Abstract

We review the field of laser cooling of solids, focusing our attention on the recent advances in cryogenic cooling of an ytterbium-doped fluoride crystal (Yb3+:YLiF4). Recently, bulk cooling in this material to 155 K has been observed upon excitation near the lowest-energy (E4–E5) crystal-field resonance of Yb3+. Furthermore, local cooling in the same material to a minimum achievable temperature of 110 K has been measured, in agreement with the predictions of the laser cooling model. This value is limited only by the current material purity. Advanced material synthesis approaches reviewed here would allow reaching temperatures approaching 80 K. Current results and projected improvements position optical refrigeration as the only viable all-solid-state cooling approach for cryogenic temperatures.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13(1), 68–69 (1975).
    [CrossRef]
  2. S. Chu, C. Cohen-Tannoudji, and W. D. Philips, “For development of methods to cool and trap atoms with laser light,” Nobel Prize in Physics (1997).
  3. D. S. Jin and J. Ye, “Polar molecules in the quantum regime,” Phys. Today 64(5), 27 (2011).
    [CrossRef]
  4. S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55(1), 48–51 (1985).
    [CrossRef] [PubMed]
  5. E. A. Cornell, “Bose–Einstein condensation in a dilute gas; the first 70 years and some recent experiments,” Nobel Prize in Physics, I (2001).
  6. P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11–12), 739–746 (1929).
    [CrossRef]
  7. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).
  8. N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981).
    [CrossRef]
  9. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
    [CrossRef]
  10. J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76(12), 2037–2040 (1996).
    [CrossRef] [PubMed]
  11. R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009).
  12. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
    [CrossRef]
  13. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009).
    [CrossRef]
  14. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
    [CrossRef]
  15. S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20(1), 38–46 (2010).
    [CrossRef]
  16. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
    [CrossRef]
  17. M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors,” Phys. Rev. Lett. 92(24), 247403 (2004).
    [CrossRef] [PubMed]
  18. P. Asbeck, “Self-absorption effects on the radiative lifetime in GaAs-GaAlAs double heterostructures,” J. Appl. Phys. 48(2), 820 (1977).
    [CrossRef]
  19. A. Kastler, “Some suggestions concerning the production and detection by optical means of inequalities in the populations of levels of spatial quantization in atoms. Application to the Stern and Gerlach and magnetic resonance experiments,” J. Phys. Radium 11, 11 (1950).
    [CrossRef]
  20. S. Yatsiv, “Anti-Stokes fluorescence as a cooling process,” in Advances in Quantum Electronics, J. R. Singer, ed. (Columbia University, 1961).
  21. T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21(16), 1172–1175 (1968).
    [CrossRef]
  22. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
    [CrossRef]
  23. X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21 K starting from room temperature,” Opt. Lett. 23(8), 639–641 (1998).
    [CrossRef] [PubMed]
  24. T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24(15), 1041–1043 (1999).
    [CrossRef] [PubMed]
  25. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
    [CrossRef]
  26. B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489 (1999).
    [CrossRef]
  27. A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).
  28. M. T. Murtagh, G. H. Sigel, J. C. Fajardo, B. C. Edwards, and R. I. Epstein, “Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses,” J. Non-Cryst. Solids 253(1–3), 50–57 (1999).
    [CrossRef]
  29. A. Rayner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Condensed-phase optical refrigeration,” J. Opt. Soc. Am. B 20(5), 1037–1053 (2003).
    [CrossRef]
  30. B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4 − BaF2 − LaF3 − AlF3-NaF glass,” Phys. Rev. A 70(2), 021401 (2004).
    [CrossRef]
  31. D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
    [CrossRef]
  32. W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
    [CrossRef]
  33. J. R. Fernandez, “Origin of laser-induced internal cooling of Yb,” Proc. SPIE 4645, 135–147 (2002).
    [CrossRef]
  34. C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics, Vol. 40, B. Bederson and H. Walther, ed. (Academic, 1999), pp. 161–228.
  35. J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62(5), 3213–3217 (2000).
    [CrossRef]
  36. J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1–2), 173–179 (2001).
    [CrossRef]
  37. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000).
    [CrossRef]
  38. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90(9), 4815 (2001).
    [CrossRef]
  39. A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, R. Balda, and A. J. García-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27(17), 1525–1527 (2002).
    [CrossRef] [PubMed]
  40. S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, “Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal,” J. Appl. Phys. 100(1), 013109 (2006).
    [CrossRef]
  41. S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, and M. Tonelli, “Laser cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28(11), 1321–1324 (2006).
    [CrossRef]
  42. S. Bigotta, A. Di Lieto, D. Parisi, A. Toncelli, and M. Tonelli, “Single fluoride crystals as materials for laser cooling applications,” Proc. SPIE 6461, 64610E (2007).
    [CrossRef]
  43. S. Bigotta, “Laser cooling of solids: new results with single fluoride crystals,” Nuovo Cimento B Ser. 122, 685694 (2007).
  44. D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
    [CrossRef]
  45. J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, “Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 47, 167–176 (2006).
  46. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
    [CrossRef] [PubMed]
  47. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
    [CrossRef]
  48. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008).
    [CrossRef] [PubMed]
  49. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
    [CrossRef] [PubMed]
  50. N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17(7), 5466–5472 (2009).
    [CrossRef] [PubMed]
  51. A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17(5), 471–479 (1996).
    [CrossRef]
  52. L. Rivlin and A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4–6), 219–222 (1997).
    [CrossRef]
  53. T. Apostolova, D. Huang, P. M. Alsing, and D. A. Cardimona, “Comparison of laser cooling of the lattice of wide-band-gap semiconductors using nonlinear or linear optical excitations,” Phys. Rev. A 71(1), 013810 (2005).
    [CrossRef]
  54. G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
    [CrossRef] [PubMed]
  55. J. Li, “Laser cooling of semiconductor quantum wells: theoretical framework and strategy for deep optical refrigeration by luminescence upconversion,” Phys. Rev. B 75(15), 155315 (2007).
    [CrossRef]
  56. J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B 77(23), 235206 (2008).
    [CrossRef]
  57. G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: theoretical study,” Phys. Rev. B 76(24), 245203 (2007).
    [CrossRef]
  58. J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98(17), 177401 (2007).
    [CrossRef]
  59. D. Huang and P. M. Alsing, “Many-body effects on optical carrier cooling in intrinsic semiconductors at low lattice temperatures,” Phys. Rev. B 78(3), 035206 (2008).
    [CrossRef]
  60. P. G. Eliseev, “Anti-Stokes luminescence in heavily doped semiconductors as a mechanism of laser cooling,” Opto-Electron. Rev. 16, 199–207 (2008).
    [CrossRef]
  61. G. Rupper, N. H. Kwong, R. Binder, C.-Y. Li, and M. Sheik-Bahae, “Effect of n–p–n heterostructures on interface recombination and semiconductor laser cooling,” J. Appl. Phys. 108(11), 113118 (2010).
    [CrossRef]
  62. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
    [CrossRef]
  63. E. Finkeißen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258 (1999).
    [CrossRef]
  64. T. H. Gfroerer, E. A. Cornell, and M. W. Wanlass, “Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector,” J. Appl. Phys. 84(9), 5360 (1998).
    [CrossRef]
  65. B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett. 86(8), 081104 (2005).
    [CrossRef]
  66. B. Imangholi, “Investigation of laser cooling in semiconductors,” Ph.D. dissertation (University of Mexico, 2006).
  67. S. Eshlaghi, W. Worthoff, A. D. Wieck, and D. Suter, “Luminescence upconversion in GaAs quantum wells,” Phys. Rev. B 77(24), 245317 (2008).
    [CrossRef]
  68. M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
    [CrossRef]
  69. C. Wang, C.-Y. Li, M. P. Hasselbeck, B. Imangholi, and M. Sheik-Bahae, “Precision, all-optical measurement of external quantum efficiency in semiconductors,” J. Appl. Phys. 109(9), 093108 (2011).
    [CrossRef]
  70. B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69(5), 2050 (1998).
    [CrossRef]
  71. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
    [CrossRef]
  72. S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46(7), 1076–1085 (2010).
    [CrossRef]
  73. A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloy. Comp. 408–412, 780–783 (2006).
    [CrossRef]
  74. D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
    [CrossRef] [PubMed]
  75. D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
    [CrossRef]
  76. U. Vogl and M. Weitz, “Laser cooling by collisional redistribution of radiation,” Nature 461(7260), 70–73 (2009).
    [CrossRef] [PubMed]
  77. M. Sheik-Bahae and D. Seletskiy, “Laser cooling: chilling dense atomic gases,” Nat. Photonics 3(12), 680–681 (2009).
    [CrossRef]
  78. A. Saß, U. Vogl, and M. Weitz, “Laser cooling of a potassium–argon gas mixture using collisional redistribution of radiation,” Appl. Phys. B 102(3), 503–507 (2011).
    [CrossRef]
  79. G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8, 203–207 (2012).
  80. N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
    [CrossRef] [PubMed]
  81. S. C. Rand, “Laser cooling of solids by stimulated Raman scattering and fluorescence,” Proc. SPIE 8275, 827509 (2012).
    [CrossRef]
  82. S. V. Petrushkin and V. V. Samartsev, “Superradiance regime of laser cooling of crystals and glasses doped with rare-earth ion,” Laser Phys. 11, 948–956 (2001).
  83. G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83(1), 013404 (2011).
    [CrossRef]
  84. S. N. Andrianov and V. V. Samartsev, “Solid state lasers with internal laser refrigeration effect,” Proc. SPIE 4605, 208–213 (2001).
    [CrossRef]
  85. G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B 26(12), 2237–2241 (2009).
    [CrossRef]
  86. G. Nemova and R. Kashyap, “Raman fiber amplifier with integrated cooler,” J. Lightwave Technol. 27(24), 5597–5601 (2009).
    [CrossRef]
  87. G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010).
    [CrossRef]
  88. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
    [CrossRef] [PubMed]
  89. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
    [CrossRef] [PubMed]
  90. S. N. Andrianov and V. V. Samartsev, “Laser cooling of impurity crystals,” Quantum Electron. 31(3), 247–251 (2001).
    [CrossRef]
  91. D. Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona, “Theoretical study of laser cooling of a semiconductor,” Phys. Rev. B 70(3), 033203 (2004).
    [CrossRef]
  92. J. Kim and M. Kaviany, “Ab initio calculations of f-orbital electron–phonon interaction in laser cooling,” Phys. Rev. B 79(5), 054103 (2009).
    [CrossRef]
  93. M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
    [CrossRef]
  94. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
    [CrossRef] [PubMed]
  95. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin. (to be published); corrected proof, http://dx.doi.org/10.1016/j.jlumin.2011.09.045.
  96. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
    [CrossRef] [PubMed]
  97. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [CrossRef]
  98. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
    [CrossRef]
  99. G. Lei, J. Anderson, M. Buchwald, B. Edwards, and R. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57(13), 7673–7678 (1998).
    [CrossRef]
  100. A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4,” J. Alloy. Comp. 380(1–2), 15–26 (2004).
    [CrossRef]
  101. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [CrossRef]
  102. A. E. Siegman, Lasers (University Science Books, 1986).
  103. K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
    [CrossRef]
  104. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
    [CrossRef] [PubMed]
  105. C. Hoyt, “Laser cooling in thulium-doped solids,” Ph.D. dissertation (University of New Mexico, 2003).
  106. A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
    [CrossRef]
  107. B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
    [CrossRef]
  108. B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91(5), 3356–3362 (2002).
    [CrossRef]
  109. G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2–3), 176–182 (2006).
    [CrossRef]
  110. J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
    [CrossRef]
  111. M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration: Science and Applications of Laser Cooling of Solids, R. Epstein and M. Sheik-Bahae, ed. (Wiley-VCH Verlag GmbH & Co, KGaA, 2009), pp. 33–74.
  112. J. M. F. van Dijk, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317 (1983).
    [CrossRef]
  113. L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968).
    [CrossRef]
  114. P. C. Schultz, L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, and R. Mossadegh, “Hermetic coatings for bulk fluoride glasses and fibers,” Mater. Sci. Forum 19–20, 343–352 (1987).
    [CrossRef]
  115. P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH− absorption in fluoride glass infra-red fibres,” Electron. Lett. 20(14), 607–608 (1984).
    [CrossRef]
  116. R. Burkhalter, I. Dohnke, and J. Hulliger, “Growing of bulk crystals and structuring waveguides of fluoride materials for laser applications,” Prog. Cryst. Growth Charact. Mater. 42(1–2), 1–64 (2001).
    [CrossRef]
  117. S. W. Kwon, E. H. Kim, B. G. Ahn, J. H. Yoo, and H. G. Ahn, “Fluorination of metals and metal oxides by gas-solid reaction,” J. Ind. Eng. Chem. 8, 477 (2002).
  118. K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
    [CrossRef]
  119. J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
    [CrossRef]
  120. W. Gehlhoff and W. Ulrici, “Transition metal ions in crystals with the fluorite structure,” Phys. Status Solidi, B Basic Res. 102(1), 11–59 (1980).
    [CrossRef]
  121. A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 1st ed. (Springer, 1981).
  122. A. Illarramendi, J. Fernández, and R. Balda, “Fano antiresonance of Cr3+ absorption spectra in flouride glasses,” J. Lumin. 53(1–6), 461–464 (1992).
    [CrossRef]
  123. C. R. Mendonça, B. J. Costa, Y. Messaddeq, and S. C. Zilio, “Optical properties of chromium-doped fluoroindate glasses,” Phys. Rev. B 56(5), 2483–2487 (1997).
    [CrossRef]
  124. L. Seijo, Z. Barandiarán, and D. S. McClure, “Ab initio model potential embedded cluster calculation of the absorption spectrum of Cs2GeF6:Mn4+. Large discrepancies between theory and experiment,” Int. J. Quantum Chem. 80, 623–635 (2000).
    [CrossRef]
  125. I. Hernández, F. Rodríguez, and A. Tressaud, “Optical properties of the (CrF6)3– complex in A2BMF6:Cr3+ elpasolite crystals: variation with M–F bond distance and hydrostatic pressure,” Inorg. Chem. 47(22), 10288–10298 (2008).
    [CrossRef] [PubMed]
  126. U. Brauch and U. Dürr, “Vibronic laser action of V2+:CsCaF3,” Opt. Commun. 55(1), 35–40 (1985).
    [CrossRef]
  127. M. J. Elejalde, R. Balda, and J. Fernández, “Optical properties of Ni2+ in fluoride investigated by time-resolved spectroscopy,” J. Phys. IV 04(C4), C4-411 (1994).
    [CrossRef]
  128. P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3d transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32 (1986).
  129. K. Tanimura, W. A. Sibley, and L. G. DeShazer, “Optical properties of Cu+ ions in RbMgF3 crystals,” Phys. Rev. B Condens. Matter 31(6), 3980–3987 (1985).
    [CrossRef] [PubMed]
  130. S. Bigotta, Energy Transfer and Cooling Processes in Rare-earth Doped Insulating Crystals (Universita di Pisa, 2006).
  131. W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
    [CrossRef]
  132. D. Gabbe and A. L. Harmer, “Scheelite structure fluorides: the growth of pure and rare earth doped LiYF4,” J. Cryst. Growth 3–4, 544 (1968).
    [CrossRef]
  133. I. A. Ivanova, A. M. Morozov, M. A. Petrova, I. G. Podkolzina, and P. P. Feotilov, “Growth of binary lithium-rare earth metal fluoride monocrystals and their properties,” Izv. Akad. Nauk SSSR Neorg. Mater. 11, 2175–2179 (1975).
  134. R. Uhrin, R. F. Belt, and V. Rosati, “Preparation and crystal growth of lithium yttrium fluoride for laser applications,” J. Cryst. Growth 38(1), 38–44 (1977).
    [CrossRef]
  135. I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
    [CrossRef]
  136. P. J. Walker, “Melt growth of rare-earth binary and complex halides,” Prog. Cryst. Growth Characteriz. 3(2–3), 103–119 (1980).
    [CrossRef]
  137. W. A. Shand, “Single crystal growth and some properties of LiYF4,” J. Cryst. Growth 5(2), 143–146 (1969).
    [CrossRef]
  138. D. A. Jones, B. Cockayne, R. A. Clay, and P. A. Forrester, “Stockbarger crystal growth, optical assessment and laser performance of holmium-doped yttrium erbium lithium fluoride,” J. Cryst. Growth 30(1), 21–26 (1975).
    [CrossRef]
  139. J. S. Abell, I. R. Harris, B. Cockayne, and J. G. Plant, “A DTA study of zone-refined LiRF4 (R = Y,Er),” J. Mater. Sci. 11(10), 1807–1816 (1976).
    [CrossRef]

