Abstract

Strain-induced self-rolled-up microtubes, a category of recently discovered tubular structure with ultrathin walls, have been demonstrated to be unique ring resonators. Recent development in their geometrical and resonant properties are reviewed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, "Optical microcavities," Nature 424, (6950), 839‒846 (2003).
    [CrossRef] [PubMed]
  2. T. Ling and L. J. Guo, "Analysis of the sensing properties of silica microtube resonator sensors," J. Opt. Soc. Am. B 26, (3), 471‒477 (2009).
    [CrossRef]
  3. V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000).
    [CrossRef]
  4. R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, (9), 091905 (2007).
    [CrossRef]
  5. F. Li and Z. Mi, "Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers," Opt. Express 17, (22), 19933‒19939 (2009).
    [CrossRef] [PubMed]
  6. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, (7), 077403 (2006).
    [CrossRef] [PubMed]
  7. V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, "Optical resonance tuning and polarization of thin-walled tubular microcavities," Opt. Lett. 34, (15), 2345‒2347 (2009).
    [CrossRef] [PubMed]
  8. X. Li, "Strain induced semiconductor nanotubes: from formation process to device applications," J. Phys. D Appl. Phys. 41, (19), 193001 (2008).
    [CrossRef]
  9. I. S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, and X. Li, "Strain-induced self-rolling III–V tubular nanostructures: formation process and photonic applications," Proc. SPIE 7608, 760810 (2010).
  10. O. G. Schmidt, C. Deneke, Y. M. Manz, and C. Müller, "Semiconductor tubes, rods and rings of nanometer and micrometer dimension," Physica E 13, (2–4), 969‒973 (2002).
    [CrossRef]
  11. T. Kipp, C. Strelow, and D. Heitmann, "Light confinement in microtubes," Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, D. Heitmann, ed., Springer, 2010, pp. 165‒182.
  12. Z. Mi, S. Vicknesh, F. Li, and P. Bhattacharya, "Self-assembled InGaAs/GaAs quantum dot microtube coherent light sources on GaAs and silicon," Proc. SPIE 7722, 72200S (2009).
  13. S. A. Scott and M. G. Lagally, "Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys," J. Phys. D Appl. Phys. 40, (4), R75‒R92 (2007).
    [CrossRef]
  14. V. Y. Prinz, V. A. Seleznev, A. V. Prinz, and A. V. Kopylov, "3D heterostructures and systems for novel MEMS/NEMS," Sci. Technol. Adv. Mater. 10, (3), 034502 (2009).
    [CrossRef]
  15. M. Huang, F. Cavallo, F. Liu, and M. G. Lagally, "Nanomechanical architecture of semiconductor nanomembranes," Nanoscale 3, (1), 96‒120 (2011).
    [CrossRef] [PubMed]
  16. R. Stevenson, "Tube lasers prepare to light up silicon circuits," 2009, http://compoundsemiconductor.net/csc/features-details/19498536/Tube-lasers-prepare-to-light-up-silicon-circuit.html
  17. I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano Lett. 10, (10), 3927‒3932 (2010).
    [CrossRef] [PubMed]
  18. I. S. Chun and X. Li, "Controlled assembly and dispersion of strain-induced InGaAs/GaAs nanotubes," IEEE Trans. NanoTechnol. 7, (4), 493‒495 (2008).
    [CrossRef]
  19. S. V. Golod, V. Y. Prinz, V. I. Mashanov, and A. K. Gutakovsky, "Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils," Semicond. Sci. Technol. 16, (3), 181‒185 (2001).
    [CrossRef]
  20. P. Bianucci, S. Mukherjee, P. Poole, and Z. Mi, "Self-organized 1.55 µmInAs/InP quantum dot tube nanoscale coherent light sources," 2011 IEEE Winter Topicals (WTM), IEEE, 2011, pp. 127‒128.
  21. Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
    [CrossRef] [PubMed]
  22. M. Yu, M. Huang, D. E. Savage, M. G. Lagally, and R. H. Blick, "Local-wetting-induced deformation of rolled-up Si/Si-Ge nanomembranes: a potential route for remote chemical sensing," IEEE Trans. Nanotechnol. 10, (1), 21‒25 (2011).
    [CrossRef]
  23. Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
    [CrossRef]
  24. W. Chern, H.-K. Tsai, and X. Li, unpublished
  25. W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
    [CrossRef] [PubMed]
  26. E. J. Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, "System investigation of a rolled-up metamaterial optical hyperlens structure," Appl. Phys. Lett. 95, (8), 083104 (2009).
    [CrossRef]
  27. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, "Combined surface plasmon and classical waveguiding through metamaterial fiber design," Nano Lett. 10, (1), 1‒5 (2010).
    [CrossRef] [PubMed]
  28. S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
    [CrossRef] [PubMed]
  29. E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, "Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors," Nano Lett. 11, (10), 4037‒4042 (2011).
    [CrossRef] [PubMed]
  30. I. S. Chun, K. Bassett, A. Challa, and X. Li, "Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes," Appl. Phys. Lett. 96, (25), 251106 (2010).
    [CrossRef]
  31. Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-assisted chemical etching of silicon: a review," Adv. Mater. (Deerfield Beach Fla.) 23, (2), 285‒308 (2011).
  32. A. Challa, "Engineering strain-induced self-rolling semiconductor tubes through geometry and patterning," 2010, http://hdl.handle.net/2142/16181.
  33. X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2 O2 produces porous silicon," Appl. Phys. Lett. 77, (16), 2572 (2000).
    [CrossRef]
  34. I. S. Chun, E. K. Chow, and X. Li, "Nanoscale three dimensional pattern formation in light emitting porous silicon," Appl. Phys. Lett. 92, (19), 191113 (2008).
    [CrossRef]
  35. P. Cendula, S. Kiravittaya, I. Mönch, J. Schumann, and O. G. Schmidt, "Directional roll-up of nanomembranes mediated by wrinkling," Nano Lett. 11, (1), 236‒240 (2011).
    [CrossRef] [PubMed]
  36. Z. Tian, F. Li, Z. Mi, and D. V. Plant, "Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers," IEEE Photon. Technol. Lett. 22, (5), 311‒313 (2010).
    [CrossRef]
  37. J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
    [CrossRef] [PubMed]
  38. N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
    [CrossRef]
  39. S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, "Light emission and wave guiding of quantum dots in a tube," Appl. Phys. Lett. 88, (11), 111120 (2006).
    [CrossRef]
  40. S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, "Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube," Phys. Rev. B 78, (3), 035317 (2008).
    [CrossRef]
  41. F. Li, Z. Mi, and S. Vicknesh, "Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes," Opt. Lett. 34, (19), 2915‒2917 (2009).
    [CrossRef] [PubMed]
  42. K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
    [CrossRef] [PubMed]
  43. Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008).
    [CrossRef] [PubMed]
  44. F. Li and Z. Mi, "Multiwavelength rolled-up InGaAs/GaAs quantum dot microtube lasers," Proc. SPIE 7591, 75910O (2010).
  45. G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, "Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications," ACS Nano 4, (6), 3123‒3130 (2010).
    [CrossRef] [PubMed]
  46. F. Li, S. Vicknesh, and Z. Mi, "Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature," Electron. Lett. 45, (12), 645‒646 (2009).
    [CrossRef]
  47. C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008).
    [CrossRef]
  48. S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, and W. Hansen, "Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes," Physica E 23, (3–4), 274‒279 (2004).
    [CrossRef]
  49. S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz, "Evenly curved two-dimensional electron systems in rolled-up Hall bars," Appl. Phys. Lett. 88, (21), 212113 (2006).
    [CrossRef]

