J. H. Shapiro, “Corrections to “The Quantum Theory
of Optical Communications” [Nov/Dec 09
1547-1569],” IEEE J. Sel. Top. Quantum
Electron. 16, 698 (2010).

[CrossRef]

J. H. Shapiro, “The quantum theory of optical
communications,” IEEE J. Sel. Top. Quantum
Electron. 15, 1547–1569
(2009).

[CrossRef]

L. Basano, P. Ottonello, “A conceptual experiment on single-beam
coincidence detection with pseudothermal light,”
Opt. Express 19, 12386–12394
(2009).

Y. Bromberg, O. Katz, Y. Silberberg, “Ghost imaging with a single
detector,” Phys. Rev. A 79, 053840 (2009).

[CrossRef]

O. Katz, Y. Bromberg, Y. Silberberg, “Compressive ghost
imaging,” Appl. Phys. Lett. 95, 113110 (2009).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state
ghost imaging,” Phys. Rev. A 79, 023833 (2009).

[CrossRef]

X.-H. Chen, Q. Liu, K.-H. Luo, L.-A. Wu, “Lensless ghost imaging with true thermal
light,” Opt. Lett. 34, 695–697
(2009).

[CrossRef]
[PubMed]

J. Cheng, “Ghost imaging through turbulent
atmosphere,” Opt. Express 17, 7916–7921
(2009).

[CrossRef]
[PubMed]

L. Wang, S. Qamar, S.-Y. Zhu, M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light
ghost imaging: a unified approach,” Phys. Rev.
A 79, 033835 (2009).

[CrossRef]

K. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost
imaging,” Phys. Rev. A 79, 033808 (2009).

[CrossRef]

Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, L.-A. Wu, “Role of multiphoton bunching in high-order
ghost imaging with thermal light sources,” Phys.
Rev. A 79, 053844 (2009).

[CrossRef]

I. Agafonov, M. Chekhova, T. S. Iskhakov, L.-A. Wu, “High-visibility intensity interference and
ghost imaging with pseudo-thermal light,” J. Mod.
Opt. 56, 422–431
(2009).

[CrossRef]

M. H. Rubin, Y. Shih, “Resolution of ghost imaging for
nondegenerate spontaneous parametric down-conversion,”
Phys. Rev. A 78, 033836 (2008).

[CrossRef]

J. Cheng, “Transfer functions in lensless ghost-imaging
systems,” Phys. Rev. A 78, 043823 (2008).

[CrossRef]

R. Meyers, K. S. Deacon, Y. Shih, “Ghost-imaging experiment by measuring
reflected photons,” Phys. Rev. A 77, 041801(R) (2008).

[CrossRef]

R. E. Meyers, K. S. Deacon, Y. Shih, “Quantum imaging of an obscured object by
measurement of reflected photons,” Proc.
SPIE 7092, 70920E (2008).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Unified theory of ghost imaging with
Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).

[CrossRef]

J. H. Shapiro, “Computational ghost
imaging,” Phys. Rev. A 78, 061802(R) (2008).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Gaussian-state theory of two-photon
imaging,” Phys. Rev. A 78, 023835 (2008).

[CrossRef]

Y. Shih, “Quantum imaging,”
IEEE J. Sel. Top. Quantum Electron. 13, 1016–1030
(2007).

[CrossRef]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, S. Han, “Lensless Fourier-transform ghost imaging
with classical incoherent light,” Phys. Rev.
A 75, 021803(R) (2007).

[CrossRef]

L.-H. Ou, L.-M. Kuang, “Ghost imaging with third-order correlated
thermal light,” J. Phys. B 40, 1833–1844
(2007).

[CrossRef]

M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, L. A. Lugiato, “Coherent imaging of a pure phase object with
classical incoherent light,” Phys. Rev. A 73, 053802 (2006).

[CrossRef]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, L. A. Lugiato, “Coherent imaging with pseudo-thermal
incoherent light,” J. Mod. Opt. 53, 739–760
(2006).

[CrossRef]

G. Scarcelli, V. Berardi, Y. Shih, “Can two-photon correlation of chaotic light
be considered as correlation of intensity fluctuations?”
Phys. Rev. Lett. 96, 063602 (2006).

[CrossRef]
[PubMed]

B. I. Erkmen, J. H. Shapiro, “Optical coherence theory for phase-sensitive
light,” Proc. SPIE 6305, 63050G (2006).

[CrossRef]

F. N. C. Wong, T. Kim, J. H. Shapiro, “Efficient generation of
polarization-entangled photons in a nonlinear crystal,”
Laser Phys. 16, 1517–1524
(2006).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Phase-conjugate optical coherence
tomography,” Phys. Rev. A 74, 041601(R) (2006).

[CrossRef]

Y. Cai, S.-Y. Zhu, “Ghost imaging with incoherent and partially
coherent light radiation,” Phys. Rev. E 71, 056607 (2005).

[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih, “Two-photon imaging with thermal
light,” Phys. Rev. Lett. 94, 063601 (2005).

[CrossRef]
[PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato, “High-resolution ghost image and ghost
diffraction experiments with thermal light,” Phys.
Rev. Lett. 94, 183602 (2005).

[CrossRef]
[PubMed]

J. Cheng, S.-S. Han, “Theoretical analysis of quantum noise in
ghost imaging,” Chin. Phys. Lett. 22, 1676–1679
(2005).

[CrossRef]

M. Bache, E. Brambilla, A. Gatti, L. A. Lugiato, “Ghost imaging using homodyne
detection,” Phys. Rev. A 70, 023823 (2004).

[CrossRef]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, “Entangled-photon imaging of a pure phase
object,” Phys. Rev. Lett. 93, 213903 (2004).

[CrossRef]
[PubMed]

Y. Cai, S.-Y. Zhu, “Ghost interference with partially coherent
light radiation,” Opt. Lett. 29, 2716–2718
(2004).

[CrossRef]
[PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, J. C. Howell, “Quantum and classical coincidence
imaging,” Phys. Rev. Lett. 92, 033601 (2004).

[CrossRef]
[PubMed]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Correlated imaging, quantum and
classical,” Phys. Rev. A 70, 013802 (2004).

[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing
entanglement and classical correlation,” Phys.
Rev. Lett. 93, 093602 (2004).

[CrossRef]
[PubMed]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field
spatial quantum correlations in the high-gain regime of parametric
down-conversion,” Phys. Rev. A 69, 023802 (2004).

