, I. Goykhman, and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform,” Opt. Express 19(14), 13150–13157 (2011).
    [PubMed]
  334. X. L. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19(14), 12865–12872 (2011).
    [PubMed]
  335. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).
  336. D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl Phys. B Lasers Opt. 86, 7–17 (2007).
  337. S. J. Tan and D. K. Gramotnev, “Analysis of efficiency and optimization of plasmon energy coupling into nanofocusing metal wedges,” J. Appl. Phys. 107(9), 094301 (2010).
  338. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
    [PubMed]
  339. A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express 17(16), 14270–14280 (2009).
    [PubMed]
  340. E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett. 10(9), 3665–3669 (2010).
    [PubMed]
  341. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [PubMed]
  342. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [PubMed]
  343. S. I. Bozhevolnyi and K. V. Nerkararyan, “Analytic description of channel plasmon polaritons,” Opt. Lett. 34(13), 2039–2041 (2009).
    [PubMed]
  344. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
    [PubMed]
  345. V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys. 11(11), 113043 (2009).
  346. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10(1), 291–295 (2010).
    [PubMed]
  347. S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35(4), 541–543 (2010).
    [PubMed]
  348. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
    [PubMed]
  349. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).
  350. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).
  351. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).
  352. C. L. Zhao, J. Y. Wang, X. F. Wu, and J. S. Zhang, “Focusing surface plasmons to multiple focal spots with a launching diffraction grating,” Appl. Phys. Lett. 94(11), 111105 (2009).
  353. W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
    [PubMed]
  354. L. Li, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
    [PubMed]
  355. J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6(2), 269–272 (2011).
  356. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [PubMed]
  357. Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).
  358. Q. Zhang, X. Y. Shan, L. Zhou, T. R. Zhan, C. X. Wang, M. Li, J. F. Jia, J. Zi, Q. Q. Wang, and Q. K. Xue, “Scattering focusing and localized surface plasmons in a single Ag nanoring,” Appl. Phys. Lett. 97(26), 261107 (2010).
  359. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).
  360. Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
    [PubMed]
  361. X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4345–4349 (2010).
  362. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15(11), 6576–6582 (2007).
    [PubMed]
  363. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
    [PubMed]
  364. A. B. EvIyukhin, A. L. Stepanov, R. Kiyan, and B. N. Chichkov, “Efficiency of surface-plasmon-polariton focusing by curved chains of nanoparticles,” J. Opt. Soc. Am. B 25, 1011–1015 (2008).
  365. S. Kawata, ed., “Near-field optics and surface plasmon polaritons,” in Topics in Applied Physics, 2001 (Springer-Verlag).
  366. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [PubMed]
  367. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).
  368. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [PubMed]
  369. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).
  370. G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102(11), 116101 (2007).
  371. Y. H. Zhao, A. A. Nawaz, S. C. S. Lin, Q. Z. Hao, B. Kiraly, and T. J. Huang, “Nanoscale super-resolution imaging via a metal-dielectric metamaterial lens system,” J. Phys. D Appl. Phys. 44(41), 415101 (2011).
  372. K. W. Kho, S. Zexiang, and O. Malini, “Hyper-spectral confocal nano-imaging with a 2D super-lens,” Opt. Express 19(3), 2502–2518 (2011).
    [PubMed]
  373. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
    [PubMed]
  374. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
    [PubMed]
  375. X. F. Wu, J. S. Zhang, and Q. H. Gong, “Metal–insulator–metal nanorod arrays for subwavelength imaging,” Opt. Express 17(4), 2818–2825 (2009).
    [PubMed]
  376. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [PubMed]
  377. M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98(17), 177404 (2007).
  378. W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).
  379. Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
    [PubMed]
  380. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).
  381. S. Durant, Z. W. Liu, J. A. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383–2392 (2006).
  382. Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
    [PubMed]
  383. Z. W. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
    [PubMed]
  384. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
    [PubMed]
  385. T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).
  386. J. Y. Wang, J. S. Zhang, X. F. Wu, H. Luo, and Q. H. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).

2012 (1)

J. X. Zhang, L. D. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 113001 (2012).
[CrossRef]

2011 (39)

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol. 6(1), 28–32 (2011).
[PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[PubMed]

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express 19(S3 Suppl 3), A303–A311 (2011).
[PubMed]

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[PubMed]

Z. Fang, J. Cai, Z. Yan, P Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99(8), 081107 (2011).

W. Chen, G. Y. Chen, and Y. N. Chen, “Controlling Fano resonance of nanowire surface plasmons,” Opt. Lett. 36(18), 3602–3604 (2011).
[PubMed]

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[PubMed]

H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Tunability and linewidth sharpening of plasmon resonances on a periodic gold nanowire array coupled to a thin textured silver film,” Appl. Phys. B 104(3), 665–672 (2011).

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).

I. B. Udagedara, I. D. Rukhlenko, and M. Premaratne, “Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout,” Opt. Express 19(21), 19973–19986 (2011).
[PubMed]

S. M. Raeis Zadeh Bajestani, M. Shahabadi, and N. Talebi, “Analysis of plasmon propagation along a chain of metal nanospheres using the generalized multipole technique,” J. Opt. Soc. Am. B 28(4), 937–943 (2011).

A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).

L. Wang, W. Cai, Y. X. Xiang, X. Z. Zhang, J. J. Xu, and F. J. García de Abajo, “Reduced radiation losses in electron beam excited propagating plasmons,” Opt. Express 19(19), 18713–18720 (2011).
[PubMed]

Z. P. Li, S. P. Zhang, N. J. Halas, P. Nordlander, and H. X. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[PubMed]

W. H. Wang, Q. Yang, F. R. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[PubMed]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[PubMed]

J. Jose, F. B. Segerink, J. P. Korterik, A. Gomez-Casado, J. Huskens, J. L. Herek, and H. L. Offerhaus, “Enhanced surface plasmon polariton propagation length using a buried metal grating,” J. Appl. Phys. 109(6), 064906 (2011).

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

Z. L. Sámson, P. Horak, K. F. MacDonald, and N. I. Zheludev, “Femtosecond surface plasmon pulse propagation,” Opt. Lett. 36(2), 250–252 (2011).
[PubMed]

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).

E. C. Dreaden, S. Neretina, W. Qian, M. A. El-Sayed, R. A. Hughes, J. S. Preston, and P. Mascher, “Plasmonic enhancement of nonradiative charge carrier relaxation and proposed effects from enhanced radiative electronic processes in semiconductor-gold core-shell nanorod arrays,” J. Phys. Chem. C 115(13), 5578–5583 (2011).

H. Chul Kim and X. Cheng, “Gap surface plasmon polaritons enhanced by a plasmonic lens,” Opt. Lett. 36(16), 3082–3084 (2011).
[PubMed]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express 19(23), 22743–22754 (2011).
[PubMed]

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[PubMed]

Y. T. Yu and H. Zappe, “Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design,” Opt. Express 19(10), 9434–9444 (2011).
[PubMed]

I. S. Maksymov and A. E. Miroshnichenko, “Active control over nanofocusing with nanorod plasmonic antennas,” Opt. Express 19(7), 5888–5894 (2011).
[PubMed]

A. Bek, F. De Angelis, G. Das, E. Di Fabrizio, and M. Lazzarino, “Tip enhanced Raman scattering with adiabatic plasmon focusing tips,” Micron 42(4), 313–317 (2011).

B. Desiatov, I. Goykhman, and U. Levy, “Plasmonic nanofocusing of light in an integrated silicon photonics platform,” Opt. Express 19(14), 13150–13157 (2011).
[PubMed]

X. L. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19(14), 12865–12872 (2011).
[PubMed]

L. Li, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[PubMed]

J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6(2), 269–272 (2011).

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[PubMed]

Y. H. Zhao, A. A. Nawaz, S. C. S. Lin, Q. Z. Hao, B. Kiraly, and T. J. Huang, “Nanoscale super-resolution imaging via a metal-dielectric metamaterial lens system,” J. Phys. D Appl. Phys. 44(41), 415101 (2011).

K. W. Kho, S. Zexiang, and O. Malini, “Hyper-spectral confocal nano-imaging with a 2D super-lens,” Opt. Express 19(3), 2502–2518 (2011).
[PubMed]

2010 (47)

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[PubMed]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4345–4349 (2010).

W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[PubMed]

Q. Zhang, X. Y. Shan, L. Zhou, T. R. Zhan, C. X. Wang, M. Li, J. F. Jia, J. Zi, Q. Q. Wang, and Q. K. Xue, “Scattering focusing and localized surface plasmons in a single Ag nanoring,” Appl. Phys. Lett. 97(26), 261107 (2010).

S. J. Tan and D. K. Gramotnev, “Analysis of efficiency and optimization of plasmon energy coupling into nanofocusing metal wedges,” J. Appl. Phys. 107(9), 094301 (2010).

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett. 10(9), 3665–3669 (2010).
[PubMed]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10(1), 291–295 (2010).
[PubMed]

S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35(4), 541–543 (2010).
[PubMed]

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5(2), 207–212 (2010).

M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys. 107(4), 044303 (2010).

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic tip-plasmon focusing for nano-Raman spectroscopy,” J. Phys. Chem. Lett. 1(24), 3427–3432 (2010).

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[PubMed]

Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18(14), 14788–14793 (2010).
[PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[PubMed]

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

J. C. Yang, H. W. Gao, J. Y. Suh, W. Zhou, M. H. Lee, and T. W. Odom, “Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays,” Nano Lett. 10(8), 3173–3178 (2010).
[PubMed]

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[PubMed]

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[PubMed]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[PubMed]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).

E. G. Mishchenko, A. V. Shytov, and P. G. Silvestrov, “Guided plasmons in graphene p–n junctions,” Phys. Rev. Lett. 104(15), 156806 (2010).
[PubMed]

D. Solis, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E.R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010).
[PubMed]

Z. P. Li, K. Bao, Y. R. Fang, Z. Q. Guan, N. J. Halas, P. Nordlander, and H. X. Xu, “Effect of a proximal substrate on plasmon propagation in silver nanowires,” Phys. Rev. B 82(24), 241402 (2010).

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[PubMed]

M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114(16), 7496–7501 (2010).

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105(26), 266801 (2010).
[PubMed]

Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au–Ag nanorod heterodimers,” Appl. Phys. Lett. 96(13), 131113 (2010).

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4–6), 153–164 (2010).

W. Chen, G. Y. Chen, and Y. N. Chen, “Coherent transport of nanowire surface plasmons coupled to quantum dots,” Opt. Express 18(10), 10360–10368 (2010).
[PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[PubMed]

C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18(3), 3187–3198 (2010).
[PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. N. Xia, J. X. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Q. Zhang, W. Li, L.-P. Wen, J. Chen, and Y. Xia, “Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF(3)COOAg as a precursor,” Chemistry 16(33), 10234–10239 (2010).
[CrossRef] [PubMed]

Y. Y. Ma, W. Y. Li, E. C. Cho, Z. Y. Li, T. K. Yu, J. Zeng, Z. X. Xie, and Y. N. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[CrossRef] [PubMed]

Y. F. Chau, Y. J. Lin, and D. P. Tsai, “Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars,” Opt. Express 18(4), 3510–3518 (2010).
[PubMed]

2009 (49)

H. M. Chen, R. S. Liu, and D. P. Tsai, “A versatile route to the controlled synthesis of gold nanostructures,” Cryst. Growth Des. 9(5), 2079–2087 (2009).

E. C. Cho, C. M. Cobley, M. Rycenga, and Y. N. Xia, “Fine tuning the optical properties of Au–Ag nanocages by selectively etching Ag with oxygen and a water-soluble thiol,” J. Mater. Chem. 19(35), 6317–6320 (2009).
[PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for gold/silver alloy nanorods,” Langmuir 25(9), 5266–5270 (2009).
[PubMed]

S. Kim, S. K. Kim, and S. Park, “Bimetallic gold-silver nanorods produce multiple surface plasmon bands,” J. Am. Chem. Soc. 131(24), 8380–8381 (2009).
[PubMed]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
[PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).

T. Pakizeh, C. Langhammer, I. Zorić, P. Apell, and M. Käll, “Intrinsic Fano interference of localized plasmons in Pd nanoparticles,” Nano Lett. 9(2), 882–886 (2009).
[PubMed]

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[PubMed]

Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 106(42), 17735–17740 (2009).
[PubMed]

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[PubMed]

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
[PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[PubMed]

X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[PubMed]

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[PubMed]

W. S. Chang, L. S. Slaughter, B. P. Khanal, P. Manna, E. R. Zubarev, and S. Link, “One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures,” Nano Lett. 9(3), 1152–1157 (2009).
[PubMed]

Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[PubMed]

A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B 79(23), 235412 (2009).

