Abstract

Silicon-based lasers have long been sought, since they will permit monolithic integration of photonics with high-speed silicon electronics and thereby significantly broaden the reach of silicon technology. Among the various approaches that are currently being pursued to overcome the intrinsic limitations of Si as an efficient light source, intersubband transitions in Si-based quantum well structures offer a rather feasible alternative that conveniently circumvents the indirect-band nature of Si. Various approaches for achieving lasing action based on intersubband transitions within the group-IV materials are reviewed. Relevant theories are presented in detail. Challenges facing the valence band approach, which has not so far been successful, are analyzed, and proposals that bring the intersubband process to the conduction band are discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref, J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
    [CrossRef]
  2. R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
    [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
    [CrossRef] [PubMed]
  4. J. Ruan, P. M. Fauchet, L. Dal Negro, C. Mazzoleni, L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattice,” Appl. Phys. Lett. 83, 5479–5481 (2003).
    [CrossRef]
  5. M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, “Stimulated emission in a nanostructured silicon pn junction diode using current injection,” Appl. Phys. Lett. 84, 2163–2165 (2004).
    [CrossRef]
  6. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).
  7. G. Franzò, S. Coffa, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
    [CrossRef]
  8. F. Priolo, G. Franzò, S. Coffa, A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
    [CrossRef]
  9. A. J. Kenyon, P. F. Trwoga, M. Federighi, C. W. Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6, L319–324 (1994).
    [CrossRef]
  10. M. E. Castagna, S. Coffa, L. carestia, A. Messian, C. Buongiorno, “Quantum dot materials and devices for light emission in silicon,” Proceedings of the 32nd European Solid-State Device Research Conference, 2002, held at Fireze, Italy (2002), paperD21.3.
  11. R. Calps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, “Observation of stimulated Raman scattering in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
    [CrossRef]
  12. A. Liu, H. Rong, M. Paniccia, O. Cohen, D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
    [CrossRef] [PubMed]
  13. O. Boyraz, B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
    [CrossRef] [PubMed]
  14. B. Jalali, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [CrossRef]
  15. H. Park, A. W. Fang, S. Kodama, J. E. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells,” Opt. Express 13, 9460–9464 (2005).
    [CrossRef] [PubMed]
  16. J. H. Park, A. J. Steckl, “Demonstration of a visible laser on silicon using Eu-doped GaN thin films,” J. Appl. Phys. 98, 056108 (2005).
    [CrossRef]
  17. Z. Mi, P. Bhattacharya, J. Yang, K. P. Pipe, “Room-temperature self-organized In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
    [CrossRef]
  18. L. Esaki, R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970).
    [CrossRef]
  19. R. F. Kazarinov, R. A. Suris, “Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).
  20. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  21. G. Sun, J. B. Khurgin, “Feasibility of optically pumped four-level infrared lasers,” in Intersubband Transitions in Quantum Wells, E. Rosencher, B. Vinter, and B. Levine, eds. (Plenum, 1992), pp. 219–226.
    [CrossRef]
  22. G. SunKhurgin, “Optically pumped four-level infrared laser based on intersubband transitions in multiple quantum wells: feasibility study,” IEEE J. Quantum Electron. QE-29, 1104–1111 (1993).
    [CrossRef]
  23. D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
    [CrossRef]
  24. M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05 μm) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
    [CrossRef]
  25. R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
    [CrossRef]
  26. Y. Bai, S. Slivken, S. R. Darvish, M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93, 021103 (2008).
    [CrossRef]
  27. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
    [CrossRef]
  28. B. S. Williams, “Tereahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
    [CrossRef]
  29. S. R. White, L. J. Sham, “Electronic properties of flat-band semiconductor heterostructures,” Phys. Rev. Lett. 47, 879–882 (1981).
    [CrossRef]
  30. E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids 1, 249–261 (1957).
    [CrossRef]
  31. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Editions de Physique, 1998), Chap. 3.
  32. J. M. Luttinger, W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955).
    [CrossRef]
  33. J. M. Luttinger, “Quantum theory of cyclotron resonance in semiconductors: general theory,” Phys. Rev. 102, 1030–1041 (1956).
    [CrossRef]
  34. G. L. Bir, G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).
  35. G. Sun, Y. Lu, J. B. Khurgin, “Valence intersubband lasers with inverted light-hole effective mass,” Appl. Phys. Lett. 72, 1481–1483 (1998).
    [CrossRef]
  36. L. C. L. Y. Voon, L. R. Ram-Mohan, “Tight-binding representation of the optical matrix elements: theory and applications,” Phys. Rev. B 47, 15500–15508 (1993).
    [CrossRef]
  37. L. C. West, S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
    [CrossRef]
  38. G. Sun, L. Friedman, R. A. Soref, “Intersubband lasing lifetimes of SiGe∕Si and GaAs∕AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 66, 3425–3427 (1995).
    [CrossRef]
  39. B. K. Ridley, “The electron–phonon interaction in quasi-two-dimensional semiconductor quantum-well structures,” J. Phys. C 15, 5899–5917 (1982).
    [CrossRef]
  40. P. J. Price, “Two-dimensional electron transport in semiconductor layers. I. Phonon scattering,” Ann. Phys. 133, 217–239 (1981).
    [CrossRef]
  41. P. Harrison, Quantum Wells, Wires, and Dots (Wiley, 2000), p. 272.
  42. H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “Importance of electron impurity scattering for electron transport in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 84, 645–647 (2004).
    [CrossRef]
  43. R. Ferreira, G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single-and multiple-quantum-well structures,” Phys. Rev. B 40, 1074–1086 (1989).
    [CrossRef]
  44. M. Hartig, J. D. Ganière, P. E. Selbmann, B. Deveaud, L. Rota, “Density dependence of carrier-carrier induced intersubband scattering in GaAs∕AlGaAs quantum wells,” Phys. Rev. B 60, 1500–1503 (1999).
    [CrossRef]
  45. J. D. Cressler, SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices (CRC Press, 2008).
  46. L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Theory of the strain-symmetrized silicon-based Ge-Si superlattice laser,” IEEE J. Sel. Top. Quantum Electron. 4, 1029–1034 (1998).
    [CrossRef]
  47. L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Asymmetric strain-symmetrized Ge–Si interminiband laser,” IEEE Photon. Technol. Lett. 10, 1715–1717 (1998).
    [CrossRef]
  48. D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
    [CrossRef]
  49. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
    [CrossRef] [PubMed]
  50. L. Friedman, G. Sun, R. A. Soref, “SiGe∕Si THz laser based on transitions between inverted mass light-hole and heavy-hole subbands,” Appl. Phys. Lett. 78, 401–403 (2001).
    [CrossRef]
  51. R. A. Soref, G. Sun, “Terahertz gain in SiGe∕Si quantum staircase utilizing the heavy-hole inverted effective mass,” Appl. Phys. Lett. 79, 3639–3641 (2001).
    [CrossRef]
  52. A. Fasolino, E. Molinari, J. C. Maan, “Resonant quasiconfined optical phonons in semiconductor superlattices,” Phys. Rev. B 39, 3923–3926 (1989).
    [CrossRef]
  53. G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
    [CrossRef] [PubMed]
  54. I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002).
    [CrossRef]
  55. S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
    [CrossRef]
  56. R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
    [CrossRef]
  57. J. Faist, M. Beck, T. Aellen, E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
    [CrossRef]
  58. G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
    [CrossRef]
  59. L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
    [CrossRef]
  60. D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
    [CrossRef]
  61. L. Lever, A. Valavanis, Z. Ikonić, R. W. Kelsall, “Simulated [111] Si–SiGe THz quantum cascade laser,” Appl. Phys. Lett. 92, 021124 (2008).
    [CrossRef]
  62. K. Driscoll, R. Paiella, “Silicon-based injection lasers using electrical intersubband transitions in the L valleys,” Appl. Phys. Lett. 89, 191110 (2006).
    [CrossRef]
  63. R. A. Soref, C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69, 539–541 (1991).
    [CrossRef]
  64. D. W. Jenkins, J. D. Dow, “Electronic properties of metastable GexSn1−x alloys,” Phys. Rev. B 36, 7994–8000 (1987).
    [CrossRef]
  65. G. He, H. A. Atwater, “Interband transitions in SnxGe1−x alloys,” Phys. Rev. Lett. 79, 1937–1940 (1997).
    [CrossRef]
  66. J. Menéndez, J. Kouvetakis, “Type-I Ge∕Ge1−x−ySixSny strained-layer heterostructures with a direct Ge bandgap,” Phys. Rev. Lett. 85, 1175–1177 (2004).
  67. M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).
  68. R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).
  69. P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, J. Kouvetakis, “Optical and structural properties of SixSnyGe1−x−y alloys,” Phys. Rev. Lett. 84, 888–890 (2004).
  70. M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, J. Kouvetakis, “Chemical routes to Ge∕Si(100) structures for low temperature Si-based semiconductor applications,” Phys. Rev. Lett. 90, 082108 (2007).
  71. G. Sun, H. H. Cheng, J. Menéndez, J. B. Khurgin, R. A. Soref, “Strain-free Ge∕GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Phys. Rev. Lett. 90, 251105 (2007).
  72. M. Jaros, “Simple analytic model for heterojunction band offsets,” Appl. Phys. Lett. 37, 7112–7114 (1988).
  73. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Appl. Phys. Lett. 39, 1871–1883 (1989).
  74. V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
    [CrossRef]
  75. V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138, 309–313 (2006).
    [CrossRef]
  76. J. Weber, M. I. Alonso, “Near-band-gap photoluminescence of Si–Ge alloys,” Phys. Rev. B 40, 5683–5693 (1989).
    [CrossRef]
  77. M. L. Cohen, T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141, 789–796 (1966).
    [CrossRef]
  78. B. K. Ridley, Electrons and Phonons in Semiconductor Multiplayers (Cambridge University Press, 1997), Chap. 1.
  79. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser at λ∼100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
    [CrossRef]
  80. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
    [CrossRef]
  81. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2008 (5)