[CrossRef]

J. H. Shapiro, “Quantum Gaussian
noise,” in Proc. SPIE 5111, 382–395
(2003).

[CrossRef]

A. Gatti, E. Brambilla, L. A. Lugiato, “Entangled imaging and wave-particle duality:
from the microscopic to the macroscopic realm,”
Phys. Rev. Lett. 90, 133603 (2003).

[CrossRef]
[PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, ““Two-photon” coincidence
imaging with a classical source,” Phys. Rev.
Lett. 89, 113601 (2002).

[CrossRef]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Entangled-photon Fourier
optics,” J. Opt. Soc. Am. B 19, 1174–1184
(2002).

[CrossRef]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Role of entanglement in two-photon
imaging,” Phys. Rev. Lett. 87, 123602 (2001).

[CrossRef]
[PubMed]

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, M. C. Teich, “Duality between partial coherence and
partial entanglement,” Phys. Rev. A 62, 043816 (2000).

[CrossRef]

J. H. Shapiro, “Quantum measurement eigenkets for
continuous-time direct detection,” Quantum
Semiclassic. Opt. 10, 567–578
(1998).

[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon
quantum entanglement,” Phys. Rev. A 52, R3429–R3432
(1995).

[CrossRef]
[PubMed]

J. H. Shapiro, K.-X. Sun, “Semiclassical versus quantum behavior in
fourth-order interference,” J. Opt. Soc. Am.
B 11, 1130–1141
(1994).

[CrossRef]

H. P. Yuen, J. H. Shapiro, “Optical communication with two-photon
coherent states—Part III: quantum measurements realizable with
photoemissive detectors,” IEEE Trans. Inf.
Theory 26, 78–92
(1980).

[CrossRef]

J. H. Shapiro, H. P. Yuen, J. A. Machado Mata, “Optical communication with two-photon
coherent states—Part II: photoemissive detection and structured receiver
performance,” IEEE Trans. Inf. Theory 25, 179–192
(1979).

[CrossRef]

H. P. Yuen, J. H. Shapiro, “Optical communication with two-photon
coherent states—Part I: quantum state propagation and quantum noise
reduction,” IEEE Trans. Inf. Theory 24, 657–668
(1978).

[CrossRef]

J. F. Clauser, M. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local
hidden-variable theories,” Phys. Rev.
Lett. 23, 880–884
(1969).

[CrossRef]

R. J. Glauber, “The quantum theory of optical
coherence,” Phys. Rev. 130, 2529–2539
(1963).

[CrossRef]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, “Entangled-photon imaging of a pure phase
object,” Phys. Rev. Lett. 93, 213903 (2004).

[CrossRef]
[PubMed]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Entangled-photon Fourier
optics,” J. Opt. Soc. Am. B 19, 1174–1184
(2002).

[CrossRef]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Role of entanglement in two-photon
imaging,” Phys. Rev. Lett. 87, 123602 (2001).

[CrossRef]
[PubMed]

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, M. C. Teich, “Duality between partial coherence and
partial entanglement,” Phys. Rev. A 62, 043816 (2000).

[CrossRef]

I. Agafonov, M. Chekhova, T. S. Iskhakov, L.-A. Wu, “High-visibility intensity interference and
ghost imaging with pseudo-thermal light,” J. Mod.
Opt. 56, 422–431
(2009).

[CrossRef]

X.-H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, L.-A. Wu, “Arbitrary-order lensless ghost imaging with
thermal light,” arXiv.org,
arXiv:0902.3713v1 [quant-ph] (2009).

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, L. A. Lugiato, “Coherent imaging with pseudo-thermal
incoherent light,” J. Mod. Opt. 53, 739–760
(2006).

[CrossRef]

M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, L. A. Lugiato, “Coherent imaging of a pure phase object with
classical incoherent light,” Phys. Rev. A 73, 053802 (2006).

[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato, “High-resolution ghost image and ghost
diffraction experiments with thermal light,” Phys.
Rev. Lett. 94, 183602 (2005).

[CrossRef]
[PubMed]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing
entanglement and classical correlation,” Phys.
Rev. Lett. 93, 093602 (2004).

[CrossRef]
[PubMed]

M. Bache, E. Brambilla, A. Gatti, L. A. Lugiato, “Ghost imaging using homodyne
detection,” Phys. Rev. A 70, 023823 (2004).

[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Correlated imaging, quantum and
classical,” Phys. Rev. A 70, 013802 (2004).

[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field
spatial quantum correlations in the high-gain regime of parametric
down-conversion,” Phys. Rev. A 69, 023802 (2004).

[CrossRef]

L. Basano, P. Ottonello, “A conceptual experiment on single-beam
coincidence detection with pseudothermal light,”
Opt. Express 19, 12386–12394
(2009).

R. S. Bennink, S. J. Bentley, R. W. Boyd, J. C. Howell, “Quantum and classical coincidence
imaging,” Phys. Rev. Lett. 92, 033601 (2004).

[CrossRef]
[PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, ““Two-photon” coincidence
imaging with a classical source,” Phys. Rev.
Lett. 89, 113601 (2002).

[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, J. C. Howell, “Quantum and classical coincidence
imaging,” Phys. Rev. Lett. 92, 033601 (2004).

[CrossRef]
[PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, ““Two-photon” coincidence
imaging with a classical source,” Phys. Rev.
Lett. 89, 113601 (2002).

[CrossRef]

G. Scarcelli, V. Berardi, Y. Shih, “Can two-photon correlation of chaotic light
be considered as correlation of intensity fluctuations?”
Phys. Rev. Lett. 96, 063602 (2006).

[CrossRef]
[PubMed]

K. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost
imaging,” Phys. Rev. A 79, 033808 (2009).

[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, J. C. Howell, “Quantum and classical coincidence
imaging,” Phys. Rev. Lett. 92, 033601 (2004).

[CrossRef]
[PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, ““Two-photon” coincidence
imaging with a classical source,” Phys. Rev.
Lett. 89, 113601 (2002).

[CrossRef]

K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “High-order thermal ghost
imaging,” in Conference on Lasers and
Electro-Optics/International Quantum Electronics Conference, OSA
Technical Digest (CD) (Optical Society of
America, 2009), paper
JTuD100.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, L. A. Lugiato, “Coherent imaging with pseudo-thermal
incoherent light,” J. Mod. Opt. 53, 739–760
(2006).

[CrossRef]

M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, L. A. Lugiato, “Coherent imaging of a pure phase object with
classical incoherent light,” Phys. Rev. A 73, 053802 (2006).

[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato, “High-resolution ghost image and ghost
diffraction experiments with thermal light,” Phys.
Rev. Lett. 94, 183602 (2005).