2012 (2)

S. C. Rand, “Laser cooling of solids by stimulated Raman scattering and fluorescence,” Proc. SPIE 8275, 827509 (2012).
[CrossRef]

A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
[CrossRef]

2011 (8)

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

A. Saß, U. Vogl, and M. Weitz, “Laser cooling of a potassium–argon gas mixture using collisional redistribution of radiation,” Appl. Phys. B 102(3), 503–507 (2011).
[CrossRef]

G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83(1), 013404 (2011).
[CrossRef]

C. Wang, C.-Y. Li, M. P. Hasselbeck, B. Imangholi, and M. Sheik-Bahae, “Precision, all-optical measurement of external quantum efficiency in semiconductors,” J. Appl. Phys. 109(9), 093108 (2011).
[CrossRef]

D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
[CrossRef]

D. S. Jin and J. Ye, “Polar molecules in the quantum regime,” Phys. Today 64(5), 27 (2011).
[CrossRef]

2010 (10)

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20(1), 38–46 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46(7), 1076–1085 (2010).
[CrossRef]

G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010).
[CrossRef]

G. Rupper, N. H. Kwong, R. Binder, C.-Y. Li, and M. Sheik-Bahae, “Effect of n–p–n heterostructures on interface recombination and semiconductor laser cooling,” J. Appl. Phys. 108(11), 113118 (2010).
[CrossRef]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
[CrossRef] [PubMed]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
[CrossRef]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[CrossRef] [PubMed]

2009 (8)

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

J. Kim and M. Kaviany, “Ab initio calculations of f-orbital electron–phonon interaction in laser cooling,” Phys. Rev. B 79(5), 054103 (2009).
[CrossRef]

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17(7), 5466–5472 (2009).
[CrossRef] [PubMed]

G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B 26(12), 2237–2241 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Raman fiber amplifier with integrated cooler,” J. Lightwave Technol. 27(24), 5597–5601 (2009).
[CrossRef]

U. Vogl and M. Weitz, “Laser cooling by collisional redistribution of radiation,” Nature 461(7260), 70–73 (2009).
[CrossRef] [PubMed]

M. Sheik-Bahae and D. Seletskiy, “Laser cooling: chilling dense atomic gases,” Nat. Photonics 3(12), 680–681 (2009).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009).
[CrossRef]

2008 (8)

D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

S. Eshlaghi, W. Worthoff, A. D. Wieck, and D. Suter, “Luminescence upconversion in GaAs quantum wells,” Phys. Rev. B 77(24), 245317 (2008).
[CrossRef]

D. Huang and P. M. Alsing, “Many-body effects on optical carrier cooling in intrinsic semiconductors at low lattice temperatures,” Phys. Rev. B 78(3), 035206 (2008).
[CrossRef]

P. G. Eliseev, “Anti-Stokes luminescence in heavily doped semiconductors as a mechanism of laser cooling,” Opto-Electron. Rev. 16, 199–207 (2008).
[CrossRef]

J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B 77(23), 235206 (2008).
[CrossRef]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008).
[CrossRef] [PubMed]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[CrossRef] [PubMed]

I. Hernández, F. Rodríguez, and A. Tressaud, “Optical properties of the (CrF6)3– complex in A2BMF6:Cr3+ elpasolite crystals: variation with M–F bond distance and hydrostatic pressure,” Inorg. Chem. 47(22), 10288–10298 (2008).
[CrossRef] [PubMed]

2007 (9)

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: theoretical study,” Phys. Rev. B 76(24), 245203 (2007).
[CrossRef]

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98(17), 177401 (2007).
[CrossRef]

S. Bigotta, A. Di Lieto, D. Parisi, A. Toncelli, and M. Tonelli, “Single fluoride crystals as materials for laser cooling applications,” Proc. SPIE 6461, 64610E (2007).
[CrossRef]

S. Bigotta, “Laser cooling of solids: new results with single fluoride crystals,” Nuovo Cimento B Ser. 122, 685694 (2007).

J. Li, “Laser cooling of semiconductor quantum wells: theoretical framework and strategy for deep optical refrigeration by luminescence upconversion,” Phys. Rev. B 75(15), 155315 (2007).
[CrossRef]

M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
[CrossRef]

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef] [PubMed]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

2006 (8)

J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, “Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 47, 167–176 (2006).

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, “Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal,” J. Appl. Phys. 100(1), 013109 (2006).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, and M. Tonelli, “Laser cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28(11), 1321–1324 (2006).
[CrossRef]

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloy. Comp. 408–412, 780–783 (2006).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
[CrossRef] [PubMed]

G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2–3), 176–182 (2006).
[CrossRef]

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[CrossRef] [PubMed]

2005 (3)

T. Apostolova, D. Huang, P. M. Alsing, and D. A. Cardimona, “Comparison of laser cooling of the lattice of wide-band-gap semiconductors using nonlinear or linear optical excitations,” Phys. Rev. A 71(1), 013810 (2005).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett. 86(8), 081104 (2005).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

2004 (6)

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors,” Phys. Rev. Lett. 92(24), 247403 (2004).
[CrossRef] [PubMed]

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4 − BaF2 − LaF3 − AlF3-NaF glass,” Phys. Rev. A 70(2), 021401 (2004).
[CrossRef]

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4,” J. Alloy. Comp. 380(1–2), 15–26 (2004).
[CrossRef]

D. Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona, “Theoretical study of laser cooling of a semiconductor,” Phys. Rev. B 70(3), 033203 (2004).
[CrossRef]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

2003 (2)

2002 (4)

A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, R. Balda, and A. J. García-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27(17), 1525–1527 (2002).
[CrossRef] [PubMed]

S. W. Kwon, E. H. Kim, B. G. Ahn, J. H. Yoo, and H. G. Ahn, “Fluorination of metals and metal oxides by gas-solid reaction,” J. Ind. Eng. Chem. 8, 477 (2002).

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91(5), 3356–3362 (2002).
[CrossRef]

J. R. Fernandez, “Origin of laser-induced internal cooling of Yb,” Proc. SPIE 4645, 135–147 (2002).
[CrossRef]

2001 (8)

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1–2), 173–179 (2001).
[CrossRef]

E. A. Cornell, “Bose–Einstein condensation in a dilute gas; the first 70 years and some recent experiments,” Nobel Prize in Physics, I (2001).

S. N. Andrianov and V. V. Samartsev, “Solid state lasers with internal laser refrigeration effect,” Proc. SPIE 4605, 208–213 (2001).
[CrossRef]

S. V. Petrushkin and V. V. Samartsev, “Superradiance regime of laser cooling of crystals and glasses doped with rare-earth ion,” Laser Phys. 11, 948–956 (2001).

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90(9), 4815 (2001).
[CrossRef]

S. N. Andrianov and V. V. Samartsev, “Laser cooling of impurity crystals,” Quantum Electron. 31(3), 247–251 (2001).
[CrossRef]

R. Burkhalter, I. Dohnke, and J. Hulliger, “Growing of bulk crystals and structuring waveguides of fluoride materials for laser applications,” Prog. Cryst. Growth Charact. Mater. 42(1–2), 1–64 (2001).
[CrossRef]

2000 (5)

L. Seijo, Z. Barandiarán, and D. S. McClure, “Ab initio model potential embedded cluster calculation of the absorption spectrum of Cs2GeF6:Mn4+. Large discrepancies between theory and experiment,” Int. J. Quantum Chem. 80, 623–635 (2000).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62(5), 3213–3217 (2000).
[CrossRef]

1999 (5)

M. T. Murtagh, G. H. Sigel, J. C. Fajardo, B. C. Edwards, and R. I. Epstein, “Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses,” J. Non-Cryst. Solids 253(1–3), 50–57 (1999).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489 (1999).
[CrossRef]

E. Finkeißen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258 (1999).
[CrossRef]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[CrossRef]

T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24(15), 1041–1043 (1999).
[CrossRef] [PubMed]

1998 (5)

X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21 K starting from room temperature,” Opt. Lett. 23(8), 639–641 (1998).
[CrossRef] [PubMed]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

G. Lei, J. Anderson, M. Buchwald, B. Edwards, and R. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57(13), 7673–7678 (1998).
[CrossRef]

T. H. Gfroerer, E. A. Cornell, and M. W. Wanlass, “Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector,” J. Appl. Phys. 84(9), 5360 (1998).
[CrossRef]

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69(5), 2050 (1998).
[CrossRef]

1997 (5)

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

L. Rivlin and A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4–6), 219–222 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

S. Chu, C. Cohen-Tannoudji, and W. D. Philips, “For development of methods to cool and trap atoms with laser light,” Nobel Prize in Physics (1997).