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
[PubMed]

K. Tanaka, T. T. Minh, and M. Tanaka, “Analysis of propagation characteristics in the surface plasmon polariton gap waveguides by method of lines,” Opt. Express 17(2), 1078–1092 (2009).
[PubMed]

Y. Z. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[PubMed]

H. Wei, D. Ratchford, X. E. Li, H. X. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[PubMed]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).

Z. L. Samson, K. F. MacDonald, and N. I. Zheludev, “Femtosecond active plasmonics: ultrafast control of surface plasmon propagation,” J. Opt. A-Pure Appl. Op. 11, 114031 (2009).

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).

H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84(7–8), 199–229 (2009).

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).

Q. Q. Gan, L. C. Zhou, V. Dierolf, and F. J. Bartoli, “UV plasmonic structures: direct observations of uv extraordinary optical transmission and localized field enhancement through nanoslits,” IEEE Photonics J. 1(4), 245–253 (2009).

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
[PubMed]

J. Zhang and G. P. Wang, “Simultaneous realization of transmission enhancement and directional beaming of dual-wavelength light by a metal nanoslit,” Opt. Express 17(12), 9543–9548 (2009).
[PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[PubMed]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

C. L. Zhao, J. Y. Wang, X. F. Wu, and J. S. Zhang, “Focusing surface plasmons to multiple focal spots with a launching diffraction grating,” Appl. Phys. Lett. 94(11), 111105 (2009).

S. I. Bozhevolnyi and K. V. Nerkararyan, “Analytic description of channel plasmon polaritons,” Opt. Lett. 34(13), 2039–2041 (2009).
[PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[PubMed]

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys. 11(11), 113043 (2009).

A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express 17(16), 14270–14280 (2009).
[PubMed]

J. Y. Wang, J. S. Zhang, X. F. Wu, H. Luo, and Q. H. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).

X. F. Wu, J. S. Zhang, and Q. H. Gong, “Metal–insulator–metal nanorod arrays for subwavelength imaging,” Opt. Express 17(4), 2818–2825 (2009).
[PubMed]

2008 (28)

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).

Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[PubMed]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
[PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[PubMed]

A. B. EvIyukhin, A. L. Stepanov, R. Kiyan, and B. N. Chichkov, “Efficiency of surface-plasmon-polariton focusing by curved chains of nanoparticles,” J. Opt. Soc. Am. B 25, 1011–1015 (2008).

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[PubMed]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).

J. Zhang and G. P. Wang, “Dual-wavelength light beaming from a metal nanoslit flanked by dielectric gratings,” J. Opt. Soc. Am. B 25(8), 1356–1361 (2008).

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[PubMed]

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C 112(10), 3766–3773 (2008).

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

X. D. Cui and D. Erni, “Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling,” J. Opt. Soc. Am. A 25(7), 1783–1789 (2008).

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[PubMed]

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[PubMed]

H. S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, “Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain,” Appl. Phys. Lett. 92(10), 103103 (2008).

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008).
[PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 61(6), 601–626 (2008).

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[PubMed]

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[PubMed]

X. Y. Hu, Z. Y. Wang, T. C. Zhang, X. Y. Zeng, W. Xu, J. X. Zhang, J. Yan, J. P. Zhang, and L. D. Zhang, “Manipulation of optical properties of Ag/Cu alloy nanowire arrays embedded in anodic alumina membranes,” Appl. Surf. Sci. 254(13), 3845–3848 (2008).

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods,” Nano Lett. 8(8), 2265–2270 (2008).
[PubMed]

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys. 103(1), 014308 (2008).

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[PubMed]

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, and Y. N. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[PubMed]

F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[CrossRef]

2007 (49)

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[PubMed]

S. E. Skrabalak, L. Au, X. D. Li, and Y. N. Xia, “Facile synthesis of Ag nanocubes and Au nanocages,” Nat. Protoc. 2(9), 2182–2190 (2007).
[PubMed]

G. M. Sando, A. D. Berry, P. M. Campbell, A. P. Baronavski, and J. C. Owrutsky, “Surface plasmon dynamics of high-aspect-ratio gold nanorods,” Plasmonics 2(1), 23–29 (2007).

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

E. M. Hicks, O. Lyandres, W. P. Hall, S. L. Zou, M. R. Glucksberg, and R. P. Van Duyne, “Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography,” J. Phys. Chem. C 111(11), 4116–4124 (2007).
[CrossRef]

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[PubMed]

H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. Ming Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15(12), 7132–7139 (2007).
[PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007).

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[PubMed]

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2667–2672 (2007).
[PubMed]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007).
[PubMed]

E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
[PubMed]

E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
[PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[PubMed]

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
[PubMed]

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal–insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[PubMed]

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91(13), 133107 (2007).

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[PubMed]

M. Wegener, G. Dolling, and S. Linden, “Plasmonics: backward waves moving forward,” Nat. Mater. 6(7), 475–476 (2007).
[PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[PubMed]

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2(7), 426–429 (2007).
[PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[PubMed]

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[PubMed]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).

D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl Phys. B Lasers Opt. 86, 7–17 (2007).

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102(11), 116101 (2007).

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15(11), 6576–6582 (2007).
[PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
[PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[PubMed]

M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98(17), 177404 (2007).

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[PubMed]

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).

2006 (24)

S. Durant, Z. W. Liu, J. A. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383–2392 (2006).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).

H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
[PubMed]

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A-Pure Appl. Op. 8, S87–S93 (2006).

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14(7), 2921–2931 (2006).
[PubMed]

K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons,” Opt. Express 14(2), 832–846 (2006).
[PubMed]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).

S. P. Sundararajan, J. M. Steele, and N. J. Halas, “Propagation of surface plasmons on Ag and Cu extended one-dimensional arrays on silicon substrates,” Appl. Phys. Lett. 88(6), 063115 (2006).

H. Shin and S. H. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
[PubMed]

A. B. Evlyukhin and S. L. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles,” Laser Phys. Lett. 3(8), 396–400 (2006).

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[PubMed]

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[PubMed]

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[PubMed]

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006).

L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

V. Bastys, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. Vaisnoras, and L. M. Liz-Marzan, “Formation of silver nanoprisms with surface plasmons at communication wavelengths,” Adv. Funct. Mater. 16(6), 766–773 (2006).
[CrossRef]

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
[CrossRef] [PubMed]

A. R. Siekkinen, J. M. McLellan, J. Y. Chen, and Y. N. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4–6), 491–496 (2006).
[CrossRef] [PubMed]

2005 (34)

B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, and Y. N. Xia, “Shape-controlled synthesis of silver and gold nanostructures,” MRS Bull. 30(05), 356–361 (2005).
[CrossRef]

Y. J. Xiong, B. Wiley, J. Y. Chen, Z. Y. Li, Y. D. Yin, and Y. N. Xia, “Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties,” Angew. Chem. Int. Ed. Engl. 44(48), 7913–7917 (2005).
[PubMed]

B. Wiley, Y. G. Sun, B. Mayers, and Y. N. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[PubMed]

J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).

J. Pérez-Juste, B. Rodríguez-González, P. Mulvaney, and L. M. Liz-Marzán, “Optical control and patterning of gold-nanorod-poly (vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).

H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee, and S. F. Hu, “Controlling the length and shape of gold nanorods,” J. Phys. Chem. B 109(42), 19553–19555 (2005).
[PubMed]

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[CrossRef]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
[PubMed]

A. Brioude and M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005).
[PubMed]

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[PubMed]

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).

K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72(7), 075429 (2005).

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005).
[PubMed]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[PubMed]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A-Pure Appl. Op. 7, S90–S96 (2005).

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[PubMed]

2004 (11)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[PubMed]

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film,” Opt. Lett. 29(12), 1414–1416 (2004).
[PubMed]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004).
[PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).

R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004).

C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett. 4(7), 1323–1327 (2004).

F. Tam, C. Moran, and N. J. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).

Y. G. Sun and Y. N. Xia, “Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium,” J. Am. Chem. Soc. 126(12), 3892–3901 (2004).
[CrossRef] [PubMed]

2003 (27)

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3(4), 543–547 (2003).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 455–458 (2003).

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

S. H. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003).
[PubMed]

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[PubMed]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

M. Maillard, P. R. Huang, and L. Brus, “Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+],” Nano Lett. 3(11), 1611–1615 (2003).

M. Maillard, S. Giorgio, and M. P. Pileni, “Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties,” J. Phys. Chem. B 107(11), 2466–2470 (2003).

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003).

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[PubMed]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[PubMed]

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).

2002 (9)

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[PubMed]

Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).

S. H. Chen, Z. Y. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).

Y. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[CrossRef] [PubMed]

2001 (14)

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[CrossRef]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

P. Tobiška, O Hugon, A Trouillet, and H. Gagnaire, “An integrated optic hydrogen sensor based on SPR on palladium,” Sens. Actuators B Chem. 74(1–3), 168–172 (2001).

G. Schider, J. R. Krenn, W Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001).
[PubMed]

J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26(14), 1096–1098 (2001).
[PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[PubMed]

N. Yamamoto, K. Araya, and F. García de Abajo, “Photon emission from silver particles induced by a originates electron beam,” Phys. Rev. B 64(20), 205419 (2001).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, “Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface,” Opt. Lett. 26(10), 734–736 (2001).
[PubMed]

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).

2000 (7)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[PubMed]

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379–3381 (2000).

B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[PubMed]

1999 (8)

B. M. I. van der Zande, G. J. M. Koper, and H. N. W. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[CrossRef]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet–visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).

P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24(15), 1011–1013 (1999).
[PubMed]

1998 (6)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
[PubMed]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

1997 (5)

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).

J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of nanomaterials,” J. Mater. Chem. 7(7), 1075–1087 (1997).

B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).

1996 (5)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[PubMed]

C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8(8), 1739–1746 (1996).

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12(3), 788–800 (1996).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63(4), 381–384 (1996).

L. M. Liz-Marzan, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).

1995 (4)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
[CrossRef]

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[PubMed]

M. Fujihira, H. Monobe, N. Yamamoto, H. Muramatsu, N. Chiba, K. Nakajima, and T. Ataka, “Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and atomic force microscope,” Ultramicroscopy 61(1–4), 271–277 (1995).

1994 (3)

C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266(5193), 1961–1966 (1994).
[PubMed]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).

K. H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B Condens. Matter 49(4), 2362–2367 (1994).
[PubMed]

1992 (2)

C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96(22), 9001–9007 (1992).

F. Ouyang, P. Batson, and M. Isaacson, “Quantum sizes effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy,” Phys. Rev. B 46(23), 15421–15425 (1992).
[CrossRef]

1989 (1)

C. Jeanguillaume and C. Colliex, “Spectrum-image: The next step in EELS digital acquisition and processing,” Ultramicroscopy 28(1–4), 252–257 (1989).
[CrossRef]

1988 (1)

H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Trans. Mod. Phys. 111, 1–133 (1988).

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

1963 (1)

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).

1951 (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).

Abdulhalim, I.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).

Acimovic, S. S.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[PubMed]

Adams, M. M.

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).

Afanasiev, A. E.

Agarwal, A.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[PubMed]

Agio, M.

X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[PubMed]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

Akimov, A. V.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[PubMed]

Alivisatos, A. P.

Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 106(42), 17735–17740 (2009).
[PubMed]

Alivisatos, A. P.

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[PubMed]

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2667–2672 (2007).
[PubMed]

Altewischer, E.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[PubMed]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

Alù, A.

A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).

A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B 79(23), 235412 (2009).

Ambati, M.

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).

Apell, P.

T. Pakizeh, C. Langhammer, I. Zorić, P. Apell, and M. Käll, “Intrinsic Fano interference of localized plasmons in Pd nanoparticles,” Nano Lett. 9(2), 882–886 (2009).
[PubMed]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[PubMed]

Araya, K.

N. Yamamoto, K. Araya, and F. García de Abajo, “Photon emission from silver particles induced by a originates electron beam,” Phys. Rev. B 64(20), 205419 (2001).

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11(9), 3694–3700 (2011).

Artemyev, M.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal–insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[PubMed]

Artemyev, M. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[PubMed]

Asakura, K.

H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee, and S. F. Hu, “Controlling the length and shape of gold nanorods,” J. Phys. Chem. B 109(42), 19553–19555 (2005).
[PubMed]

Ataka, T.