2011 (5)

M. Huang, F. Cavallo, F. Liu, and M. G. Lagally, "Nanomechanical architecture of semiconductor nanomembranes," Nanoscale 3, (1), 96‒120 (2011).
[CrossRef] [PubMed]

M. Yu, M. Huang, D. E. Savage, M. G. Lagally, and R. H. Blick, "Local-wetting-induced deformation of rolled-up Si/Si-Ge nanomembranes: a potential route for remote chemical sensing," IEEE Trans. Nanotechnol. 10, (1), 21‒25 (2011).
[CrossRef]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, "Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors," Nano Lett. 11, (10), 4037‒4042 (2011).
[CrossRef] [PubMed]

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-assisted chemical etching of silicon: a review," Adv. Mater. (Deerfield Beach Fla.) 23, (2), 285‒308 (2011).

P. Cendula, S. Kiravittaya, I. Mönch, J. Schumann, and O. G. Schmidt, "Directional roll-up of nanomembranes mediated by wrinkling," Nano Lett. 11, (1), 236‒240 (2011).
[CrossRef] [PubMed]

2010 (10)

Z. Tian, F. Li, Z. Mi, and D. V. Plant, "Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers," IEEE Photon. Technol. Lett. 22, (5), 311‒313 (2010).
[CrossRef]

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

I. S. Chun, K. Bassett, A. Challa, and X. Li, "Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes," Appl. Phys. Lett. 96, (25), 251106 (2010).
[CrossRef]

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, "Combined surface plasmon and classical waveguiding through metamaterial fiber design," Nano Lett. 10, (1), 1‒5 (2010).
[CrossRef] [PubMed]

I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano Lett. 10, (10), 3927‒3932 (2010).
[CrossRef] [PubMed]

I. S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, and X. Li, "Strain-induced self-rolling III–V tubular nanostructures: formation process and photonic applications," Proc. SPIE 7608, 760810 (2010).

F. Li and Z. Mi, "Multiwavelength rolled-up InGaAs/GaAs quantum dot microtube lasers," Proc. SPIE 7591, 75910O (2010).

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, "Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications," ACS Nano 4, (6), 3123‒3130 (2010).
[CrossRef] [PubMed]

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

2009 (10)

F. Li, S. Vicknesh, and Z. Mi, "Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature," Electron. Lett. 45, (12), 645‒646 (2009).
[CrossRef]

F. Li, Z. Mi, and S. Vicknesh, "Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes," Opt. Lett. 34, (19), 2915‒2917 (2009).
[CrossRef] [PubMed]

Z. Mi, S. Vicknesh, F. Li, and P. Bhattacharya, "Self-assembled InGaAs/GaAs quantum dot microtube coherent light sources on GaAs and silicon," Proc. SPIE 7722, 72200S (2009).

T. Ling and L. J. Guo, "Analysis of the sensing properties of silica microtube resonator sensors," J. Opt. Soc. Am. B 26, (3), 471‒477 (2009).
[CrossRef]

F. Li and Z. Mi, "Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers," Opt. Express 17, (22), 19933‒19939 (2009).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, "Optical resonance tuning and polarization of thin-walled tubular microcavities," Opt. Lett. 34, (15), 2345‒2347 (2009).
[CrossRef] [PubMed]

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

E. J. Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, "System investigation of a rolled-up metamaterial optical hyperlens structure," Appl. Phys. Lett. 95, (8), 083104 (2009).
[CrossRef]

V. Y. Prinz, V. A. Seleznev, A. V. Prinz, and A. V. Kopylov, "3D heterostructures and systems for novel MEMS/NEMS," Sci. Technol. Adv. Mater. 10, (3), 034502 (2009).
[CrossRef]

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

2008 (7)

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

X. Li, "Strain induced semiconductor nanotubes: from formation process to device applications," J. Phys. D Appl. Phys. 41, (19), 193001 (2008).
[CrossRef]

I. S. Chun and X. Li, "Controlled assembly and dispersion of strain-induced InGaAs/GaAs nanotubes," IEEE Trans. NanoTechnol. 7, (4), 493‒495 (2008).
[CrossRef]

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, "Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube," Phys. Rev. B 78, (3), 035317 (2008).
[CrossRef]

I. S. Chun, E. K. Chow, and X. Li, "Nanoscale three dimensional pattern formation in light emitting porous silicon," Appl. Phys. Lett. 92, (19), 191113 (2008).
[CrossRef]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008).
[CrossRef]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008).
[CrossRef] [PubMed]

2007 (2)

S. A. Scott and M. G. Lagally, "Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys," J. Phys. D Appl. Phys. 40, (4), R75‒R92 (2007).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, (9), 091905 (2007).
[CrossRef]

2006 (3)

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, (7), 077403 (2006).
[CrossRef] [PubMed]

S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz, "Evenly curved two-dimensional electron systems in rolled-up Hall bars," Appl. Phys. Lett. 88, (21), 212113 (2006).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, "Light emission and wave guiding of quantum dots in a tube," Appl. Phys. Lett. 88, (11), 111120 (2006).
[CrossRef]

2004 (2)

S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, and W. Hansen, "Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes," Physica E 23, (3–4), 274‒279 (2004).
[CrossRef]

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

2003 (1)

K. J. Vahala, "Optical microcavities," Nature 424, (6950), 839‒846 (2003).
[CrossRef] [PubMed]

2002 (1)

O. G. Schmidt, C. Deneke, Y. M. Manz, and C. Müller, "Semiconductor tubes, rods and rings of nanometer and micrometer dimension," Physica E 13, (2–4), 969‒973 (2002).
[CrossRef]

2001 (1)

S. V. Golod, V. Y. Prinz, V. I. Mashanov, and A. K. Gutakovsky, "Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils," Semicond. Sci. Technol. 16, (3), 181‒185 (2001).
[CrossRef]

2000 (2)

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000).
[CrossRef]

X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2 O2 produces porous silicon," Appl. Phys. Lett. 77, (16), 2572 (2000).
[CrossRef]

Ahmed, N.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

Aida, T.