Y. Bai, S. Slivken, S. R. Darvish, M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93, 021103 (2008).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
[CrossRef]

L. Lever, A. Valavanis, Z. Ikonić, R. W. Kelsall, “Simulated [111] Si–SiGe THz quantum cascade laser,” Appl. Phys. Lett. 92, 021124 (2008).
[CrossRef]

2007 (5)

B. S. Williams, “Tereahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
[CrossRef]

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05 μm) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, J. Kouvetakis, “Chemical routes to Ge∕Si(100) structures for low temperature Si-based semiconductor applications,” Phys. Rev. Lett. 90, 082108 (2007).

G. Sun, H. H. Cheng, J. Menéndez, J. B. Khurgin, R. A. Soref, “Strain-free Ge∕GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Phys. Rev. Lett. 90, 251105 (2007).

2006 (4)

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
[CrossRef]

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138, 309–313 (2006).
[CrossRef]

B. Jalali, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[CrossRef]

K. Driscoll, R. Paiella, “Silicon-based injection lasers using electrical intersubband transitions in the L valleys,” Appl. Phys. Lett. 89, 191110 (2006).
[CrossRef]

2005 (4)

J. H. Park, A. J. Steckl, “Demonstration of a visible laser on silicon using Eu-doped GaN thin films,” J. Appl. Phys. 98, 056108 (2005).
[CrossRef]

Z. Mi, P. Bhattacharya, J. Yang, K. P. Pipe, “Room-temperature self-organized In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[CrossRef]

H. Park, A. W. Fang, S. Kodama, J. E. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III–V offset quantum wells,” Opt. Express 13, 9460–9464 (2005).
[CrossRef] [PubMed]

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

2004 (6)

P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, J. Kouvetakis, “Optical and structural properties of SixSnyGe1−x−y alloys,” Phys. Rev. Lett. 84, 888–890 (2004).

J. Menéndez, J. Kouvetakis, “Type-I Ge∕Ge1−x−ySixSny strained-layer heterostructures with a direct Ge bandgap,” Phys. Rev. Lett. 85, 1175–1177 (2004).

A. Liu, H. Rong, M. Paniccia, O. Cohen, D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 12, 4261–4268 (2004).
[CrossRef] [PubMed]

O. Boyraz, B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004).
[CrossRef] [PubMed]

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, “Stimulated emission in a nanostructured silicon pn junction diode using current injection,” Appl. Phys. Lett. 84, 2163–2165 (2004).
[CrossRef]

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “Importance of electron impurity scattering for electron transport in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 84, 645–647 (2004).
[CrossRef]

2003 (6)

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

J. Ruan, P. M. Fauchet, L. Dal Negro, C. Mazzoleni, L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattice,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

R. Calps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, “Observation of stimulated Raman scattering in silicon waveguides,” Opt. Express 11, 1731–1739 (2003).
[CrossRef]

M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser at λ∼100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

2002 (4)

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
[CrossRef]

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

2001 (4)

J. Faist, M. Beck, T. Aellen, E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[CrossRef]

L. Friedman, G. Sun, R. A. Soref, “SiGe∕Si THz laser based on transitions between inverted mass light-hole and heavy-hole subbands,” Appl. Phys. Lett. 78, 401–403 (2001).
[CrossRef]

R. A. Soref, G. Sun, “Terahertz gain in SiGe∕Si quantum staircase utilizing the heavy-hole inverted effective mass,” Appl. Phys. Lett. 79, 3639–3641 (2001).
[CrossRef]

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

2000 (2)

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
[CrossRef] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

1999 (1)

M. Hartig, J. D. Ganière, P. E. Selbmann, B. Deveaud, L. Rota, “Density dependence of carrier-carrier induced intersubband scattering in GaAs∕AlGaAs quantum wells,” Phys. Rev. B 60, 1500–1503 (1999).
[CrossRef]

1998 (4)

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Theory of the strain-symmetrized silicon-based Ge-Si superlattice laser,” IEEE J. Sel. Top. Quantum Electron. 4, 1029–1034 (1998).
[CrossRef]

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Asymmetric strain-symmetrized Ge–Si interminiband laser,” IEEE Photon. Technol. Lett. 10, 1715–1717 (1998).
[CrossRef]

G. Sun, Y. Lu, J. B. Khurgin, “Valence intersubband lasers with inverted light-hole effective mass,” Appl. Phys. Lett. 72, 1481–1483 (1998).
[CrossRef]

F. Priolo, G. Franzò, S. Coffa, A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

1997 (2)

G. Franzò, S. Coffa, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
[CrossRef]

G. He, H. A. Atwater, “Interband transitions in SnxGe1−x alloys,” Phys. Rev. Lett. 79, 1937–1940 (1997).
[CrossRef]

1996 (1)

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
[CrossRef] [PubMed]

1995 (1)

G. Sun, L. Friedman, R. A. Soref, “Intersubband lasing lifetimes of SiGe∕Si and GaAs∕AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 66, 3425–3427 (1995).
[CrossRef]

1994 (2)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

A. J. Kenyon, P. F. Trwoga, M. Federighi, C. W. Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6, L319–324 (1994).
[CrossRef]

1993 (3)

R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

G. SunKhurgin, “Optically pumped four-level infrared laser based on intersubband transitions in multiple quantum wells: feasibility study,” IEEE J. Quantum Electron. QE-29, 1104–1111 (1993).
[CrossRef]

L. C. L. Y. Voon, L. R. Ram-Mohan, “Tight-binding representation of the optical matrix elements: theory and applications,” Phys. Rev. B 47, 15500–15508 (1993).
[CrossRef]

1991 (1)

R. A. Soref, C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69, 539–541 (1991).
[CrossRef]

1989 (4)

A. Fasolino, E. Molinari, J. C. Maan, “Resonant quasiconfined optical phonons in semiconductor superlattices,” Phys. Rev. B 39, 3923–3926 (1989).
[CrossRef]

R. Ferreira, G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single-and multiple-quantum-well structures,” Phys. Rev. B 40, 1074–1086 (1989).
[CrossRef]

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Appl. Phys. Lett. 39, 1871–1883 (1989).

J. Weber, M. I. Alonso, “Near-band-gap photoluminescence of Si–Ge alloys,” Phys. Rev. B 40, 5683–5693 (1989).
[CrossRef]

1988 (1)

M. Jaros, “Simple analytic model for heterojunction band offsets,” Appl. Phys. Lett. 37, 7112–7114 (1988).

1987 (1)

D. W. Jenkins, J. D. Dow, “Electronic properties of metastable GexSn1−x alloys,” Phys. Rev. B 36, 7994–8000 (1987).
[CrossRef]

1986 (1)

R. A. Soref, J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
[CrossRef]

1985 (1)

L. C. West, S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[CrossRef]

1982 (1)

B. K. Ridley, “The electron–phonon interaction in quasi-two-dimensional semiconductor quantum-well structures,” J. Phys. C 15, 5899–5917 (1982).
[CrossRef]

1981 (2)

P. J. Price, “Two-dimensional electron transport in semiconductor layers. I. Phonon scattering,” Ann. Phys. 133, 217–239 (1981).
[CrossRef]

S. R. White, L. J. Sham, “Electronic properties of flat-band semiconductor heterostructures,” Phys. Rev. Lett. 47, 879–882 (1981).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1971 (1)

R. F. Kazarinov, R. A. Suris, “Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

1970 (1)

L. Esaki, R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970).
[CrossRef]

1966 (1)

M. L. Cohen, T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141, 789–796 (1966).
[CrossRef]

1957 (1)

E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids 1, 249–261 (1957).
[CrossRef]

1956 (1)

J. M. Luttinger, “Quantum theory of cyclotron resonance in semiconductors: general theory,” Phys. Rev. 102, 1030–1041 (1956).
[CrossRef]

1955 (1)

J. M. Luttinger, W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955).
[CrossRef]

Abstreiter, G.