M. Fujihira, H. Monobe, N. Yamamoto, H. Muramatsu, N. Chiba, K. Nakajima, and T. Ataka, “Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and atomic force microscope,” Ultramicroscopy 61(1–4), 271–277 (1995).

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]

Atkin, J. M.

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic tip-plasmon focusing for nano-Raman spectroscopy,” J. Phys. Chem. Lett. 1(24), 3427–3432 (2010).

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).

Au, L.

S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, and Y. N. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[PubMed]

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[PubMed]

S. E. Skrabalak, L. Au, X. D. Li, and Y. N. Xia, “Facile synthesis of Ag nanocubes and Au nanocages,” Nat. Protoc. 2(9), 2182–2190 (2007).
[PubMed]

J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[PubMed]

Aubard, J.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).

Auslender, M.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).

Aussenegg, F. R.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003).

Aussenegg, F. R.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

G. Schider, J. R. Krenn, W Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379–3381 (2000).

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
[PubMed]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63(4), 381–384 (1996).

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Balram, K. C.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[PubMed]

Balykin, V. I.

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[PubMed]

Bao, K.

D. Solis, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E.R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010).
[PubMed]

Z. P. Li, K. Bao, Y. R. Fang, Z. Q. Guan, N. J. Halas, P. Nordlander, and H. X. Xu, “Effect of a proximal substrate on plasmon propagation in silver nanowires,” Phys. Rev. B 82(24), 241402 (2010).

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[PubMed]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
[PubMed]

Bardhan, R.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[PubMed]

Barnes, W. L.

C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18(3), 3187–3198 (2010).
[PubMed]

W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A-Pure Appl. Op. 8, S87–S93 (2006).

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[PubMed]

Baronavski, A. P.

G. M. Sando, A. D. Berry, P. M. Campbell, A. P. Baronavski, and J. C. Owrutsky, “Surface plasmon dynamics of high-aspect-ratio gold nanorods,” Plasmonics 2(1), 23–29 (2007).

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[PubMed]

Bartoli, F. J.

Q. Q. Gan, L. C. Zhou, V. Dierolf, and F. J. Bartoli, “UV plasmonic structures: direct observations of uv extraordinary optical transmission and localized field enhancement through nanoslits,” IEEE Photonics J. 1(4), 245–253 (2009).

Bastys, V.

V. Bastys, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. Vaisnoras, and L. M. Liz-Marzan, “Formation of silver nanoprisms with surface plasmons at communication wavelengths,” Adv. Funct. Mater. 16(6), 766–773 (2006).
[CrossRef]

Batson, P.

F. Ouyang, P. Batson, and M. Isaacson, “Quantum sizes effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy,” Phys. Rev. B 46(23), 15421–15425 (1992).
[CrossRef]

Baturin, A. S.

Becker, J.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[PubMed]

Beermann, J.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10(1), 291–295 (2010).
[PubMed]

Behr, N.

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C 112(10), 3766–3773 (2008).

Bek, A.

A. Bek, F. De Angelis, G. Das, E. Di Fabrizio, and M. Lazzarino, “Tip enhanced Raman scattering with adiabatic plasmon focusing tips,” Micron 42(4), 313–317 (2011).

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Belov, P. A.

A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).

Bergman, D. J.

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[PubMed]

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[PubMed]

Berini, P.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).

P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24(15), 1011–1013 (1999).
[PubMed]

Berry, A. D.

G. M. Sando, A. D. Berry, P. M. Campbell, A. P. Baronavski, and J. C. Owrutsky, “Surface plasmon dynamics of high-aspect-ratio gold nanorods,” Plasmonics 2(1), 23–29 (2007).

Berweger, S.

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic tip-plasmon focusing for nano-Raman spectroscopy,” J. Phys. Chem. Lett. 1(24), 3427–3432 (2010).

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).

Beversluis, M. R.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[PubMed]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[PubMed]

Bohmer, M. R.

B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).

B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).

Bok, H. M.

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for gold/silver alloy nanorods,” Langmuir 25(9), 5266–5270 (2009).
[PubMed]

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods,” Nano Lett. 8(8), 2265–2270 (2008).
[PubMed]

Bolger, P. M.

Boltasseva, A.

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

Borghs, G.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
[PubMed]

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
[PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Bosnick, K.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).

Bouhelier, A.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[PubMed]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[PubMed]

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett. 35(4), 541–543 (2010).
[PubMed]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10(1), 291–295 (2010).
[PubMed]

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys. 11(11), 113043 (2009).

S. I. Bozhevolnyi and K. V. Nerkararyan, “Analytic description of channel plasmon polaritons,” Opt. Lett. 34(13), 2039–2041 (2009).
[PubMed]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[PubMed]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[PubMed]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15(11), 6576–6582 (2007).
[PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
[PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, “Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface,” Opt. Lett. 26(10), 734–736 (2001).
[PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[PubMed]

Bozhevolnyi, S. L.

A. B. Evlyukhin and S. L. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles,” Laser Phys. Lett. 3(8), 396–400 (2006).

Brioude, A.

A. Brioude and M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005).
[PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[PubMed]

Brongersma, M. L.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[PubMed]

Brongersma, M. L.

R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2(7), 426–429 (2007).
[PubMed]

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).

Brown, D. E.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).

Brus, L.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).

M. Maillard, P. R. Huang, and L. Brus, “Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+],” Nano Lett. 3(11), 1611–1615 (2003).

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

Buddhudu, S.

R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004).

Burrows, A.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[CrossRef]

Burrows, C. P.

Cabrini, S.

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[PubMed]

Cai, J.

Z. Fang, J. Cai, Z. Yan, P Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[PubMed]

Cai, W.

Campbell, D.

J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).

Campbell, P. M.

G. M. Sando, A. D. Berry, P. M. Campbell, A. P. Baronavski, and J. C. Owrutsky, “Surface plasmon dynamics of high-aspect-ratio gold nanorods,” Plasmonics 2(1), 23–29 (2007).

Cang, H.

J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[PubMed]

B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, and Y. N. Xia, “Shape-controlled synthesis of silver and gold nanostructures,” MRS Bull. 30(05), 356–361 (2005).
[CrossRef]

Cao, W.

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91(13), 133107 (2007).

Cao, Y. C.

R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Cao, Y. W.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

Capasso, F.

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[PubMed]

E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
[PubMed]

E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
[PubMed]

Carroll, D. L.

S. H. Chen, Z. Y. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).

Catrysse, P. B.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).

Chan, G. H.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

Chan, S. L.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[PubMed]

Chang, D. E.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[PubMed]

Chang, H. C.

Chang, K. J.

K. H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B Condens. Matter 49(4), 2362–2367 (1994).
[PubMed]

Chang, S. H.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Chang, W. S.

D. Solis, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E.R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010).
[PubMed]

W. S. Chang, L. S. Slaughter, B. P. Khanal, P. Manna, E. R. Zubarev, and S. Link, “One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures,” Nano Lett. 9(3), 1152–1157 (2009).
[PubMed]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[PubMed]

Charbonneau, R.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).

Chau, Y. F.

Cheah, K. W.

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102(11), 116101 (2007).

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Chen, C.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
[PubMed]

Chen, G. X.

X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol. 6(1), 28–32 (2011).
[PubMed]

Chen, G. Y.

Chen, H.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[PubMed]

Chen, H. M.

H. M. Chen, R. S. Liu, and D. P. Tsai, “A versatile route to the controlled synthesis of gold nanostructures,” Cryst. Growth Des. 9(5), 2079–2087 (2009).

H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee, and S. F. Hu, “Controlling the length and shape of gold nanorods,” J. Phys. Chem. B 109(42), 19553–19555 (2005).
[PubMed]

Chen, J.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

Q. Zhang, W. Li, L.-P. Wen, J. Chen, and Y. Xia, “Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF(3)COOAg as a precursor,” Chemistry 16(33), 10234–10239 (2010).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[PubMed]

Chen, J. Y.

S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, and Y. N. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[PubMed]

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[PubMed]

A. R. Siekkinen, J. M. McLellan, J. Y. Chen, and Y. N. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4–6), 491–496 (2006).
[CrossRef] [PubMed]

J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).

B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, and Y. N. Xia, “Shape-controlled synthesis of silver and gold nanostructures,” MRS Bull. 30(05), 356–361 (2005).
[CrossRef]

Y. J. Xiong, B. Wiley, J. Y. Chen, Z. Y. Li, Y. D. Yin, and Y. N. Xia, “Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties,” Angew. Chem. Int. Ed. Engl. 44(48), 7913–7917 (2005).
[PubMed]

Chen, Q.

Chen, S. H.

S. H. Chen, Z. Y. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).

Chen, W.

Chen, X. W.

X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[PubMed]

Chen, Y. N.

Cheng, X.

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[PubMed]

Chiba, N.

M. Fujihira, H. Monobe, N. Yamamoto, H. Muramatsu, N. Chiba, K. Nakajima, and T. Ataka, “Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and atomic force microscope,” Ultramicroscopy 61(1–4), 271–277 (1995).

Chichkov, B. N.

Chiu, K. P.

Cho, E. C.

Y. Y. Ma, W. Y. Li, E. C. Cho, Z. Y. Li, T. K. Yu, J. Zeng, Z. X. Xie, and Y. N. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[CrossRef] [PubMed]

E. C. Cho, C. M. Cobley, M. Rycenga, and Y. N. Xia, “Fine tuning the optical properties of Au–Ag nanocages by selectively etching Ag with oxygen and a water-soluble thiol,” J. Mater. Chem. 19(35), 6317–6320 (2009).
[PubMed]

Choi, H.

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[PubMed]

Chu, H. S.

H. S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, “Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain,” Appl. Phys. Lett. 92(10), 103103 (2008).

Chu, Y. Z.

Chul Kim, H.

Chumanov, G.

M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114(16), 7496–7501 (2010).

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003).
[PubMed]

Cobb, M. J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[PubMed]

Cobley, C.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. N. Xia, J. X. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Cobley, C. M.

E. C. Cho, C. M. Cobley, M. Rycenga, and Y. N. Xia, “Fine tuning the optical properties of Au–Ag nanocages by selectively etching Ag with oxygen and a water-soluble thiol,” J. Mater. Chem. 19(35), 6317–6320 (2009).
[PubMed]

S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, and Y. N. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[PubMed]

Colliex, C.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

C. Jeanguillaume and C. Colliex, “Spectrum-image: The next step in EELS digital acquisition and processing,” Ultramicroscopy 28(1–4), 252–257 (1989).
[CrossRef]

Craik, C. S.

Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 106(42), 17735–17740 (2009).
[PubMed]

Crozier, K. B.

Ctistis, G.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[PubMed]

Cubukcu, E.

Cuevas, J. C.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[PubMed]

Cui, X. D.

Cumming, D. R. S.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Dai, Y.

X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol. 6(1), 28–32 (2011).
[PubMed]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[PubMed]

Danz, N.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).

Das, G.

A. Bek, F. De Angelis, G. Das, E. Di Fabrizio, and M. Lazzarino, “Tip enhanced Raman scattering with adiabatic plasmon focusing tips,” Micron 42(4), 313–317 (2011).

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).

Davis, T. J.

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[PubMed]

Davoyan, A. R.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[PubMed]

De Angelis, F.

A. Bek, F. De Angelis, G. Das, E. Di Fabrizio, and M. Lazzarino, “Tip enhanced Raman scattering with adiabatic plasmon focusing tips,” Micron 42(4), 313–317 (2011).

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).

de Leon Snapp, N.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).

De Vlaminck, I.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
[PubMed]

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
[PubMed]

de Waele, R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[PubMed]

Degiron, A.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A-Pure Appl. Op. 7, S90–S96 (2005).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[PubMed]

Demler, E. A.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

Dereux, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[PubMed]

Desiatov, B.

Devaux, E.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10(1), 291–295 (2010).
[PubMed]

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys. 11(11), 113043 (2009).

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[PubMed]

Dhuey, S.

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[PubMed]

Di Fabrizio, E.

A. Bek, F. De Angelis, G. Das, E. Di Fabrizio, and M. Lazzarino, “Tip enhanced Raman scattering with adiabatic plasmon focusing tips,” Micron 42(4), 313–317 (2011).

Dickson, R. M.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).

Dickson, W.

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 61(6), 601–626 (2008).

Dierolf, V.