[CrossRef]
[PubMed]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing
entanglement and classical correlation,” Phys.
Rev. Lett. 93, 093602 (2004).

[CrossRef]
[PubMed]

M. Bache, E. Brambilla, A. Gatti, L. A. Lugiato, “Ghost imaging using homodyne
detection,” Phys. Rev. A 70, 023823 (2004).

[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Correlated imaging, quantum and
classical,” Phys. Rev. A 70, 013802 (2004).

[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field
spatial quantum correlations in the high-gain regime of parametric
down-conversion,” Phys. Rev. A 69, 023802 (2004).

[CrossRef]

A. Gatti, E. Brambilla, L. A. Lugiato, “Entangled imaging and wave-particle duality:
from the microscopic to the macroscopic realm,”
Phys. Rev. Lett. 90, 133603 (2003).

[CrossRef]
[PubMed]

Y. Bromberg, O. Katz, Y. Silberberg, “Ghost imaging with a single
detector,” Phys. Rev. A 79, 053840 (2009).

[CrossRef]

O. Katz, Y. Bromberg, Y. Silberberg, “Compressive ghost
imaging,” Appl. Phys. Lett. 95, 113110 (2009).

[CrossRef]

K. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost
imaging,” Phys. Rev. A 79, 033808 (2009).

[CrossRef]

K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “High-order thermal ghost
imaging,” in Conference on Lasers and
Electro-Optics/International Quantum Electronics Conference, OSA
Technical Digest (CD) (Optical Society of
America, 2009), paper
JTuD100.

I. Agafonov, M. Chekhova, T. S. Iskhakov, L.-A. Wu, “High-visibility intensity interference and
ghost imaging with pseudo-thermal light,” J. Mod.
Opt. 56, 422–431
(2009).

[CrossRef]

X.-H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, L.-A. Wu, “Arbitrary-order lensless ghost imaging with
thermal light,” arXiv.org,
arXiv:0902.3713v1 [quant-ph] (2009).

Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, L.-A. Wu, “Role of multiphoton bunching in high-order
ghost imaging with thermal light sources,” Phys.
Rev. A 79, 053844 (2009).

[CrossRef]

X.-H. Chen, Q. Liu, K.-H. Luo, L.-A. Wu, “Lensless ghost imaging with true thermal
light,” Opt. Lett. 34, 695–697
(2009).

[CrossRef]
[PubMed]

X.-H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, L.-A. Wu, “Arbitrary-order lensless ghost imaging with
thermal light,” arXiv.org,
arXiv:0902.3713v1 [quant-ph] (2009).

J. Cheng, “Ghost imaging through turbulent
atmosphere,” Opt. Express 17, 7916–7921
(2009).

[CrossRef]
[PubMed]

J. Cheng, “Transfer functions in lensless ghost-imaging
systems,” Phys. Rev. A 78, 043823 (2008).

[CrossRef]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, S. Han, “Lensless Fourier-transform ghost imaging
with classical incoherent light,” Phys. Rev.
A 75, 021803(R) (2007).

[CrossRef]

J. Cheng, S.-S. Han, “Theoretical analysis of quantum noise in
ghost imaging,” Chin. Phys. Lett. 22, 1676–1679
(2005).

[CrossRef]

J. F. Clauser, M. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local
hidden-variable theories,” Phys. Rev.
Lett. 23, 880–884
(1969).

[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih, “Two-photon imaging with thermal
light,” Phys. Rev. Lett. 94, 063601 (2005).

[CrossRef]
[PubMed]

M. D’Angelo, Y. Shih, “Can quantum imaging be classically
simulated?,” arXiv.org,
arXiv:quant-ph0302146v2 (2003).

R. Meyers, K. S. Deacon, Y. Shih, “Ghost-imaging experiment by measuring
reflected photons,” Phys. Rev. A 77, 041801(R) (2008).

[CrossRef]

R. E. Meyers, K. S. Deacon, Y. Shih, “Quantum imaging of an obscured object by
measurement of reflected photons,” Proc.
SPIE 7092, 70920E (2008).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state
ghost imaging,” Phys. Rev. A 79, 023833 (2009).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Gaussian-state theory of two-photon
imaging,” Phys. Rev. A 78, 023835 (2008).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Unified theory of ghost imaging with
Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Optical coherence theory for phase-sensitive
light,” Proc. SPIE 6305, 63050G (2006).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Phase-conjugate optical coherence
tomography,” Phys. Rev. A 74, 041601(R) (2006).

[CrossRef]

M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, L. A. Lugiato, “Coherent imaging of a pure phase object with
classical incoherent light,” Phys. Rev. A 73, 053802 (2006).

[CrossRef]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, L. A. Lugiato, “Coherent imaging with pseudo-thermal
incoherent light,” J. Mod. Opt. 53, 739–760
(2006).

[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato, “High-resolution ghost image and ghost
diffraction experiments with thermal light,” Phys.
Rev. Lett. 94, 183602 (2005).

[CrossRef]
[PubMed]

R. M. Gagliardi, S. Karp, Optical Communications
(Wiley, 1976).

R. G. Gallager, Discrete Stochastic Processes
(Kluwer Academic, 1996).

M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, L. A. Lugiato, “Coherent imaging of a pure phase object with
classical incoherent light,” Phys. Rev. A 73, 053802 (2006).

[CrossRef]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, L. A. Lugiato, “Coherent imaging with pseudo-thermal
incoherent light,” J. Mod. Opt. 53, 739–760
(2006).

[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato, “High-resolution ghost image and ghost
diffraction experiments with thermal light,” Phys.
Rev. Lett. 94, 183602 (2005).

[CrossRef]
[PubMed]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing
entanglement and classical correlation,” Phys.
Rev. Lett. 93, 093602 (2004).

[CrossRef]
[PubMed]

M. Bache, E. Brambilla, A. Gatti, L. A. Lugiato, “Ghost imaging using homodyne
detection,” Phys. Rev. A 70, 023823 (2004).

[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field
spatial quantum correlations in the high-gain regime of parametric
down-conversion,” Phys. Rev. A 69, 023802 (2004).

[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Correlated imaging, quantum and
classical,” Phys. Rev. A 70, 013802 (2004).

[CrossRef]

A. Gatti, E. Brambilla, L. A. Lugiato, “Entangled imaging and wave-particle duality:
from the microscopic to the macroscopic realm,”
Phys. Rev. Lett. 90, 133603 (2003).