I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002).
[CrossRef]

Aella, P.

P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, J. Kouvetakis, “Optical and structural properties of SixSnyGe1−x−y alloys,” Phys. Rev. Lett. 84, 888–890 (2004).

Aellen, T.

J. Faist, M. Beck, T. Aellen, E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[CrossRef]

Airey, R. J.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
[CrossRef]

Ajili, L.

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

Alonso, M. I.

J. Weber, M. I. Alonso, “Near-band-gap photoluminescence of Si–Ge alloys,” Phys. Rev. B 40, 5683–5693 (1989).
[CrossRef]

Arnone, D. D.

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

Atwater, H. A.

G. He, H. A. Atwater, “Interband transitions in SnxGe1−x alloys,” Phys. Rev. Lett. 79, 1937–1940 (1997).
[CrossRef]

Bai, Y.

Y. Bai, S. Slivken, S. R. Darvish, M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93, 021103 (2008).
[CrossRef]

Bastard, G.

R. Ferreira, G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single-and multiple-quantum-well structures,” Phys. Rev. B 40, 1074–1086 (1989).
[CrossRef]

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Editions de Physique, 1998), Chap. 3.

Bates, R.

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

Bauer, M.

M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).

Beck, M.

J. Faist, M. Beck, T. Aellen, E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[CrossRef]

Beere, H.

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

Bensahel, D.

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

Bergstresser, T. K.

M. L. Cohen, T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141, 789–796 (1966).
[CrossRef]

Bhattacharya, P.

Z. Mi, P. Bhattacharya, J. Yang, K. P. Pipe, “Room-temperature self-organized In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[CrossRef]

Bir, G. L.

G. L. Bir, G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).

Birdwell, A. G.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
[CrossRef]

Bormann, I.

I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002).
[CrossRef]

Bowers, J. E.

Boyraz, O.

Brunner, K.

I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002).
[CrossRef]

Buongiorno, C.

M. E. Castagna, S. Coffa, L. carestia, A. Messian, C. Buongiorno, “Quantum dot materials and devices for light emission in silicon,” Proceedings of the 32nd European Solid-State Device Research Conference, 2002, held at Fireze, Italy (2002), paperD21.3.

Callebaut, H.

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “Importance of electron impurity scattering for electron transport in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 84, 645–647 (2004).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser at λ∼100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Calps, R.

Campiedelli, Y.

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

Canonico, M.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
[CrossRef]

Capasso, F.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
[CrossRef]

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

carestia, L.

M. E. Castagna, S. Coffa, L. carestia, A. Messian, C. Buongiorno, “Quantum dot materials and devices for light emission in silicon,” Proceedings of the 32nd European Solid-State Device Research Conference, 2002, held at Fireze, Italy (2002), paperD21.3.

Carnera, A.

F. Priolo, G. Franzò, S. Coffa, A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

Castagna, M. E.

M. E. Castagna, S. Coffa, L. carestia, A. Messian, C. Buongiorno, “Quantum dot materials and devices for light emission in silicon,” Proceedings of the 32nd European Solid-State Device Research Conference, 2002, held at Fireze, Italy (2002), paperD21.3.

Chang, J. F.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, “Stimulated emission in a nanostructured silicon pn junction diode using current injection,” Appl. Phys. Lett. 84, 2163–2165 (2004).
[CrossRef]

Chen, M. J.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, “Stimulated emission in a nanostructured silicon pn junction diode using current injection,” Appl. Phys. Lett. 84, 2163–2165 (2004).
[CrossRef]

Chen, Zhihao D.

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

Cheng, H. H.

G. Sun, H. H. Cheng, J. Menéndez, J. B. Khurgin, R. A. Soref, “Strain-free Ge∕GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Phys. Rev. Lett. 90, 251105 (2007).

Chizmeshya, A. V. G.

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, J. Kouvetakis, “Chemical routes to Ge∕Si(100) structures for low temperature Si-based semiconductor applications,” Phys. Rev. Lett. 90, 082108 (2007).

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, J. Kouvetakis, “Optical and structural properties of SixSnyGe1−x−y alloys,” Phys. Rev. Lett. 84, 888–890 (2004).

Cho, A. Y.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
[CrossRef]

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Chrastina, D.

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cockburn, J. W.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
[CrossRef]

Coffa, S.

F. Priolo, G. Franzò, S. Coffa, A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

G. Franzò, S. Coffa, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
[CrossRef]

M. E. Castagna, S. Coffa, L. carestia, A. Messian, C. Buongiorno, “Quantum dot materials and devices for light emission in silicon,” Proceedings of the 32nd European Solid-State Device Research Conference, 2002, held at Fireze, Italy (2002), paperD21.3.

Cohen, M. L.

M. L. Cohen, T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141, 789–796 (1966).
[CrossRef]

Cohen, O.

Colombelli, R.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
[CrossRef]

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

Cook, C.

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, J. Kouvetakis, “Optical and structural properties of SixSnyGe1−x−y alloys,” Phys. Rev. Lett. 84, 888–890 (2004).

Cook, C. S.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
[CrossRef]

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138, 309–313 (2006).
[CrossRef]

Cressler, J. D.

J. D. Cressler, SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices (CRC Press, 2008).

Crozier, P. A.

M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).

Cullis, A. G.

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

D’Costa, V.

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

D’Costa, V. R.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
[CrossRef]

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138, 309–313 (2006).
[CrossRef]

Dal Negro, L.

J. Ruan, P. M. Fauchet, L. Dal Negro, C. Mazzoleni, L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattice,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93, 021103 (2008).
[CrossRef]

Davies, G.

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

Dehlinger, G.

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
[CrossRef] [PubMed]

Desurvire, E.

E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).

Deveaud, B.

M. Hartig, J. D. Ganière, P. E. Selbmann, B. Deveaud, L. Rota, “Density dependence of carrier-carrier induced intersubband scattering in GaAs∕AlGaAs quantum wells,” Phys. Rev. B 60, 1500–1503 (1999).
[CrossRef]

Diehl, L.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
[CrossRef] [PubMed]

Dimitropoulos, D.

Dow, J. D.

D. W. Jenkins, J. D. Dow, “Electronic properties of metastable GexSn1−x alloys,” Phys. Rev. B 36, 7994–8000 (1987).
[CrossRef]

Dressler, S.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05 μm) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

Driscoll, K.

K. Driscoll, R. Paiella, “Silicon-based injection lasers using electrical intersubband transitions in the L valleys,” Appl. Phys. Lett. 89, 191110 (2006).
[CrossRef]

Eglash, S. J.

L. C. West, S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[CrossRef]

Ensslin, K.

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
[CrossRef] [PubMed]

Esaki, L.

L. Esaki, R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970).
[CrossRef]

Faist, J.

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

J. Faist, M. Beck, T. Aellen, E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[CrossRef]

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
[CrossRef] [PubMed]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Fan, J. Y.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Fang, A. W.

Fang, Y.-Y.

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, J. Kouvetakis, “Chemical routes to Ge∕Si(100) structures for low temperature Si-based semiconductor applications,” Phys. Rev. Lett. 90, 082108 (2007).

Fasolino, A.

A. Fasolino, E. Molinari, J. C. Maan, “Resonant quasiconfined optical phonons in semiconductor superlattices,” Phys. Rev. B 39, 3923–3926 (1989).
[CrossRef]

Fauchet, P. M.

J. Ruan, P. M. Fauchet, L. Dal Negro, C. Mazzoleni, L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattice,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

Federighi, M.

A. J. Kenyon, P. F. Trwoga, M. Federighi, C. W. Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6, L319–324 (1994).
[CrossRef]

Ferreira, R.

R. Ferreira, G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single-and multiple-quantum-well structures,” Phys. Rev. B 40, 1074–1086 (1989).
[CrossRef]

Franzo, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

Franzò, G.

F. Priolo, G. Franzò, S. Coffa, A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

G. Franzò, S. Coffa, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
[CrossRef]

Friedman, L.

L. Friedman, G. Sun, R. A. Soref, “SiGe∕Si THz laser based on transitions between inverted mass light-hole and heavy-hole subbands,” Appl. Phys. Lett. 78, 401–403 (2001).
[CrossRef]

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Asymmetric strain-symmetrized Ge–Si interminiband laser,” IEEE Photon. Technol. Lett. 10, 1715–1717 (1998).
[CrossRef]

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Theory of the strain-symmetrized silicon-based Ge-Si superlattice laser,” IEEE J. Sel. Top. Quantum Electron. 4, 1029–1034 (1998).
[CrossRef]

G. Sun, L. Friedman, R. A. Soref, “Intersubband lasing lifetimes of SiGe∕Si and GaAs∕AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 66, 3425–3427 (1995).
[CrossRef]

Ganière, J. D.