Q. Q. Gan, L. C. Zhou, V. Dierolf, and F. J. Bartoli, “UV plasmonic structures: direct observations of uv extraordinary optical transmission and localized field enhancement through nanoslits,” IEEE Photonics J. 1(4), 245–253 (2009).

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[PubMed]

Dionne, J. A.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[PubMed]

Ditlbacher, H.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

G. Schider, J. R. Krenn, W Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[PubMed]

Dolling, G.

M. Wegener, G. Dolling, and S. Linden, “Plasmonics: backward waves moving forward,” Nat. Mater. 6(7), 475–476 (2007).
[PubMed]

Draine, B. T.

Dreaden, E. C.

E. C. Dreaden, S. Neretina, W. Qian, M. A. El-Sayed, R. A. Hughes, J. S. Preston, and P. Mascher, “Plasmonic enhancement of nonradiative charge carrier relaxation and proposed effects from enhanced radiative electronic processes in semiconductor-gold core-shell nanorod arrays,” J. Phys. Chem. C 115(13), 5578–5583 (2011).

Drezet, A.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).

Du, B.

R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004).

Du, C. L.

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).

Dufresne, E. R.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[PubMed]

Durant, S.

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

S. Durant, Z. W. Liu, J. A. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383–2392 (2006).

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).

Duval, M. L.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Ebbesen, T. W.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10(1), 291–295 (2010).
[PubMed]

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys. 11(11), 113043 (2009).

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[PubMed]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A-Pure Appl. Op. 7, S90–S96 (2005).

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).

Ehrenreich, H.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[PubMed]

Elliott, J.

El-Sayed, M. A.

E. C. Dreaden, S. Neretina, W. Qian, M. A. El-Sayed, R. A. Hughes, J. S. Preston, and P. Mascher, “Plasmonic enhancement of nonradiative charge carrier relaxation and proposed effects from enhanced radiative electronic processes in semiconductor-gold core-shell nanorod arrays,” J. Phys. Chem. C 115(13), 5578–5583 (2011).

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4–6), 153–164 (2010).

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008).
[PubMed]

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007).
[PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[PubMed]

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[CrossRef]

Elson, J. M.

K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72(7), 075429 (2005).

Emory, S. R.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[PubMed]

Engheta, N.

A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys. 13(3), 033026 (2011).

A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B 79(23), 235412 (2009).

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[PubMed]

Enoch, S.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).

Erland, J.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, “Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface,” Opt. Lett. 26(10), 734–736 (2001).
[PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[PubMed]

Erni, D.

Eustis, S.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[PubMed]

S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006).

Evans, P.

Evans, P. R.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).

EvIyukhin, A. B.

Evlyukhin, A. B.

Ewe, W. B.

H. S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, “Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain,” Appl. Phys. Lett. 92(10), 103103 (2008).

Falk, A. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]

Fan, B.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[PubMed]

Fan, F. R.

W. H. Wang, Q. Yang, F. R. Fan, H. X. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett. 11(4), 1603–1608 (2011).
[PubMed]

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[PubMed]

Fan, L.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).

Fan, S.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).

Fan, S. H.

Fan, Z. Y.

S. H. Chen, Z. Y. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).

Fang, N.

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003).

Fang, Y.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

Fang, Y. R.

Z. P. Li, K. Bao, Y. R. Fang, Z. Q. Guan, N. J. Halas, P. Nordlander, and H. X. Xu, “Effect of a proximal substrate on plasmon propagation in silver nanowires,” Phys. Rev. B 82(24), 241402 (2010).

Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[PubMed]

Fang, Z.

Z. Fang, J. Cai, Z. Yan, P Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[PubMed]

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).

Fang, Z. Y.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[PubMed]

Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5(2), 207–212 (2010).

W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[PubMed]

Fedutik, Y.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[PubMed]

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal–insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[PubMed]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

Félidj, N.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).

Flatau, P. J.

Fokkink, L. G. J.

B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).

B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).

Foss, C. A.

C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96(22), 9001–9007 (1992).

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[PubMed]

Fu, M.

R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004).

Fujihira, M.

M. Fujihira, H. Monobe, N. Yamamoto, H. Muramatsu, N. Chiba, K. Nakajima, and T. Ataka, “Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and atomic force microscope,” Ultramicroscopy 61(1–4), 271–277 (1995).

Fukuda, H.

R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
[CrossRef]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[PubMed]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Funston, A. M.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[PubMed]

Gagnaire, H.

P. Tobiška, O Hugon, A Trouillet, and H. Gagnaire, “An integrated optic hydrogen sensor based on SPR on palladium,” Sens. Actuators B Chem. 74(1–3), 168–172 (2001).

Gan, Q. Q.

Q. Q. Gan, L. C. Zhou, V. Dierolf, and F. J. Bartoli, “UV plasmonic structures: direct observations of uv extraordinary optical transmission and localized field enhancement through nanoslits,” IEEE Photonics J. 1(4), 245–253 (2009).

Gao, H. W.

J. C. Yang, H. W. Gao, J. Y. Suh, W. Zhou, M. H. Lee, and T. W. Odom, “Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays,” Nano Lett. 10(8), 3173–3178 (2010).
[PubMed]

H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
[PubMed]

García de Abajo, F.

N. Yamamoto, K. Araya, and F. García de Abajo, “Photon emission from silver particles induced by a originates electron beam,” Phys. Rev. B 64(20), 205419 (2001).

García de Abajo, F. J.

L. Wang, W. Cai, Y. X. Xiang, X. Z. Zhang, J. J. Xu, and F. J. García de Abajo, “Reduced radiation losses in electron beam excited propagating plasmons,” Opt. Express 19(19), 18713–18720 (2011).
[PubMed]

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

García-Etxarri, A.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[PubMed]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[PubMed]

Garcia-Vidal, F. J.

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys. 11(11), 113043 (2009).

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).

García-Vidal, F. J.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[PubMed]

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[PubMed]

Gates, B.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).

Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).

Gather, M. C.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[CrossRef]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon amplification in planar metal films,” IEEE J. Quantum Electron. 43(11), 1104–1108 (2007).

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[PubMed]

Ghosh, S. K.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[PubMed]

Giannini, V.

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105(26), 266801 (2010).
[PubMed]

Giersig, M.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[PubMed]

L. M. Liz-Marzan, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[PubMed]

Giorgio, S.

M. Maillard, S. Giorgio, and M. P. Pileni, “Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties,” J. Phys. Chem. B 107(11), 2466–2470 (2003).

Girard, C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Glucksberg, M. R.

E. M. Hicks, O. Lyandres, W. P. Hall, S. L. Zou, M. R. Glucksberg, and R. P. Van Duyne, “Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography,” J. Phys. Chem. C 111(11), 4116–4124 (2007).
[CrossRef]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[PubMed]

Goldner, A.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).

Gomez, D. E.

T. J. Davis, K. C. Vernon, and D. E. Gomez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).

Gómez Rivas, J.

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett. 105(26), 266801 (2010).
[PubMed]

Gomez-Casado, A.

J. Jose, F. B. Segerink, J. P. Korterik, A. Gomez-Casado, J. Huskens, J. L. Herek, and H. L. Offerhaus, “Enhanced surface plasmon polariton propagation length using a buried metal grating,” J. Appl. Phys. 109(6), 064906 (2011).

Gong, Q. H.

X. F. Wu, J. S. Zhang, and Q. H. Gong, “Metal–insulator–metal nanorod arrays for subwavelength imaging,” Opt. Express 17(4), 2818–2825 (2009).
[PubMed]

J. Y. Wang, J. S. Zhang, X. F. Wu, H. Luo, and Q. H. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).

González, M. U.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[PubMed]

Gordon, R.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[PubMed]

Gosciniak, J.

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys. 11(11), 113043 (2009).

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

Gotschy, W

G. Schider, J. R. Krenn, W Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).

Gotschy, W.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63(4), 381–384 (1996).

Goudonnet, J. P.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

Goudonnet, J. P.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).

Goykhman, I.

Gramotnev, D. K.

M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys. 107(4), 044303 (2010).

S. J. Tan and D. K. Gramotnev, “Analysis of efficiency and optimization of plasmon energy coupling into nanofocusing metal wedges,” J. Appl. Phys. 107(9), 094301 (2010).

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[PubMed]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).

D. K. Gramotnev and K. C. Vernon, “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl Phys. B Lasers Opt. 86, 7–17 (2007).

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98(10), 104302 (2005).

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[PubMed]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Guan, Z. Q.

Z. P. Li, K. Bao, Y. R. Fang, Z. Q. Guan, N. J. Halas, P. Nordlander, and H. X. Xu, “Effect of a proximal substrate on plasmon propagation in silver nanowires,” Phys. Rev. B 82(24), 241402 (2010).

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]

Gultepe, E.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).

Gunnarsson, L

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).

Guo, X.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[PubMed]

Hadad, B.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[PubMed]

Z. Fang, J. Cai, Z. Yan, P Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[PubMed]

Z. P. Li, S. P. Zhang, N. J. Halas, P. Nordlander, and H. X. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[PubMed]

Z. P. Li, K. Bao, Y. R. Fang, Z. Q. Guan, N. J. Halas, P. Nordlander, and H. X. Xu, “Effect of a proximal substrate on plasmon propagation in silver nanowires,” Phys. Rev. B 82(24), 241402 (2010).

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[PubMed]

S. P. Sundararajan, J. M. Steele, and N. J. Halas, “Propagation of surface plasmons on Ag and Cu extended one-dimensional arrays on silicon substrates,” Appl. Phys. Lett. 88(6), 063115 (2006).

C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett. 4(7), 1323–1327 (2004).

F. Tam, C. Moran, and N. J. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).

Hall, W. P.

E. M. Hicks, O. Lyandres, W. P. Hall, S. L. Zou, M. R. Glucksberg, and R. P. Van Duyne, “Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography,” J. Phys. Chem. C 111(11), 4116–4124 (2007).
[CrossRef]

Halterman, K.

K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72(7), 075429 (2005).

Hao, E. C.

R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Hao, F.

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).

Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[PubMed]

Hao, F. H.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[PubMed]

Hao, Q. Z.

Y. H. Zhao, A. A. Nawaz, S. C. S. Lin, Q. Z. Hao, B. Kiraly, and T. J. Huang, “Nanoscale super-resolution imaging via a metal-dielectric metamaterial lens system,” J. Phys. D Appl. Phys. 44(41), 415101 (2011).

Hao, Z. H.

Z. J. Yang, Z. S. Zhang, Z. H. Hao, and Q. Q. Wang, “Fano resonances in active plasmonic resonators consisting of a nanorod dimer and a nano-emitter,” Appl. Phys. Lett. 99(8), 081107 (2011).

Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au–Ag nanorod heterodimers,” Appl. Phys. Lett. 96(13), 131113 (2010).

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[PubMed]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[CrossRef]

He, X. L.

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[PubMed]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[PubMed]

Hemmer, P. R.

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[PubMed]

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[PubMed]

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]

Henrard, L.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Henzie, J.

H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
[PubMed]

Herek, J. L.

J. Jose, F. B. Segerink, J. P. Korterik, A. Gomez-Casado, J. Huskens, J. L. Herek, and H. L. Offerhaus, “Enhanced surface plasmon polariton propagation length using a buried metal grating,” J. Appl. Phys. 109(6), 064906 (2011).

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Hickey, S. G.

Hicks, E. M.

E. M. Hicks, O. Lyandres, W. P. Hall, S. L. Zou, M. R. Glucksberg, and R. P. Van Duyne, “Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography,” J. Phys. Chem. C 111(11), 4116–4124 (2007).
[CrossRef]

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

Hiller, J. M.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Hofkens, J.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
[PubMed]

Hohenau, A.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003).

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[CrossRef]

Horak, P.

Hostetter, D. R.

Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 106(42), 17735–17740 (2009).
[PubMed]

Howard, J.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]

Hu, S. F.

H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee, and S. F. Hu, “Controlling the length and shape of gold nanorods,” J. Phys. Chem. B 109(42), 19553–19555 (2005).
[PubMed]

Hu, X. Y.

X. Y. Hu, Z. Y. Wang, T. C. Zhang, X. Y. Zeng, W. Xu, J. X. Zhang, J. Yan, J. P. Zhang, and L. D. Zhang, “Manipulation of optical properties of Ag/Cu alloy nanowire arrays embedded in anodic alumina membranes,” Appl. Surf. Sci. 254(13), 3845–3848 (2008).

Hua, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).

Huang, H. J.

Huang, J.

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
[PubMed]

Huang, J. X.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. N. Xia, J. X. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Huang, P. R.