C. R. Mendonça, B. J. Costa, Y. Messaddeq, and S. C. Zilio, “Optical properties of chromium-doped fluoroindate glasses,” Phys. Rev. B 56(5), 2483–2487 (1997).
[CrossRef]

1996 (3)

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76(12), 2037–2040 (1996).
[CrossRef] [PubMed]

A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17(5), 471–479 (1996).
[CrossRef]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

1994 (1)

M. J. Elejalde, R. Balda, and J. Fernández, “Optical properties of Ni2+ in fluoride investigated by time-resolved spectroscopy,” J. Phys. IV 04(C4), C4-411 (1994).
[CrossRef]

1992 (1)

A. Illarramendi, J. Fernández, and R. Balda, “Fano antiresonance of Cr3+ absorption spectra in flouride glasses,” J. Lumin. 53(1–6), 461–464 (1992).
[CrossRef]

1991 (1)

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

1987 (1)

P. C. Schultz, L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, and R. Mossadegh, “Hermetic coatings for bulk fluoride glasses and fibers,” Mater. Sci. Forum 19–20, 343–352 (1987).
[CrossRef]

1986 (1)

P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3d transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32 (1986).

1985 (3)

K. Tanimura, W. A. Sibley, and L. G. DeShazer, “Optical properties of Cu+ ions in RbMgF3 crystals,” Phys. Rev. B Condens. Matter 31(6), 3980–3987 (1985).
[CrossRef] [PubMed]

U. Brauch and U. Dürr, “Vibronic laser action of V2+:CsCaF3,” Opt. Commun. 55(1), 35–40 (1985).
[CrossRef]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55(1), 48–51 (1985).
[CrossRef] [PubMed]

1984 (1)

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH− absorption in fluoride glass infra-red fibres,” Electron. Lett. 20(14), 607–608 (1984).
[CrossRef]

1983 (1)

J. M. F. van Dijk, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317 (1983).
[CrossRef]

1981 (1)

N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981).
[CrossRef]

1980 (2)

W. Gehlhoff and W. Ulrici, “Transition metal ions in crystals with the fluorite structure,” Phys. Status Solidi, B Basic Res. 102(1), 11–59 (1980).
[CrossRef]

P. J. Walker, “Melt growth of rare-earth binary and complex halides,” Prog. Cryst. Growth Characteriz. 3(2–3), 103–119 (1980).
[CrossRef]

1977 (2)

R. Uhrin, R. F. Belt, and V. Rosati, “Preparation and crystal growth of lithium yttrium fluoride for laser applications,” J. Cryst. Growth 38(1), 38–44 (1977).
[CrossRef]

P. Asbeck, “Self-absorption effects on the radiative lifetime in GaAs-GaAlAs double heterostructures,” J. Appl. Phys. 48(2), 820 (1977).
[CrossRef]

1976 (1)

J. S. Abell, I. R. Harris, B. Cockayne, and J. G. Plant, “A DTA study of zone-refined LiRF4 (R = Y,Er),” J. Mater. Sci. 11(10), 1807–1816 (1976).
[CrossRef]

1975 (4)

D. A. Jones, B. Cockayne, R. A. Clay, and P. A. Forrester, “Stockbarger crystal growth, optical assessment and laser performance of holmium-doped yttrium erbium lithium fluoride,” J. Cryst. Growth 30(1), 21–26 (1975).
[CrossRef]

I. A. Ivanova, A. M. Morozov, M. A. Petrova, I. G. Podkolzina, and P. P. Feotilov, “Growth of binary lithium-rare earth metal fluoride monocrystals and their properties,” Izv. Akad. Nauk SSSR Neorg. Mater. 11, 2175–2179 (1975).

J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
[CrossRef]

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13(1), 68–69 (1975).
[CrossRef]

1969 (1)

W. A. Shand, “Single crystal growth and some properties of LiYF4,” J. Cryst. Growth 5(2), 143–146 (1969).
[CrossRef]

1968 (3)

D. Gabbe and A. L. Harmer, “Scheelite structure fluorides: the growth of pure and rare earth doped LiYF4,” J. Cryst. Growth 3–4, 544 (1968).
[CrossRef]

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968).
[CrossRef]

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21(16), 1172–1175 (1968).
[CrossRef]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

1950 (1)

A. Kastler, “Some suggestions concerning the production and detection by optical means of inequalities in the populations of levels of spatial quantization in atoms. Application to the Stern and Gerlach and magnetic resonance experiments,” J. Phys. Radium 11, 11 (1950).
[CrossRef]

1946 (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

1929 (1)

P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11–12), 739–746 (1929).
[CrossRef]

Abell, J. S.

J. S. Abell, I. R. Harris, B. Cockayne, and J. G. Plant, “A DTA study of zone-refined LiRF4 (R = Y,Er),” J. Mater. Sci. 11(10), 1807–1816 (1976).
[CrossRef]

Adam, J. L.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1–2), 173–179 (2001).
[CrossRef]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62(5), 3213–3217 (2000).
[CrossRef]

Ahn, B. G.

S. W. Kwon, E. H. Kim, B. G. Ahn, J. H. Yoo, and H. G. Ahn, “Fluorination of metals and metal oxides by gas-solid reaction,” J. Ind. Eng. Chem. 8, 477 (2002).

Ahn, H. G.

S. W. Kwon, E. H. Kim, B. G. Ahn, J. H. Yoo, and H. G. Ahn, “Fluorination of metals and metal oxides by gas-solid reaction,” J. Ind. Eng. Chem. 8, 477 (2002).

Albrecht, A. R.

A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
[CrossRef]

Allman, M. S.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Al-Saleh, M.

Alsing, P. M.

D. Huang and P. M. Alsing, “Many-body effects on optical carrier cooling in intrinsic semiconductors at low lattice temperatures,” Phys. Rev. B 78(3), 035206 (2008).
[CrossRef]

T. Apostolova, D. Huang, P. M. Alsing, and D. A. Cardimona, “Comparison of laser cooling of the lattice of wide-band-gap semiconductors using nonlinear or linear optical excitations,” Phys. Rev. A 71(1), 013810 (2005).
[CrossRef]

D. Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona, “Theoretical study of laser cooling of a semiconductor,” Phys. Rev. B 70(3), 033203 (2004).
[CrossRef]

Anderson, J.

G. Lei, J. Anderson, M. Buchwald, B. Edwards, and R. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57(13), 7673–7678 (1998).
[CrossRef]

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

Andrianov, S. N.

S. N. Andrianov and V. V. Samartsev, “Laser cooling of impurity crystals,” Quantum Electron. 31(3), 247–251 (2001).
[CrossRef]

S. N. Andrianov and V. V. Samartsev, “Solid state lasers with internal laser refrigeration effect,” Proc. SPIE 4605, 208–213 (2001).
[CrossRef]

Anzai, Y.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloy. Comp. 408–412, 780–783 (2006).
[CrossRef]

Apostolova, T.

T. Apostolova, D. Huang, P. M. Alsing, and D. A. Cardimona, “Comparison of laser cooling of the lattice of wide-band-gap semiconductors using nonlinear or linear optical excitations,” Phys. Rev. A 71(1), 013810 (2005).
[CrossRef]

D. Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona, “Theoretical study of laser cooling of a semiconductor,” Phys. Rev. B 70(3), 033203 (2004).
[CrossRef]

Arriandiaga, M. A.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1–2), 173–179 (2001).
[CrossRef]

Arsenault, L.

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Asbeck, P.

P. Asbeck, “Self-absorption effects on the radiative lifetime in GaAs-GaAlAs double heterostructures,” J. Appl. Phys. 48(2), 820 (1977).
[CrossRef]

Ashkin, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55(1), 48–51 (1985).
[CrossRef] [PubMed]

Bahl, G.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8, 203–207 (2012).

Balakrishnan, G.

A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
[CrossRef]

Balda, R.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[CrossRef] [PubMed]

A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, R. Balda, and A. J. García-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27(17), 1525–1527 (2002).
[CrossRef] [PubMed]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1–2), 173–179 (2001).
[CrossRef]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62(5), 3213–3217 (2000).
[CrossRef]

M. J. Elejalde, R. Balda, and J. Fernández, “Optical properties of Ni2+ in fluoride investigated by time-resolved spectroscopy,” J. Phys. IV 04(C4), C4-411 (1994).
[CrossRef]

A. Illarramendi, J. Fernández, and R. Balda, “Fano antiresonance of Cr3+ absorption spectra in flouride glasses,” J. Lumin. 53(1–6), 461–464 (1992).
[CrossRef]

Baldochi, S. L.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Barandiarán, Z.

L. Seijo, Z. Barandiarán, and D. S. McClure, “Ab initio model potential embedded cluster calculation of the absorption spectrum of Cs2GeF6:Mn4+. Large discrepancies between theory and experiment,” Int. J. Quantum Chem. 80, 623–635 (2000).
[CrossRef]

Beales, K. J.

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH− absorption in fluoride glass infra-red fibres,” Electron. Lett. 20(14), 607–608 (1984).
[CrossRef]

Belt, R. F.

R. Uhrin, R. F. Belt, and V. Rosati, “Preparation and crystal growth of lithium yttrium fluoride for laser applications,” J. Cryst. Growth 38(1), 38–44 (1977).
[CrossRef]

Bender, D.

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Bensalah, A.

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4,” J. Alloy. Comp. 380(1–2), 15–26 (2004).
[CrossRef]

Berretta, J. R.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Bertness, K. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008).
[CrossRef] [PubMed]

S. Bigotta, A. Di Lieto, D. Parisi, A. Toncelli, and M. Tonelli, “Single fluoride crystals as materials for laser cooling applications,” Proc. SPIE 6461, 64610E (2007).
[CrossRef]

S. Bigotta, “Laser cooling of solids: new results with single fluoride crystals,” Nuovo Cimento B Ser. 122, 685694 (2007).

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, “Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal,” J. Appl. Phys. 100(1), 013109 (2006).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, and M. Tonelli, “Laser cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28(11), 1321–1324 (2006).
[CrossRef]

S. Bigotta, Energy Transfer and Cooling Processes in Rare-earth Doped Insulating Crystals (Universita di Pisa, 2006).

Binder, R.

G. Rupper, N. H. Kwong, R. Binder, C.-Y. Li, and M. Sheik-Bahae, “Effect of n–p–n heterostructures on interface recombination and semiconductor laser cooling,” J. Appl. Phys. 108(11), 113118 (2010).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: theoretical study,” Phys. Rev. B 76(24), 245203 (2007).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
[CrossRef] [PubMed]

Biner, D.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Biswal, S.

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46(7), 1076–1085 (2010).
[CrossRef]

Bjorkholm, J. E.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55(1), 48–51 (1985).
[CrossRef] [PubMed]

Bonelli, L.

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[CrossRef] [PubMed]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, and M. Tonelli, “Laser cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28(11), 1321–1324 (2006).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, “Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal,” J. Appl. Phys. 100(1), 013109 (2006).
[CrossRef]

Boulon, G.

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4,” J. Alloy. Comp. 380(1–2), 15–26 (2004).
[CrossRef]

Bowman, S. R.

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46(7), 1076–1085 (2010).
[CrossRef]

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17(7), 5466–5472 (2009).
[CrossRef] [PubMed]

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000).
[CrossRef]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[CrossRef]

Brauch, U.

U. Brauch and U. Dürr, “Vibronic laser action of V2+:CsCaF3,” Opt. Commun. 55(1), 35–40 (1985).
[CrossRef]

Brenier, A.

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4,” J. Alloy. Comp. 380(1–2), 15–26 (2004).
[CrossRef]

Brown, J. J.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90(9), 4815 (2001).
[CrossRef]

Buchwald, M.

G. Lei, J. Anderson, M. Buchwald, B. Edwards, and R. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57(13), 7673–7678 (1998).
[CrossRef]

Buchwald, M. I.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69(5), 2050 (1998).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Burkhalter, R.

R. Burkhalter, I. Dohnke, and J. Hulliger, “Growing of bulk crystals and structuring waveguides of fluoride materials for laser applications,” Prog. Cryst. Growth Charact. Mater. 42(1–2), 1–64 (2001).
[CrossRef]

Byram, K.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

Cable, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55(1), 48–51 (1985).
[CrossRef] [PubMed]

Cadien, K.

P. C. Schultz, L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, and R. Mossadegh, “Hermetic coatings for bulk fluoride glasses and fibers,” Mater. Sci. Forum 19–20, 343–352 (1987).
[CrossRef]

Cao, H.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[CrossRef] [PubMed]

Cardimona, D. A.

T. Apostolova, D. Huang, P. M. Alsing, and D. A. Cardimona, “Comparison of laser cooling of the lattice of wide-band-gap semiconductors using nonlinear or linear optical excitations,” Phys. Rev. A 71(1), 013810 (2005).
[CrossRef]

D. Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona, “Theoretical study of laser cooling of a semiconductor,” Phys. Rev. B 70(3), 033203 (2004).
[CrossRef]

Carmon, T.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8, 203–207 (2012).