M. Hartig, J. D. Ganière, P. E. Selbmann, B. Deveaud, L. Rota, “Density dependence of carrier-carrier induced intersubband scattering in GaAs∕AlGaAs quantum wells,” Phys. Rev. B 60, 1500–1503 (1999).
[CrossRef]

Gennser, U.

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
[CrossRef] [PubMed]

Gini, E.

J. Faist, M. Beck, T. Aellen, E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[CrossRef]

Gmachl, C.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
[CrossRef]

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

Go, R.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Grützmacher, D.

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
[CrossRef] [PubMed]

Hackenbuchner, S.

I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002).
[CrossRef]

Hak, D.

Han, Y.

Harrison, P.

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

P. Harrison, Quantum Wells, Wires, and Dots (Wiley, 2000), p. 272.

Hartig, M.

M. Hartig, J. D. Ganière, P. E. Selbmann, B. Deveaud, L. Rota, “Density dependence of carrier-carrier induced intersubband scattering in GaAs∕AlGaAs quantum wells,” Phys. Rev. B 60, 1500–1503 (1999).
[CrossRef]

He, G.

G. He, H. A. Atwater, “Interband transitions in SnxGe1−x alloys,” Phys. Rev. Lett. 79, 1937–1940 (1997).
[CrossRef]

Hopkinson, M.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
[CrossRef]

Hu, Q.

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “Importance of electron impurity scattering for electron transport in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 84, 645–647 (2004).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser at λ∼100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Hutchinson, A. L.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Hwang, H. Y.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
[CrossRef]

Hybertson, M. S.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
[CrossRef] [PubMed]

Ikonic, Z.

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
[CrossRef]

L. Lever, A. Valavanis, Z. Ikonić, R. W. Kelsall, “Simulated [111] Si–SiGe THz quantum cascade laser,” Appl. Phys. Lett. 92, 021124 (2008).
[CrossRef]

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

Isella, G.

D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
[CrossRef]

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

Jalali, B.

Jaros, M.

M. Jaros, “Simple analytic model for heterojunction band offsets,” Appl. Phys. Lett. 37, 7112–7114 (1988).

Jenkins, D. W.

D. W. Jenkins, J. D. Dow, “Electronic properties of metastable GexSn1−x alloys,” Phys. Rev. B 36, 7994–8000 (1987).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kane, E. O.

E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids 1, 249–261 (1957).
[CrossRef]

Kazarinov, R. F.

R. F. Kazarinov, R. A. Suris, “Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

Kelsall, R. W.

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
[CrossRef]

L. Lever, A. Valavanis, Z. Ikonić, R. W. Kelsall, “Simulated [111] Si–SiGe THz quantum cascade laser,” Appl. Phys. Lett. 92, 021124 (2008).
[CrossRef]

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

Kenyon, A. J.

A. J. Kenyon, P. F. Trwoga, M. Federighi, C. W. Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6, L319–324 (1994).
[CrossRef]

Kermarrec, O.

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

Khurgin, J. B.

G. Sun, H. H. Cheng, J. Menéndez, J. B. Khurgin, R. A. Soref, “Strain-free Ge∕GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Phys. Rev. Lett. 90, 251105 (2007).

G. Sun, Y. Lu, J. B. Khurgin, “Valence intersubband lasers with inverted light-hole effective mass,” Appl. Phys. Lett. 72, 1481–1483 (1998).
[CrossRef]

G. Sun, J. B. Khurgin, “Feasibility of optically pumped four-level infrared lasers,” in Intersubband Transitions in Quantum Wells, E. Rosencher, B. Vinter, and B. Levine, eds. (Plenum, 1992), pp. 219–226.
[CrossRef]

Kodama, S.

Kohn, W.

J. M. Luttinger, W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955).
[CrossRef]

Kouvetakis, J.

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, J. Kouvetakis, “Chemical routes to Ge∕Si(100) structures for low temperature Si-based semiconductor applications,” Phys. Rev. Lett. 90, 082108 (2007).

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
[CrossRef]

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138, 309–313 (2006).
[CrossRef]

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, J. Kouvetakis, “Optical and structural properties of SixSnyGe1−x−y alloys,” Phys. Rev. Lett. 84, 888–890 (2004).

J. Menéndez, J. Kouvetakis, “Type-I Ge∕Ge1−x−ySixSny strained-layer heterostructures with a direct Ge bandgap,” Phys. Rev. Lett. 85, 1175–1177 (2004).

M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).

Krysa, A. B.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
[CrossRef]

Kumar, C.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Kumar, S.

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “Importance of electron impurity scattering for electron transport in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 84, 645–647 (2004).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser at λ∼100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Lever, L.

D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
[CrossRef]

L. Lever, A. Valavanis, Z. Ikonić, R. W. Kelsall, “Simulated [111] Si–SiGe THz quantum cascade laser,” Appl. Phys. Lett. 92, 021124 (2008).
[CrossRef]

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

Li, J. Y.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, “Stimulated emission in a nanostructured silicon pn junction diode using current injection,” Appl. Phys. Lett. 84, 2163–2165 (2004).
[CrossRef]

Liew, S. L.

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

Linfield, E.

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

Littler, C. L.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
[CrossRef]

Liu, A.

Lorenzo, J. P.

R. A. Soref, J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
[CrossRef]

Lu, Y.

G. Sun, Y. Lu, J. B. Khurgin, “Valence intersubband lasers with inverted light-hole effective mass,” Appl. Phys. Lett. 72, 1481–1483 (1998).
[CrossRef]

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Asymmetric strain-symmetrized Ge–Si interminiband laser,” IEEE Photon. Technol. Lett. 10, 1715–1717 (1998).
[CrossRef]

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Theory of the strain-symmetrized silicon-based Ge-Si superlattice laser,” IEEE J. Sel. Top. Quantum Electron. 4, 1029–1034 (1998).
[CrossRef]

Luttinger, J. M.

J. M. Luttinger, “Quantum theory of cyclotron resonance in semiconductors: general theory,” Phys. Rev. 102, 1030–1041 (1956).
[CrossRef]

J. M. Luttinger, W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955).
[CrossRef]

Lyakh, A.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Lynch, S. A.

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

Maan, J. C.

A. Fasolino, E. Molinari, J. C. Maan, “Resonant quasiconfined optical phonons in semiconductor superlattices,” Phys. Rev. B 39, 3923–3926 (1989).
[CrossRef]

Masselink, W. T.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05 μm) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

Matman, G.

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

Matmon, G.

D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
[CrossRef]

Maulini, R.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Mazzoleni, C.

J. Ruan, P. M. Fauchet, L. Dal Negro, C. Mazzoleni, L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattice,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

Menendez, J.

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

Menéndez, J.

G. Sun, H. H. Cheng, J. Menéndez, J. B. Khurgin, R. A. Soref, “Strain-free Ge∕GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Phys. Rev. Lett. 90, 251105 (2007).

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
[CrossRef]

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138, 309–313 (2006).
[CrossRef]

J. Menéndez, J. Kouvetakis, “Type-I Ge∕Ge1−x−ySixSny strained-layer heterostructures with a direct Ge bandgap,” Phys. Rev. Lett. 85, 1175–1177 (2004).

M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).

Mentese, S.

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

Menzel, S.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
[CrossRef]

Messian, A.

M. E. Castagna, S. Coffa, L. carestia, A. Messian, C. Buongiorno, “Quantum dot materials and devices for light emission in silicon,” Proceedings of the 32nd European Solid-State Device Research Conference, 2002, held at Fireze, Italy (2002), paperD21.3.

Mi, Z.

Z. Mi, P. Bhattacharya, J. Yang, K. P. Pipe, “Room-temperature self-organized In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[CrossRef]

Molinari, E.

A. Fasolino, E. Molinari, J. C. Maan, “Resonant quasiconfined optical phonons in semiconductor superlattices,” Phys. Rev. B 39, 3923–3926 (1989).
[CrossRef]

Müller, E.

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
[CrossRef] [PubMed]

Neels, A.

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

Norris, D. J.

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

Paiella, R.

K. Driscoll, R. Paiella, “Silicon-based injection lasers using electrical intersubband transitions in the L valleys,” Appl. Phys. Lett. 89, 191110 (2006).
[CrossRef]

Paniccia, M.

Park, H.

Park, J. H.

J. H. Park, A. J. Steckl, “Demonstration of a visible laser on silicon using Eu-doped GaN thin films,” J. Appl. Phys. 98, 056108 (2005).
[CrossRef]

Patel, N.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Paul, D. J.

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
[CrossRef]

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

Pavesi, L.