M. Maillard, P. R. Huang, and L. Brus, “Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+],” Nano Lett. 3(11), 1611–1615 (2003).

Huang, S.

Huang, T. J.

Y. H. Zhao, A. A. Nawaz, S. C. S. Lin, Q. Z. Hao, B. Kiraly, and T. J. Huang, “Nanoscale super-resolution imaging via a metal-dielectric metamaterial lens system,” J. Phys. D Appl. Phys. 44(41), 415101 (2011).

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys. 103(1), 014308 (2008).

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).

Huang, X. Q.

X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol. 6(1), 28–32 (2011).
[PubMed]

Huang, Y. J.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).

Huang, Y. Z.

Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[PubMed]

Hughes, R. A.

E. C. Dreaden, S. Neretina, W. Qian, M. A. El-Sayed, R. A. Hughes, J. S. Preston, and P. Mascher, “Plasmonic enhancement of nonradiative charge carrier relaxation and proposed effects from enhanced radiative electronic processes in semiconductor-gold core-shell nanorod arrays,” J. Phys. Chem. C 115(13), 5578–5583 (2011).

Hugon, O

P. Tobiška, O Hugon, A Trouillet, and H. Gagnaire, “An integrated optic hydrogen sensor based on SPR on palladium,” Sens. Actuators B Chem. 74(1–3), 168–172 (2001).

Hulteen, J. C.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of nanomaterials,” J. Mater. Chem. 7(7), 1075–1087 (1997).

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

Hüser, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[PubMed]

Huskens, J.

J. Jose, F. B. Segerink, J. P. Korterik, A. Gomez-Casado, J. Huskens, J. L. Herek, and H. L. Offerhaus, “Enhanced surface plasmon polariton propagation length using a buried metal grating,” J. Appl. Phys. 109(6), 064906 (2011).

Hutchison, J. A.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
[PubMed]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[PubMed]

Imura, K.

H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84(7–8), 199–229 (2009).

K. Imura, T. Nagahara, and H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
[PubMed]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Isaacson, M.

F. Ouyang, P. Batson, and M. Isaacson, “Quantum sizes effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy,” Phys. Rev. B 46(23), 15421–15425 (1992).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).

Jain, P. K.

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[PubMed]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4–6), 153–164 (2010).

P. K. Jain and M. A. El-Sayed, “Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing,” Nano Lett. 8(12), 4347–4352 (2008).
[PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).

P. K. Jain and M. A. El-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7(9), 2854–2858 (2007).
[PubMed]

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B 110(37), 18243–18253 (2006).
[PubMed]

Jakab, A.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[PubMed]

Jeanguillaume, C.

C. Jeanguillaume and C. Colliex, “Spectrum-image: The next step in EELS digital acquisition and processing,” Ultramicroscopy 28(1–4), 252–257 (1989).
[CrossRef]

Jensen, T. R.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet–visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[CrossRef]

Jia, J. F.

Q. Zhang, X. Y. Shan, L. Zhou, T. R. Zhan, C. X. Wang, M. Li, J. F. Jia, J. Zi, Q. Q. Wang, and Q. K. Xue, “Scattering focusing and localized surface plasmons in a single Ag nanoring,” Appl. Phys. Lett. 97(26), 261107 (2010).

Jiang, J.

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).

Jiang, Y.

H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Tunability and linewidth sharpening of plasmon resonances on a periodic gold nanowire array coupled to a thin textured silver film,” Appl. Phys. B 104(3), 665–672 (2011).

Jiao, L.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[PubMed]

Jiao, X.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).

Jin, R. C.

L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

Jin, Z.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[PubMed]

Jo, M.-H.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).

Joannopoulos, J. D.

Johnson, E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

Jose, J.

J. Jose, F. B. Segerink, J. P. Korterik, A. Gomez-Casado, J. Huskens, J. L. Herek, and H. L. Offerhaus, “Enhanced surface plasmon polariton propagation length using a buried metal grating,” J. Appl. Phys. 109(6), 064906 (2011).

Ju, J. J.

Juluri, B. K.

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys. 103(1), 014308 (2008).

Jun, Y. W.

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[PubMed]

Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 106(42), 17735–17740 (2009).
[PubMed]

Jung, J.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Kall, M.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).

Käll, M.

T. Pakizeh, C. Langhammer, I. Zorić, P. Apell, and M. Käll, “Intrinsic Fano interference of localized plasmons in Pd nanoparticles,” Nano Lett. 9(2), 882–886 (2009).
[PubMed]

Kang, K.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).

Karabchevsky, A.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).

Kasemo, B.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[PubMed]

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[PubMed]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).

Kato, J.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[PubMed]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

Kelly, K. L.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

Kempa, K.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[PubMed]

Kerker, M.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22(10), 1242–1246 (1951).

Khalavka, Y.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[PubMed]

Khanal, B. P.

D. Solis, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E.R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010).
[PubMed]

W. S. Chang, L. S. Slaughter, B. P. Khanal, P. Manna, E. R. Zubarev, and S. Link, “One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures,” Nano Lett. 9(3), 1152–1157 (2009).
[PubMed]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

Khlebtsov, B. N.

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007).

Khlebtsov, N. G.

B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C 111(31), 11516–11527 (2007).

Kho, K. W.

Kiely, C. J.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[CrossRef]

Kihm, J. E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).

Kim, D. S.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

Kim, F.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).

Kim, H.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).

Kim, J. T.

Kim, M. S.

Kim, N. C.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[PubMed]

Kim, S.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for gold/silver alloy nanorods,” Langmuir 25(9), 5266–5270 (2009).
[PubMed]

S. Kim, S. K. Kim, and S. Park, “Bimetallic gold-silver nanorods produce multiple surface plasmon bands,” J. Am. Chem. Soc. 131(24), 8380–8381 (2009).
[PubMed]

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods,” Nano Lett. 8(8), 2265–2270 (2008).
[PubMed]

Kim, S. K.

S. Kim, S. K. Kim, and S. Park, “Bimetallic gold-silver nanorods produce multiple surface plasmon bands,” J. Am. Chem. Soc. 131(24), 8380–8381 (2009).
[PubMed]

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for gold/silver alloy nanorods,” Langmuir 25(9), 5266–5270 (2009).
[PubMed]

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods,” Nano Lett. 8(8), 2265–2270 (2008).
[PubMed]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).

Kimball, C. W.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).

Kimmey, M. B.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[PubMed]

Kinnan, M. K.

M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114(16), 7496–7501 (2010).

Kiraly, B.

Y. H. Zhao, A. A. Nawaz, S. C. S. Lin, Q. Z. Hao, B. Kiraly, and T. J. Huang, “Nanoscale super-resolution imaging via a metal-dielectric metamaterial lens system,” J. Phys. D Appl. Phys. 44(41), 415101 (2011).

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[PubMed]

Kivshar, Y. S.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).

Kiyan, R.

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).

Kociak, M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

Koh, W. S.

H. S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, “Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain,” Appl. Phys. Lett. 92(10), 103103 (2008).

Koper, G. J. M.

B. M. I. van der Zande, G. J. M. Koper, and H. N. W. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).

Koppens, F. H. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).

Korterik, J. P.

J. Jose, F. B. Segerink, J. P. Korterik, A. Gomez-Casado, J. Huskens, J. L. Herek, and H. L. Offerhaus, “Enhanced surface plasmon polariton propagation length using a buried metal grating,” J. Appl. Phys. 109(6), 064906 (2011).

Kotov, N.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[PubMed]

Kottmann, J. P.

Kox, R.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
[PubMed]

Krasavin, A. V.

Krasnykov, O.

A. Karabchevsky, O. Krasnykov, M. Auslender, B. Hadad, A. Goldner, and I. Abdulhalim, “Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment,” Plasmonics 4(4), 281–292 (2009).

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Krenn, J. R.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003).

G. Schider, J. R. Krenn, W Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[PubMed]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379–3381 (2000).

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60(12), 9061–9068 (1999).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
[PubMed]

Kreuzer, M. P.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[PubMed]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).

Kuhn, A.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[PubMed]

Kuipers, L. K.

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett. 10(9), 3665–3669 (2010).
[PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
[PubMed]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
[PubMed]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[PubMed]

Kunets, V.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

Kuttge, M.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[PubMed]

Kuzin, A. A.

Lacroute, Y.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

Lagae, L.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
[PubMed]

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007).
[PubMed]

Lahoud, N.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[PubMed]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[PubMed]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003).

G. Schider, J. R. Krenn, W Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B 64(4), 045411 (2001).

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[PubMed]

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379–3381 (2000).

Langhammer, C.

T. Pakizeh, C. Langhammer, I. Zorić, P. Apell, and M. Käll, “Intrinsic Fano interference of localized plasmons in Pd nanoparticles,” Nano Lett. 9(2), 882–886 (2009).
[PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[PubMed]

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios,” J. Chem. Phys. 126(19), 194702 (2007).
[PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[PubMed]

Laurent, G.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).

Lazzarino, M.

A. Bek, F. De Angelis, G. Das, E. Di Fabrizio, and M. Lazzarino, “Tip enhanced Raman scattering with adiabatic plasmon focusing tips,” Micron 42(4), 313–317 (2011).

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[PubMed]

Lee, B.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).

Lee, C. L.

H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee, and S. F. Hu, “Controlling the length and shape of gold nanorods,” J. Phys. Chem. B 109(42), 19553–19555 (2005).
[PubMed]

Lee, H.

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[PubMed]

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).

Lee, J.

J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).

Lee, J. F.

H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee, and S. F. Hu, “Controlling the length and shape of gold nanorods,” J. Phys. Chem. B 109(42), 19553–19555 (2005).
[PubMed]

Lee, K. G.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[PubMed]

Lee, K. H.

K. H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B Condens. Matter 49(4), 2362–2367 (1994).
[PubMed]

Lee, M. H.

J. C. Yang, H. W. Gao, J. Y. Suh, W. Zhou, M. H. Lee, and T. W. Odom, “Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays,” Nano Lett. 10(8), 3173–3178 (2010).
[PubMed]

Leitner, A.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003).

G. Schider, J. R. Krenn, W Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379–3381 (2000).

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
[PubMed]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63(4), 381–384 (1996).

Lekkerkerker, H. N. W.

B. M. I. van der Zande, G. J. M. Koper, and H. N. W. Lekkerkerker, “Alignment of rod-shaped gold particles by electric fields,” J. Phys. Chem. B 103(28), 5754–5760 (1999).

Leosson, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and J. Erland, “Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface,” Opt. Lett. 26(10), 734–736 (2001).
[PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[PubMed]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[PubMed]

Lesuffleur, A.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

Lévi, G.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).

Levy, U.

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).

Li, B.

R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004).

Li, E. P.

J. Wang, W. Zhou, E. P. Li, and D. H. Zhang, “Subwavelength focusing using plasmonic wavelength-launched zone plate lenses,” Plasmonics 6(2), 269–272 (2011).

H. S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, “Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain,” Appl. Phys. Lett. 92(10), 103103 (2008).

Li, G. X.

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102(11), 116101 (2007).

Li, J. B.

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[PubMed]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).

Li, K. R.

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[PubMed]

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[PubMed]

Li, L.

L. Li, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[PubMed]

Li, L. T.

R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004).

Li, M.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[PubMed]

Q. Zhang, X. Y. Shan, L. Zhou, T. R. Zhan, C. X. Wang, M. Li, J. F. Jia, J. Zi, Q. Q. Wang, and Q. K. Xue, “Scattering focusing and localized surface plasmons in a single Ag nanoring,” Appl. Phys. Lett. 97(26), 261107 (2010).

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[PubMed]

Li, Q.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).

R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004).

Li, T.

L. Li, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[PubMed]

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91(13), 133107 (2007).

Li, W.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

Q. Zhang, W. Li, L.-P. Wen, J. Chen, and Y. Xia, “Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF(3)COOAg as a precursor,” Chemistry 16(33), 10234–10239 (2010).
[CrossRef] [PubMed]

Li, W. Y.

Y. Y. Ma, W. Y. Li, E. C. Cho, Z. Y. Li, T. K. Yu, J. Zeng, Z. X. Xie, and Y. N. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[CrossRef] [PubMed]

Li, X. D.

S. E. Skrabalak, L. Au, X. D. Li, and Y. N. Xia, “Facile synthesis of Ag nanocubes and Au nanocages,” Nat. Protoc. 2(9), 2182–2190 (2007).
[PubMed]

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[PubMed]

J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[PubMed]

B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, and Y. N. Xia, “Shape-controlled synthesis of silver and gold nanostructures,” MRS Bull. 30(05), 356–361 (2005).
[CrossRef]

Li, X. E.