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

Azeredo, B. P.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

Bassett, K.

I. S. Chun, K. Bassett, A. Challa, and X. Li, "Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes," Appl. Phys. Lett. 96, (25), 251106 (2010).
[CrossRef]

I. S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, and X. Li, "Strain-induced self-rolling III–V tubular nanostructures: formation process and photonic applications," Proc. SPIE 7608, 760810 (2010).

Bastek, B.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

Benyoucef, M.

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, "Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube," Phys. Rev. B 78, (3), 035317 (2008).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, "Light emission and wave guiding of quantum dots in a tube," Appl. Phys. Lett. 88, (11), 111120 (2006).
[CrossRef]

Bertram, F.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

Bhattacharya, P.

Z. Mi, S. Vicknesh, F. Li, and P. Bhattacharya, "Self-assembled InGaAs/GaAs quantum dot microtube coherent light sources on GaAs and silicon," Proc. SPIE 7722, 72200S (2009).

Bianucci, P.

P. Bianucci, S. Mukherjee, P. Poole, and Z. Mi, "Self-organized 1.55 µmInAs/InP quantum dot tube nanoscale coherent light sources," 2011 IEEE Winter Topicals (WTM), IEEE, 2011, pp. 127‒128.

Blick, R. H.

M. Yu, M. Huang, D. E. Savage, M. G. Lagally, and R. H. Blick, "Local-wetting-induced deformation of rolled-up Si/Si-Ge nanomembranes: a potential route for remote chemical sensing," IEEE Trans. Nanotechnol. 10, (1), 21‒25 (2011).
[CrossRef]

Bohn, P. W.

X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2 O2 produces porous silicon," Appl. Phys. Lett. 77, (16), 2572 (2000).
[CrossRef]

Bolaños Quiñones, V. A.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, "Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications," ACS Nano 4, (6), 3123‒3130 (2010).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, "Optical resonance tuning and polarization of thin-walled tubular microcavities," Opt. Lett. 34, (15), 2345‒2347 (2009).
[CrossRef] [PubMed]

Bröll, M.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

Cavallo, F.

M. Huang, F. Cavallo, F. Liu, and M. G. Lagally, "Nanomechanical architecture of semiconductor nanomembranes," Nanoscale 3, (1), 96‒120 (2011).
[CrossRef] [PubMed]

Cendula, P.

P. Cendula, S. Kiravittaya, I. Mönch, J. Schumann, and O. G. Schmidt, "Directional roll-up of nanomembranes mediated by wrinkling," Nano Lett. 11, (1), 236‒240 (2011).
[CrossRef] [PubMed]

Challa, A.

I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano Lett. 10, (10), 3927‒3932 (2010).
[CrossRef] [PubMed]

I. S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, and X. Li, "Strain-induced self-rolling III–V tubular nanostructures: formation process and photonic applications," Proc. SPIE 7608, 760810 (2010).

I. S. Chun, K. Bassett, A. Challa, and X. Li, "Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes," Appl. Phys. Lett. 96, (25), 251106 (2010).
[CrossRef]

A. Challa, "Engineering strain-induced self-rolling semiconductor tubes through geometry and patterning," 2010, http://hdl.handle.net/2142/16181.

Chehovskiy, A. V.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000).
[CrossRef]

Chen, Y.-F.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

Chern, W.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

Chow, E. K.

I. S. Chun, E. K. Chow, and X. Li, "Nanoscale three dimensional pattern formation in light emitting porous silicon," Appl. Phys. Lett. 92, (19), 191113 (2008).
[CrossRef]

Christen, J.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

Chu, P. K.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

Chun, I. S.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

I. S. Chun, K. Bassett, A. Challa, and X. Li, "Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes," Appl. Phys. Lett. 96, (25), 251106 (2010).
[CrossRef]

I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano Lett. 10, (10), 3927‒3932 (2010).
[CrossRef] [PubMed]

I. S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, and X. Li, "Strain-induced self-rolling III–V tubular nanostructures: formation process and photonic applications," Proc. SPIE 7608, 760810 (2010).

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

I. S. Chun, E. K. Chow, and X. Li, "Nanoscale three dimensional pattern formation in light emitting porous silicon," Appl. Phys. Lett. 92, (19), 191113 (2008).
[CrossRef]

I. S. Chun and X. Li, "Controlled assembly and dispersion of strain-induced InGaAs/GaAs nanotubes," IEEE Trans. NanoTechnol. 7, (4), 493‒495 (2008).
[CrossRef]

Coleman, J. J.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

Coric, E.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

Dadgar, A.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

de Boor, J.

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-assisted chemical etching of silicon: a review," Adv. Mater. (Deerfield Beach Fla.) 23, (2), 285‒308 (2011).

Deneke, C.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

O. G. Schmidt, C. Deneke, Y. M. Manz, and C. Müller, "Semiconductor tubes, rods and rings of nanometer and micrometer dimension," Physica E 13, (2–4), 969‒973 (2002).
[CrossRef]

Derickson, B.

I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano Lett. 10, (10), 3927‒3932 (2010).
[CrossRef] [PubMed]

Dietrich, K.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

Ding, F.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, "Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications," ACS Nano 4, (6), 3123‒3130 (2010).
[CrossRef] [PubMed]

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

Fang, N.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

Ferreira, P.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

Fu, R. K. Y.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

Gavrilova, T. A.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000).
[CrossRef]

Geyer, N.

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-assisted chemical etching of silicon: a review," Adv. Mater. (Deerfield Beach Fla.) 23, (2), 285‒308 (2011).

Golod, S. V.

S. V. Golod, V. Y. Prinz, V. I. Mashanov, and A. K. Gutakovsky, "Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils," Semicond. Sci. Technol. 16, (3), 181‒185 (2001).
[CrossRef]

Gösele, U.

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-assisted chemical etching of silicon: a review," Adv. Mater. (Deerfield Beach Fla.) 23, (2), 285‒308 (2011).

Guo, L. J.

Gutakovsky, A. K.

S. V. Golod, V. Y. Prinz, V. I. Mashanov, and A. K. Gutakovsky, "Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils," Semicond. Sci. Technol. 16, (3), 181‒185 (2001).
[CrossRef]

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000).
[CrossRef]

Hansen, W.

S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz, "Evenly curved two-dimensional electron systems in rolled-up Hall bars," Appl. Phys. Lett. 88, (21), 212113 (2006).
[CrossRef]

S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, and W. Hansen, "Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes," Physica E 23, (3–4), 274‒279 (2004).
[CrossRef]

Heitmann, D.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, (7), 077403 (2006).
[CrossRef] [PubMed]

T. Kipp, C. Strelow, and D. Heitmann, "Light confinement in microtubes," Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, D. Heitmann, ed., Springer, 2010, pp. 165‒182.