J. Ruan, P. M. Fauchet, L. Dal Negro, C. Mazzoleni, L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattice,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

Perry, C. H.

R. A. Soref, C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69, 539–541 (1991).
[CrossRef]

Pflügl, C.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Pidgeon, C. R.

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

Pikus, G. E.

G. L. Bir, G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).

Pipe, K. P.

Z. Mi, P. Bhattacharya, J. Yang, K. P. Pipe, “Room-temperature self-organized In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[CrossRef]

Pitt, C. W.

A. J. Kenyon, P. F. Trwoga, M. Federighi, C. W. Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6, L319–324 (1994).
[CrossRef]

Price, P. J.

P. J. Price, “Two-dimensional electron transport in semiconductor layers. I. Phonon scattering,” Ann. Phys. 133, 217–239 (1981).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

F. Priolo, G. Franzò, S. Coffa, A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

Raghunathan, V.

Ram-Mohan, L. R.

L. C. L. Y. Voon, L. R. Ram-Mohan, “Tight-binding representation of the optical matrix elements: theory and applications,” Phys. Rev. B 47, 15500–15508 (1993).
[CrossRef]

Razeghi, M.

Y. Bai, S. Slivken, S. R. Darvish, M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93, 021103 (2008).
[CrossRef]

Ren, J.

M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).

Reno, J. L.

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “Importance of electron impurity scattering for electron transport in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 84, 645–647 (2004).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser at λ∼100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Revin, D. G.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
[CrossRef]

Ridley, B. K.

B. K. Ridley, “The electron–phonon interaction in quasi-two-dimensional semiconductor quantum-well structures,” J. Phys. C 15, 5899–5917 (1982).
[CrossRef]

B. K. Ridley, Electrons and Phonons in Semiconductor Multiplayers (Cambridge University Press, 1997), Chap. 1.

Ritchie, D.

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

Ritter, C.

M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).

Rong, H.

Rota, L.

M. Hartig, J. D. Ganière, P. E. Selbmann, B. Deveaud, L. Rota, “Density dependence of carrier-carrier induced intersubband scattering in GaAs∕AlGaAs quantum wells,” Phys. Rev. B 60, 1500–1503 (1999).
[CrossRef]

Roucka, R.

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

Ruan, J.

J. Ruan, P. M. Fauchet, L. Dal Negro, C. Mazzoleni, L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattice,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

Sagnes, I.

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

Scalari, G.

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

Schmult, S.

I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002).
[CrossRef]

Selbmann, P. E.

M. Hartig, J. D. Ganière, P. E. Selbmann, B. Deveaud, L. Rota, “Density dependence of carrier-carrier induced intersubband scattering in GaAs∕AlGaAs quantum wells,” Phys. Rev. B 60, 1500–1503 (1999).
[CrossRef]

Semtsiv, M. P.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05 μm) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

Sergent, A. M.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
[CrossRef]

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

Sham, L. J.

S. R. White, L. J. Sham, “Electronic properties of flat-band semiconductor heterostructures,” Phys. Rev. Lett. 47, 879–882 (1981).
[CrossRef]

Sigg, H.

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
[CrossRef] [PubMed]

Sirtori, C.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
[CrossRef]

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Slivken, S.

Y. Bai, S. Slivken, S. R. Darvish, M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93, 021103 (2008).
[CrossRef]

Soref, R. A.

G. Sun, H. H. Cheng, J. Menéndez, J. B. Khurgin, R. A. Soref, “Strain-free Ge∕GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Phys. Rev. Lett. 90, 251105 (2007).

L. Friedman, G. Sun, R. A. Soref, “SiGe∕Si THz laser based on transitions between inverted mass light-hole and heavy-hole subbands,” Appl. Phys. Lett. 78, 401–403 (2001).
[CrossRef]

R. A. Soref, G. Sun, “Terahertz gain in SiGe∕Si quantum staircase utilizing the heavy-hole inverted effective mass,” Appl. Phys. Lett. 79, 3639–3641 (2001).
[CrossRef]

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Theory of the strain-symmetrized silicon-based Ge-Si superlattice laser,” IEEE J. Sel. Top. Quantum Electron. 4, 1029–1034 (1998).
[CrossRef]

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Asymmetric strain-symmetrized Ge–Si interminiband laser,” IEEE Photon. Technol. Lett. 10, 1715–1717 (1998).
[CrossRef]

G. Sun, L. Friedman, R. A. Soref, “Intersubband lasing lifetimes of SiGe∕Si and GaAs∕AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 66, 3425–3427 (1995).
[CrossRef]

R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

R. A. Soref, C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69, 539–541 (1991).
[CrossRef]

R. A. Soref, J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
[CrossRef]

Steckl, A. J.

J. H. Park, A. J. Steckl, “Demonstration of a visible laser on silicon using Eu-doped GaN thin films,” J. Appl. Phys. 98, 056108 (2005).
[CrossRef]

Steer, M. J.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
[CrossRef]

Sun, G.

G. Sun, H. H. Cheng, J. Menéndez, J. B. Khurgin, R. A. Soref, “Strain-free Ge∕GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Phys. Rev. Lett. 90, 251105 (2007).

R. A. Soref, G. Sun, “Terahertz gain in SiGe∕Si quantum staircase utilizing the heavy-hole inverted effective mass,” Appl. Phys. Lett. 79, 3639–3641 (2001).
[CrossRef]

L. Friedman, G. Sun, R. A. Soref, “SiGe∕Si THz laser based on transitions between inverted mass light-hole and heavy-hole subbands,” Appl. Phys. Lett. 78, 401–403 (2001).
[CrossRef]

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Asymmetric strain-symmetrized Ge–Si interminiband laser,” IEEE Photon. Technol. Lett. 10, 1715–1717 (1998).
[CrossRef]

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Theory of the strain-symmetrized silicon-based Ge-Si superlattice laser,” IEEE J. Sel. Top. Quantum Electron. 4, 1029–1034 (1998).
[CrossRef]

G. Sun, Y. Lu, J. B. Khurgin, “Valence intersubband lasers with inverted light-hole effective mass,” Appl. Phys. Lett. 72, 1481–1483 (1998).
[CrossRef]

G. Sun, L. Friedman, R. A. Soref, “Intersubband lasing lifetimes of SiGe∕Si and GaAs∕AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 66, 3425–3427 (1995).
[CrossRef]

G. SunKhurgin, “Optically pumped four-level infrared laser based on intersubband transitions in multiple quantum wells: feasibility study,” IEEE J. Quantum Electron. QE-29, 1104–1111 (1993).
[CrossRef]

G. Sun, J. B. Khurgin, “Feasibility of optically pumped four-level infrared lasers,” in Intersubband Transitions in Quantum Wells, E. Rosencher, B. Vinter, and B. Levine, eds. (Plenum, 1992), pp. 219–226.
[CrossRef]

Suris, R. A.

R. F. Kazarinov, R. A. Suris, “Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

Tanbun-Ek, T.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Tolle, J.

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, J. Kouvetakis, “Chemical routes to Ge∕Si(100) structures for low temperature Si-based semiconductor applications,” Phys. Rev. Lett. 90, 082108 (2007).

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138, 309–313 (2006).
[CrossRef]

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, J. Kouvetakis, “Optical and structural properties of SixSnyGe1−x−y alloys,” Phys. Rev. Lett. 84, 888–890 (2004).

Tredicucci, A.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

Tribe, W. R.

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

Trwoga, P. F.

A. J. Kenyon, P. F. Trwoga, M. Federighi, C. W. Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6, L319–324 (1994).
[CrossRef]

Tsai, C. S.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, “Stimulated emission in a nanostructured silicon pn junction diode using current injection,” Appl. Phys. Lett. 84, 2163–2165 (2004).
[CrossRef]

Tsai, S. C.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, “Stimulated emission in a nanostructured silicon pn junction diode using current injection,” Appl. Phys. Lett. 84, 2163–2165 (2004).
[CrossRef]

Tsekoun, A.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Tsu, R.

L. Esaki, R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970).
[CrossRef]

Unterrainer, K.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
[CrossRef]

Valavanis, A.

L. Lever, A. Valavanis, Z. Ikonić, R. W. Kelsall, “Simulated [111] Si–SiGe THz quantum cascade laser,” Appl. Phys. Lett. 92, 021124 (2008).
[CrossRef]

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Appl. Phys. Lett. 39, 1871–1883 (1989).

von Känel, H.

D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
[CrossRef]

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

Voon, L. C. L. Y.

L. C. L. Y. Voon, L. R. Ram-Mohan, “Tight-binding representation of the optical matrix elements: theory and applications,” Phys. Rev. B 47, 15500–15508 (1993).
[CrossRef]

Wang, Q. J.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Wang, X. J.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Wanke, M. C.

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

Weber, J.