H. Wei, D. Ratchford, X. E. Li, H. X. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[PubMed]

Li, Z. P.

Z. P. Li, S. P. Zhang, N. J. Halas, P. Nordlander, and H. X. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[PubMed]

Z. P. Li, K. Bao, Y. R. Fang, Z. Q. Guan, N. J. Halas, P. Nordlander, and H. X. Xu, “Effect of a proximal substrate on plasmon propagation in silver nanowires,” Phys. Rev. B 82(24), 241402 (2010).

Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[PubMed]

Li, Z. Y.

Y. Y. Ma, W. Y. Li, E. C. Cho, Z. Y. Li, T. K. Yu, J. Zeng, Z. X. Xie, and Y. N. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[CrossRef] [PubMed]

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4345–4349 (2010).

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[PubMed]

Y. J. Xiong, B. Wiley, J. Y. Chen, Z. Y. Li, Y. D. Yin, and Y. N. Xia, “Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties,” Angew. Chem. Int. Ed. Engl. 44(48), 7913–7917 (2005).
[PubMed]

J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).

B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, and Y. N. Xia, “Shape-controlled synthesis of silver and gold nanostructures,” MRS Bull. 30(05), 356–361 (2005).
[CrossRef]

Li, Z.-Y.

F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[CrossRef]

Liebscher, L.

Lienau, C.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

Lim, Y.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).

Lin, C.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).

Lin, F.

Lin, H. Q.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[PubMed]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[PubMed]

Lin, S. C. S.

Y. H. Zhao, A. A. Nawaz, S. C. S. Lin, Q. Z. Hao, B. Kiraly, and T. J. Huang, “Nanoscale super-resolution imaging via a metal-dielectric metamaterial lens system,” J. Phys. D Appl. Phys. 44(41), 415101 (2011).

Lin, Y. J.

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[PubMed]

M. Wegener, G. Dolling, and S. Linden, “Plasmonics: backward waves moving forward,” Nat. Mater. 6(7), 475–476 (2007).
[PubMed]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[PubMed]

D. Solis, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E.R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010).
[PubMed]

W. S. Chang, L. S. Slaughter, B. P. Khanal, P. Manna, E. R. Zubarev, and S. Link, “One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures,” Nano Lett. 9(3), 1152–1157 (2009).
[PubMed]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[PubMed]

Liphardt, J.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2667–2672 (2007).
[PubMed]

Liu, H.

H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Tunability and linewidth sharpening of plasmon resonances on a periodic gold nanowire array coupled to a thin textured silver film,” Appl. Phys. B 104(3), 665–672 (2011).

F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu, and W. Cao, “Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains,” Appl. Phys. Lett. 91(13), 133107 (2007).

Liu, R. S.

H. M. Chen, R. S. Liu, and D. P. Tsai, “A versatile route to the controlled synthesis of gold nanostructures,” Cryst. Growth Des. 9(5), 2079–2087 (2009).

H. J. Huang, C. P. Yu, H. C. Chang, K. P. Chiu, H. Ming Chen, R. S. Liu, and D. P. Tsai, “Plasmonic optical properties of a single gold nano-rod,” Opt. Express 15(12), 7132–7139 (2007).
[PubMed]

H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee, and S. F. Hu, “Controlling the length and shape of gold nanorods,” J. Phys. Chem. B 109(42), 19553–19555 (2005).
[PubMed]

Liu, Y.

F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112(51), 20233–20240 (2008).
[CrossRef]

Liu, Y. M.

Liu, Z.

L. Jiao, B. Fan, X. Xian, Z. Wu, J. Zhang, and Z. Liu, “Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing,” J. Am. Chem. Soc. 130(38), 12612–12613 (2008).
[PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[PubMed]

Liu, Z. W.

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[PubMed]

S. Durant, Z. W. Liu, J. A. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383–2392 (2006).

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[PubMed]

Liz-Marzan, L. M.

V. Bastys, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. Vaisnoras, and L. M. Liz-Marzan, “Formation of silver nanoprisms with surface plasmons at communication wavelengths,” Adv. Funct. Mater. 16(6), 766–773 (2006).
[CrossRef]

L. M. Liz-Marzan, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).

Liz-Marzán, L. M.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[CrossRef]

Liz-Marzán, L. M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 32–41 (2006).
[CrossRef] [PubMed]

J. Pérez-Juste, B. Rodríguez-González, P. Mulvaney, and L. M. Liz-Marzán, “Optical control and patterning of gold-nanorod-poly (vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).

Lou, J. Y.

Lu, W. T.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).

Lu, X. M.

S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, and Y. N. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[PubMed]

Lu, Y.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[PubMed]

Lukin, M. D.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[PubMed]

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[PubMed]

Luo, H.

J. Y. Wang, J. S. Zhang, X. F. Wu, H. Luo, and Q. H. Gong, “Subwavelength-resolved bidirectional imaging between two and three dimensions using a surface plasmon launching lens,” Appl. Phys. Lett. 94(8), 081116 (2009).

Luo, X. G.

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Appl. Phys. Lett. 91(20), 201501 (2007).

Lyandres, O.

E. M. Hicks, O. Lyandres, W. P. Hall, S. L. Zou, M. R. Glucksberg, and R. P. Van Duyne, “Plasmonic properties of anchored nanoparticles fabricated by reactive ion etching and nanosphere lithography,” J. Phys. Chem. C 111(11), 4116–4124 (2007).
[CrossRef]

Ly-Gagnon, D. S.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[PubMed]

Lyon, L. A.

R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104(26), 6095–6098 (2000).

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Ma, Y.

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.) 22(39), 4345–4349 (2010).

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[PubMed]

Ma, Y. Y.

Y. Y. Ma, W. Y. Li, E. C. Cho, Z. Y. Li, T. K. Yu, J. Zeng, Z. X. Xie, and Y. N. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[CrossRef] [PubMed]

MacDonald, K. F.

Z. L. Sámson, P. Horak, K. F. MacDonald, and N. I. Zheludev, “Femtosecond surface plasmon pulse propagation,” Opt. Lett. 36(2), 250–252 (2011).
[PubMed]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).

Z. L. Samson, K. F. MacDonald, and N. I. Zheludev, “Femtosecond active plasmonics: ultrafast control of surface plasmon propagation,” J. Opt. A-Pure Appl. Op. 11, 114031 (2009).

Maes, G.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
[PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65(19), 193408 (2002).

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81(9), 1714–1716 (2002).

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maillard, M.

M. Maillard, S. Giorgio, and M. P. Pileni, “Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties,” J. Phys. Chem. B 107(11), 2466–2470 (2003).

M. Maillard, P. R. Huang, and L. Brus, “Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+],” Nano Lett. 3(11), 1611–1615 (2003).

J. Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,” J. Phys. Chem. B 107(37), 9964–9972 (2003).

Maksymov, I. S.

Malini, O.

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

Malynych, S.

S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003).
[PubMed]

Manna, P.

W. S. Chang, L. S. Slaughter, B. P. Khanal, P. Manna, E. R. Zubarev, and S. Link, “One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures,” Nano Lett. 9(3), 1152–1157 (2009).
[PubMed]

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[PubMed]

Mansfield, J. F.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[PubMed]

Mao, X. L.

Y. B. Zheng, B. K. Juluri, X. L. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys. 103(1), 014308 (2008).

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[CrossRef]

Markel, V. A.

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).

Markey, L.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[PubMed]

Marks, L. D.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. N. Xia, J. X. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Martin, C. R.

M. Wirtz and C. R. Martin, “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 455–458 (2003).

J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of nanomaterials,” J. Mater. Chem. 7(7), 1075–1087 (1997).

C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8(8), 1739–1746 (1996).

C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266(5193), 1961–1966 (1994).
[PubMed]

C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96(22), 9001–9007 (1992).

Martin, O. J. F.

Martin-Moreno, L.

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys. 11(11), 113043 (2009).

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).

Martín-Moreno, L.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[PubMed]

Mascher, P.

E. C. Dreaden, S. Neretina, W. Qian, M. A. El-Sayed, R. A. Hughes, J. S. Preston, and P. Mascher, “Plasmonic enhancement of nonradiative charge carrier relaxation and proposed effects from enhanced radiative electronic processes in semiconductor-gold core-shell nanorod arrays,” J. Phys. Chem. C 115(13), 5578–5583 (2011).

Massenot, S.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[PubMed]

Mastroianni, A.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2667–2672 (2007).
[PubMed]

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[PubMed]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Mattiussi, G.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).

Mayers, B.

B. Wiley, Y. G. Sun, B. Mayers, and Y. N. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
[CrossRef] [PubMed]

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).

Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).

Mazur, E.

Mazur, Y. I.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[PubMed]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[PubMed]

McLellan, J. M.

A. R. Siekkinen, J. M. McLellan, J. Y. Chen, and Y. N. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4–6), 491–496 (2006).
[CrossRef] [PubMed]

McMahon, J. M.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. N. Xia, J. X. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

McMillan, R. A.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[PubMed]

Meerholz, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).

Meixner, A. J.

Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Lett. 11(4), 1676–1680 (2011).

Melentiev, P. N.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).

Menon, L.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).

Métraux, G. S.

R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Micheletto, R.

R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
[CrossRef]

Miller, D. A. B.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[PubMed]

Millstone, J. E.

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[PubMed]

Ming, H.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).

Ming Chen, H.

Minh, T. T.

Mirin, N. A.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
[PubMed]

Mirkin, C. A.

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[PubMed]

R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Mirkin, C. A.

L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[PubMed]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

I. S. Maksymov and A. E. Miroshnichenko, “Active control over nanofocusing with nanorod plasmonic antennas,” Opt. Express 19(7), 5888–5894 (2011).
[PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).

Mishchenko, E. G.

E. G. Mishchenko, A. V. Shytov, and P. G. Silvestrov, “Guided plasmons in graphene p–n junctions,” Phys. Rev. Lett. 104(15), 156806 (2010).
[PubMed]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

Monobe, H.

M. Fujihira, H. Monobe, N. Yamamoto, H. Muramatsu, N. Chiba, K. Nakajima, and T. Ataka, “Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and atomic force microscope,” Ultramicroscopy 61(1–4), 271–277 (1995).

Moran, C.

Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, and Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010).
[CrossRef] [PubMed]

F. Tam, C. Moran, and N. J. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[PubMed]

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).

Mu, X. L.

X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol. 6(1), 28–32 (2011).
[PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[PubMed]

Mulvaney, P.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[PubMed]

J. Pérez-Juste, B. Rodríguez-González, P. Mulvaney, and L. M. Liz-Marzán, “Optical control and patterning of gold-nanorod-poly (vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[PubMed]

L. M. Liz-Marzan, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12(3), 788–800 (1996).
[CrossRef]

Muramatsu, H.

M. Fujihira, H. Monobe, N. Yamamoto, H. Muramatsu, N. Chiba, K. Nakajima, and T. Ataka, “Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and atomic force microscope,” Ultramicroscopy 61(1–4), 271–277 (1995).

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[PubMed]

N’Gom, M.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[PubMed]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
[PubMed]

Nagpal, P.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

Nakajima, K.

M. Fujihira, H. Monobe, N. Yamamoto, H. Muramatsu, N. Chiba, K. Nakajima, and T. Ataka, “Scanning near-field optical microscopy of fluorescent polystyrene spheres with a combined SNOM and atomic force microscope,” Ultramicroscopy 61(1–4), 271–277 (1995).

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[PubMed]

Nam, S.

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Natelson, D.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[PubMed]

Nawaz, A. A.

Y. H. Zhao, A. A. Nawaz, S. C. S. Lin, Q. Z. Hao, B. Kiraly, and T. J. Huang, “Nanoscale super-resolution imaging via a metal-dielectric metamaterial lens system,” J. Phys. D Appl. Phys. 44(41), 415101 (2011).

Neacsu, C. C.

Nelayah, J.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Neretina, S.

E. C. Dreaden, S. Neretina, W. Qian, M. A. El-Sayed, R. A. Hughes, J. S. Preston, and P. Mascher, “Plasmonic enhancement of nonradiative charge carrier relaxation and proposed effects from enhanced radiative electronic processes in semiconductor-gold core-shell nanorod arrays,” J. Phys. Chem. C 115(13), 5578–5583 (2011).

Nerkararyan, K. V.

Neviere, M.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).