Carter, S. F.

P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3d transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32 (1986).

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH− absorption in fluoride glass infra-red fibres,” Electron. Lett. 20(14), 607–608 (1984).
[CrossRef]

Cederberg, J. G.

A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
[CrossRef]

Chong, Y. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[CrossRef] [PubMed]

Chu, S.

S. Chu, C. Cohen-Tannoudji, and W. D. Philips, “For development of methods to cool and trap atoms with laser light,” Nobel Prize in Physics (1997).

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55(1), 48–51 (1985).
[CrossRef] [PubMed]

Chyi, J.-I.

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Cicak, K.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Clark, J. L.

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76(12), 2037–2040 (1996).
[CrossRef] [PubMed]

Clay, R. A.

D. A. Jones, B. Cockayne, R. A. Clay, and P. A. Forrester, “Stockbarger crystal growth, optical assessment and laser performance of holmium-doped yttrium erbium lithium fluoride,” J. Cryst. Growth 30(1), 21–26 (1975).
[CrossRef]

Cockayne, B.

J. S. Abell, I. R. Harris, B. Cockayne, and J. G. Plant, “A DTA study of zone-refined LiRF4 (R = Y,Er),” J. Mater. Sci. 11(10), 1807–1816 (1976).
[CrossRef]

D. A. Jones, B. Cockayne, R. A. Clay, and P. A. Forrester, “Stockbarger crystal growth, optical assessment and laser performance of holmium-doped yttrium erbium lithium fluoride,” J. Cryst. Growth 30(1), 21–26 (1975).
[CrossRef]

Cohen-Tannoudji, C.

S. Chu, C. Cohen-Tannoudji, and W. D. Philips, “For development of methods to cool and trap atoms with laser light,” Nobel Prize in Physics (1997).

Coluccelli, N.

Condon, N. J.

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46(7), 1076–1085 (2010).
[CrossRef]

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17(7), 5466–5472 (2009).
[CrossRef] [PubMed]

Cornell, E. A.

E. A. Cornell, “Bose–Einstein condensation in a dilute gas; the first 70 years and some recent experiments,” Nobel Prize in Physics, I (2001).

T. H. Gfroerer, E. A. Cornell, and M. W. Wanlass, “Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector,” J. Appl. Phys. 84(9), 5360 (1998).
[CrossRef]

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Costa, B. J.

C. R. Mendonça, B. J. Costa, Y. Messaddeq, and S. C. Zilio, “Optical properties of chromium-doped fluoroindate glasses,” Phys. Rev. B 56(5), 2483–2487 (1997).
[CrossRef]

Costa, F. E.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Courrol, L. C.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

de Rossi, W.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Debaes, C.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef] [PubMed]

DeBarber, P. A.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4 − BaF2 − LaF3 − AlF3-NaF glass,” Phys. Rev. A 70(2), 021401 (2004).
[CrossRef]

DeBarber, P. A.

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91(5), 3356–3362 (2002).
[CrossRef]

DeShazer, L. G.

K. Tanimura, W. A. Sibley, and L. G. DeShazer, “Optical properties of Cu+ ions in RbMgF3 crystals,” Phys. Rev. B Condens. Matter 31(6), 3980–3987 (1985).
[CrossRef] [PubMed]

Di Lieto, A.

A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[CrossRef] [PubMed]

S. Bigotta, A. Di Lieto, D. Parisi, A. Toncelli, and M. Tonelli, “Single fluoride crystals as materials for laser cooling applications,” Proc. SPIE 6461, 64610E (2007).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, “Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal,” J. Appl. Phys. 100(1), 013109 (2006).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin. (to be published); corrected proof, http://dx.doi.org/10.1016/j.jlumin.2011.09.045.

Distel, J.

Djeu, N.

N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981).
[CrossRef]

Dohnke, I.

R. Burkhalter, I. Dohnke, and J. Hulliger, “Growing of bulk crystals and structuring waveguides of fluoride materials for laser applications,” Prog. Cryst. Growth Charact. Mater. 42(1–2), 1–64 (2001).
[CrossRef]

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Dürr, U.

U. Brauch and U. Dürr, “Vibronic laser action of V2+:CsCaF3,” Opt. Commun. 55(1), 35–40 (1985).
[CrossRef]

Edwards, B.

G. Lei, J. Anderson, M. Buchwald, B. Edwards, and R. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57(13), 7673–7678 (1998).
[CrossRef]

Edwards, B. C.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90(9), 4815 (2001).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489 (1999).
[CrossRef]

M. T. Murtagh, G. H. Sigel, J. C. Fajardo, B. C. Edwards, and R. I. Epstein, “Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses,” J. Non-Cryst. Solids 253(1–3), 50–57 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69(5), 2050 (1998).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Eisaman, M. D.

Elejalde, M. J.

M. J. Elejalde, R. Balda, and J. Fernández, “Optical properties of Ni2+ in fluoride investigated by time-resolved spectroscopy,” J. Phys. IV 04(C4), C4-411 (1994).
[CrossRef]

Eliseev, P. G.

P. G. Eliseev, “Anti-Stokes luminescence in heavily doped semiconductors as a mechanism of laser cooling,” Opto-Electron. Rev. 16, 199–207 (2008).
[CrossRef]

Epstein, R. I.

M. T. Murtagh, G. H. Sigel, J. C. Fajardo, B. C. Edwards, and R. I. Epstein, “Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses,” J. Non-Cryst. Solids 253(1–3), 50–57 (1999).
[CrossRef]

Epstein, R.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008).
[CrossRef] [PubMed]

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

G. Lei, J. Anderson, M. Buchwald, B. Edwards, and R. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57(13), 7673–7678 (1998).
[CrossRef]

R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009).

Epstein, R. I.

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
[CrossRef]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009).
[CrossRef]

D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
[CrossRef]

J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, “Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 47, 167–176 (2006).

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett. 86(8), 081104 (2005).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors,” Phys. Rev. Lett. 92(24), 247403 (2004).
[CrossRef] [PubMed]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90(9), 4815 (2001).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69(5), 2050 (1998).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin. (to be published); corrected proof, http://dx.doi.org/10.1016/j.jlumin.2011.09.045.

Eshlaghi, S.

S. Eshlaghi, W. Worthoff, A. D. Wieck, and D. Suter, “Luminescence upconversion in GaAs quantum wells,” Phys. Rev. B 77(24), 245317 (2008).
[CrossRef]

Fajardo, J. C.

M. T. Murtagh, G. H. Sigel, J. C. Fajardo, B. C. Edwards, and R. I. Epstein, “Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses,” J. Non-Cryst. Solids 253(1–3), 50–57 (1999).
[CrossRef]

Feotilov, P. P.

I. A. Ivanova, A. M. Morozov, M. A. Petrova, I. G. Podkolzina, and P. P. Feotilov, “Growth of binary lithium-rare earth metal fluoride monocrystals and their properties,” Izv. Akad. Nauk SSSR Neorg. Mater. 11, 2175–2179 (1975).

Ferguson, J.

J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
[CrossRef]

Fernandez, J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[CrossRef] [PubMed]

Fernandez, J. R.

J. R. Fernandez, “Origin of laser-induced internal cooling of Yb,” Proc. SPIE 4645, 135–147 (2002).
[CrossRef]

Fernández, J.

A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, R. Balda, and A. J. García-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27(17), 1525–1527 (2002).
[CrossRef] [PubMed]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1–2), 173–179 (2001).
[CrossRef]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62(5), 3213–3217 (2000).
[CrossRef]

M. J. Elejalde, R. Balda, and J. Fernández, “Optical properties of Ni2+ in fluoride investigated by time-resolved spectroscopy,” J. Phys. IV 04(C4), C4-411 (1994).
[CrossRef]

A. Illarramendi, J. Fernández, and R. Balda, “Fano antiresonance of Cr3+ absorption spectra in flouride glasses,” J. Lumin. 53(1–6), 461–464 (1992).
[CrossRef]

Finkeißen, E.

E. Finkeißen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258 (1999).
[CrossRef]

Forrester, P. A.

D. A. Jones, B. Cockayne, R. A. Clay, and P. A. Forrester, “Stockbarger crystal growth, optical assessment and laser performance of holmium-doped yttrium erbium lithium fluoride,” J. Cryst. Growth 30(1), 21–26 (1975).
[CrossRef]

France, P. W.

P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3d transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32 (1986).

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH− absorption in fluoride glass infra-red fibres,” Electron. Lett. 20(14), 607–608 (1984).
[CrossRef]

Frei, G.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Friese, M. E. J.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).

Fukuda, T.

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4,” J. Alloy. Comp. 380(1–2), 15–26 (2004).
[CrossRef]

Gabbe, D.

D. Gabbe and A. L. Harmer, “Scheelite structure fluorides: the growth of pure and rare earth doped LiYF4,” J. Cryst. Growth 3–4, 544 (1968).
[CrossRef]

Galzerano, G.

García, A. J.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1–2), 173–179 (2001).
[CrossRef]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62(5), 3213–3217 (2000).
[CrossRef]

Garcia-Adeva, A. J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[CrossRef] [PubMed]

García-Adeva, A. J.

Gauck, H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Ge, L.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[CrossRef] [PubMed]

Gehlhoff, W.

W. Gehlhoff and W. Ulrici, “Transition metal ions in crystals with the fluorite structure,” Phys. Status Solidi, B Basic Res. 102(1), 11–59 (1980).
[CrossRef]

Geusic, J. E.

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21(16), 1172–1175 (1968).
[CrossRef]

Gfroerer, T. H.

T. H. Gfroerer, E. A. Cornell, and M. W. Wanlass, “Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector,” J. Appl. Phys. 84(9), 5360 (1998).
[CrossRef]

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Gibbs, A.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90(9), 4815 (2001).
[CrossRef]

Gomes, L.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Gosnell, T. R.

T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24(15), 1041–1043 (1999).
[CrossRef] [PubMed]

X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21 K starting from room temperature,” Opt. Lett. 23(8), 639–641 (1998).
[CrossRef] [PubMed]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics, Vol. 40, B. Bederson and H. Walther, ed. (Academic, 1999), pp. 161–228.

Greenfield, S.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

Greenfield, S. R.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

Güdel, H. U.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Guggenheim, H. J.

J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
[CrossRef]

Guiheen, J. V.

J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, “Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 47, 167–176 (2006).

Guyot, Y.

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4,” J. Alloy. Comp. 380(1–2), 15–26 (2004).
[CrossRef]

Haines, C. D.

J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, “Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 47, 167–176 (2006).

Hankinson, J.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13(1), 68–69 (1975).
[CrossRef]

Harbison, B. B.

P. C. Schultz, L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, and R. Mossadegh, “Hermetic coatings for bulk fluoride glasses and fibers,” Mater. Sci. Forum 19–20, 343–352 (1987).
[CrossRef]

Harlow, J. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Harmer, A. L.

D. Gabbe and A. L. Harmer, “Scheelite structure fluorides: the growth of pure and rare earth doped LiYF4,” J. Cryst. Growth 3–4, 544 (1968).
[CrossRef]

Harris, I. R.

J. S. Abell, I. R. Harris, B. Cockayne, and J. G. Plant, “A DTA study of zone-refined LiRF4 (R = Y,Er),” J. Mater. Sci. 11(10), 1807–1816 (1976).
[CrossRef]

Haskell, R.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

Hasselbeck, M.

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Hasselbeck, M. P.

C. Wang, C.-Y. Li, M. P. Hasselbeck, B. Imangholi, and M. Sheik-Bahae, “Precision, all-optical measurement of external quantum efficiency in semiconductors,” J. Appl. Phys. 109(9), 093108 (2011).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
[CrossRef]

D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett. 86(8), 081104 (2005).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

Heckenberg, N. R.

A. Rayner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Condensed-phase optical refrigeration,” J. Opt. Soc. Am. B 20(5), 1037–1053 (2003).
[CrossRef]

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).

Heeg, B.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4 − BaF2 − LaF3 − AlF3-NaF glass,” Phys. Rev. A 70(2), 021401 (2004).
[CrossRef]

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91(5), 3356–3362 (2002).
[CrossRef]

Hehlen, M. P.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration: Science and Applications of Laser Cooling of Solids, R. Epstein and M. Sheik-Bahae, ed. (Wiley-VCH Verlag GmbH & Co, KGaA, 2009), pp. 33–74.

Hernández, I.

I. Hernández, F. Rodríguez, and A. Tressaud, “Optical properties of the (CrF6)3– complex in A2BMF6:Cr3+ elpasolite crystals: variation with M–F bond distance and hydrostatic pressure,” Inorg. Chem. 47(22), 10288–10298 (2008).
[CrossRef] [PubMed]

Hollberg, L.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55(1), 48–51 (1985).
[CrossRef] [PubMed]

Hoyt, C.