J. Weber, M. I. Alonso, “Near-band-gap photoluminescence of Si–Ge alloys,” Phys. Rev. B 40, 5683–5693 (1989).
[CrossRef]

Wegscheider, W.

I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002).
[CrossRef]

West, L. C.

L. C. West, S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[CrossRef]

White, S. R.

S. R. White, L. J. Sham, “Electronic properties of flat-band semiconductor heterostructures,” Phys. Rev. Lett. 47, 879–882 (1981).
[CrossRef]

Wienold, M.

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05 μm) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

Williams, B. S.

B. S. Williams, “Tereahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “Importance of electron impurity scattering for electron transport in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 84, 645–647 (2004).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser at λ∼100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

Wilson, L. R.

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
[CrossRef]

Wistey, M. A.

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, J. Kouvetakis, “Chemical routes to Ge∕Si(100) structures for low temperature Si-based semiconductor applications,” Phys. Rev. Lett. 90, 082108 (2007).

Wolf, G.

M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).

Yang, J.

Z. Mi, P. Bhattacharya, J. Yang, K. P. Pipe, “Room-temperature self-organized In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[CrossRef]

Yen, J. L.

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, “Stimulated emission in a nanostructured silicon pn junction diode using current injection,” Appl. Phys. Lett. 84, 2163–2165 (2004).
[CrossRef]

Zindler, G.

I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002).
[CrossRef]

Zollner, S.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
[CrossRef]

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138, 309–313 (2006).
[CrossRef]

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, J. Kouvetakis, “Optical and structural properties of SixSnyGe1−x−y alloys,” Phys. Rev. Lett. 84, 888–890 (2004).

Ann. Phys. (1)

P. J. Price, “Two-dimensional electron transport in semiconductor layers. I. Phonon scattering,” Ann. Phys. 133, 217–239 (1981).
[CrossRef]

Appl. Phys. Lett. (2)

R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonic, R. W. Kelsall, P. Harrison, S. L. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone, “Interwell intersubband electroluminescence from Si∕SiGe quantum cascade emitters,” Appl. Phys. Lett. 83, 4092–4094 (2003).
[CrossRef]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060–3062 (2002).
[CrossRef]

Appl. Phys. Lett. (5)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Appl. Phys. Lett. 39, 1871–1883 (1989).

J. Faist, M. Beck, T. Aellen, E. Gini, “Quantum-cascade lasers based on a bound-to-continuum transition,” Appl. Phys. Lett. 78, 147–149 (2001).
[CrossRef]

G. Sun, Y. Lu, J. B. Khurgin, “Valence intersubband lasers with inverted light-hole effective mass,” Appl. Phys. Lett. 72, 1481–1483 (1998).
[CrossRef]

L. Friedman, G. Sun, R. A. Soref, “SiGe∕Si THz laser based on transitions between inverted mass light-hole and heavy-hole subbands,” Appl. Phys. Lett. 78, 401–403 (2001).
[CrossRef]

R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths,” Appl. Phys. Lett. 78, 2620–2622 (2001).
[CrossRef]

Appl. Phys. Lett. (18)

Y. Bai, S. Slivken, S. R. Darvish, M. Razeghi, “Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency,” Appl. Phys. Lett. 93, 021103 (2008).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel, “InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm,” Appl. Phys. Lett. 90, 021108 (2007).
[CrossRef]

M. P. Semtsiv, M. Wienold, S. Dressler, W. T. Masselink, “Short-wavelength (λ≈3.05 μm) InP-based strain-compensated quantum-cascade laser,” Appl. Phys. Lett. 90, 051111 (2007).
[CrossRef]

R. A. Soref, G. Sun, “Terahertz gain in SiGe∕Si quantum staircase utilizing the heavy-hole inverted effective mass,” Appl. Phys. Lett. 79, 3639–3641 (2001).
[CrossRef]

L. C. West, S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46, 1156–1158 (1985).
[CrossRef]

G. Sun, L. Friedman, R. A. Soref, “Intersubband lasing lifetimes of SiGe∕Si and GaAs∕AlGaAs multiple quantum well structures,” Appl. Phys. Lett. 66, 3425–3427 (1995).
[CrossRef]

H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno, “Importance of electron impurity scattering for electron transport in terahertz quantum-cascade lasers,” Appl. Phys. Lett. 84, 645–647 (2004).
[CrossRef]

G. Scalari, L. Ajili, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies, “Far infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K,” Appl. Phys. Lett. 82, 3165–3167 (2003).
[CrossRef]

L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campiedelli, O. Kermarrec, D. Bensahel, J. Faist, “Electroluminescence from strain-compensated Si0.2Ge0.8∕Si quantum cascade structures based on a bound-to-continuum transitions,” Appl. Phys. Lett. 81, 4700–4702 (2002).
[CrossRef]

I. Bormann, K. Brunner, S. Hackenbuchner, G. Zindler, G. Abstreiter, S. Schmult, W. Wegscheider, “Midinfrared intersubband electroluminescence of Si∕SiGe quantum cascade structures,” Appl. Phys. Lett. 80, 2260–2262 (2002).
[CrossRef]

S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon, “Intersubband electroluminescence from Si∕SiGe cascade emitters at terahertz frequencies,” Appl. Phys. Lett. 81, 1543–1545 (2002).
[CrossRef]

L. Lever, A. Valavanis, Z. Ikonić, R. W. Kelsall, “Simulated [111] Si–SiGe THz quantum cascade laser,” Appl. Phys. Lett. 92, 021124 (2008).
[CrossRef]

K. Driscoll, R. Paiella, “Silicon-based injection lasers using electrical intersubband transitions in the L valleys,” Appl. Phys. Lett. 89, 191110 (2006).
[CrossRef]

M. Jaros, “Simple analytic model for heterojunction band offsets,” Appl. Phys. Lett. 37, 7112–7114 (1988).

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, “Terahertz quantum cascade laser at λ∼100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83, 2124–2126 (2003).
[CrossRef]

J. Ruan, P. M. Fauchet, L. Dal Negro, C. Mazzoleni, L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattice,” Appl. Phys. Lett. 83, 5479–5481 (2003).
[CrossRef]

M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, C. S. Tsai, “Stimulated emission in a nanostructured silicon pn junction diode using current injection,” Appl. Phys. Lett. 84, 2163–2165 (2004).
[CrossRef]

ECS Trans. (1)

D. J. Paul, G. Matman, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, E. Müller, A. Neels, “Si∕SiGe bound-to-continuum terahertz quantum cascade emitters,” ECS Trans. 16, 865–874 (2008).
[CrossRef]

Electron. Lett. (1)

Z. Mi, P. Bhattacharya, J. Yang, K. P. Pipe, “Room-temperature self-organized In0.5Ga0.5As quantum dot laser on silicon,” Electron. Lett. 41, 742–744 (2005).
[CrossRef]

IBM J. Res. Dev. (1)

L. Esaki, R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Dev. 14, 61–65 (1970).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Theory of the strain-symmetrized silicon-based Ge-Si superlattice laser,” IEEE J. Sel. Top. Quantum Electron. 4, 1029–1034 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. SunKhurgin, “Optically pumped four-level infrared laser based on intersubband transitions in multiple quantum wells: feasibility study,” IEEE J. Quantum Electron. QE-29, 1104–1111 (1993).
[CrossRef]

R. A. Soref, J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. QE-22, 873–879 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Friedman, R. A. Soref, G. Sun, Y. Lu, “Asymmetric strain-symmetrized Ge–Si interminiband laser,” IEEE Photon. Technol. Lett. 10, 1715–1717 (1998).
[CrossRef]

J. Appl. Phys. (1)

G. Franzò, S. Coffa, “Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes,” J. Appl. Phys. 81, 2784–2793 (1997).
[CrossRef]

J. Appl. Phys. (1)

J. H. Park, A. J. Steckl, “Demonstration of a visible laser on silicon using Eu-doped GaN thin films,” J. Appl. Phys. 98, 056108 (2005).
[CrossRef]

J. Appl. Phys. (1)

R. A. Soref, C. H. Perry, “Predicted bandgap of the new semiconductor SiGeSn,” J. Appl. Phys. 69, 539–541 (1991).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. C (1)

B. K. Ridley, “The electron–phonon interaction in quasi-two-dimensional semiconductor quantum-well structures,” J. Phys. C 15, 5899–5917 (1982).
[CrossRef]

J. Phys. Chem. Solids (1)

E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids 1, 249–261 (1957).
[CrossRef]

J. Phys. Condens. Matter (1)

A. J. Kenyon, P. F. Trwoga, M. Federighi, C. W. Pitt, “Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions,” J. Phys. Condens. Matter 6, L319–324 (1994).
[CrossRef]

Nat. Photonics (1)

B. S. Williams, “Tereahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

Nature (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. (1)

J. M. Luttinger, “Quantum theory of cyclotron resonance in semiconductors: general theory,” Phys. Rev. 102, 1030–1041 (1956).
[CrossRef]