Heyn, C.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008).
[CrossRef]

S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz, "Evenly curved two-dimensional electron systems in rolled-up Hall bars," Appl. Phys. Lett. 88, (21), 212113 (2006).
[CrossRef]

S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, and W. Hansen, "Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes," Physica E 23, (3–4), 274‒279 (2004).
[CrossRef]

Heyn, Ch.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, (7), 077403 (2006).
[CrossRef] [PubMed]

Holz, M.

S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz, "Evenly curved two-dimensional electron systems in rolled-up Hall bars," Appl. Phys. Lett. 88, (21), 212113 (2006).
[CrossRef]

Hosoda, M.

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

Hsia, K. J.

I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano Lett. 10, (10), 3927‒3932 (2010).
[CrossRef] [PubMed]

Hsu, K.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

Huang, G.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, "Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications," ACS Nano 4, (6), 3123‒3130 (2010).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, "Optical resonance tuning and polarization of thin-walled tubular microcavities," Opt. Lett. 34, (15), 2345‒2347 (2009).
[CrossRef] [PubMed]

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

Huang, M.

M. Yu, M. Huang, D. E. Savage, M. G. Lagally, and R. H. Blick, "Local-wetting-induced deformation of rolled-up Si/Si-Ge nanomembranes: a potential route for remote chemical sensing," IEEE Trans. Nanotechnol. 10, (1), 21‒25 (2011).
[CrossRef]

M. Huang, F. Cavallo, F. Liu, and M. G. Lagally, "Nanomechanical architecture of semiconductor nanomembranes," Nanoscale 3, (1), 96‒120 (2011).
[CrossRef] [PubMed]

Huang, Z.

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-assisted chemical etching of silicon: a review," Adv. Mater. (Deerfield Beach Fla.) 23, (2), 285‒308 (2011).

Jo, S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

Jung, I.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

Kim, H.-S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

Kim, K.-H.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

Kipp, T.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, (7), 077403 (2006).
[CrossRef] [PubMed]

T. Kipp, C. Strelow, and D. Heitmann, "Light confinement in microtubes," Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, D. Heitmann, ed., Springer, 2010, pp. 165‒182.

Kiravittaya, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, "Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors," Nano Lett. 11, (10), 4037‒4042 (2011).
[CrossRef] [PubMed]

P. Cendula, S. Kiravittaya, I. Mönch, J. Schumann, and O. G. Schmidt, "Directional roll-up of nanomembranes mediated by wrinkling," Nano Lett. 11, (1), 236‒240 (2011).
[CrossRef] [PubMed]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, "Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications," ACS Nano 4, (6), 3123‒3130 (2010).
[CrossRef] [PubMed]

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, "Optical resonance tuning and polarization of thin-walled tubular microcavities," Opt. Lett. 34, (15), 2345‒2347 (2009).
[CrossRef] [PubMed]

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, "Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube," Phys. Rev. B 78, (3), 035317 (2008).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, "Light emission and wave guiding of quantum dots in a tube," Appl. Phys. Lett. 88, (11), 111120 (2006).
[CrossRef]

Kishimoto, K.

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

Kopylov, A. V.

V. Y. Prinz, V. A. Seleznev, A. V. Prinz, and A. V. Kopylov, "3D heterostructures and systems for novel MEMS/NEMS," Sci. Technol. Adv. Mater. 10, (3), 034502 (2009).
[CrossRef]

Krohn, A.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

Krost, A.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

Kubota, K.

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

Lagally, M. G.

M. Yu, M. Huang, D. E. Savage, M. G. Lagally, and R. H. Blick, "Local-wetting-induced deformation of rolled-up Si/Si-Ge nanomembranes: a potential route for remote chemical sensing," IEEE Trans. Nanotechnol. 10, (1), 21‒25 (2011).
[CrossRef]

M. Huang, F. Cavallo, F. Liu, and M. G. Lagally, "Nanomechanical architecture of semiconductor nanomembranes," Nanoscale 3, (1), 96‒120 (2011).
[CrossRef] [PubMed]

S. A. Scott and M. G. Lagally, "Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys," J. Phys. D Appl. Phys. 40, (4), R75‒R92 (2007).
[CrossRef]

Li, F.

Z. Tian, F. Li, Z. Mi, and D. V. Plant, "Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers," IEEE Photon. Technol. Lett. 22, (5), 311‒313 (2010).
[CrossRef]

F. Li and Z. Mi, "Multiwavelength rolled-up InGaAs/GaAs quantum dot microtube lasers," Proc. SPIE 7591, 75910O (2010).

F. Li, Z. Mi, and S. Vicknesh, "Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes," Opt. Lett. 34, (19), 2915‒2917 (2009).
[CrossRef] [PubMed]

F. Li, S. Vicknesh, and Z. Mi, "Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature," Electron. Lett. 45, (12), 645‒646 (2009).
[CrossRef]

Z. Mi, S. Vicknesh, F. Li, and P. Bhattacharya, "Self-assembled InGaAs/GaAs quantum dot microtube coherent light sources on GaAs and silicon," Proc. SPIE 7722, 72200S (2009).

F. Li and Z. Mi, "Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers," Opt. Express 17, (22), 19933‒19939 (2009).
[CrossRef] [PubMed]

Li, X.

I. S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, and X. Li, "Strain-induced self-rolling III–V tubular nanostructures: formation process and photonic applications," Proc. SPIE 7608, 760810 (2010).

I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano Lett. 10, (10), 3927‒3932 (2010).
[CrossRef] [PubMed]

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

I. S. Chun, K. Bassett, A. Challa, and X. Li, "Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes," Appl. Phys. Lett. 96, (25), 251106 (2010).
[CrossRef]

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

I. S. Chun, E. K. Chow, and X. Li, "Nanoscale three dimensional pattern formation in light emitting porous silicon," Appl. Phys. Lett. 92, (19), 191113 (2008).
[CrossRef]

I. S. Chun and X. Li, "Controlled assembly and dispersion of strain-induced InGaAs/GaAs nanotubes," IEEE Trans. NanoTechnol. 7, (4), 493‒495 (2008).
[CrossRef]

X. Li, "Strain induced semiconductor nanotubes: from formation process to device applications," J. Phys. D Appl. Phys. 41, (19), 193001 (2008).
[CrossRef]

X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2 O2 produces porous silicon," Appl. Phys. Lett. 77, (16), 2572 (2000).
[CrossRef]

Ling, T.

Liu, F.

M. Huang, F. Cavallo, F. Liu, and M. G. Lagally, "Nanomechanical architecture of semiconductor nanomembranes," Nanoscale 3, (1), 96‒120 (2011).
[CrossRef] [PubMed]

Liu, Z.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, "Combined surface plasmon and classical waveguiding through metamaterial fiber design," Nano Lett. 10, (1), 1‒5 (2010).
[CrossRef] [PubMed]

E. J. Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, "System investigation of a rolled-up metamaterial optical hyperlens structure," Appl. Phys. Lett. 95, (8), 083104 (2009).
[CrossRef]

Manz, Y. M.