C. Hoyt, “Laser cooling in thulium-doped solids,” Ph.D. dissertation (University of New Mexico, 2003).

Hoyt, C. W.

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

Huang, D.

D. Huang and P. M. Alsing, “Many-body effects on optical carrier cooling in intrinsic semiconductors at low lattice temperatures,” Phys. Rev. B 78(3), 035206 (2008).
[CrossRef]

T. Apostolova, D. Huang, P. M. Alsing, and D. A. Cardimona, “Comparison of laser cooling of the lattice of wide-band-gap semiconductors using nonlinear or linear optical excitations,” Phys. Rev. A 71(1), 013810 (2005).
[CrossRef]

D. Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona, “Theoretical study of laser cooling of a semiconductor,” Phys. Rev. B 70(3), 033203 (2004).
[CrossRef]

Hulliger, J.

R. Burkhalter, I. Dohnke, and J. Hulliger, “Growing of bulk crystals and structuring waveguides of fluoride materials for laser applications,” Prog. Cryst. Growth Charact. Mater. 42(1–2), 1–64 (2001).
[CrossRef]

Illarramendi, A.

A. Illarramendi, J. Fernández, and R. Balda, “Fano antiresonance of Cr3+ absorption spectra in flouride glasses,” J. Lumin. 53(1–6), 461–464 (1992).
[CrossRef]

Imangholi, B.

C. Wang, C.-Y. Li, M. P. Hasselbeck, B. Imangholi, and M. Sheik-Bahae, “Precision, all-optical measurement of external quantum efficiency in semiconductors,” J. Appl. Phys. 109(9), 093108 (2011).
[CrossRef]

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett. 86(8), 081104 (2005).
[CrossRef]

B. Imangholi, “Investigation of laser cooling in semiconductors,” Ph.D. dissertation (University of Mexico, 2006).

Inoue, H.

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

Ivanova, I. A.

I. A. Ivanova, A. M. Morozov, M. A. Petrova, I. G. Podkolzina, and P. P. Feotilov, “Growth of binary lithium-rare earth metal fluoride monocrystals and their properties,” Izv. Akad. Nauk SSSR Neorg. Mater. 11, 2175–2179 (1975).

Jin, D. S.

D. S. Jin and J. Ye, “Polar molecules in the quantum regime,” Phys. Today 64(5), 27 (2011).
[CrossRef]

Jones, D. A.

D. A. Jones, B. Cockayne, R. A. Clay, and P. A. Forrester, “Stockbarger crystal growth, optical assessment and laser performance of holmium-doped yttrium erbium lithium fluoride,” J. Cryst. Growth 30(1), 21–26 (1975).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 1st ed. (Springer, 1981).

Karrai, K.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

Kashyap, R.

G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83(1), 013404 (2011).
[CrossRef]

G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010).
[CrossRef]

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B 26(12), 2237–2241 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Raman fiber amplifier with integrated cooler,” J. Lightwave Technol. 27(24), 5597–5601 (2009).
[CrossRef]

Kastler, A.

A. Kastler, “Some suggestions concerning the production and detection by optical means of inequalities in the populations of levels of spatial quantization in atoms. Application to the Stern and Gerlach and magnetic resonance experiments,” J. Phys. Radium 11, 11 (1950).
[CrossRef]

Katsurayama, M.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloy. Comp. 408–412, 780–783 (2006).
[CrossRef]

Kaviany, M.

J. Kim and M. Kaviany, “Ab initio calculations of f-orbital electron–phonon interaction in laser cooling,” Phys. Rev. B 79(5), 054103 (2009).
[CrossRef]

Khizhnyak, A.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4 − BaF2 − LaF3 − AlF3-NaF glass,” Phys. Rev. A 70(2), 021401 (2004).
[CrossRef]

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91(5), 3356–3362 (2002).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B 77(23), 235206 (2008).
[CrossRef]

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98(17), 177401 (2007).
[CrossRef]

Kim, E. H.

S. W. Kwon, E. H. Kim, B. G. Ahn, J. H. Yoo, and H. G. Ahn, “Fluorination of metals and metal oxides by gas-solid reaction,” J. Ind. Eng. Chem. 8, 477 (2002).

Kim, J.

J. Kim and M. Kaviany, “Ab initio calculations of f-orbital electron–phonon interaction in laser cooling,” Phys. Rev. B 79(5), 054103 (2009).
[CrossRef]

Kishino, K.

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Krämer, K. W.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Krausz, E. R.

J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
[CrossRef]

Kurtz, S.

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett. 86(8), 081104 (2005).
[CrossRef]

Kushida, T.

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21(16), 1172–1175 (1968).
[CrossRef]

Kwon, S. W.

S. W. Kwon, E. H. Kim, B. G. Ahn, J. H. Yoo, and H. G. Ahn, “Fluorination of metals and metal oxides by gas-solid reaction,” J. Ind. Eng. Chem. 8, 477 (2002).

Kwong, N. H.

G. Rupper, N. H. Kwong, R. Binder, C.-Y. Li, and M. Sheik-Bahae, “Effect of n–p–n heterostructures on interface recombination and semiconductor laser cooling,” J. Appl. Phys. 108(11), 113118 (2010).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: theoretical study,” Phys. Rev. B 76(24), 245203 (2007).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
[CrossRef] [PubMed]

Landau, L.

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

Laporta, P.

Lee, C.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

Lehnert, K. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Lei, G.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

G. Lei, J. Anderson, M. Buchwald, B. Edwards, and R. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57(13), 7673–7678 (1998).
[CrossRef]

Li, C.-Y.

C. Wang, C.-Y. Li, M. P. Hasselbeck, B. Imangholi, and M. Sheik-Bahae, “Precision, all-optical measurement of external quantum efficiency in semiconductors,” J. Appl. Phys. 109(9), 093108 (2011).
[CrossRef]

G. Rupper, N. H. Kwong, R. Binder, C.-Y. Li, and M. Sheik-Bahae, “Effect of n–p–n heterostructures on interface recombination and semiconductor laser cooling,” J. Appl. Phys. 108(11), 113118 (2010).
[CrossRef]

Li, D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Li, J.

J. Li, “Laser cooling of semiconductor quantum wells: theoretical framework and strategy for deep optical refrigeration by luminescence upconversion,” Phys. Rev. B 75(15), 155315 (2007).
[CrossRef]

Lieto, A. D.

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, and M. Tonelli, “Laser cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28(11), 1321–1324 (2006).
[CrossRef]

Luo, X.

Lüthi, S. R.

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Mar, D.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

Marquardt, F.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8, 203–207 (2012).

Mayeda, M. K.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

McClure, D. S.

L. Seijo, Z. Barandiarán, and D. S. McClure, “Ab initio model potential embedded cluster calculation of the absorption spectrum of Cs2GeF6:Mn4+. Large discrepancies between theory and experiment,” Int. J. Quantum Chem. 80, 623–635 (2000).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin. (to be published); corrected proof, http://dx.doi.org/10.1016/j.jlumin.2011.09.045.

Mendioroz, A.

A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, R. Balda, and A. J. García-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27(17), 1525–1527 (2002).
[CrossRef] [PubMed]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1–2), 173–179 (2001).
[CrossRef]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62(5), 3213–3217 (2000).
[CrossRef]

Mendonça, C. R.

C. R. Mendonça, B. J. Costa, Y. Messaddeq, and S. C. Zilio, “Optical properties of chromium-doped fluoroindate glasses,” Phys. Rev. B 56(5), 2483–2487 (1997).
[CrossRef]

Messaddeq, Y.

C. R. Mendonça, B. J. Costa, Y. Messaddeq, and S. C. Zilio, “Optical properties of chromium-doped fluoroindate glasses,” Phys. Rev. B 56(5), 2483–2487 (1997).
[CrossRef]

Metzger, C. H.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

Mills, G.

G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2–3), 176–182 (2006).
[CrossRef]

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4 − BaF2 − LaF3 − AlF3-NaF glass,” Phys. Rev. A 70(2), 021401 (2004).
[CrossRef]

Mills, G. L.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489 (1999).
[CrossRef]

Moloney, J.

A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
[CrossRef]

Moos, H. W.

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968).
[CrossRef]

Morato, S. P.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Mord, A.

G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2–3), 176–182 (2006).
[CrossRef]

Mord, A. J.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489 (1999).
[CrossRef]

Morkoc, H.

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Morozov, A. M.

I. A. Ivanova, A. M. Morozov, M. A. Petrova, I. G. Podkolzina, and P. P. Feotilov, “Growth of binary lithium-rare earth metal fluoride monocrystals and their properties,” Izv. Akad. Nauk SSSR Neorg. Mater. 11, 2175–2179 (1975).

Mossadegh, R.

P. C. Schultz, L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, and R. Mossadegh, “Hermetic coatings for bulk fluoride glasses and fibers,” Mater. Sci. Forum 19–20, 343–352 (1987).
[CrossRef]

Moynihan, C. T.

P. C. Schultz, L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, and R. Mossadegh, “Hermetic coatings for bulk fluoride glasses and fibers,” Mater. Sci. Forum 19–20, 343–352 (1987).
[CrossRef]

Mungan, C. E.

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17(7), 5466–5472 (2009).
[CrossRef] [PubMed]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Mungan, C. E.

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics, Vol. 40, B. Bederson and H. Walther, ed. (Academic, 1999), pp. 161–228.

Murtagh, M. T.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

Murtagh, M. T.

M. T. Murtagh, G. H. Sigel, J. C. Fajardo, B. C. Edwards, and R. I. Epstein, “Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses,” J. Non-Cryst. Solids 253(1–3), 50–57 (1999).
[CrossRef]

Muys, P.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef] [PubMed]

Nemova, G.

G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83(1), 013404 (2011).
[CrossRef]

G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010).
[CrossRef]

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

G. Nemova and R. Kashyap, “Fiber amplifier with integrated optical cooler,” J. Opt. Soc. Am. B 26(12), 2237–2241 (2009).
[CrossRef]

G. Nemova and R. Kashyap, “Raman fiber amplifier with integrated cooler,” J. Lightwave Technol. 27(24), 5597–5601 (2009).
[CrossRef]

Nogueira, G. E. C.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

O’Connor, S. P.

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46(7), 1076–1085 (2010).
[CrossRef]

N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17(7), 5466–5472 (2009).
[CrossRef] [PubMed]

Oraevsky, A. N.

A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17(5), 471–479 (1996).
[CrossRef]

Parisi, D.

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008).
[CrossRef] [PubMed]

S. Bigotta, A. Di Lieto, D. Parisi, A. Toncelli, and M. Tonelli, “Single fluoride crystals as materials for laser cooling applications,” Proc. SPIE 6461, 64610E (2007).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, and M. Tonelli, “Laser cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28(11), 1321–1324 (2006).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, “Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal,” J. Appl. Phys. 100(1), 013109 (2006).
[CrossRef]

Parker, J.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

Parker, J. M.

P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3d transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32 (1986).

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH− absorption in fluoride glass infra-red fibres,” Electron. Lett. 20(14), 607–608 (1984).
[CrossRef]

Patterson, W.

Patterson, W. M.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, “Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 47, 167–176 (2006).

Petrova, M. A.

I. A. Ivanova, A. M. Morozov, M. A. Petrova, I. G. Podkolzina, and P. P. Feotilov, “Growth of binary lithium-rare earth metal fluoride monocrystals and their properties,” Izv. Akad. Nauk SSSR Neorg. Mater. 11, 2175–2179 (1975).

Petrushkin, S. V.

S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20(1), 38–46 (2010).
[CrossRef]

S. V. Petrushkin and V. V. Samartsev, “Superradiance regime of laser cooling of crystals and glasses doped with rare-earth ion,” Laser Phys. 11, 948–956 (2001).

Philips, W. D.

S. Chu, C. Cohen-Tannoudji, and W. D. Philips, “For development of methods to cool and trap atoms with laser light,” Nobel Prize in Physics (1997).

Plant, J. G.

J. S. Abell, I. R. Harris, B. Cockayne, and J. G. Plant, “A DTA study of zone-refined LiRF4 (R = Y,Er),” J. Mater. Sci. 11(10), 1807–1816 (1976).
[CrossRef]

Podkolzina, I. G.

I. A. Ivanova, A. M. Morozov, M. A. Petrova, I. G. Podkolzina, and P. P. Feotilov, “Growth of binary lithium-rare earth metal fluoride monocrystals and their properties,” Izv. Akad. Nauk SSSR Neorg. Mater. 11, 2175–2179 (1975).

Potemski, M.

E. Finkeißen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258 (1999).
[CrossRef]

Pringsheim, P.

P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11–12), 739–746 (1929).
[CrossRef]

Quimby, R. S.

Rand, S. C.