Nie, S. M.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Nordlander, P

Z. Fang, J. Cai, Z. Yan, P Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a fano resonance,” Nano Lett. 11(10), 4475–4479 (2011).
[PubMed]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[PubMed]

Z. P. Li, S. P. Zhang, N. J. Halas, P. Nordlander, and H. X. Xu, “Coherent modulation of propagating plasmons in silver-nanowire-based structures,” Small 7(5), 593–596 (2011).
[PubMed]

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[PubMed]

D. Solis, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E.R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010).
[PubMed]

Z. P. Li, K. Bao, Y. R. Fang, Z. Q. Guan, N. J. Halas, P. Nordlander, and H. X. Xu, “Effect of a proximal substrate on plasmon propagation in silver nanowires,” Phys. Rev. B 82(24), 241402 (2010).

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[PubMed]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113(16), 4028–4034 (2009).
[PubMed]

Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons,” Nano Lett. 9(5), 2049–2053 (2009).
[CrossRef] [PubMed]

Z. P. Li, F. Hao, Y. Z. Huang, Y. R. Fang, P. Nordlander, and H. X. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9(12), 4383–4386 (2009).
[PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3(4), 543–547 (2003).

Norris, D. J.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

Norris, T. B.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[PubMed]

Novikov, S. M.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10(1), 291–295 (2010).
[PubMed]

Novo, C.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[PubMed]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[PubMed]

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
[PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[PubMed]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041–5043 (2003).

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[PubMed]

O’Connor, D.

Odom, T. W.

J. C. Yang, H. W. Gao, J. Y. Suh, W. Zhou, M. H. Lee, and T. W. Odom, “Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays,” Nano Lett. 10(8), 3173–3178 (2010).
[PubMed]

Odom, T. W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[PubMed]

H. W. Gao, J. Henzie, and T. W. Odom, “Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays,” Nano Lett. 6(9), 2104–2108 (2006).
[PubMed]

Offerhaus, H. L.

J. Jose, F. B. Segerink, J. P. Korterik, A. Gomez-Casado, J. Huskens, J. L. Herek, and H. L. Offerhaus, “Enhanced surface plasmon polariton propagation length using a buried metal grating,” J. Appl. Phys. 109(6), 064906 (2011).

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Oh, S. H.

N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010).
[PubMed]

Ohtsu, M.

R. Micheletto, H. Fukuda, and M. Ohtsu, “A simple method for the production of a 2-dimensional, ordered array of small latex-particles,” Langmuir 11(9), 3333–3336 (1995).
[CrossRef]

Okamoto, H.

H. Okamoto and K. Imura, “Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures,” Prog. Surf. Sci. 84(7–8), 199–229 (2009).

K. Imura, T. Nagahara, and H. Okamoto, “Near-field optical imaging of plasmon modes in gold nanorods,” J. Chem. Phys. 122(15), 154701 (2005).
[PubMed]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2–4), 243–247 (1998).

Olmon, R. L.

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic tip-plasmon focusing for nano-Raman spectroscopy,” J. Phys. Chem. Lett. 1(24), 3427–3432 (2010).

Ono, A.

A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[PubMed]

Osgood, R. M.

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).

Oulton, R. F.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Ouyang, F.

F. Ouyang, P. Batson, and M. Isaacson, “Quantum sizes effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy,” Phys. Rev. B 46(23), 15421–15425 (1992).
[CrossRef]

Owrutsky, J. C.

G. M. Sando, A. D. Berry, P. M. Campbell, A. P. Baronavski, and J. C. Owrutsky, “Surface plasmon dynamics of high-aspect-ratio gold nanorods,” Plasmonics 2(1), 23–29 (2007).

Paavola, C. D.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[PubMed]

Pakizeh, T.

T. Pakizeh, C. Langhammer, I. Zorić, P. Apell, and M. Käll, “Intrinsic Fano interference of localized plasmons in Pd nanoparticles,” Nano Lett. 9(2), 882–886 (2009).
[PubMed]

Pal, T.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Panoiu, N. C.

Park, H.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de Leon Snapp, A. V. Akimov, M.-H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5(7), 475–479 (2009).

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[PubMed]

Park, Q. H.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[PubMed]

Park, S.

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[PubMed]

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for gold/silver alloy nanorods,” Langmuir 25(9), 5266–5270 (2009).
[PubMed]

S. Kim, S. K. Kim, and S. Park, “Bimetallic gold-silver nanorods produce multiple surface plasmon bands,” J. Am. Chem. Soc. 131(24), 8380–8381 (2009).
[PubMed]

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods,” Nano Lett. 8(8), 2265–2270 (2008).
[PubMed]

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[PubMed]

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[PubMed]

Park, S. K.

Passinger, S.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

V. Bastys, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. Vaisnoras, and L. M. Liz-Marzan, “Formation of silver nanoprisms with surface plasmons at communication wavelengths,” Adv. Funct. Mater. 16(6), 766–773 (2006).
[CrossRef]

Patoka, P.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[PubMed]

Pauly, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[PubMed]

Pausauskie, P.

R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic-plasmonic coupling and routing in single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
[PubMed]

Payne, E. K.

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[PubMed]

Pearson, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).

Pei, Y.

H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Tunability and linewidth sharpening of plasmon resonances on a periodic gold nanowire array coupled to a thin textured silver film,” Appl. Phys. B 104(3), 665–672 (2011).

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[PubMed]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[PubMed]

Peng, H. C.

H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee, and S. F. Hu, “Controlling the length and shape of gold nanorods,” J. Phys. Chem. B 109(42), 19553–19555 (2005).
[PubMed]

Peng, Q. A.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[PubMed]

Peng, X. N.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).

Pérez-Juste, J.

J. Pérez-Juste, B. Rodríguez-González, P. Mulvaney, and L. M. Liz-Marzán, “Optical control and patterning of gold-nanorod-poly (vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

Philipp, H. R.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).

Pikus, Y.

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007).
[PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[PubMed]

Pile, D. F. P.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009).
[PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101(10), 104312 (2007).

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmons by a tapered gap,” Phys. Rev. B 75(3), 035431 (2007).

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89(4), 041111 (2006).

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).

Pileni, M. P.

A. Brioude and M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005).
[PubMed]

M. Maillard, S. Giorgio, and M. P. Pileni, “Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties,” J. Phys. Chem. B 107(11), 2466–2470 (2003).

Podolskiy, V. A.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[PubMed]

Pollard, R.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[CrossRef] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16(10), 7460–7470 (2008).
[PubMed]

Pollard, R. J.

P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C 111(34), 12522–12527 (2007).

Polman, A.

P. Spinelli, C. van Lare, E. Verhagen, and A. Polman, “Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate,” Opt. Express 19(S3 Suppl 3), A303–A311 (2011).
[PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic nanofocusing in a dielectric wedge,” Nano Lett. 10(9), 3665–3669 (2010).
[PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
[PubMed]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008).
[PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[PubMed]

Pomraenke, R.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

Popov, E.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[PubMed]

Premaratne, M.

Preston, J. S.

E. C. Dreaden, S. Neretina, W. Qian, M. A. El-Sayed, R. A. Hughes, J. S. Preston, and P. Mascher, “Plasmonic enhancement of nonradiative charge carrier relaxation and proposed effects from enhanced radiative electronic processes in semiconductor-gold core-shell nanorod arrays,” J. Phys. Chem. C 115(13), 5578–5583 (2011).

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

E. Prodan and P. Nordlander, “Structural tunability of the plasmon resonances in metallic nanoshells,” Nano Lett. 3(4), 543–547 (2003).

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[CrossRef] [PubMed]

Qi, H.

Z. Y. Fang, H. Qi, C. Wang, and X. Zhu, “Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing,” Plasmonics 5(2), 207–212 (2010).

Qi, X. W.

R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, L. T. Li, and S. Buddhudu, “Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane,” J. Phys. Chem. B 108(43), 16713–16716 (2004).

Qian, W.

E. C. Dreaden, S. Neretina, W. Qian, M. A. El-Sayed, R. A. Hughes, J. S. Preston, and P. Mascher, “Plasmonic enhancement of nonradiative charge carrier relaxation and proposed effects from enhanced radiative electronic processes in semiconductor-gold core-shell nanorod arrays,” J. Phys. Chem. C 115(13), 5578–5583 (2011).

Qin, L. D.

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[PubMed]

Qiu, M.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[PubMed]

Quidant, R.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[PubMed]

Quinten, M.

Radko, I. P.

Radloff, C.

C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett. 4(7), 1323–1327 (2004).

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[PubMed]

Raeis Zadeh Bajestani, S. M.

Raether, H.

H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Trans. Mod. Phys. 111, 1–133 (1988).

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[PubMed]

Raschke, M. B.

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic tip-plasmon focusing for nano-Raman spectroscopy,” J. Phys. Chem. Lett. 1(24), 3427–3432 (2010).

N. Behr and M. B. Raschke, “Optical antenna properties of scanning probe tips: plasmonic light scattering, tip-sample coupling, and near-field enhancement,” J. Phys. Chem. C 112(10), 3766–3773 (2008).

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14(7), 2921–2931 (2006).
[PubMed]

Ratchford, D.

H. Wei, D. Ratchford, X. E. Li, H. X. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[PubMed]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1–3), 137–141 (2003).

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379–3381 (2000).

Reed, M. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[PubMed]

Reinhard, B. M.

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2667–2672 (2007).
[PubMed]

Reinhardt, C.

Reinisch, R.

E. Popov, M. Neviere, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62(23), 16100–16108 (2000).

Rempe, G.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[PubMed]

Renger, J.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210(3), 220–224 (2003).
[PubMed]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005).

Ringe, E.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. N. Xia, J. X. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Ringnalda, J.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[PubMed]

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010).
[PubMed]

Rodrigo, S. G.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009).
[PubMed]

V. S. Volkov, J. Gosciniak, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, and T. W. Ebbesen, “Plasmonic candle: towards efficient nanofocusing with channel plasmon polaritons,” New J. Phys. 11(11), 113043 (2009).

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[PubMed]

Rodriguez-Gonzalez, B.

V. Bastys, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. Vaisnoras, and L. M. Liz-Marzan, “Formation of silver nanoprisms with surface plasmons at communication wavelengths,” Adv. Funct. Mater. 16(6), 766–773 (2006).
[CrossRef]

Rodríguez-González, B.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15(17), 1755–1759 (2005).
[CrossRef]

J. Pérez-Juste, B. Rodríguez-González, P. Mulvaney, and L. M. Liz-Marzán, “Optical control and patterning of gold-nanorod-poly (vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[PubMed]

Roth, R. M.

Routenberg, D. A.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[PubMed]

Ruan, F. X.

X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol. 6(1), 28–32 (2011).
[PubMed]

Rukhlenko, I. D.

Runge, E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

Rycenga, M.

E. C. Cho, C. M. Cobley, M. Rycenga, and Y. N. Xia, “Fine tuning the optical properties of Au–Ag nanocages by selectively etching Ag with oxygen and a water-soluble thiol,” J. Mater. Chem. 19(35), 6317–6320 (2009).
[PubMed]

Saeki, F.

J. Y. Chen, B Wiley, Z. Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. D. Li, and Y. N. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. (Deerfield Beach Fla.) 17(18), 2255–2261 (2005).

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, and Y. N. Xia, “Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,” Nano Lett. 5(3), 473–477 (2005).
[PubMed]

Salamo, G.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[PubMed]

Samson, Z. L.

Z. L. Samson, K. F. MacDonald, and N. I. Zheludev, “Femtosecond active plasmonics: ultrafast control of surface plasmon propagation,” J. Opt. A-Pure Appl. Op. 11, 114031 (2009).

Sámson, Z. L.

Z. L. Sámson, P. Horak, K. F. MacDonald, and N. I. Zheludev, “Femtosecond surface plasmon pulse propagation,” Opt. Lett. 36(2), 250–252 (2011).
[PubMed]

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).

Sanders, A. W.

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[PubMed]

A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
[PubMed]

Sando, G. M.

G. M. Sando, A. D. Berry, P. M. Campbell, A. P. Baronavski, and J. C. Owrutsky, “Surface plasmon dynamics of high-aspect-ratio gold nanorods,” Plasmonics 2(1), 23–29 (2007).

Sandoghdar, V.

X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[PubMed]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal-films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Sarkar, D.

R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78(22), 4217–4220 (1997).

Sarychev, A. K.