[CrossRef]
[PubMed]

R. J. Glauber, “The quantum theory of optical
coherence,” Phys. Rev. 130, 2529–2539
(1963).

[CrossRef]

J. W. Goodman, Statistical Optics, Classics ed.
(Wiley, 2000).

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, S. Han, “Lensless Fourier-transform ghost imaging
with classical incoherent light,” Phys. Rev.
A 75, 021803(R) (2007).

[CrossRef]

J. Cheng, S.-S. Han, “Theoretical analysis of quantum noise in
ghost imaging,” Chin. Phys. Lett. 22, 1676–1679
(2005).

[CrossRef]

J. F. Clauser, M. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local
hidden-variable theories,” Phys. Rev.
Lett. 23, 880–884
(1969).

[CrossRef]

J. F. Clauser, M. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local
hidden-variable theories,” Phys. Rev.
Lett. 23, 880–884
(1969).

[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, J. C. Howell, “Quantum and classical coincidence
imaging,” Phys. Rev. Lett. 92, 033601 (2004).

[CrossRef]
[PubMed]

I. Agafonov, M. Chekhova, T. S. Iskhakov, L.-A. Wu, “High-visibility intensity interference and
ghost imaging with pseudo-thermal light,” J. Mod.
Opt. 56, 422–431
(2009).

[CrossRef]

J. M. Wozencraft, I. M. Jacobs, Principles of Communication Engineering
(Wiley, 1965).

R. M. Gagliardi, S. Karp, Optical Communications
(Wiley, 1976).

O. Katz, Y. Bromberg, Y. Silberberg, “Compressive ghost
imaging,” Appl. Phys. Lett. 95, 113110 (2009).

[CrossRef]

Y. Bromberg, O. Katz, Y. Silberberg, “Ghost imaging with a single
detector,” Phys. Rev. A 79, 053840 (2009).

[CrossRef]

F. N. C. Wong, T. Kim, J. H. Shapiro, “Efficient generation of
polarization-entangled photons in a nonlinear crystal,”
Laser Phys. 16, 1517–1524
(2006).

[CrossRef]

L.-H. Ou, L.-M. Kuang, “Ghost imaging with third-order correlated
thermal light,” J. Phys. B 40, 1833–1844
(2007).

[CrossRef]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, S. Han, “Lensless Fourier-transform ghost imaging
with classical incoherent light,” Phys. Rev.
A 75, 021803(R) (2007).

[CrossRef]

X.-H. Chen, Q. Liu, K.-H. Luo, L.-A. Wu, “Lensless ghost imaging with true thermal
light,” Opt. Lett. 34, 695–697
(2009).

[CrossRef]
[PubMed]

Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, L.-A. Wu, “Role of multiphoton bunching in high-order
ghost imaging with thermal light sources,” Phys.
Rev. A 79, 053844 (2009).

[CrossRef]

X.-H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, L.-A. Wu, “Arbitrary-order lensless ghost imaging with
thermal light,” arXiv.org,
arXiv:0902.3713v1 [quant-ph] (2009).

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, S. Han, “Lensless Fourier-transform ghost imaging
with classical incoherent light,” Phys. Rev.
A 75, 021803(R) (2007).

[CrossRef]

R. Loudon, The Quantum Theory of Light, 3rd
ed. (Oxford Univ. Press,
2000).

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, L. A. Lugiato, “Coherent imaging with pseudo-thermal
incoherent light,” J. Mod. Opt. 53, 739–760
(2006).

[CrossRef]

M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, L. A. Lugiato, “Coherent imaging of a pure phase object with
classical incoherent light,” Phys. Rev. A 73, 053802 (2006).

[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato, “High-resolution ghost image and ghost
diffraction experiments with thermal light,” Phys.
Rev. Lett. 94, 183602 (2005).

[CrossRef]
[PubMed]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing
entanglement and classical correlation,” Phys.
Rev. Lett. 93, 093602 (2004).

[CrossRef]
[PubMed]

M. Bache, E. Brambilla, A. Gatti, L. A. Lugiato, “Ghost imaging using homodyne
detection,” Phys. Rev. A 70, 023823 (2004).

[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Correlated imaging, quantum and
classical,” Phys. Rev. A 70, 013802 (2004).

[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field
spatial quantum correlations in the high-gain regime of parametric
down-conversion,” Phys. Rev. A 69, 023802 (2004).

[CrossRef]

A. Gatti, E. Brambilla, L. A. Lugiato, “Entangled imaging and wave-particle duality:
from the microscopic to the macroscopic realm,”
Phys. Rev. Lett. 90, 133603 (2003).

[CrossRef]
[PubMed]

X.-H. Chen, Q. Liu, K.-H. Luo, L.-A. Wu, “Lensless ghost imaging with true thermal
light,” Opt. Lett. 34, 695–697
(2009).

[CrossRef]
[PubMed]

Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, L.-A. Wu, “Role of multiphoton bunching in high-order
ghost imaging with thermal light sources,” Phys.
Rev. A 79, 053844 (2009).

[CrossRef]

X.-H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, L.-A. Wu, “Arbitrary-order lensless ghost imaging with
thermal light,” arXiv.org,
arXiv:0902.3713v1 [quant-ph] (2009).

J. H. Shapiro, H. P. Yuen, J. A. Machado Mata, “Optical communication with two-photon
coherent states—Part II: photoemissive detection and structured receiver
performance,” IEEE Trans. Inf. Theory 25, 179–192
(1979).

[CrossRef]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, L. A. Lugiato, “Coherent imaging with pseudo-thermal
incoherent light,” J. Mod. Opt. 53, 739–760
(2006).

[CrossRef]

M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, L. A. Lugiato, “Coherent imaging of a pure phase object with
classical incoherent light,” Phys. Rev. A 73, 053802 (2006).

[CrossRef]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato, “High-resolution ghost image and ghost
diffraction experiments with thermal light,” Phys.
Rev. Lett. 94, 183602 (2005).

[CrossRef]
[PubMed]

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics
(Cambridge Univ. Press,
1995).

R. Meyers, K. S. Deacon, Y. Shih, “Ghost-imaging experiment by measuring
reflected photons,” Phys. Rev. A 77, 041801(R) (2008).

[CrossRef]

R. E. Meyers, K. S. Deacon, Y. Shih, “Quantum imaging of an obscured object by
measurement of reflected photons,” Proc.
SPIE 7092, 70920E (2008).

[CrossRef]

K. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost
imaging,” Phys. Rev. A 79, 033808 (2009).

[CrossRef]

K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “High-order thermal ghost
imaging,” in Conference on Lasers and
Electro-Optics/International Quantum Electronics Conference, OSA
Technical Digest (CD) (Optical Society of
America, 2009), paper
JTuD100.