S. C. Rand, “Laser cooling of solids by stimulated Raman scattering and fluorescence,” Proc. SPIE 8275, 827509 (2012).
[CrossRef]

Ranieri, I. M.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Rayner, A.

A. Rayner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Condensed-phase optical refrigeration,” J. Opt. Soc. Am. B 20(5), 1037–1053 (2003).
[CrossRef]

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).

Reed, J.

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Renn, M. J.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968).
[CrossRef]

Rivlin, L.

L. Rivlin and A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4–6), 219–222 (1997).
[CrossRef]

Rodríguez, F.

I. Hernández, F. Rodríguez, and A. Tressaud, “Optical properties of the (CrF6)3– complex in A2BMF6:Cr3+ elpasolite crystals: variation with M–F bond distance and hydrostatic pressure,” Inorg. Chem. 47(22), 10288–10298 (2008).
[CrossRef] [PubMed]

Rosati, V.

R. Uhrin, R. F. Belt, and V. Rosati, “Preparation and crystal growth of lithium yttrium fluoride for laser applications,” J. Cryst. Growth 38(1), 38–44 (1977).
[CrossRef]

Rosenberg, A.

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46(7), 1076–1085 (2010).
[CrossRef]

Rubinsztein-Dunlop, H.

A. Rayner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Condensed-phase optical refrigeration,” J. Opt. Soc. Am. B 20(5), 1037–1053 (2003).
[CrossRef]

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).

Rumbles, G.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4 − BaF2 − LaF3 − AlF3-NaF glass,” Phys. Rev. A 70(2), 021401 (2004).
[CrossRef]

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91(5), 3356–3362 (2002).
[CrossRef]

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76(12), 2037–2040 (1996).
[CrossRef] [PubMed]

Rupper, G.

G. Rupper, N. H. Kwong, R. Binder, C.-Y. Li, and M. Sheik-Bahae, “Effect of n–p–n heterostructures on interface recombination and semiconductor laser cooling,” J. Appl. Phys. 108(11), 113118 (2010).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: theoretical study,” Phys. Rev. B 76(24), 245203 (2007).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
[CrossRef] [PubMed]

Samartsev, V. V.

S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20(1), 38–46 (2010).
[CrossRef]

S. V. Petrushkin and V. V. Samartsev, “Superradiance regime of laser cooling of crystals and glasses doped with rare-earth ion,” Laser Phys. 11, 948–956 (2001).

S. N. Andrianov and V. V. Samartsev, “Solid state lasers with internal laser refrigeration effect,” Proc. SPIE 4605, 208–213 (2001).
[CrossRef]

S. N. Andrianov and V. V. Samartsev, “Laser cooling of impurity crystals,” Quantum Electron. 31(3), 247–251 (2001).
[CrossRef]

Santo, A. M. E.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Saß, A.

A. Saß, U. Vogl, and M. Weitz, “Laser cooling of a potassium–argon gas mixture using collisional redistribution of radiation,” Appl. Phys. B 102(3), 503–507 (2011).
[CrossRef]

Sato, H.

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4,” J. Alloy. Comp. 380(1–2), 15–26 (2004).
[CrossRef]

Schawlow, A. L.

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13(1), 68–69 (1975).
[CrossRef]

Schultz, P. C.

P. C. Schultz, L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, and R. Mossadegh, “Hermetic coatings for bulk fluoride glasses and fibers,” Mater. Sci. Forum 19–20, 343–352 (1987).
[CrossRef]

Seijo, L.

L. Seijo, Z. Barandiarán, and D. S. McClure, “Ab initio model potential embedded cluster calculation of the absorption spectrum of Cs2GeF6:Mn4+. Large discrepancies between theory and experiment,” Int. J. Quantum Chem. 80, 623–635 (2000).
[CrossRef]

Seletskiy, D.

M. Sheik-Bahae and D. Seletskiy, “Laser cooling: chilling dense atomic gases,” Nat. Photonics 3(12), 680–681 (2009).
[CrossRef]

D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

Seletskiy, D. V.

A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
[CrossRef]

D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
[CrossRef] [PubMed]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin. (to be published); corrected proof, http://dx.doi.org/10.1016/j.jlumin.2011.09.045.

Shand, W. A.

W. A. Shand, “Single crystal growth and some properties of LiYF4,” J. Cryst. Growth 5(2), 143–146 (1969).
[CrossRef]

Sheik-Bahae, M.

A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
[CrossRef]

C. Wang, C.-Y. Li, M. P. Hasselbeck, B. Imangholi, and M. Sheik-Bahae, “Precision, all-optical measurement of external quantum efficiency in semiconductors,” J. Appl. Phys. 109(9), 093108 (2011).
[CrossRef]

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
[CrossRef] [PubMed]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

G. Rupper, N. H. Kwong, R. Binder, C.-Y. Li, and M. Sheik-Bahae, “Effect of n–p–n heterostructures on interface recombination and semiconductor laser cooling,” J. Appl. Phys. 108(11), 113118 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009).
[CrossRef]

M. Sheik-Bahae and D. Seletskiy, “Laser cooling: chilling dense atomic gases,” Nat. Photonics 3(12), 680–681 (2009).
[CrossRef]

D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008).
[CrossRef] [PubMed]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
[CrossRef]

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett. 86(8), 081104 (2005).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors,” Phys. Rev. Lett. 92(24), 247403 (2004).
[CrossRef] [PubMed]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin. (to be published); corrected proof, http://dx.doi.org/10.1016/j.jlumin.2011.09.045.

R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009).

Sibley, W. A.

K. Tanimura, W. A. Sibley, and L. G. DeShazer, “Optical properties of Cu+ ions in RbMgF3 crystals,” Phys. Rev. B Condens. Matter 31(6), 3980–3987 (1985).
[CrossRef] [PubMed]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Sigel, G. H.

J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, “Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 47, 167–176 (2006).

M. T. Murtagh, G. H. Sigel, J. C. Fajardo, B. C. Edwards, and R. I. Epstein, “Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses,” J. Non-Cryst. Solids 253(1–3), 50–57 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

Simmonds, R. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Stark, P. C.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

Stone, A. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[CrossRef] [PubMed]

Stone, M. D.

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4 − BaF2 − LaF3 − AlF3-NaF glass,” Phys. Rev. A 70(2), 021401 (2004).
[CrossRef]

Sugiyama, A.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloy. Comp. 408–412, 780–783 (2006).
[CrossRef]

Suter, D.

S. Eshlaghi, W. Worthoff, A. D. Wieck, and D. Suter, “Luminescence upconversion in GaAs quantum wells,” Phys. Rev. B 77(24), 245317 (2008).
[CrossRef]

Tanimura, K.

K. Tanimura, W. A. Sibley, and L. G. DeShazer, “Optical properties of Cu+ ions in RbMgF3 crystals,” Phys. Rev. B Condens. Matter 31(6), 3980–3987 (1985).
[CrossRef] [PubMed]

Tarelho, L. V. G.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Teufel, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Thiede, J.

J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, “Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 47, 167–176 (2006).

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

Thienpont, H.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef] [PubMed]

Tomes, M.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8, 203–207 (2012).

Toncelli, A.

S. Bigotta, A. Di Lieto, D. Parisi, A. Toncelli, and M. Tonelli, “Single fluoride crystals as materials for laser cooling applications,” Proc. SPIE 6461, 64610E (2007).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, “Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal,” J. Appl. Phys. 100(1), 013109 (2006).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, and M. Tonelli, “Laser cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28(11), 1321–1324 (2006).
[CrossRef]

Tonelli, M.

A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[CrossRef] [PubMed]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008).
[CrossRef] [PubMed]

D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

S. Bigotta, A. Di Lieto, D. Parisi, A. Toncelli, and M. Tonelli, “Single fluoride crystals as materials for laser cooling applications,” Proc. SPIE 6461, 64610E (2007).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, and M. Tonelli, “Laser cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28(11), 1321–1324 (2006).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, “Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal,” J. Appl. Phys. 100(1), 013109 (2006).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin. (to be published); corrected proof, http://dx.doi.org/10.1016/j.jlumin.2011.09.045.

Tressaud, A.

I. Hernández, F. Rodríguez, and A. Tressaud, “Optical properties of the (CrF6)3– complex in A2BMF6:Cr3+ elpasolite crystals: variation with M–F bond distance and hydrostatic pressure,” Inorg. Chem. 47(22), 10288–10298 (2008).
[CrossRef] [PubMed]

Truscott, A. G.

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).

Tsuboi, T.

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloy. Comp. 408–412, 780–783 (2006).
[CrossRef]

Uhrin, R.

R. Uhrin, R. F. Belt, and V. Rosati, “Preparation and crystal growth of lithium yttrium fluoride for laser applications,” J. Cryst. Growth 38(1), 38–44 (1977).
[CrossRef]

Ulrici, W.

W. Gehlhoff and W. Ulrici, “Transition metal ions in crystals with the fluorite structure,” Phys. Status Solidi, B Basic Res. 102(1), 11–59 (1980).
[CrossRef]

Unlu, M. S.

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

Vacha, L. J. B.

P. C. Schultz, L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, and R. Mossadegh, “Hermetic coatings for bulk fluoride glasses and fibers,” Mater. Sci. Forum 19–20, 343–352 (1987).
[CrossRef]

Valencia, J.

van Dijk, J. M. F.

J. M. F. van Dijk, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317 (1983).
[CrossRef]

Vermeulen, N.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef] [PubMed]

Vieira, N. D.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Viña, L.

E. Finkeißen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258 (1999).
[CrossRef]

Voda, M.

Vogl, U.

A. Saß, U. Vogl, and M. Weitz, “Laser cooling of a potassium–argon gas mixture using collisional redistribution of radiation,” Appl. Phys. B 102(3), 503–507 (2011).
[CrossRef]

U. Vogl and M. Weitz, “Laser cooling by collisional redistribution of radiation,” Nature 461(7260), 70–73 (2009).
[CrossRef] [PubMed]

Von der Porten, S.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

Walker, P. J.

P. J. Walker, “Melt growth of rare-earth binary and complex halides,” Prog. Cryst. Growth Characteriz. 3(2–3), 103–119 (1980).
[CrossRef]

Wang, C.

C. Wang, C.-Y. Li, M. P. Hasselbeck, B. Imangholi, and M. Sheik-Bahae, “Precision, all-optical measurement of external quantum efficiency in semiconductors,” J. Appl. Phys. 109(9), 093108 (2011).
[CrossRef]

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Wanlass, M. W.

T. H. Gfroerer, E. A. Cornell, and M. W. Wanlass, “Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector,” J. Appl. Phys. 84(9), 5360 (1998).
[CrossRef]

Weimann, G.

E. Finkeißen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258 (1999).
[CrossRef]

Weitz, M.

A. Saß, U. Vogl, and M. Weitz, “Laser cooling of a potassium–argon gas mixture using collisional redistribution of radiation,” Appl. Phys. B 102(3), 503–507 (2011).
[CrossRef]

U. Vogl and M. Weitz, “Laser cooling by collisional redistribution of radiation,” Nature 461(7260), 70–73 (2009).
[CrossRef] [PubMed]

Wetter, N. U.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Whitney, W. T.

N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981).
[CrossRef]

Whittaker, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Wieck, A. D.

S. Eshlaghi, W. Worthoff, A. D. Wieck, and D. Suter, “Luminescence upconversion in GaAs quantum wells,” Phys. Rev. B 77(24), 245317 (2008).
[CrossRef]

Williams, J. R.

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH− absorption in fluoride glass infra-red fibres,” Electron. Lett. 20(14), 607–608 (1984).
[CrossRef]

Worthoff, W.

S. Eshlaghi, W. Worthoff, A. D. Wieck, and D. Suter, “Luminescence upconversion in GaAs quantum wells,” Phys. Rev. B 77(24), 245317 (2008).
[CrossRef]

Wyder, P.

E. Finkeißen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258 (1999).
[CrossRef]

Yang, Q.

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

Yatsiv, S.

S. Yatsiv, “Anti-Stokes fluorescence as a cooling process,” in Advances in Quantum Electronics, J. R. Singer, ed. (Columbia University, 1961).

Ye, J.

D. S. Jin and J. Ye, “Polar molecules in the quantum regime,” Phys. Today 64(5), 27 (2011).
[CrossRef]

Yoo, J. H.

S. W. Kwon, E. H. Kim, B. G. Ahn, J. H. Yoo, and H. G. Ahn, “Fluorination of metals and metal oxides by gas-solid reaction,” J. Ind. Eng. Chem. 8, 477 (2002).

Yoshida, T. M.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

Zadernovsky, A.

L. Rivlin and A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4–6), 219–222 (1997).
[CrossRef]

Zezell, D. M.

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

Zilio, S. C.