O. G. Schmidt, C. Deneke, Y. M. Manz, and C. Müller, "Semiconductor tubes, rods and rings of nanometer and micrometer dimension," Physica E 13, (2–4), 969‒973 (2002).
[CrossRef]

Mashanov, V. I.

S. V. Golod, V. Y. Prinz, V. I. Mashanov, and A. K. Gutakovsky, "Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils," Semicond. Sci. Technol. 16, (3), 181‒185 (2001).
[CrossRef]

Mei, Y.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, "Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors," Nano Lett. 11, (10), 4037‒4042 (2011).
[CrossRef] [PubMed]

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, "Combined surface plasmon and classical waveguiding through metamaterial fiber design," Nano Lett. 10, (1), 1‒5 (2010).
[CrossRef] [PubMed]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, "Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications," ACS Nano 4, (6), 3123‒3130 (2010).
[CrossRef] [PubMed]

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, "Optical resonance tuning and polarization of thin-walled tubular microcavities," Opt. Lett. 34, (15), 2345‒2347 (2009).
[CrossRef] [PubMed]

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

Mei, Y. F.

E. J. Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, "System investigation of a rolled-up metamaterial optical hyperlens structure," Appl. Phys. Lett. 95, (8), 083104 (2009).
[CrossRef]

Meitl, M.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

Menard, E.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

Mendach, S.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, "Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube," Phys. Rev. B 78, (3), 035317 (2008).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, (9), 091905 (2007).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, "Light emission and wave guiding of quantum dots in a tube," Appl. Phys. Lett. 88, (11), 111120 (2006).
[CrossRef]

S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz, "Evenly curved two-dimensional electron systems in rolled-up Hall bars," Appl. Phys. Lett. 88, (21), 212113 (2006).
[CrossRef]

S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, and W. Hansen, "Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes," Physica E 23, (3–4), 274‒279 (2004).
[CrossRef]

Mews, A.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

Mi, Z.

F. Li and Z. Mi, "Multiwavelength rolled-up InGaAs/GaAs quantum dot microtube lasers," Proc. SPIE 7591, 75910O (2010).

Z. Tian, F. Li, Z. Mi, and D. V. Plant, "Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers," IEEE Photon. Technol. Lett. 22, (5), 311‒313 (2010).
[CrossRef]

F. Li, Z. Mi, and S. Vicknesh, "Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes," Opt. Lett. 34, (19), 2915‒2917 (2009).
[CrossRef] [PubMed]

F. Li, S. Vicknesh, and Z. Mi, "Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature," Electron. Lett. 45, (12), 645‒646 (2009).
[CrossRef]

F. Li and Z. Mi, "Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers," Opt. Express 17, (22), 19933‒19939 (2009).
[CrossRef] [PubMed]

Z. Mi, S. Vicknesh, F. Li, and P. Bhattacharya, "Self-assembled InGaAs/GaAs quantum dot microtube coherent light sources on GaAs and silicon," Proc. SPIE 7722, 72200S (2009).

P. Bianucci, S. Mukherjee, P. Poole, and Z. Mi, "Self-organized 1.55 µmInAs/InP quantum dot tube nanoscale coherent light sources," 2011 IEEE Winter Topicals (WTM), IEEE, 2011, pp. 127‒128.

Miao, X.

I. S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, and X. Li, "Strain-induced self-rolling III–V tubular nanostructures: formation process and photonic applications," Proc. SPIE 7608, 760810 (2010).

Mönch, I.

P. Cendula, S. Kiravittaya, I. Mönch, J. Schumann, and O. G. Schmidt, "Directional roll-up of nanomembranes mediated by wrinkling," Nano Lett. 11, (1), 236‒240 (2011).
[CrossRef] [PubMed]

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

Mukherjee, S.

P. Bianucci, S. Mukherjee, P. Poole, and Z. Mi, "Self-organized 1.55 µmInAs/InP quantum dot tube nanoscale coherent light sources," 2011 IEEE Winter Topicals (WTM), IEEE, 2011, pp. 127‒128.

Müller, C.

O. G. Schmidt, C. Deneke, Y. M. Manz, and C. Müller, "Semiconductor tubes, rods and rings of nanometer and micrometer dimension," Physica E 13, (2–4), 969‒973 (2002).
[CrossRef]

Nashima, S.

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

Ohtani, N.

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

Paik, U.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

Plant, D. V.

Z. Tian, F. Li, Z. Mi, and D. V. Plant, "Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers," IEEE Photon. Technol. Lett. 22, (5), 311‒313 (2010).
[CrossRef]

Plumhof, J. D.

Poole, P.

P. Bianucci, S. Mukherjee, P. Poole, and Z. Mi, "Self-organized 1.55 µmInAs/InP quantum dot tube nanoscale coherent light sources," 2011 IEEE Winter Topicals (WTM), IEEE, 2011, pp. 127‒128.

Preobrazhenskii, V. V.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000).
[CrossRef]

Prinz, A. V.

V. Y. Prinz, V. A. Seleznev, A. V. Prinz, and A. V. Kopylov, "3D heterostructures and systems for novel MEMS/NEMS," Sci. Technol. Adv. Mater. 10, (3), 034502 (2009).
[CrossRef]

Prinz, V. Y.

V. Y. Prinz, V. A. Seleznev, A. V. Prinz, and A. V. Kopylov, "3D heterostructures and systems for novel MEMS/NEMS," Sci. Technol. Adv. Mater. 10, (3), 034502 (2009).
[CrossRef]

S. V. Golod, V. Y. Prinz, V. I. Mashanov, and A. K. Gutakovsky, "Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils," Semicond. Sci. Technol. 16, (3), 181‒185 (2001).
[CrossRef]

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000).
[CrossRef]

Putyato, M. A.

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000).
[CrossRef]

Rastelli, A.

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, "Optical resonance tuning and polarization of thin-walled tubular microcavities," Opt. Lett. 34, (15), 2345‒2347 (2009).
[CrossRef] [PubMed]

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, "Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube," Phys. Rev. B 78, (3), 035317 (2008).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, (9), 091905 (2007).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, "Light emission and wave guiding of quantum dots in a tube," Appl. Phys. Lett. 88, (11), 111120 (2006).
[CrossRef]

Rehberg, H.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008).
[CrossRef]

Reindl, T.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

Rogers, J. A.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

Saarinen, M.

I. S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, and X. Li, "Strain-induced self-rolling III–V tubular nanostructures: formation process and photonic applications," Proc. SPIE 7608, 760810 (2010).