L. Basano, P. Ottonello, “A conceptual experiment on single-beam
coincidence detection with pseudothermal light,”
Opt. Express 19, 12386–12394
(2009).

L.-H. Ou, L.-M. Kuang, “Ghost imaging with third-order correlated
thermal light,” J. Phys. B 40, 1833–1844
(2007).

[CrossRef]

A. Papoulis, Probability, Random Variables, and Stochastic
Processes, 3rd ed.
(McGraw-Hill,
1991).

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon
quantum entanglement,” Phys. Rev. A 52, R3429–R3432
(1995).

[CrossRef]
[PubMed]

L. Wang, S. Qamar, S.-Y. Zhu, M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light
ghost imaging: a unified approach,” Phys. Rev.
A 79, 033835 (2009).

[CrossRef]

M. H. Rubin, Y. Shih, “Resolution of ghost imaging for
nondegenerate spontaneous parametric down-conversion,”
Phys. Rev. A 78, 033836 (2008).

[CrossRef]

In our view, the interpretation of
computational ghost imaging that suggests nonlocal interference between a physical
photon in a light beam and a “virtual photon” arising from numerical
computations on a computer processor—see M. H. Rubin, “Comment on ghost imaging with a single
detector [arXiv0812.2633v2],”
arXiv.org, arXiv:0902.1940v1 [quant-ph]
(2009)—is far from being convincing, and is highly
speculative.

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, “Entangled-photon imaging of a pure phase
object,” Phys. Rev. Lett. 93, 213903 (2004).

[CrossRef]
[PubMed]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Entangled-photon Fourier
optics,” J. Opt. Soc. Am. B 19, 1174–1184
(2002).

[CrossRef]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Role of entanglement in two-photon
imaging,” Phys. Rev. Lett. 87, 123602 (2001).

[CrossRef]
[PubMed]

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, M. C. Teich, “Duality between partial coherence and
partial entanglement,” Phys. Rev. A 62, 043816 (2000).

[CrossRef]

B. E. A. Saleh, M. C. Teich, Noise in Classical and Quantum Photon-Correlation
Imaging (SPIE, 2008), Vol.
183, Chap. 21.

G. Scarcelli, V. Berardi, Y. Shih, “Can two-photon correlation of chaotic light
be considered as correlation of intensity fluctuations?”
Phys. Rev. Lett. 96, 063602 (2006).

[CrossRef]
[PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih, “Two-photon imaging with thermal
light,” Phys. Rev. Lett. 94, 063601 (2005).

[CrossRef]
[PubMed]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, “Entangled-photon imaging of a pure phase
object,” Phys. Rev. Lett. 93, 213903 (2004).

[CrossRef]
[PubMed]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Entangled-photon Fourier
optics,” J. Opt. Soc. Am. B 19, 1174–1184
(2002).

[CrossRef]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Role of entanglement in two-photon
imaging,” Phys. Rev. Lett. 87, 123602 (2001).

[CrossRef]
[PubMed]

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, M. C. Teich, “Duality between partial coherence and
partial entanglement,” Phys. Rev. A 62, 043816 (2000).

[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon
quantum entanglement,” Phys. Rev. A 52, R3429–R3432
(1995).

[CrossRef]
[PubMed]

J. H. Shapiro, “Corrections to “The Quantum Theory
of Optical Communications” [Nov/Dec 09
1547-1569],” IEEE J. Sel. Top. Quantum
Electron. 16, 698 (2010).

[CrossRef]

J. H. Shapiro, “The quantum theory of optical
communications,” IEEE J. Sel. Top. Quantum
Electron. 15, 1547–1569
(2009).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state
ghost imaging,” Phys. Rev. A 79, 023833 (2009).

[CrossRef]

J. H. Shapiro, “Computational ghost
imaging,” Phys. Rev. A 78, 061802(R) (2008).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Gaussian-state theory of two-photon
imaging,” Phys. Rev. A 78, 023835 (2008).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Unified theory of ghost imaging with
Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Optical coherence theory for phase-sensitive
light,” Proc. SPIE 6305, 63050G (2006).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Phase-conjugate optical coherence
tomography,” Phys. Rev. A 74, 041601(R) (2006).

[CrossRef]

F. N. C. Wong, T. Kim, J. H. Shapiro, “Efficient generation of
polarization-entangled photons in a nonlinear crystal,”
Laser Phys. 16, 1517–1524
(2006).

[CrossRef]

J. H. Shapiro, “Quantum Gaussian
noise,” in Proc. SPIE 5111, 382–395
(2003).

[CrossRef]

J. H. Shapiro, “Quantum measurement eigenkets for
continuous-time direct detection,” Quantum
Semiclassic. Opt. 10, 567–578
(1998).

[CrossRef]

J. H. Shapiro, K.-X. Sun, “Semiclassical versus quantum behavior in
fourth-order interference,” J. Opt. Soc. Am.
B 11, 1130–1141
(1994).

[CrossRef]

H. P. Yuen, J. H. Shapiro, “Optical communication with two-photon
coherent states—Part III: quantum measurements realizable with
photoemissive detectors,” IEEE Trans. Inf.
Theory 26, 78–92
(1980).

[CrossRef]

J. H. Shapiro, H. P. Yuen, J. A. Machado Mata, “Optical communication with two-photon
coherent states—Part II: photoemissive detection and structured receiver
performance,” IEEE Trans. Inf. Theory 25, 179–192
(1979).

[CrossRef]

H. P. Yuen, J. H. Shapiro, “Optical communication with two-photon
coherent states—Part I: quantum state propagation and quantum noise
reduction,” IEEE Trans. Inf. Theory 24, 657–668
(1978).

[CrossRef]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, S. Han, “Lensless Fourier-transform ghost imaging
with classical incoherent light,” Phys. Rev.
A 75, 021803(R) (2007).

[CrossRef]

M. H. Rubin, Y. Shih, “Resolution of ghost imaging for
nondegenerate spontaneous parametric down-conversion,”
Phys. Rev. A 78, 033836 (2008).

[CrossRef]

R. E. Meyers, K. S. Deacon, Y. Shih, “Quantum imaging of an obscured object by
measurement of reflected photons,” Proc.
SPIE 7092, 70920E (2008).

[CrossRef]

R. Meyers, K. S. Deacon, Y. Shih, “Ghost-imaging experiment by measuring
reflected photons,” Phys. Rev. A 77, 041801(R) (2008).