C. R. Mendonça, B. J. Costa, Y. Messaddeq, and S. C. Zilio, “Optical properties of chromium-doped fluoroindate glasses,” Phys. Rev. B 56(5), 2483–2487 (1997).
[CrossRef]

Appl. Phys. B (2)

S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71(6), 807–811 (2000).
[CrossRef]

A. Saß, U. Vogl, and M. Weitz, “Laser cooling of a potassium–argon gas mixture using collisional redistribution of radiation,” Appl. Phys. B 102(3), 503–507 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

E. Finkeißen, M. Potemski, P. Wyder, L. Viña, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258 (1999).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett. 86(8), 081104 (2005).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Resonant cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Chem. Mater. (1)

K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater. 16(7), 1244–1251 (2004).
[CrossRef]

Cryogenics (1)

G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2–3), 176–182 (2006).
[CrossRef]

Electron. Lett. (2)

P. W. France, S. F. Carter, J. R. Williams, K. J. Beales, and J. M. Parker, “OH− absorption in fluoride glass infra-red fibres,” Electron. Lett. 20(14), 607–608 (1984).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (4)

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[CrossRef]

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[CrossRef]

S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, “Minimizing heat generation in solid-state lasers,” IEEE J. Quantum Electron. 46(7), 1076–1085 (2010).
[CrossRef]

Inorg. Chem. (1)

I. Hernández, F. Rodríguez, and A. Tressaud, “Optical properties of the (CrF6)3– complex in A2BMF6:Cr3+ elpasolite crystals: variation with M–F bond distance and hydrostatic pressure,” Inorg. Chem. 47(22), 10288–10298 (2008).
[CrossRef] [PubMed]

Int. J. Quantum Chem. (1)

L. Seijo, Z. Barandiarán, and D. S. McClure, “Ab initio model potential embedded cluster calculation of the absorption spectrum of Cs2GeF6:Mn4+. Large discrepancies between theory and experiment,” Int. J. Quantum Chem. 80, 623–635 (2000).
[CrossRef]

Izv. Akad. Nauk SSSR Neorg. Mater. (1)

I. A. Ivanova, A. M. Morozov, M. A. Petrova, I. G. Podkolzina, and P. P. Feotilov, “Growth of binary lithium-rare earth metal fluoride monocrystals and their properties,” Izv. Akad. Nauk SSSR Neorg. Mater. 11, 2175–2179 (1975).

J. Alloy. Comp. (2)

A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4,” J. Alloy. Comp. 380(1–2), 15–26 (2004).
[CrossRef]

A. Sugiyama, M. Katsurayama, Y. Anzai, and T. Tsuboi, “Spectroscopic properties of Yb doped YLF grown by a vertical Bridgman method,” J. Alloy. Comp. 408–412, 780–783 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011).
[CrossRef]

J. Appl. Phys. (9)

B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91(5), 3356–3362 (2002).
[CrossRef]

J. Parker, D. Mar, S. Von der Porten, J. Hankinson, K. Byram, C. Lee, M. K. Mayeda, R. Haskell, Q. Yang, S. Greenfield, and R. Epstein, “Thermal links for the implementation of an optical refrigerator,” J. Appl. Phys. 105(1), 013116 (2009).
[CrossRef]

C. Wang, C.-Y. Li, M. P. Hasselbeck, B. Imangholi, and M. Sheik-Bahae, “Precision, all-optical measurement of external quantum efficiency in semiconductors,” J. Appl. Phys. 109(9), 093108 (2011).
[CrossRef]

T. H. Gfroerer, E. A. Cornell, and M. W. Wanlass, “Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector,” J. Appl. Phys. 84(9), 5360 (1998).
[CrossRef]

G. Rupper, N. H. Kwong, R. Binder, C.-Y. Li, and M. Sheik-Bahae, “Effect of n–p–n heterostructures on interface recombination and semiconductor laser cooling,” J. Appl. Phys. 108(11), 113118 (2010).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489 (1999).
[CrossRef]

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90(9), 4815 (2001).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, and A. Di Lieto, “Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal,” J. Appl. Phys. 100(1), 013109 (2006).
[CrossRef]

P. Asbeck, “Self-absorption effects on the radiative lifetime in GaAs-GaAlAs double heterostructures,” J. Appl. Phys. 48(2), 820 (1977).
[CrossRef]

J. Chem. Phys. (1)

J. M. F. van Dijk, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78(9), 5317 (1983).
[CrossRef]

J. Cryst. Growth (5)

D. Gabbe and A. L. Harmer, “Scheelite structure fluorides: the growth of pure and rare earth doped LiYF4,” J. Cryst. Growth 3–4, 544 (1968).
[CrossRef]

R. Uhrin, R. F. Belt, and V. Rosati, “Preparation and crystal growth of lithium yttrium fluoride for laser applications,” J. Cryst. Growth 38(1), 38–44 (1977).
[CrossRef]

I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, and S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996).
[CrossRef]

W. A. Shand, “Single crystal growth and some properties of LiYF4,” J. Cryst. Growth 5(2), 143–146 (1969).
[CrossRef]

D. A. Jones, B. Cockayne, R. A. Clay, and P. A. Forrester, “Stockbarger crystal growth, optical assessment and laser performance of holmium-doped yttrium erbium lithium fluoride,” J. Cryst. Growth 30(1), 21–26 (1975).
[CrossRef]

J. Ind. Eng. Chem. (1)

S. W. Kwon, E. H. Kim, B. G. Ahn, J. H. Yoo, and H. G. Ahn, “Fluorination of metals and metal oxides by gas-solid reaction,” J. Ind. Eng. Chem. 8, 477 (2002).

J. Lightwave Technol. (1)

J. Lumin. (1)

A. Illarramendi, J. Fernández, and R. Balda, “Fano antiresonance of Cr3+ absorption spectra in flouride glasses,” J. Lumin. 53(1–6), 461–464 (1992).
[CrossRef]

J. Mater. Sci. (1)

J. S. Abell, I. R. Harris, B. Cockayne, and J. G. Plant, “A DTA study of zone-refined LiRF4 (R = Y,Er),” J. Mater. Sci. 11(10), 1807–1816 (1976).
[CrossRef]

J. Mod. Opt. (1)

A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Laser cooling of a solid from ambient temperature,” J. Mod. Opt. 48, 103–114 (2001).

J. Non-Cryst. Solids (1)

M. T. Murtagh, G. H. Sigel, J. C. Fajardo, B. C. Edwards, and R. I. Epstein, “Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses,” J. Non-Cryst. Solids 253(1–3), 50–57 (1999).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. (Moscow) (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

J. Phys. IV (1)

M. J. Elejalde, R. Balda, and J. Fernández, “Optical properties of Ni2+ in fluoride investigated by time-resolved spectroscopy,” J. Phys. IV 04(C4), C4-411 (1994).
[CrossRef]

J. Phys. Radium (1)

A. Kastler, “Some suggestions concerning the production and detection by optical means of inequalities in the populations of levels of spatial quantization in atoms. Application to the Stern and Gerlach and magnetic resonance experiments,” J. Phys. Radium 11, 11 (1950).
[CrossRef]

J. Russ. Laser Res. (1)

A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17(5), 471–479 (1996).
[CrossRef]

Laser Photonics Rev. (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009).
[CrossRef]

Laser Phys. (2)

S. V. Petrushkin and V. V. Samartsev, “Advances of laser refrigeration in solids,” Laser Phys. 20(1), 38–46 (2010).
[CrossRef]

S. V. Petrushkin and V. V. Samartsev, “Superradiance regime of laser cooling of crystals and glasses doped with rare-earth ion,” Laser Phys. 11, 948–956 (2001).

Mater. Sci. Forum (1)

P. C. Schultz, L. J. B. Vacha, C. T. Moynihan, B. B. Harbison, K. Cadien, and R. Mossadegh, “Hermetic coatings for bulk fluoride glasses and fibers,” Mater. Sci. Forum 19–20, 343–352 (1987).
[CrossRef]

Mol. Phys. (1)

J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
[CrossRef]

Nat. Photonics (3)

M. Sheik-Bahae and D. Seletskiy, “Laser cooling: chilling dense atomic gases,” Nat. Photonics 3(12), 680–681 (2009).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

Nature (4)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

U. Vogl and M. Weitz, “Laser cooling by collisional redistribution of radiation,” Nature 461(7260), 70–73 (2009).
[CrossRef] [PubMed]

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475(7356), 359–363 (2011).
[CrossRef] [PubMed]

Nobel Prize in Physics (2)

E. A. Cornell, “Bose–Einstein condensation in a dilute gas; the first 70 years and some recent experiments,” Nobel Prize in Physics, I (2001).

S. Chu, C. Cohen-Tannoudji, and W. D. Philips, “For development of methods to cool and trap atoms with laser light,” Nobel Prize in Physics (1997).

Nuovo Cimento B Ser. (1)

S. Bigotta, “Laser cooling of solids: new results with single fluoride crystals,” Nuovo Cimento B Ser. 122, 685694 (2007).

Opt. Commun. (3)

T. W. Hänsch and A. L. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13(1), 68–69 (1975).
[CrossRef]

L. Rivlin and A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4–6), 219–222 (1997).
[CrossRef]

U. Brauch and U. Dürr, “Vibronic laser action of V2+:CsCaF3,” Opt. Commun. 55(1), 35–40 (1985).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. (2)

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1–2), 173–179 (2001).
[CrossRef]

S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, and M. Tonelli, “Laser cooling of Yb3+-doped BaY2F8 single crystal,” Opt. Mater. 28(11), 1321–1324 (2006).
[CrossRef]

Opto-Electron. Rev. (1)

P. G. Eliseev, “Anti-Stokes luminescence in heavily doped semiconductors as a mechanism of laser cooling,” Opto-Electron. Rev. 16, 199–207 (2008).
[CrossRef]

Phys. Chem. Glasses (1)

P. W. France, S. F. Carter, and J. M. Parker, “Oxidation states of 3d transition metals in ZrF4 glasses,” Phys. Chem. Glasses 27, 32 (1986).

Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B (1)

J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, “Yb3+ and Tm3+-doped fluoroaluminate classes for anti-Stokes cooling,” Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 47, 167–176 (2006).

Phys. Rev. (2)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

L. A. Riseberg and H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174(2), 429–438 (1968).
[CrossRef]

Phys. Rev. A (3)

B. Heeg, M. D. Stone, A. Khizhnyak, G. Rumbles, G. Mills, and P. A. DeBarber, “Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4 − BaF2 − LaF3 − AlF3-NaF glass,” Phys. Rev. A 70(2), 021401 (2004).
[CrossRef]

T. Apostolova, D. Huang, P. M. Alsing, and D. A. Cardimona, “Comparison of laser cooling of the lattice of wide-band-gap semiconductors using nonlinear or linear optical excitations,” Phys. Rev. A 71(1), 013810 (2005).
[CrossRef]

G. Nemova and R. Kashyap, “Alternative technique for laser cooling with superradiance,” Phys. Rev. A 83(1), 013404 (2011).
[CrossRef]

Phys. Rev. B (11)

S. Eshlaghi, W. Worthoff, A. D. Wieck, and D. Suter, “Luminescence upconversion in GaAs quantum wells,” Phys. Rev. B 77(24), 245317 (2008).
[CrossRef]

J. Li, “Laser cooling of semiconductor quantum wells: theoretical framework and strategy for deep optical refrigeration by luminescence upconversion,” Phys. Rev. B 75(15), 155315 (2007).
[CrossRef]

J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B 77(23), 235206 (2008).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: theoretical study,” Phys. Rev. B 76(24), 245203 (2007).
[CrossRef]

D. Huang and P. M. Alsing, “Many-body effects on optical carrier cooling in intrinsic semiconductors at low lattice temperatures,” Phys. Rev. B 78(3), 035206 (2008).
[CrossRef]

J. Fernández, A. Mendioroz, A. J. García, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62(5), 3213–3217 (2000).
[CrossRef]

C. R. Mendonça, B. J. Costa, Y. Messaddeq, and S. C. Zilio, “Optical properties of chromium-doped fluoroindate glasses,” Phys. Rev. B 56(5), 2483–2487 (1997).
[CrossRef]

D. Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona, “Theoretical study of laser cooling of a semiconductor,” Phys. Rev. B 70(3), 033203 (2004).
[CrossRef]

J. Kim and M. Kaviany, “Ab initio calculations of f-orbital electron–phonon interaction in laser cooling,” Phys. Rev. B 79(5), 054103 (2009).
[CrossRef]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

G. Lei, J. Anderson, M. Buchwald, B. Edwards, and R. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57(13), 7673–7678 (1998).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

K. Tanimura, W. A. Sibley, and L. G. DeShazer, “Optical properties of Cu+ ions in RbMgF3 crystals,” Phys. Rev. B Condens. Matter 31(6), 3980–3987 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett. (12)