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

Schatz, G. C.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. N. Xia, J. X. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[CrossRef]

L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[PubMed]

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
[CrossRef] [PubMed]

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet–visible extinction spectroscopy and electrodynamic modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[CrossRef]

Schider, G.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation,” J. Chem. Phys. 122(1), 011102 (2005).

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of Au and Ag nanowires,” Phys. Rev. B 68(15), 155427 (2003).

G. Schider, J. R. Krenn, W Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).

J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Design of multipolar plasmon excitations in silver nanoparticles,” Appl. Phys. Lett. 77(21), 3379–3381 (2000).

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[PubMed]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82(12), 2590–2593 (1999).

Schonenberger, C.

B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Colloidal dispersions of gold rods: synthesis and optical properties,” Langmuir 16(2), 451–458 (2000).

B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, and C. Schonenberger, “Aqueous gold sols of rod-shaped particles,” J. Phys. Chem. B 101(6), 852–854 (1997).

Schöps, O.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[PubMed]

Schubert, O.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[PubMed]

Schuck, P. J.

Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9(12), 4505–4509 (2009).
[PubMed]

Schuller, J. A.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B 74(16), 165415 (2006).

Schultz, S.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).

Schwieger, S.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[PubMed]

Segall, B.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).

Segerink, F. B.

J. Jose, F. B. Segerink, J. P. Korterik, A. Gomez-Casado, J. Huskens, J. L. Herek, and H. L. Offerhaus, “Enhanced surface plasmon polariton propagation length using a buried metal grating,” J. Appl. Phys. 109(6), 064906 (2011).

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).

Shadrivov, I. V.

A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105(11), 116804 (2010).
[PubMed]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 61(6), 601–626 (2008).

Shahabadi, M.

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Shan, X.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[PubMed]

Shan, X. Y.

Q. Zhang, X. Y. Shan, L. Zhou, T. R. Zhan, C. X. Wang, M. Li, J. F. Jia, J. Zi, Q. Q. Wang, and Q. K. Xue, “Scattering focusing and localized surface plasmons in a single Ag nanoring,” Appl. Phys. Lett. 97(26), 261107 (2010).

Shao, L.

L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano 4(6), 3053–3062 (2010).
[PubMed]

Sheikholeslami, S.

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[PubMed]

Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 106(42), 17735–17740 (2009).
[PubMed]

B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, “Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes,” Proc. Natl. Acad. Sci. U.S.A. 104(8), 2667–2672 (2007).
[PubMed]

Sheikholeslami, S. N.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett. 11(9), 3927–3934 (2011).
[PubMed]

Shen, J. T.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).

Sherry, L. J.

L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Shih, C. K.

H. Wei, D. Ratchford, X. E. Li, H. X. Xu, and C. K. Shih, “Propagating surface plasmon induced photon emission from quantum dots,” Nano Lett. 9(12), 4168–4171 (2009).
[PubMed]

Shin, H.

P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits,” Appl. Phys. Lett. 88(3), 031101 (2006).

H. Shin and S. H. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96(7), 073907 (2006).
[PubMed]

Shin, S. Y.

Shuford, K. L.

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for gold/silver alloy nanorods,” Langmuir 25(9), 5266–5270 (2009).
[PubMed]

H. M. Bok, K. L. Shuford, S. Kim, S. K. Kim, and S. Park, “Multiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods,” Nano Lett. 8(8), 2265–2270 (2008).
[PubMed]

E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006).
[PubMed]

J. E. Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” J. Am. Chem. Soc. 127(15), 5312–5313 (2005).
[PubMed]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011).
[CrossRef] [PubMed]

J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10(11), 4680–4685 (2010).
[PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328(5982), 1135–1138 (2010).
[PubMed]

Shytov, A. V.

E. G. Mishchenko, A. V. Shytov, and P. G. Silvestrov, “Guided plasmons in graphene p–n junctions,” Phys. Rev. Lett. 104(15), 156806 (2010).
[PubMed]

Siekkinen, A.

J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007).
[PubMed]

Siekkinen, A. R.

A. R. Siekkinen, J. M. McLellan, J. Y. Chen, and Y. N. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4–6), 491–496 (2006).
[CrossRef] [PubMed]

Silvestrov, P. G.

E. G. Mishchenko, A. V. Shytov, and P. G. Silvestrov, “Guided plasmons in graphene p–n junctions,” Phys. Rev. Lett. 104(15), 156806 (2010).
[PubMed]

Singh, S.

K. Halterman, J. M. Elson, and S. Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B 72(7), 075429 (2005).

Sinton, D.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photonics Rev. 4(2), 311–335 (2010).

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[PubMed]

Skrabalak, S. E.

S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, and Y. N. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[PubMed]

S. E. Skrabalak, L. Au, X. D. Li, and Y. N. Xia, “Facile synthesis of Ag nanocubes and Au nanocages,” Nat. Protoc. 2(9), 2182–2190 (2007).
[PubMed]

Skryabin, D. V.

Slaughter, L. S.

W. S. Chang, L. S. Slaughter, B. P. Khanal, P. Manna, E. R. Zubarev, and S. Link, “One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures,” Nano Lett. 9(3), 1152–1157 (2009).
[PubMed]

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).

Smith, M. T.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
[CrossRef]

J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, “Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film,” Opt. Lett. 29(12), 1414–1416 (2004).
[PubMed]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[CrossRef]

Smythe, E. J.

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).

Sohn, K.

E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. N. Xia, J. X. Huang, G. C. Schatz, L. D. Marks, and R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010).
[CrossRef]

Solis, D.

D. Solis, W. S. Chang, B. P. Khanal, K. Bao, P. Nordlander, E.R. Zubarev, and S. Link, “Bleach-imaged plasmon propagation (BlIPP) in single gold nanowires,” Nano Lett. 10(9), 3482–3485 (2010).
[PubMed]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[PubMed]

Sondergaard, T.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).

Søndergaard, T.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10(1), 291–295 (2010).
[PubMed]

Song, W. T.

Z. Y. Fang, Q. A. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[PubMed]

W. T. Song, Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens,” Opt. Express 18(14), 14762–14767 (2010).
[PubMed]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009).

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[PubMed]

Sönnichsen, C.

J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sönnichsen, “Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano Lett. 8(6), 1719–1723 (2008).
[PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[PubMed]

Sorensen, A. S.

D. E. Chang, A. S. Sorensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[PubMed]

Sorger, V. J.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[PubMed]

Spasenovic, M.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102(20), 203904 (2009).
[PubMed]

Spinelli, P.

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).

Sridhar, S.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96(2), 023114 (2010).

W. T. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction,” Phys. Rev. B 77(23), 233101 (2008).

Srinivasan, P.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal–semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[PubMed]

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[PubMed]

Steele, J. A.

Steele, J. M.

Z. W. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006).

S. P. Sundararajan, J. M. Steele, and N. J. Halas, “Propagation of surface plasmons on Ag and Cu extended one-dimensional arrays on silicon substrates,” Appl. Phys. Lett. 88(6), 063115 (2006).

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[PubMed]

Steinberger, B.

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005).

Stepanov, A. L.

Stéphan, O.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 61(6), 601–626 (2008).

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,” J. Appl. Phys. 104(3), 034311 (2008).

M. I. Stockman, “Criterion for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98(17), 177404 (2007).

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[PubMed]

K. R. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91(22), 227402 (2003).
[PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Su, K. H.

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88(6), 063118 (2006).

K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003).

Su, X. R.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[PubMed]

Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-mediated radiative energy transfer across a silver nanowire array via resonant transmission and subwavelength imaging,” ACS Nano 4(9), 5003–5010 (2010).
[PubMed]

Sugiyama, T.

Suh, J. Y.

J. C. Yang, H. W. Gao, J. Y. Suh, W. Zhou, M. H. Lee, and T. W. Odom, “Enhanced optical transmission mediated by localized plasmons in anisotropic, three-dimensional nanohole arrays,” Nano Lett. 10(8), 3173–3178 (2010).
[PubMed]

Suh, W.

Sun, C

Sun, C.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[PubMed]

Z. W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New J. Phys. 7, 255 (2005).

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[PubMed]

Sun, X.

H. Liu, X. Sun, Y. Pei, F. Yao, and Y. Jiang, “Tunability and linewidth sharpening of plasmon resonances on a periodic gold nanowire array coupled to a thin textured silver film,” Appl. Phys. B 104(3), 665–672 (2011).

Sun, Y.

Y. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[CrossRef] [PubMed]

Sun, Y. G.

S. E. Skrabalak, J. Y. Chen, Y. G. Sun, X. M. Lu, L. Au, C. M. Cobley, and Y. N. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41(12), 1587–1595 (2008).
[PubMed]

B. Wiley, Y. G. Sun, B. Mayers, and Y. N. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
[CrossRef] [PubMed]

B. Wiley, Y. G. Sun, J. Y. Chen, H. Cang, Z. Y. Li, X. D. Li, and Y. N. Xia, “Shape-controlled synthesis of silver and gold nanostructures,” MRS Bull. 30(05), 356–361 (2005).
[CrossRef]

Y. G. Sun and Y. N. Xia, “Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium,” J. Am. Chem. Soc. 126(12), 3892–3901 (2004).
[CrossRef] [PubMed]

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).

Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, “Crystalline silver nanowires by soft solution processing,” Nano Lett. 2(2), 165–168 (2002).

Sundararajan, S. P.

S. P. Sundararajan, J. M. Steele, and N. J. Halas, “Propagation of surface plasmons on Ag and Cu extended one-dimensional arrays on silicon substrates,” Appl. Phys. Lett. 88(6), 063115 (2006).

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[PubMed]

Tajon, C.

Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc. Natl. Acad. Sci. U.S.A. 106(42), 17735–17740 (2009).
[PubMed]

Talebi, N.

Tam, F.

F. Tam, C. Moran, and N. J. Halas, “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).

Tam, H. L.

G. X. Li, H. L. Tam, F. Y. Wang, and K. W. Cheah, “Superlens from complementary anisotropic metamaterials,” J. Appl. Phys. 102(11), 116101 (2007).

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[PubMed]

Tan, S. J.

S. J. Tan and D. K. Gramotnev, “Analysis of efficiency and optimization of plasmon energy coupling into nanofocusing metal wedges,” J. Appl. Phys. 107(9), 094301 (2010).

Tanaka, K.

Tanaka, M.

Tanemura, T.

T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, “Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler,” Nano Lett. 11(7), 2693–2698 (2011).
[PubMed]

Tang, L.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).

Tang, S. H.

X. Q. Huang, S. H. Tang, X. L. Mu, Y. Dai, G. X. Chen, Z. Y. Zhou, F. X. Ruan, Z. L. Yang, and N. F. Zheng, “Freestanding palladium nanosheets with plasmonic and catalytic properties,” Nat. Nanotechnol. 6(1), 28–32 (2011).
[PubMed]

Taverna, D.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Temnov, V.

Y. Fedutik, V. Temnov, U. Woggon, E. Ustinovich, and M. Artemyev, “Exciton-plasmon interaction in a composite metal–insulator-semiconductor nanowire system,” J. Am. Chem. Soc. 129(48), 14939–14945 (2007).
[PubMed]

Temnov, V. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[PubMed]

Tencé, M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007).
[CrossRef]

Thio, T.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1–6), 1–7 (2001).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

Tierney, M. J.

C. A. Foss, M. J. Tierney, and C. R. Martin, “Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory,” J. Phys. Chem. 96(22), 9001–9007 (1992).

Tobiška, P.

P. Tobiška, O Hugon, A Trouillet, and H. Gagnaire, “An integrated optic hydrogen sensor based on SPR on palladium,” Sens. Actuators B Chem. 74(1–3), 168–172 (2001).

Tong, L.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[PubMed]

Tong, L. M.

Treichel, D. A.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Trent, J. D.

R. A. McMillan, C. D. Paavola, J. Howard, S. L. Chan, N. J. Zaluzec, and J. D. Trent, “Ordered nanoparticle arrays formed on engineered chaperonin protein templates,” Nat. Mater. 1(4), 247–252 (2002).
[PubMed]

Trouillet, A

P. Tobiška, O Hugon, A Trouillet, and H. Gagnaire, “An integrated optic hydrogen sensor based on SPR on palladium,” Sens. Actuators B Chem. 74(1–3), 168–172 (2001).

Tsai, D. P.

Udagedara, I. B.

Uji-I, H.

C. Chen, J. A. Hutchison, P. Van Dorpe, R. Kox, I. De Vlaminck, H. Uji-I, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering,” Small 5(24), 2876–2882 (2009).
[PubMed]

Ustinovich, E.