Phys. Rev. B (1)

L. C. L. Y. Voon, L. R. Ram-Mohan, “Tight-binding representation of the optical matrix elements: theory and applications,” Phys. Rev. B 47, 15500–15508 (1993).
[CrossRef]

Phys. Rev. B (3)

M. Hartig, J. D. Ganière, P. E. Selbmann, B. Deveaud, L. Rota, “Density dependence of carrier-carrier induced intersubband scattering in GaAs∕AlGaAs quantum wells,” Phys. Rev. B 60, 1500–1503 (1999).
[CrossRef]

A. Fasolino, E. Molinari, J. C. Maan, “Resonant quasiconfined optical phonons in semiconductor superlattices,” Phys. Rev. B 39, 3923–3926 (1989).
[CrossRef]

F. Priolo, G. Franzò, S. Coffa, A. Carnera, “Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si,” Phys. Rev. B 57, 4443–4455 (1998).
[CrossRef]

Phys. Rev. Lett. (5)

S. R. White, L. J. Sham, “Electronic properties of flat-band semiconductor heterostructures,” Phys. Rev. Lett. 47, 879–882 (1981).
[CrossRef]

M. Bauer, C. Ritter, P. A. Crozier, J. Ren, J. Menéndez, G. Wolf, J. Kouvetakis, “Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1−x buffer layers,” Phys. Rev. Lett. 83, 2163–2165 (2003).

R. Roucka, J. Tolle, C. Cook, A. V. G. Chizmeshya, J. Kouvetakis, V. D’Costa, J. Menendez, Zhihao D. Chen, S. Zollner, “Versatile buffer layer architectures based on Ge1−xSnx alloys,” Phys. Rev. Lett. 86, 191912 (2005).

P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, J. Kouvetakis, “Optical and structural properties of SixSnyGe1−x−y alloys,” Phys. Rev. Lett. 84, 888–890 (2004).

G. He, H. A. Atwater, “Interband transitions in SnxGe1−x alloys,” Phys. Rev. Lett. 79, 1937–1940 (1997).
[CrossRef]

Phys. Rev. (2)

J. M. Luttinger, W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev. 97, 869–883 (1955).
[CrossRef]

M. L. Cohen, T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141, 789–796 (1966).
[CrossRef]

Phys. Rev. B (5)

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny∕Ge1−xSix study,” Phys. Rev. B 73, 125207 (2006).
[CrossRef]

J. Weber, M. I. Alonso, “Near-band-gap photoluminescence of Si–Ge alloys,” Phys. Rev. B 40, 5683–5693 (1989).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

D. W. Jenkins, J. D. Dow, “Electronic properties of metastable GexSn1−x alloys,” Phys. Rev. B 36, 7994–8000 (1987).
[CrossRef]

R. Ferreira, G. Bastard, “Evaluation of some scattering times for electrons in unbiased and biased single-and multiple-quantum-well structures,” Phys. Rev. B 40, 1074–1086 (1989).
[CrossRef]

Phys. Rev. Lett. (4)

M. A. Wistey, Y.-Y. Fang, J. Tolle, A. V. G. Chizmeshya, J. Kouvetakis, “Chemical routes to Ge∕Si(100) structures for low temperature Si-based semiconductor applications,” Phys. Rev. Lett. 90, 082108 (2007).

G. Sun, H. H. Cheng, J. Menéndez, J. B. Khurgin, R. A. Soref, “Strain-free Ge∕GeSiSn quantum cascade lasers based on L-valley intersubband transitions,” Phys. Rev. Lett. 90, 251105 (2007).

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, M. S. Hybertson, A. Y. Cho, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996).
[CrossRef] [PubMed]

J. Menéndez, J. Kouvetakis, “Type-I Ge∕Ge1−x−ySixSny strained-layer heterostructures with a direct Ge bandgap,” Phys. Rev. Lett. 85, 1175–1177 (2004).

Proc. IEEE (1)

R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993).
[CrossRef]

Proc. SPIE (1)

D. J. Paul, G. Matmon, L. Lever, Z. Ikonić, R. W. Kelsall, D. Chrastina, G. Isella, H. von Känel, “Si∕SiGe bound-to-continuum quantum cascade terahertz emitters,” Proc. SPIE 6996, 69961C (2008).
[CrossRef]

Science (2)

G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller, “Intersubband electroluminescence from silicon-based quantum cascade structures,” Science 290, 2277 (2000).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, C. Sirtori, A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Solid State Commun. (1)

V. R. D’Costa, C. S. Cook, J. Menéndez, J. Tolle, J. Kouvetakis, S. Zollner, “Transferability of optical bowing parameters between binary and ternary group-IV alloys,” Solid State Commun. 138, 309–313 (2006).
[CrossRef]

Sov. Phys. Semicond. (1)

R. F. Kazarinov, R. A. Suris, “Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

Other (8)

G. Sun, J. B. Khurgin, “Feasibility of optically pumped four-level infrared lasers,” in Intersubband Transitions in Quantum Wells, E. Rosencher, B. Vinter, and B. Levine, eds. (Plenum, 1992), pp. 219–226.
[CrossRef]

G. L. Bir, G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974).

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Editions de Physique, 1998), Chap. 3.

J. D. Cressler, SiGe and Si Strained-Layer Epitaxy for Silicon Heterostructure Devices (CRC Press, 2008).

P. Harrison, Quantum Wells, Wires, and Dots (Wiley, 2000), p. 272.

B. K. Ridley, Electrons and Phonons in Semiconductor Multiplayers (Cambridge University Press, 1997), Chap. 1.

E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).

M. E. Castagna, S. Coffa, L. carestia, A. Messian, C. Buongiorno, “Quantum dot materials and devices for light emission in silicon,” Proceedings of the 32nd European Solid-State Device Research Conference, 2002, held at Fireze, Italy (2002), paperD21.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Photon emission process in (a) the direct and (b) the indirect bandgap semiconductors.

Fig. 2
Fig. 2

(a) Conduction and valence subband formations in a semiconductor QW; (b) in-plane subband dispersions with optical transitions between conduction and valence subbands.

Fig. 3
Fig. 3

Two subbands formed within the conduction band confined in a QW and their election envelope functions; (b) in-plane energy dispersions of the two subbands. The radiative IST between the two subbands is marked with a green arrow.

Fig. 4
Fig. 4

Schematic band diagram of two periods of a QCL structure with each period consisting of an active and an injector region. Lasing transitions are between the states 3 and 2 in the active regions, with rapid depopulation of lower state 2 into state 1, which couples strongly with the minibands formed in injector regions that transport carriers to state 3 in the next period. The magnitude-squared wavefunctions for the three subbands in active regions are illustrated.

Fig. 5
Fig. 5

In-plane dispersions of subbands HH1, LH1, and HH2 for a 70 Å 50 Å Ga As Al Ga As SL [35].

Fig. 6
Fig. 6

Intersubband and intrasubband transitions due to electron–phonon scattering. (b) 22 11 transition induced by the electron–electron scattering.

Fig. 7
Fig. 7

HH valence band diagram of one period of a Si Ge Si SL with a hole energy increase in the upward direction. (b) Comparison of lifetime difference ( τ 3 τ 2 ) between the Si Ge Si and Ga As Al Ga As SL (in a similar three-level scheme) as a function of the transition energy ( E 3 E 2 ) [38].

Fig. 8
Fig. 8

Dispersions of subbands HH1, LH1, and HH2 in a 90 Å 50 Å Si 0.7 Ge 0.3 Si SL strained balanced on a Si 0.81 Ge 0.19 buffer, obtained with a 6 × 6 valence band matrix, taking into account HH, LH, and SO interactions and strain effect [50].

Fig. 9
Fig. 9

Band diagram of the Si 0.8 Ge 0.2 Si SL under an electric bias of 30 kV cm . The labels ( n 1 , n , n + 1 , ) represent the QWs in which the wave functions are localized [51]. (b) Dispersions of the four levels (two doublets) in a QW.

Fig. 10
Fig. 10

Illustration of two periods of a bound-to-continuum QCL. Lasing transition occurs between an isolated bound upper state 2 (formed in the minigap) and a delocalized lower state 1 (sitting on top of a miniband).

Fig. 11
Fig. 11

Conduction band minima at L, Γ, X points of Ge 1 x y Si x Sn y that is lattice matched to Ge [71].

Fig. 12
Fig. 12

L-valley conduction-band profile and squared envelope functions under an electric field of 10 kV cm . Layer thicknesses in ångströms are marked with bold numbers for Ge QWs and regular numbers for GeSiSn barriers. The array marks the injection barrier [71].

Fig. 13
Fig. 13

Upper-state lifetime τ 3 , lower-state lifetime τ 2 , and scattering time τ 32 between them as a function of temperature.