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[CrossRef] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[CrossRef] [PubMed]

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef] [PubMed]

T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21(16), 1172–1175 (1968).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[CrossRef] [PubMed]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys. Rev. Lett. 55(1), 48–51 (1985).
[CrossRef] [PubMed]

N. Djeu and W. T. Whitney, “Laser cooling by spontaneous anti-Stokes scattering,” Phys. Rev. Lett. 46(4), 236–239 (1981).
[CrossRef]

J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76(12), 2037–2040 (1996).
[CrossRef] [PubMed]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors,” Phys. Rev. Lett. 92(24), 247403 (2004).
[CrossRef] [PubMed]

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98(17), 177401 (2007).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

W. Gehlhoff and W. Ulrici, “Transition metal ions in crystals with the fluorite structure,” Phys. Status Solidi, B Basic Res. 102(1), 11–59 (1980).
[CrossRef]

Phys. Today (1)

D. S. Jin and J. Ye, “Polar molecules in the quantum regime,” Phys. Today 64(5), 27 (2011).
[CrossRef]

Proc. SPIE (10)

D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

S. Bigotta, A. Di Lieto, D. Parisi, A. Toncelli, and M. Tonelli, “Single fluoride crystals as materials for laser cooling applications,” Proc. SPIE 6461, 64610E (2007).
[CrossRef]

J. R. Fernandez, “Origin of laser-induced internal cooling of Yb,” Proc. SPIE 4645, 135–147 (2002).
[CrossRef]

M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
[CrossRef]

D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
[CrossRef]

S. N. Andrianov and V. V. Samartsev, “Solid state lasers with internal laser refrigeration effect,” Proc. SPIE 4605, 208–213 (2001).
[CrossRef]

G. Nemova and R. Kashyap, “High-power fiber lasers with integrated rare-earth optical cooler,” Proc. SPIE 7614, 761406(2010).
[CrossRef]

S. C. Rand, “Laser cooling of solids by stimulated Raman scattering and fluorescence,” Proc. SPIE 8275, 827509 (2012).
[CrossRef]

A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, and M. Sheik-Bahae, “Intracavity laser cooling using a VECSEL,” Proc. SPIE 8275, 827505 (2012).
[CrossRef]

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Prog. Cryst. Growth Charact. Mater. (1)

R. Burkhalter, I. Dohnke, and J. Hulliger, “Growing of bulk crystals and structuring waveguides of fluoride materials for laser applications,” Prog. Cryst. Growth Charact. Mater. 42(1–2), 1–64 (2001).
[CrossRef]

Prog. Cryst. Growth Characteriz. (1)

P. J. Walker, “Melt growth of rare-earth binary and complex halides,” Prog. Cryst. Growth Characteriz. 3(2–3), 103–119 (1980).
[CrossRef]

Quantum Electron. (1)

S. N. Andrianov and V. V. Samartsev, “Laser cooling of impurity crystals,” Quantum Electron. 31(3), 247–251 (2001).
[CrossRef]

Rep. Prog. Phys. (1)

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69(5), 2050 (1998).
[CrossRef]

Z. Phys. (1)

P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11–12), 739–746 (1929).
[CrossRef]

Other (11)

R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009).

S. Yatsiv, “Anti-Stokes fluorescence as a cooling process,” in Advances in Quantum Electronics, J. R. Singer, ed. (Columbia University, 1961).

C. E. Mungan and T. R. Gosnell, “Laser cooling of solids,” in Advances in Atomic, Molecular, and Optical Physics, Vol. 40, B. Bederson and H. Walther, ed. (Academic, 1999), pp. 161–228.

G. Bahl, M. Tomes, F. Marquardt, and T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys.8, 203–207 (2012).

B. Imangholi, “Investigation of laser cooling in semiconductors,” Ph.D. dissertation (University of Mexico, 2006).

C. Hoyt, “Laser cooling in thulium-doped solids,” Ph.D. dissertation (University of New Mexico, 2003).

A. E. Siegman, Lasers (University Science Books, 1986).

M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration: Science and Applications of Laser Cooling of Solids, R. Epstein and M. Sheik-Bahae, ed. (Wiley-VCH Verlag GmbH & Co, KGaA, 2009), pp. 33–74.

A. A. Kaminskii, Laser Crystals: Their Physics and Properties, 1st ed. (Springer, 1981).

S. Bigotta, Energy Transfer and Cooling Processes in Rare-earth Doped Insulating Crystals (Universita di Pisa, 2006).

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Precise determination of minimum achievable temperature for solid-state optical refrigeration,” J. Lumin. (to be published); corrected proof, http://dx.doi.org/10.1016/j.jlumin.2011.09.045.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Figure 1
Figure 1

(a) Schematic energy diagram of a laser cooling cycle in a solid: an optical input at wavelength λ excites the lowest-energy electronic transition from a ground state to an excited state of an exemplary ion doped into a transparent host matrix. After thermalization via phonon absorption from the host (wavy arrows within manifolds), excitation relaxes radiatively with an mean emission wavelength λ ̃ f < λ . (b) (adapted from [16]) Top, absorption (red) and emission (blue) spectra for an optical transition between 2 F 7 / 2 and 2 F 5 / 2 multiplet states of Yb3+-doped YLiF4 (Yb:YLF) at 300 K; excitation (labeled “pump”) is below the mean emission wavelength λ ̃ f , i.e., in the “cooling tail” (shaded) of the absorption curve. Bottom, data points (open circles) and fit of the cooling efficiency ( η c ) spectrum of Yb:YLF. Cooling ( η c ) occurs slightly below λ ̃ f and reverses sign at longer wavelengths because of heat-producing background absorption.

Figure 2
Figure 2

Timeline of the progress in optical refrigeration of bulk rare-earth-doped solids. A clear distinction between ytterbium-doped glasses (blue shaded region) and an ytterbium-doped YLF crystal (red) can be seen. Local cooling in the latter has been verified at 110 K, surpassing the NIST-defined cryogenic temperature of 123 K.

Figure 3
Figure 3

The four-level model consists of ground ( | 0 , | 1 ) and excited ( | 2 , | 3 ) state multiplets with respective energy separations δ E g , u and intramultiplet electron–phonon interaction rates w g , u . Inter-multiplet recombination occurs via radiative ( W r ) or nonradiative ( W n r ) decay channels, following the excitation of the lowest-energy transition ( | 1 | 2 , red arrow).

Figure 4
Figure 4

Temperature-dependent spectroscopic quantities of Yb:YLF (adapted from [95]). (a) Fluorescence spectra of a Yb:YLF crystal in E c orientation normalized to the integrated value at 100 K; the inset shows crystal-field transitions between the Stark levels of the Yb3+  2 F 7 / 2 and 2 F 5 / 2 multiplets. (b) Absorption spectra of a Yb:YLF (5 mol%) crystal with the same polarization and color coding as panel (a); the inset shows the long-wavelength absorption tail on a semilogarithmic scale, with the resonant features corresponding to the E3–E5 and E4–E5 crystal-field transitions. (c) Mean fluorescence wavelength λ f ( T ) along with an approximate linear fit in the temperature range of 100–300 K.

Figure 5
Figure 5

Comparison of cooling efficiencies in a glass and a crystal host (adapted from [95]): Contour plots of cooling efficiency η c ( λ , T ) for (a) Yb:ZBLAN and (b) Yb:YLF. The black dashed lines separating cooling (blue) and heating (red) regions correspond to the spectra of minimum achievable temperature, labeled MAT(λ). The effect of large inhomogeneous broadening in the glass host is evident from a lowest MAT ( MAT g ) in Yb:ZBLAN of ∼190 K (at ∼1015 nm), compared with a MAT g of ∼115 K (at 1020 nm) in Yb:YLF for otherwise similar parameters of η ext and α b .

Figure 6
Figure 6

(a) Model prediction of the global minimum achievable temperature MAT g = MAT ( 1020 nm ) as a function of an effective background absorption in Yb:YLF (5 mol%, E c , η e x t = 0 . 995 ). (b) Model prediction of the maximum cooling density that can be extracted from this material [Eq. (9)].

Figure 7
Figure 7

Experimental verification of the laser cooling model (adapted from [96]). (a) Schematic of the experimental arrangement: the Yb:YLF crystal is clamped by the cold-finger arrangement that is held at T 0 ; the local temperature change due to the pump beam is detected via luminescence from a GaAs/InGaP double heterostructure, excited in turn by a probe laser. Thermal buffers serve to maximize the local signal, while maintaining the Yb:YLF temperature near the T 0 setpoint. (b) Normalized and vertically shifted time traces of the spectral derivative signals, showing a distinct phase reversal between the heating (980 nm) and cooling (1020 nm) excitations at room temperature. (c) Comparison of the contour plot of the calculated cooling efficiency with the measurement (circles) of the minimum achievable temperature spectrum [MAT(λ)]; local cooling to a MAT of 110 ± 5 K at ∼1020 nm is demonstrated; the inset shows the energy-level diagram of Yb3+(not to scale).

Figure 8
Figure 8

Cavity-enhanced resonant absorption (adapted from [31]). (a) The reflectivity of the cavity is shown as a function of cavity length. For a high-reflectivity back mirror, the cavity reflectivity R = 1 A , where A is the absorption. On resonance, R 11 % corresponds to ∼89% absorption, which is 93% of the ideal absorption as predicted from the analysis. (b) On-resonance enhancement (cavity absorption normalized to the single-pass absorption) is plotted for various values of input coupler reflectivity R i c and compares favorably with the theory (OIM condition) for the given uncertainty (shaded gray area) in the α L value.

Figure 9
Figure 9

Cryogenic operation (adapted from [16]). (a) Schematic of the experimental setup where isolated (via a Faraday rotator, FR) and mode-matched pump light is trapped in a nonresonant cavity formed around the Yb:YLF sample inside of a clamshell. A spectrometer is used to measure the temperature of the sample by using a DLT method by extracting the temperature from normalized and reference-subtracted differential luminescence spectra, panel (b). The measured steady-state temperature (open circles) is plotted versus absorbed power and excitation wavelength along with the model fits (see text for details).

Figure 10
Figure 10

Illustration of a prototype all-solid-state optical refrigerator. A diode-pumped semiconductor laser cavity consisting of (i) multiple quantum-well (MQW) gain regions and an attached distributed Bragg reflector (DBR), (ii) cooling crystal, and (iii) high reflectivity (HR) end mirror. The cooling power from the crystal to the payload is transferred through a thermal link. A spectrum monitor optically measures the temperature of the cooling crystal.

Figure 11
Figure 11

Combinations of active ions and host materials for optical refrigeration. Combinations for which the energy of the highest-energy optical phonon, ħ ω max , is less than E p / 8  (blue area) are expected to achieve >90% of the ideal cooling efficiency [Eq. (1)]. Materials in which laser cooling has been experimentally observed are indicated by the open circles [111].

Figure 12
Figure 12

Absorption cross sections for various transition-metal ions in ZBLAN glass at room temperature (colored traces, adapted from [128]). The shaded areas show the luminescence spectra of Yb3+:YLiF4 [16], Er3+:SiO2, Tm 3 + :ZBLAN [105], and Ho3+:Ba2NaNb2O15 [130]. Spectral overlap between a rare-earth luminescence and a transition-metal absorption indicates the possibility of quenching via nonradiative energy transfer. Transition-metal ions with 2+ oxidation states are particularly problematic in this respect.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

η c = h ν ̃ f h ν h ν = λ λ ̃ f 1 ,
η c = p ( λ ) λ λ ̃ f 1 .
d N 1 d t = σ 12 I h ν ( N 1 N 2 ) + R 2 ( N 2 + N 3 ) w g ( N 1 N 0 e δ E g / k B T )
d N 2 d t = σ 12 I h ν ( N 1 N 2 ) R N 2 + w u ( N 3 N 2 e δ E u / k B T )
d N 3 d t = R N 3 w u ( N 3 N 2 e δ E u / k B T )
N t o t = N 0 + N 1 + N 2 + N 3 = c o n s t ,
P net = P abs P rad = [ α ( I ) + α b ] I W r [ N 2 ( E 20 + E 21 ) + N 3 ( E 30 + E 31 ) ] ,
η c = η ext η abs ( ν , I ) ν f ν 1 ,
h ν f = E 12 + δ E g 2 + δ E u 1 + ( 1 + R / w u ) e δ E u / k B T .
η a b s = α ( I ) α ( I ) + α b = 1 + α b ( 1 + I / I s ) α 0 1 ,
α 0 ( ν ) = σ 12 g ( ν ) N t 1 + e δ E g / k B T .
P max k B T 2 τ 21 N t 1 + e δ E g / k B T ,
C d T d t = i P i = P cool ( λ , T ) + P load ( T ) ,
P b b = σ ε s A s 1 + χ T c 4 T 4 ,

Metrics