[CrossRef]

Y. Shih, “Quantum imaging,”
IEEE J. Sel. Top. Quantum Electron. 13, 1016–1030
(2007).

[CrossRef]

G. Scarcelli, V. Berardi, Y. Shih, “Can two-photon correlation of chaotic light
be considered as correlation of intensity fluctuations?”
Phys. Rev. Lett. 96, 063602 (2006).

[CrossRef]
[PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih, “Two-photon imaging with thermal
light,” Phys. Rev. Lett. 94, 063601 (2005).

[CrossRef]
[PubMed]

M. D’Angelo, Y. Shih, “Can quantum imaging be classically
simulated?,” arXiv.org,
arXiv:quant-ph0302146v2 (2003).

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon
quantum entanglement,” Phys. Rev. A 52, R3429–R3432
(1995).

[CrossRef]
[PubMed]

J. F. Clauser, M. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local
hidden-variable theories,” Phys. Rev.
Lett. 23, 880–884
(1969).

[CrossRef]

Y. Bromberg, O. Katz, Y. Silberberg, “Ghost imaging with a single
detector,” Phys. Rev. A 79, 053840 (2009).

[CrossRef]

O. Katz, Y. Bromberg, Y. Silberberg, “Compressive ghost
imaging,” Appl. Phys. Lett. 95, 113110 (2009).

[CrossRef]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, “Entangled-photon imaging of a pure phase
object,” Phys. Rev. Lett. 93, 213903 (2004).

[CrossRef]
[PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon
quantum entanglement,” Phys. Rev. A 52, R3429–R3432
(1995).

[CrossRef]
[PubMed]

J. H. Shapiro, K.-X. Sun, “Semiclassical versus quantum behavior in
fourth-order interference,” J. Opt. Soc. Am.
B 11, 1130–1141
(1994).

[CrossRef]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, “Entangled-photon imaging of a pure phase
object,” Phys. Rev. Lett. 93, 213903 (2004).

[CrossRef]
[PubMed]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Entangled-photon Fourier
optics,” J. Opt. Soc. Am. B 19, 1174–1184
(2002).

[CrossRef]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Role of entanglement in two-photon
imaging,” Phys. Rev. Lett. 87, 123602 (2001).

[CrossRef]
[PubMed]

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, M. C. Teich, “Duality between partial coherence and
partial entanglement,” Phys. Rev. A 62, 043816 (2000).

[CrossRef]

B. E. A. Saleh, M. C. Teich, Noise in Classical and Quantum Photon-Correlation
Imaging (SPIE, 2008), Vol.
183, Chap. 21.

A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih, “Two-photon imaging with thermal
light,” Phys. Rev. Lett. 94, 063601 (2005).

[CrossRef]
[PubMed]

L. Wang, S. Qamar, S.-Y. Zhu, M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light
ghost imaging: a unified approach,” Phys. Rev.
A 79, 033835 (2009).

[CrossRef]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, S. Han, “Lensless Fourier-transform ghost imaging
with classical incoherent light,” Phys. Rev.
A 75, 021803(R) (2007).

[CrossRef]

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics
(Cambridge Univ. Press,
1995).

F. N. C. Wong, T. Kim, J. H. Shapiro, “Efficient generation of
polarization-entangled photons in a nonlinear crystal,”
Laser Phys. 16, 1517–1524
(2006).

[CrossRef]

J. M. Wozencraft, I. M. Jacobs, Principles of Communication Engineering
(Wiley, 1965).

X.-H. Chen, Q. Liu, K.-H. Luo, L.-A. Wu, “Lensless ghost imaging with true thermal
light,” Opt. Lett. 34, 695–697
(2009).

[CrossRef]
[PubMed]

I. Agafonov, M. Chekhova, T. S. Iskhakov, L.-A. Wu, “High-visibility intensity interference and
ghost imaging with pseudo-thermal light,” J. Mod.
Opt. 56, 422–431
(2009).

[CrossRef]

Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, L.-A. Wu, “Role of multiphoton bunching in high-order
ghost imaging with thermal light sources,” Phys.
Rev. A 79, 053844 (2009).

[CrossRef]

X.-H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, L.-A. Wu, “Arbitrary-order lensless ghost imaging with
thermal light,” arXiv.org,
arXiv:0902.3713v1 [quant-ph] (2009).

Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, L.-A. Wu, “Role of multiphoton bunching in high-order
ghost imaging with thermal light sources,” Phys.
Rev. A 79, 053844 (2009).

[CrossRef]

X.-H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, L.-A. Wu, “Arbitrary-order lensless ghost imaging with
thermal light,” arXiv.org,
arXiv:0902.3713v1 [quant-ph] (2009).

H. P. Yuen, J. H. Shapiro, “Optical communication with two-photon
coherent states—Part III: quantum measurements realizable with
photoemissive detectors,” IEEE Trans. Inf.
Theory 26, 78–92
(1980).

[CrossRef]

J. H. Shapiro, H. P. Yuen, J. A. Machado Mata, “Optical communication with two-photon
coherent states—Part II: photoemissive detection and structured receiver
performance,” IEEE Trans. Inf. Theory 25, 179–192
(1979).

[CrossRef]

H. P. Yuen, J. H. Shapiro, “Optical communication with two-photon
coherent states—Part I: quantum state propagation and quantum noise
reduction,” IEEE Trans. Inf. Theory 24, 657–668
(1978).

[CrossRef]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, S. Han, “Lensless Fourier-transform ghost imaging
with classical incoherent light,” Phys. Rev.
A 75, 021803(R) (2007).

[CrossRef]

L. Wang, S. Qamar, S.-Y. Zhu, M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light
ghost imaging: a unified approach,” Phys. Rev.
A 79, 033835 (2009).

[CrossRef]

Y. Cai, S.-Y. Zhu, “Ghost imaging with incoherent and partially
coherent light radiation,” Phys. Rev. E 71, 056607 (2005).

[CrossRef]

Y. Cai, S.-Y. Zhu, “Ghost interference with partially coherent
light radiation,” Opt. Lett. 29, 2716–2718
(2004).

[CrossRef]
[PubMed]

L. Wang, S. Qamar, S.-Y. Zhu, M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light
ghost imaging: a unified approach,” Phys. Rev.
A 79, 033835 (2009).

[CrossRef]

O. Katz, Y. Bromberg, Y. Silberberg, “Compressive ghost
imaging,” Appl. Phys. Lett. 95, 113110 (2009).

[CrossRef]

J. Cheng, S.-S. Han, “Theoretical analysis of quantum noise in
ghost imaging,” Chin. Phys. Lett. 22, 1676–1679
(2005).

[CrossRef]

J. H. Shapiro, “The quantum theory of optical
communications,” IEEE J. Sel. Top. Quantum
Electron. 15, 1547–1569
(2009).

[CrossRef]

J. H. Shapiro, “Corrections to “The Quantum Theory
of Optical Communications” [Nov/Dec 09
1547-1569],” IEEE J. Sel. Top. Quantum
Electron. 16, 698 (2010).