Sanchez, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, "Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors," Nano Lett. 11, (10), 4037‒4042 (2011).
[CrossRef] [PubMed]

Saravanan, S.

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

Sato, Y.

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

Savage, D. E.

M. Yu, M. Huang, D. E. Savage, M. G. Lagally, and R. H. Blick, "Local-wetting-induced deformation of rolled-up Si/Si-Ge nanomembranes: a potential route for remote chemical sensing," IEEE Trans. Nanotechnol. 10, (1), 21‒25 (2011).
[CrossRef]

Schliehe, C.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

Schmidt, O. G.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, "Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors," Nano Lett. 11, (10), 4037‒4042 (2011).
[CrossRef] [PubMed]

Schmidt, O. G.

P. Cendula, S. Kiravittaya, I. Mönch, J. Schumann, and O. G. Schmidt, "Directional roll-up of nanomembranes mediated by wrinkling," Nano Lett. 11, (1), 236‒240 (2011).
[CrossRef] [PubMed]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, "Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications," ACS Nano 4, (6), 3123‒3130 (2010).
[CrossRef] [PubMed]

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, "Combined surface plasmon and classical waveguiding through metamaterial fiber design," Nano Lett. 10, (1), 1‒5 (2010).
[CrossRef] [PubMed]

E. J. Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, "System investigation of a rolled-up metamaterial optical hyperlens structure," Appl. Phys. Lett. 95, (8), 083104 (2009).
[CrossRef]

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

V. A. Bolaños Quiñones, G. Huang, J. D. Plumhof, S. Kiravittaya, A. Rastelli, Y. Mei, and O. G. Schmidt, "Optical resonance tuning and polarization of thin-walled tubular microcavities," Opt. Lett. 34, (15), 2345‒2347 (2009).
[CrossRef] [PubMed]

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, "Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube," Phys. Rev. B 78, (3), 035317 (2008).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, (9), 091905 (2007).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, "Light emission and wave guiding of quantum dots in a tube," Appl. Phys. Lett. 88, (11), 111120 (2006).
[CrossRef]

O. G. Schmidt, C. Deneke, Y. M. Manz, and C. Müller, "Semiconductor tubes, rods and rings of nanometer and micrometer dimension," Physica E 13, (2–4), 969‒973 (2002).
[CrossRef]

Schnüll, S.

S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, and W. Hansen, "Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes," Physica E 23, (3–4), 274‒279 (2004).
[CrossRef]

Schultz, C. M.

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008).
[CrossRef]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008).
[CrossRef] [PubMed]

Schulze, S.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, "Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors," Nano Lett. 11, (10), 4037‒4042 (2011).
[CrossRef] [PubMed]

Schumacher, O.

S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz, "Evenly curved two-dimensional electron systems in rolled-up Hall bars," Appl. Phys. Lett. 88, (21), 212113 (2006).
[CrossRef]

S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, and W. Hansen, "Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes," Physica E 23, (3–4), 274‒279 (2004).
[CrossRef]

Schumann, J.

P. Cendula, S. Kiravittaya, I. Mönch, J. Schumann, and O. G. Schmidt, "Directional roll-up of nanomembranes mediated by wrinkling," Nano Lett. 11, (1), 236‒240 (2011).
[CrossRef] [PubMed]

Schwaiger, S.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

Scott, S. A.

S. A. Scott and M. G. Lagally, "Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys," J. Phys. D Appl. Phys. 40, (4), R75‒R92 (2007).
[CrossRef]

Seleznev, V. A.

V. Y. Prinz, V. A. Seleznev, A. V. Prinz, and A. V. Kopylov, "3D heterostructures and systems for novel MEMS/NEMS," Sci. Technol. Adv. Mater. 10, (3), 034502 (2009).
[CrossRef]

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000).
[CrossRef]

Smith, E. J.

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, "Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors," Nano Lett. 11, (10), 4037‒4042 (2011).
[CrossRef] [PubMed]

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, "Combined surface plasmon and classical waveguiding through metamaterial fiber design," Nano Lett. 10, (1), 1‒5 (2010).
[CrossRef] [PubMed]

E. J. Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, "System investigation of a rolled-up metamaterial optical hyperlens structure," Appl. Phys. Lett. 95, (8), 083104 (2009).
[CrossRef]

Solovev, A. A.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

Songmuang, R.

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, "Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube," Phys. Rev. B 78, (3), 035317 (2008).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, (9), 091905 (2007).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, "Light emission and wave guiding of quantum dots in a tube," Appl. Phys. Lett. 88, (11), 111120 (2006).
[CrossRef]

Stark, Y.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

Stemmann, A.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

Stickler, D.

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

Stoffel, M.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

Strelow, C.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008).
[CrossRef]

T. Kipp, C. Strelow, and D. Heitmann, "Light confinement in microtubes," Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, D. Heitmann, ed., Springer, 2010, pp. 165‒182.

Strelow, Ch.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, (7), 077403 (2006).
[CrossRef] [PubMed]

Thurmer, D. J.

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

Tian, Z.

Z. Tian, F. Li, Z. Mi, and D. V. Plant, "Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers," IEEE Photon. Technol. Lett. 22, (5), 311‒313 (2010).
[CrossRef]

Ureña, E. B.

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

Vaccaro, P.

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

Vahala, K. J.

K. J. Vahala, "Optical microcavities," Nature 424, (6950), 839‒846 (2003).
[CrossRef] [PubMed]

Vicknesh, S.

Z. Mi, S. Vicknesh, F. Li, and P. Bhattacharya, "Self-assembled InGaAs/GaAs quantum dot microtube coherent light sources on GaAs and silicon," Proc. SPIE 7722, 72200S (2009).

F. Li, Z. Mi, and S. Vicknesh, "Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes," Opt. Lett. 34, (19), 2915‒2917 (2009).
[CrossRef] [PubMed]

F. Li, S. Vicknesh, and Z. Mi, "Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature," Electron. Lett. 45, (12), 645‒646 (2009).
[CrossRef]

Weller, H.

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

Welsch, H.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008).
[CrossRef]

S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz, "Evenly curved two-dimensional electron systems in rolled-up Hall bars," Appl. Phys. Lett. 88, (21), 212113 (2006).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, (7), 077403 (2006).
[CrossRef] [PubMed]

S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, and W. Hansen, "Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes," Physica E 23, (3–4), 274‒279 (2004).
[CrossRef]

Werner, P.

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-assisted chemical etching of silicon: a review," Adv. Mater. (Deerfield Beach Fla.) 23, (2), 285‒308 (2011).

Yoon, J.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

Yu, M.

M. Yu, M. Huang, D. E. Savage, M. G. Lagally, and R. H. Blick, "Local-wetting-induced deformation of rolled-up Si/Si-Ge nanomembranes: a potential route for remote chemical sensing," IEEE Trans. Nanotechnol. 10, (1), 21‒25 (2011).
[CrossRef]

Zuo, J. M.