Fig. 14
Fig. 14

Schematic of a ridge plasmon waveguide with the Ge Ge Si Sn QCL sandwiched between two metal layers.

Fig. 15
Fig. 15

Simulated threshold current density of the Ge Ge Si Sn QCL as a function of temperature.

Equations (53)

Equations on this page are rendered with MathJax. Learn more.

E i , k = E i + 2 k 2 2 m e * ,
[ 2 2 d d z 1 m e * ( z ) d d z + V c ( z ) ] φ i ( z ) = E i φ i ( z )
Φ i ( r , z ) = φ i ( z ) u e ( R ) e j k r ,
φ i ( z ) = A l e j k z ( z d l ) + B l e j k z ( z d l ) ,
φ i ( z ) and 1 m e * ( z ) d φ i ( z ) d z continous ,
E i = 2 k z 2 2 m e * ( z ) + V c ( z ) .
V c ( z ) = V c , l e E z e ϕ ( z ) ,
2 z 2 ϕ ( z ) = e ε 0 ε ( z ) [ i n i | φ i ( z ) | 2 N d ( z ) ]
H = | 3 2 , 3 2 | 3 2 , 1 2 | 3 2 , 1 2 | 3 2 , 3 2 | 1 2 , 1 2 | 1 2 , 1 2 [ P + Q S R 0 1 2 S 2 R S P Q 0 R 2 Q 3 2 S R 0 P Q S 3 2 S 2 Q 0 R S P + Q 2 R 1 2 S 1 2 S 2 Q 3 2 S 2 R P + Δ 0 2 R 3 2 S 2 Q 1 2 S 0 P + Δ ] + V v ( z )
P = 2 2 m 0 γ 1 ( k x 2 + k y 2 + k z 2 ) a v ( ϵ x x + ϵ y y + ϵ z z ) ,
Q = 2 2 m 0 γ 2 ( k x 2 + k y 2 2 k z 2 ) b 2 ( ϵ x x + ϵ y y 2 ϵ z z ) ,
S = 2 2 m 0 2 3 γ 3 ( k x j k y ) k z ,
R = 2 2 m 0 3 [ γ 2 ( k x 2 k y 2 ) + 2 j γ 3 k x k y ] .
ϵ x x = ϵ y y = a 0 a a , ϵ y y = 2 C 12 C 11 ϵ x x
Ψ i ( r , z ) = e j k r [ χ 1 ( z ) | 3 2 , 3 2 + χ 2 ( z ) | 3 2 , 1 2 + χ 3 ( z ) | 3 2 , 1 2 + χ 4 ( z ) | 3 2 , 3 2 + χ 5 ( z ) | 1 2 , 1 2 + χ 6 ( z ) | 1 2 , 1 2 ] ,
χ ( z ) and [ p + q s 0 0 1 2 s 0 s p q 0 0 2 q 3 2 s 0 0 p q s 3 2 s 2 q 0 0 s p + q 0 1 2 s 1 2 s 2 q 3 2 s 0 p 0 0 3 2 s 2 q 1 2 s 0 p ] χ ( z ) continuous .
p = γ 1 z ,
q = 2 γ 2 z ,
s = 3 j γ 3 ( k x j k y ) .
g 12 = 2 π | H m | 2 δ ( E 2 E 1 ω ) ,
L ( E ) = Γ 2 π ( E E 0 ) 2 + Γ 2 4 ,
g 12 = 2 π | H m | 2 δ ( E ω ) L ( E ) d E = 2 π | H m | 2 Γ 2 π ( ω E 0 ) + Γ 2 4 .
H ex = e A P m e * ,
H m = e A m e * P 12 ,
P 12 = φ 1 | j z | φ 2
z 12 = φ 1 | z | φ 2 = i m 0 E 12 P 12
f 12 = 2 m 0 m e * 2 E 12 | P 12 | 2 .
g net = g 12 { f 2 ( E 2 , k ) [ 1 f 1 ( E 1 , k ) ] f 1 ( E 1 , k ) [ 1 f 2 ( E 2 , k ) ] } ρ r ( E 2 , k E 1 , k ) d ( E 2 , k E 1 , k ) ,
g net = 2 π | H m | 2 Γ 2 π ( ω E 12 ) 2 + Γ 2 4 [ f 2 ( E 2 , k ) ρ 2 d E 2 , k f 1 ( E 1 , k ) ρ 1 d E 1 , k ] = 2 π | H m | 2 Γ 2 π ( ω E 12 ) 2 + Γ 2 4 ( N 2 N 1 ) ,
γ ( ω ) = g net ω I L p ,
A = A 0 cos ( β r ω t ) z ̂ = 1 2 A 0 z ̂ [ e j ( β r ω t ) + e j ( β r ω t ) ] ,
γ ( ω ) = e 2 | P 12 | 2 2 ε 0 c n eff m e * 2 ω L p Γ ( ω E 12 ) 2 + Γ 2 4 ( N 2 N 1 ) = e 2 m 0 2 ω z 12 2 2 ε 0 c n eff m e * 2 L p Γ ( ω E 12 ) 2 + Γ 2 4 ( N 2 N 1 ) ,
γ ( ω 0 ) = 2 e 2 m 0 2 ω z 12 2 ε 0 c n eff m e * 2 Γ L p ( N 2 N 1 ) .
g net ( v ) = 2 π | H m ( v ) | 2 ρ r ( E l E h ) | [ f LH ( E l ) F HH ( E h ) ] | E l E h = ω .
H m ( v ) = n = 1 6 e A m n * χ n ( l ) | j z | χ n ( h ) ,
γ ( v ) = π e 2 ε 0 c n eff ω L p | n = 1 6 P n ( l h ) m n * | 2 ρ r ( E l E h ) | [ f LH ( E l ) f HH ( E h ) ] | E l E h = ω = π e 2 m 0 2 ω ε 0 c n eff L p | n = 1 6 z n ( l h ) m n * | 2 ρ r ( E l E h ) | [ f LH ( E l ) f HH ( E h ) ] | E l E h = ω .
1 τ 12 = 2 π | H e p | 2 δ ( E 2 , k E 1 , k ω Q ) d N f ,
| H e p | 2 = { Ξ 2 K B T 2 c L Ω δ q , ± ( k k ) | G 12 ( q z ) | 2 acoustic phonon D 2 2 ρ ω 0 Ω δ q , ± ( k k ) [ n ( ω 0 ) + 1 2 1 2 ] | G 12 ( q z ) | 2 nonpolar optical phonon } ,
n ( ω 0 ) = 1 exp ( ω 0 K B T ) 1 .
G 12 ( q z ) = φ 1 | e j q z z | φ 2
G 12 ( q z ) = n = 1 6 χ n ( 1 ) | e j q z z | χ n ( 2 ) .
d N f = Ω ( 2 π ) 3 q d q d θ d q z ,
1 τ 12 = { Ξ 2 K B T m e * 4 π c L 3 | G 12 ( q z ) | 2 d q z acoustic D 2 m e * [ n ( ω 0 ) + 1 2 1 2 ] 4 π ρ 2 ω 0 | G 12 ( q z ) | 2 d q z nonpolar optical } .
Δ E v , av ( x , y ) = E v , av ( Ge Si Sn ) E v , av ( Ge ) = 0.48 x + 0.69 y .
E Ge Si Sn ( x , y ) = E Ge Si Sn ( 1 x y ) + E Si x + E Sn y b Ge Si ( 1 x y ) x b Ge Sn ( 1 x y ) y b Si Sn x y .
E x = 0.931 + 0.018 x + 0.206 x 2
N 3 t = η J e N 3 N ¯ 3 τ 3 ,
N 2 t = N 3 N ¯ 3 τ 32 N 2 N ¯ 2 τ 2 ,
N 3 N 2 = τ 3 ( 1 τ 2 τ 32 ) η J e ( N ¯ 2 N ¯ 3 ) ,
γ ( ω 0 ) = 2 e 2 m 0 2 ω 0 z 23 2 ε 0 c n eff m z * 2 Γ L p [ τ 3 ( 1 τ 2 τ 32 ) η J e ( N ¯ 2 N ¯ 3 ) ] .
ε M = 1 ω p 2 ω 2 + j γ m ω ,
E = { E 0 ε cosh ( k d 2 ) ( j β z ̂ + q x ̂ ) e q ( z d 2 ) e j ( β x ω t ) z > d 2 E 0 [ j β cosh ( k z ) z ̂ k sinh ( k z ) x ̂ ] e j ( β x ω t ) | z | < d 2 E 0 ε cosh ( k d 2 ) ( j β z ̂ q x ̂ ) e q ( z + d 2 ) e j ( β x ω t ) z < d 2 } ,
k 2 [ ε 2 tanh 2 ( k d 2 ) 1 ] = k D 2 ( 1 ε ) ,

Metrics