[CrossRef]

Y. Shih, “Quantum imaging,”
IEEE J. Sel. Top. Quantum Electron. 13, 1016–1030
(2007).

[CrossRef]

H. P. Yuen, J. H. Shapiro, “Optical communication with two-photon
coherent states—Part III: quantum measurements realizable with
photoemissive detectors,” IEEE Trans. Inf.
Theory 26, 78–92
(1980).

[CrossRef]

H. P. Yuen, J. H. Shapiro, “Optical communication with two-photon
coherent states—Part I: quantum state propagation and quantum noise
reduction,” IEEE Trans. Inf. Theory 24, 657–668
(1978).

[CrossRef]

J. H. Shapiro, H. P. Yuen, J. A. Machado Mata, “Optical communication with two-photon
coherent states—Part II: photoemissive detection and structured receiver
performance,” IEEE Trans. Inf. Theory 25, 179–192
(1979).

[CrossRef]

I. Agafonov, M. Chekhova, T. S. Iskhakov, L.-A. Wu, “High-visibility intensity interference and
ghost imaging with pseudo-thermal light,” J. Mod.
Opt. 56, 422–431
(2009).

[CrossRef]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, L. A. Lugiato, “Coherent imaging with pseudo-thermal
incoherent light,” J. Mod. Opt. 53, 739–760
(2006).

[CrossRef]

J. H. Shapiro, K.-X. Sun, “Semiclassical versus quantum behavior in
fourth-order interference,” J. Opt. Soc. Am.
B 11, 1130–1141
(1994).

[CrossRef]

L.-H. Ou, L.-M. Kuang, “Ghost imaging with third-order correlated
thermal light,” J. Phys. B 40, 1833–1844
(2007).

[CrossRef]

F. N. C. Wong, T. Kim, J. H. Shapiro, “Efficient generation of
polarization-entangled photons in a nonlinear crystal,”
Laser Phys. 16, 1517–1524
(2006).

[CrossRef]

Y. Cai, S.-Y. Zhu, “Ghost interference with partially coherent
light radiation,” Opt. Lett. 29, 2716–2718
(2004).

[CrossRef]
[PubMed]

X.-H. Chen, Q. Liu, K.-H. Luo, L.-A. Wu, “Lensless ghost imaging with true thermal
light,” Opt. Lett. 34, 695–697
(2009).

[CrossRef]
[PubMed]

Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, L.-A. Wu, “Role of multiphoton bunching in high-order
ghost imaging with thermal light sources,” Phys.
Rev. A 79, 053844 (2009).

[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Ghost imaging with thermal light: comparing
entanglement and classical correlation,” Phys.
Rev. Lett. 93, 093602 (2004).

[CrossRef]
[PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, L. A. Lugiato, “High-resolution ghost image and ghost
diffraction experiments with thermal light,” Phys.
Rev. Lett. 94, 183602 (2005).

[CrossRef]
[PubMed]

M. Zhang, Q. Wei, X. Shen, Y. Liu, H. Liu, J. Cheng, S. Han, “Lensless Fourier-transform ghost imaging
with classical incoherent light,” Phys. Rev.
A 75, 021803(R) (2007).

[CrossRef]

L. Wang, S. Qamar, S.-Y. Zhu, M. S. Zubairy, “Hanbury Brown-Twiss effect and thermal light
ghost imaging: a unified approach,” Phys. Rev.
A 79, 033835 (2009).

[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, ““Two-photon” coincidence
imaging with a classical source,” Phys. Rev.
Lett. 89, 113601 (2002).

[CrossRef]

J. F. Clauser, M. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local
hidden-variable theories,” Phys. Rev.
Lett. 23, 880–884
(1969).

[CrossRef]

R. J. Glauber, “The quantum theory of optical
coherence,” Phys. Rev. 130, 2529–2539
(1963).

[CrossRef]

M. H. Rubin, Y. Shih, “Resolution of ghost imaging for
nondegenerate spontaneous parametric down-conversion,”
Phys. Rev. A 78, 033836 (2008).

[CrossRef]

K. Chan, M. N. O’Sullivan, R. W. Boyd, “Two-color ghost
imaging,” Phys. Rev. A 79, 033808 (2009).

[CrossRef]

E. Brambilla, A. Gatti, M. Bache, L. A. Lugiato, “Simultaneous near-field and far-field
spatial quantum correlations in the high-gain regime of parametric
down-conversion,” Phys. Rev. A 69, 023802 (2004).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Phase-conjugate optical coherence
tomography,” Phys. Rev. A 74, 041601(R) (2006).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Gaussian-state theory of two-photon
imaging,” Phys. Rev. A 78, 023835 (2008).

[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical imaging by means of two-photon
quantum entanglement,” Phys. Rev. A 52, R3429–R3432
(1995).

[CrossRef]
[PubMed]

B. E. A. Saleh, A. F. Abouraddy, A. V. Sergienko, M. C. Teich, “Duality between partial coherence and
partial entanglement,” Phys. Rev. A 62, 043816 (2000).

[CrossRef]

J. Cheng, “Transfer functions in lensless ghost-imaging
systems,” Phys. Rev. A 78, 043823 (2008).

[CrossRef]

R. Meyers, K. S. Deacon, Y. Shih, “Ghost-imaging experiment by measuring
reflected photons,” Phys. Rev. A 77, 041801(R) (2008).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Unified theory of ghost imaging with
Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).

[CrossRef]

J. H. Shapiro, “Computational ghost
imaging,” Phys. Rev. A 78, 061802(R) (2008).

[CrossRef]

Y. Bromberg, O. Katz, Y. Silberberg, “Ghost imaging with a single
detector,” Phys. Rev. A 79, 053840 (2009).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state
ghost imaging,” Phys. Rev. A 79, 023833 (2009).

[CrossRef]

M. Bache, E. Brambilla, A. Gatti, L. A. Lugiato, “Ghost imaging using homodyne
detection,” Phys. Rev. A 70, 023823 (2004).

[CrossRef]

A. Gatti, E. Brambilla, M. Bache, L. A. Lugiato, “Correlated imaging, quantum and
classical,” Phys. Rev. A 70, 013802 (2004).

[CrossRef]

M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, L. A. Lugiato, “Coherent imaging of a pure phase object with
classical incoherent light,” Phys. Rev. A 73, 053802 (2006).