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

ACS Nano (2)

Y. Mei, D. J. Thurmer, C. Deneke, S. Kiravittaya, Y.-F. Chen, A. Dadgar, F. Bertram, B. Bastek, A. Krost, J. Christen, T. Reindl, M. Stoffel, E. Coric, and O. G. Schmidt, "Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets," ACS Nano 3, (7), 1663‒1668 (2009).
[CrossRef] [PubMed]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, "Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications," ACS Nano 4, (6), 3123‒3130 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

Y. Mei, G. Huang, A. A. Solovev, E. B. Ureña, I. Mönch, F. Ding, T. Reindl, R. K. Y. Fu, P. K. Chu, and O. G. Schmidt, "Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers," Adv. Mater. (Deerfield Beach Fla.) 20, (21), 4085‒4090 (2008).
[CrossRef]

Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gösele, "Metal-assisted chemical etching of silicon: a review," Adv. Mater. (Deerfield Beach Fla.) 23, (2), 285‒308 (2011).

Appl. Phys. Lett. (7)

X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2 O2 produces porous silicon," Appl. Phys. Lett. 77, (16), 2572 (2000).
[CrossRef]

I. S. Chun, E. K. Chow, and X. Li, "Nanoscale three dimensional pattern formation in light emitting porous silicon," Appl. Phys. Lett. 92, (19), 191113 (2008).
[CrossRef]

E. J. Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, "System investigation of a rolled-up metamaterial optical hyperlens structure," Appl. Phys. Lett. 95, (8), 083104 (2009).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, (9), 091905 (2007).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. G. Schmidt, "Light emission and wave guiding of quantum dots in a tube," Appl. Phys. Lett. 88, (11), 111120 (2006).
[CrossRef]

I. S. Chun, K. Bassett, A. Challa, and X. Li, "Tuning the photoluminescence characteristics with curvature for rolled-up GaAs quantum well microtubes," Appl. Phys. Lett. 96, (25), 251106 (2010).
[CrossRef]

S. Mendach, O. Schumacher, H. Welsch, C. Heyn, W. Hansen, and M. Holz, "Evenly curved two-dimensional electron systems in rolled-up Hall bars," Appl. Phys. Lett. 88, (21), 212113 (2006).
[CrossRef]

Electron. Lett. (1)

F. Li, S. Vicknesh, and Z. Mi, "Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature," Electron. Lett. 45, (12), 645‒646 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Tian, F. Li, Z. Mi, and D. V. Plant, "Controlled transfer of single rolled-up InGaAs–GaAs quantum-dot microtube ring resonators using optical fiber abrupt tapers," IEEE Photon. Technol. Lett. 22, (5), 311‒313 (2010).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

M. Yu, M. Huang, D. E. Savage, M. G. Lagally, and R. H. Blick, "Local-wetting-induced deformation of rolled-up Si/Si-Ge nanomembranes: a potential route for remote chemical sensing," IEEE Trans. Nanotechnol. 10, (1), 21‒25 (2011).
[CrossRef]

I. S. Chun and X. Li, "Controlled assembly and dispersion of strain-induced InGaAs/GaAs nanotubes," IEEE Trans. NanoTechnol. 7, (4), 493‒495 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (2)

X. Li, "Strain induced semiconductor nanotubes: from formation process to device applications," J. Phys. D Appl. Phys. 41, (19), 193001 (2008).
[CrossRef]

S. A. Scott and M. G. Lagally, "Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys," J. Phys. D Appl. Phys. 40, (4), R75‒R92 (2007).
[CrossRef]

Nano Lett. (6)

I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano Lett. 10, (10), 3927‒3932 (2010).
[CrossRef] [PubMed]

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, "Combined surface plasmon and classical waveguiding through metamaterial fiber design," Nano Lett. 10, (1), 1‒5 (2010).
[CrossRef] [PubMed]

P. Cendula, S. Kiravittaya, I. Mönch, J. Schumann, and O. G. Schmidt, "Directional roll-up of nanomembranes mediated by wrinkling," Nano Lett. 11, (1), 236‒240 (2011).
[CrossRef] [PubMed]

W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K.-H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. Li, "Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays," Nano Lett. 10, (5), 1582‒1588 (2010).
[CrossRef] [PubMed]

E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez, and O. G. Schmidt, "Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors," Nano Lett. 11, (10), 4037‒4042 (2011).
[CrossRef] [PubMed]

K. Dietrich, C. Strelow, C. Schliehe, C. Heyn, A. Stemmann, S. Schwaiger, S. Mendach, A. Mews, H. Weller, D. Heitmann, and T. Kipp, "Optical modes excited by evanescent-wave-coupled PbS nanocrystals in semiconductor microtube bottle resonators," Nano Lett. 10, (2), 627‒631 (2010).
[CrossRef] [PubMed]

Nanoscale (1)

M. Huang, F. Cavallo, F. Liu, and M. G. Lagally, "Nanomechanical architecture of semiconductor nanomembranes," Nanoscale 3, (1), 96‒120 (2011).
[CrossRef] [PubMed]

Nature (2)

K. J. Vahala, "Optical microcavities," Nature 424, (6950), 839‒846 (2003).
[CrossRef] [PubMed]

J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature 465, (7296), 329‒333 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, "Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube," Phys. Rev. B 78, (3), 035317 (2008).
[CrossRef]

Phys. Rev. Lett. (3)

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, "Optical microcavities formed by semiconductor microtubes using a bottlelike geometry," Phys. Rev. Lett. 101, (12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, (7), 077403 (2006).
[CrossRef] [PubMed]

S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann, and S. Mendach, "Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime," Phys. Rev. Lett. 102, (16), 163903 (2009).
[CrossRef] [PubMed]

Physica E (5)

N. Ohtani, K. Kishimoto, K. Kubota, S. Saravanan, Y. Sato, S. Nashima, P. Vaccaro, T. Aida, and M. Hosoda, "Uniaxial-strain-induced transition from type-II to type-I band configuration of quantum well microtubes," Physica E 21, (2–4), 732‒736 (2004).
[CrossRef]

V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato, and T. A. Gavrilova, "Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays," Physica E 6, (1–4), 828‒831 (2000).
[CrossRef]

O. G. Schmidt, C. Deneke, Y. M. Manz, and C. Müller, "Semiconductor tubes, rods and rings of nanometer and micrometer dimension," Physica E 13, (2–4), 969‒973 (2002).
[CrossRef]

C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, "Spatial emission characteristics of a semiconductor microtube ring resonator," Physica E 40, (6), 1836‒1839 (2008).
[CrossRef]

S. Mendach, O. Schumacher, C. Heyn, S. Schnüll, H. Welsch, and W. Hansen, "Preparation of curved two-dimensional electron systems in InGaAs/GaAs-microtubes," Physica E 23, (3–4), 274‒279 (2004).
[CrossRef]

Proc. SPIE (3)

F. Li and Z. Mi, "Multiwavelength rolled-up InGaAs/GaAs quantum dot microtube lasers," Proc. SPIE 7591, 75910O (2010).

Z. Mi, S. Vicknesh, F. Li, and P. Bhattacharya, "Self-assembled InGaAs/GaAs quantum dot microtube coherent light sources on GaAs and silicon," Proc. SPIE 7722, 72200S (2009).

I. S. Chun, K. Bassett, A. Challa, X. Miao, M. Saarinen, and X. Li, "Strain-induced self-rolling III–V tubular nanostructures: formation process and photonic applications," Proc. SPIE 7608, 760810 (2010).

Sci. Technol. Adv. Mater. (1)

V. Y. Prinz, V. A. Seleznev, A. V. Prinz, and A. V. Kopylov, "3D heterostructures and systems for novel MEMS/NEMS," Sci. Technol. Adv. Mater. 10, (3), 034502 (2009).
[CrossRef]

Semicond. Sci. Technol. (1)

S. V. Golod, V. Y. Prinz, V. I. Mashanov, and A. K. Gutakovsky, "Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils," Semicond. Sci. Technol. 16, (3), 181‒185 (2001).
[CrossRef]

Other (5)

P. Bianucci, S. Mukherjee, P. Poole, and Z. Mi, "Self-organized 1.55 µmInAs/InP quantum dot tube nanoscale coherent light sources," 2011 IEEE Winter Topicals (WTM), IEEE, 2011, pp. 127‒128.

W. Chern, H.-K. Tsai, and X. Li, unpublished

A. Challa, "Engineering strain-induced self-rolling semiconductor tubes through geometry and patterning," 2010, http://hdl.handle.net/2142/16181.

T. Kipp, C. Strelow, and D. Heitmann, "Light confinement in microtubes," Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals, D. Heitmann, ed., Springer, 2010, pp. 165‒182.

R. Stevenson, "Tube lasers prepare to light up silicon circuits," 2009, http://compoundsemiconductor.net/csc/features-details/19498536/Tube-lasers-prepare-to-light-up-silicon-circuit.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Figure 1
Figure 1

Schematic illustration of the mechanism of strain-induced deformation of membranes. (a) GaAs/InAs bilayer structure with AlAs as the sacrificial layer, where InAs has a larger lattice constant than GaAs. (b) The bilayer is pseudomorphically deposited on the substrate; InAs experiences compressive strain and GaAs experiences tensile strain. (c) Selectively removing the AlAs sacrificial layer releases the bilayer, and a net momentum derived from the opposite force from each of the bilayers drives the membrane to curve and roll into tubes. Adapted from [3].

Figure 2
Figure 2

Scanning electron microscope (SEM) images of wafer scale ordered array of In0.30Ga0.7As/GaAs bilayer microtubes, with increasing magnification from left to right.

Figure 3
Figure 3

(a) SEM images of rolled-up In 0 . 3 Ga 0 . 7 As–GaAs microtubes with periodic holes patterned before rolling. Insets show the membrane pattern. Porous InGaAs–GaAs microtubes formed by metal assisted chemical etching for (b) 5 s and (c) 15 s after rolling up the tube. Adapted from [30, 32].

Figure 4
Figure 4

Transfer of rolled-up microtubes using tapered optical fiber. (a) Illustration of the liftoff of a microtube device from the host GaAs substrate. (b) Optical microscopy and SEM (inset) images of a tube attached to the tip of a fiber during the transfer process. Reproduced with permission from Ref. [36].

Figure 5
Figure 5

Transfer printing of an InGaAs–GaAs microtube array. From left to right, SEM images of transferred tubes on PDMS; enlarged images of a tube on PDMS after transfer, showing the integrity of the tube; and the host GaAs substrate after tubes are transferred.

Figure 6
Figure 6

Illustration of rolled-up tubes with epitaxial QW, QD, and nanowires as the active media. Reproduced with permission from [9].

Figure 7
Figure 7

PL spectra from a 5 nm GaAs QW structure before and after rolling up, as well as rolled-up tubes with periodic holes patterned in the tube wall.

Figure 8
Figure 8

(a), (b) Illustrations of the formation of free-standing rolled-up microtubes using a U-shaped mesa. (c) SEM image of the rolled-up tube formed by using the illustrated procedure. Reproduced with permission from [12].

Figure 9
Figure 9

Nondegeneracy of azimuthal modes. PL spectrum measured from a freestanding InGaAs/GaAs QD microtube with surface corrugations at room temperature. The corresponding azimuthal mode numbers ( m = 25 30 ) are labeled. A detailed view of the eigenmodes associated with azimuthal mode number m = 29 is shown in the inset, wherein the axial mode numbers are identified as p = 0 , 1 , 2 . The two nondegenerate modes associated with p = 0 are induced by the inside and the outside rolling edges around the tube. Adapted from [12].

Figure 10
Figure 10

Effect of surface geometry. Resonant mode peaks from InGaAs QD microtubes with (a) triangular and (b) rectangular surface geometry at the outer edge of the rolling edges, respectively, reproduced with permission from [43]. The SEM image on the right shows clear periodic surface corrugation, reproduced with permission from [41].

Figure 11
Figure 11

PL spectra from microtubes of (I) 27, (II) 33, (III) 40, and (IV) 45 nm in wall thickness (corresponding diameters are ∼4–9 µm), showing stronger and narrower resonance peaks with increasing thickness. Reproduced with permission from [7].

Figure 12
Figure 12

(a) Schematic cross-section diagram of an SiO/SiO2 microtube before and after atomic layer deposition coating with As2O3 . (b) PL spectra for various microtubes with different Al2O3 thickness in monolayers (MLs) as labeled.

Figure 13
Figure 13

(a) Room temperature emission spectrum of InGaAs/GaAs QD microtube measured at above-threshold pump power (∼23 µW) and below threshold (inset). (b) Integrated light intensity for lasing mode at 1240.7 nm versus excitation power, with a detailed view of the lasing peak at 1240.7 nm fitted with two Lorentzian curves (lower inset) and linewidth dependence (upper inset). Reproduced with permission from [5].

Figure 14
Figure 14

Electrically injected InGaAs QD microtube. Top: schematic of the electrical contact scheme. N-metal is deposited on the two side pieces of the mesa. SU-8 is used as the passivation layer, and the p-metal contact is placed directly on the microtube top surface. Bottom: I–V chracteristics measured, showing rectifying behavior; and emission spectrum under optical pumping. Adapted from [44].

Tables (1)

Tables Icon

Table 1. Geometrical and Resonant Properties of Self-Rolled-up Microtubes

Metrics