[CrossRef]

Y. Cai, S.-Y. Zhu, “Ghost imaging with incoherent and partially
coherent light radiation,” Phys. Rev. E 71, 056607 (2005).

[CrossRef]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, M. C. Teich, “Entangled-photon imaging of a pure phase
object,” Phys. Rev. Lett. 93, 213903 (2004).

[CrossRef]
[PubMed]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, “Role of entanglement in two-photon
imaging,” Phys. Rev. Lett. 87, 123602 (2001).

[CrossRef]
[PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, Y. Shih, “Two-photon imaging with thermal
light,” Phys. Rev. Lett. 94, 063601 (2005).

[CrossRef]
[PubMed]

G. Scarcelli, V. Berardi, Y. Shih, “Can two-photon correlation of chaotic light
be considered as correlation of intensity fluctuations?”
Phys. Rev. Lett. 96, 063602 (2006).

[CrossRef]
[PubMed]

A. Gatti, E. Brambilla, L. A. Lugiato, “Entangled imaging and wave-particle duality:
from the microscopic to the macroscopic realm,”
Phys. Rev. Lett. 90, 133603 (2003).

[CrossRef]
[PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, J. C. Howell, “Quantum and classical coincidence
imaging,” Phys. Rev. Lett. 92, 033601 (2004).

[CrossRef]
[PubMed]

R. E. Meyers, K. S. Deacon, Y. Shih, “Quantum imaging of an obscured object by
measurement of reflected photons,” Proc.
SPIE 7092, 70920E (2008).

[CrossRef]

B. I. Erkmen, J. H. Shapiro, “Optical coherence theory for phase-sensitive
light,” Proc. SPIE 6305, 63050G (2006).

[CrossRef]

J. H. Shapiro, “Quantum Gaussian
noise,” in Proc. SPIE 5111, 382–395
(2003).

[CrossRef]

J. H. Shapiro, “Quantum measurement eigenkets for
continuous-time direct detection,” Quantum
Semiclassic. Opt. 10, 567–578
(1998).

[CrossRef]

J. M. Wozencraft, I. M. Jacobs, Principles of Communication Engineering
(Wiley, 1965).

In writing Eq. (23), we have used
Eq. (16) to eliminate the temporal
correlation terms.

Here ⋆ denotes convolution.

Because Ê(ρ,t) is a baseband field operator, Ω is the frequency
detuning of the plane-wave component Â(k,Ω) from the wave’s center frequency ω0.

The SPDC output field operators presented herein are derived from quantized
coupled-mode equations using the typical nondepleting plane-wave pump
approximation. The transverse boundary effects within the crystal have been
ignored, and unimportant global phase factors have been omitted.

Although the exact solution of the coupled-mode equations and the boundary
conditions at the input facet of the nonlinear crystal does not lead to a Gaussian ν(k,Ω), this assumption facilitates an analytic treatment without
compromising the fundamental physics we are after.

Excess noise refers to fluctuations on the light illuminating the photodetectors
that is transferred to the resulting photocurrents.

The filter HB(Ω), including its AC coupling, will be assumed to be within the
photodetector blocks shown in Fig. 1, so that ⟨ı̂m(t)⟩=0 for m=1,2 for all the field states we shall consider.

Because the maximally entangled phase-sensitive cross-correlation function is not
coherence separable, but rather a sum of two coherence-separable terms [see Eq.
(57)], some extra steps are
needed in evaluating the integrals in this case.

This is the same parametric dependence reported earlier in [21], without derivation.

It is necessary to utilize photon-number-resolving detectors in order to reap the
advantages ascribed to this high-flux, low-brightness regime.

A. Papoulis, Probability, Random Variables, and Stochastic
Processes, 3rd ed.
(McGraw-Hill,
1991).

Recall that Cn is defined in Eq. (24).

The classical photocurrent measured by the bucket detector is a random process
with shot-noise fluctuations. In deriving Eq. (84) we have used the ensemble average (mean) of the measured
photocurrent, as we have done in all of the previous sections.

J. W. Goodman, Statistical Optics, Classics ed.
(Wiley, 2000).

R. M. Gagliardi, S. Karp, Optical Communications
(Wiley, 1976).

We are assuming polarized light sources and targets that do not depolarize, so
that scalar-wave theory suffices. The extension of our treatment to vector-wave
sources and depolarizing targets is straightforward.

R. G. Gallager, Discrete Stochastic Processes
(Kluwer Academic, 1996).

K. W. C. Chan, M. N. O’Sullivan, R. W. Boyd, “High-order thermal ghost
imaging,” in Conference on Lasers and
Electro-Optics/International Quantum Electronics Conference, OSA
Technical Digest (CD) (Optical Society of
America, 2009), paper
JTuD100.

X.-H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, L.-A. Wu, “Arbitrary-order lensless ghost imaging with
thermal light,” arXiv.org,
arXiv:0902.3713v1 [quant-ph] (2009).

The positive-frequency electric field operator is non-Hermitian; so both its
phase-insensitive and phase-sensitive correlation functions must be specified in
order to fully describe a zero-mean Gaussian state. This is discussed further in
Section 4.

R. Loudon, The Quantum Theory of Light, 3rd
ed. (Oxford Univ. Press,
2000).

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics
(Cambridge Univ. Press,
1995).

Although it is more common to express the field of view as a solid angle, here we
use the mean-square radius at the transverse target plane as our field-of-view
measure.

Strictly speaking, the quasi-monochromatic and paraxial conditions refer to the
excited modes of the quantized field, i.e., all non-vacuum-state modes of the
field operators ÊS(ρ,t)e−iω0t and ÊR(ρ,t)e−iω0t are confined to a temporal-frequency bandwidth much smaller than ω0 and a spatial-frequency bandwidth much smaller than ω0∕c.

In our view, the interpretation of
computational ghost imaging that suggests nonlocal interference between a physical
photon in a light beam and a “virtual photon” arising from numerical
computations on a computer processor—see M. H. Rubin, “Comment on ghost imaging with a single
detector [arXiv0812.2633v2],”
arXiv.org, arXiv:0902.1940v1 [quant-ph]
(2009)—is far from being convincing, and is highly
speculative.

M. D’Angelo, Y. Shih, “Can quantum imaging be classically
simulated?,” arXiv.org,
arXiv:quant-ph0302146v2 (2003).

B. E. A. Saleh, M. C. Teich, Noise in Classical and Quantum Photon-Correlation
Imaging (SPIE, 2008), Vol.
183, Chap. 21.