Abstract

Photonics for angular rate sensing is a well-established research field having very important industrial applications, especially in the field of strapdown inertial navigation. Recent advances in this research field are reviewed. Results obtained in the past years in the development of the ring laser gyroscope and the fiber optic gyroscope are presented. The role of integrated optics and photonic integrated circuit technology in the enhancement of gyroscope performance and compactness is broadly discussed. Architectures of new slow-light integrated angular rate sensors are described. Finally, photonic gyroscopes are compared with other solid-state gyros, showing their strengths and weaknesses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Titterton, J. Weston, Strapdown Inertial Navigation Technology (Institution of Electrical Engineers, 2004).
    [CrossRef]
  2. F. Aronowitz, “Fundamentals of the ring laser gyro,” in Optical Gyros and Their Applications, D. Loukianov, R. Rodloff, H. Sorg, and B. Stieler, eds. (NATO Research and Technology Organization, 1999).
  3. H. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).
  4. P. G. Eliseev, “Theory of nonlinear Sagnac effect,” Opto-Electron. Rev. 16, 118–123 (2008).
    [CrossRef]
  5. C. Ciminelli, C. E. Campanella, F. Dell’Olio, M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18, 2973–2986 (2010).
    [CrossRef] [PubMed]
  6. J. Krebs, W. Maisch, G. Prinz, D. Forester, “Applications of magneto-optics in ring laser gyroscopes,” IEEE Trans. Magn. 16, 1179–1184 (1980).
    [CrossRef]
  7. D. A. Andrews, T. A. King, “Sources of error and noise in a magnetic mirror gyro,” IEEE J. Quantum Electron. 32, 543–548 (1996).
    [CrossRef]
  8. F. A. Karwacki, M. Shishkov, Z. Hasan, M. Sanzari, H. L. Cui, “Optical biasing of a ring laser gyroscope by a quantum well mirror,” in IEEE 1998 Symposium on Position Location and Navigation (IEEE,1998), pp. 161–168.
  9. J. Killpatrick, “Random bias for laser angular rate sensor,” U.S. patent 3,467,472, Sept. 16, 1969.
  10. W. W. Chow, J. B. Hambenne, T. J. Hutchings, V. E. Sanders, M. Sargent, M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. QE-16, 918–936 (1980).
    [CrossRef]
  11. S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
    [CrossRef] [PubMed]
  12. S. Schwartz, F. Gutty, J.-P. Pocholle, G. Feugnet, “Solid-state laser gyro with a mechanically activated gain medium,” U.S. patent 7,589,841 (Sept. 15, 2009).
  13. A. Siegman, Lasers (University Science Books, 1986).
  14. S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, J.-P. Pocholle, “Suppression of nonlinear interactions in resonant microscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
    [CrossRef]
  15. S. Schwartz, F. Gutty, G. Feugnet, J. Pocholle, “Fine tuning of nonlinear interactions in a solid-state ring laser gyroscope,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (Optical Society of America, 2008), paper CMU7.
  16. T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. QE-16, 1376–1379 (1980).
    [CrossRef]
  17. M. N. Armenise, V. M. N. Passaro, F. De Leonardis, M. Armenise, “Modeling and design of a novel miniaturized integrated optical sensor for gyroscope applications,” J. Lightwave Technol. 19, 1476–1494 (2001).
    [CrossRef]
  18. M. N. Armenise, M. Armenise, V. M. N. Passaro, F. De Leonardis, “Integrated optical angular velocity sensor,” European patent EP1219926 (July 3, 2002).
  19. K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Optical inertial rotation sensor using semiconductor ring laser,” Electron. Lett. 34, 1775–1776 (1998).
    [CrossRef]
  20. K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Self-detection characteristics of the Sagnac frequency shift in a mechanically rotated semiconductor ring laser,” Measurement 27, 251–256 (2000).
    [CrossRef]
  21. M. Osiński, H. Cao, C. Liu, P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006).
    [CrossRef]
  22. H. Cao, A. L. Gray, G. A. Smolyakov, L. F. Lester, P. G. Eliseev, M. Osinski, “Microwave frequency beating between integrated quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThGG1.
  23. J. Scheuer, W. M. J. Green, G. A. DeRose, A. Yariv, “InGaAsP annular Bragg lasers: theory, applications, and modal properties,” IEEE J. Sel. Top. Quantum Electron. 11, 476–484 (2005).
    [CrossRef]
  24. J. Scheuer, “Direct rotation-induced intensity modulation in circular Bragg micro-lasers,” Opt. Express 15, 15053–15059 (2007).
    [CrossRef] [PubMed]
  25. F. Zarinetchi, S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11, 401–403 (1986).
    [CrossRef] [PubMed]
  26. R. E. Meyer, S. Ezekiel, D. W. Stowe, V. J. Tekippe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8, 644–646 (1983).
    [CrossRef] [PubMed]
  27. Y. Yi, K. Shi, W. Lu, S. Jin, “Phase modulation spectroscopy using an all-fiber piezoelectric transducer modulator for a resonant fiber-optic gyroscope,” Appl. Opt. 34, 7383–7386 (1995).
    [CrossRef] [PubMed]
  28. J. L. Davis, S. Ezekiel, “Closed-loop, low-noise fiber-optic rotation sensor,” Opt. Lett. 6, 505–507 (1982).
    [CrossRef]
  29. C. C. Cutler, S. A. Newton, H. J. Shaw, “Limitation of rotating sensing by scattering,” Opt. Lett. 5, 488–490 (1980).
    [CrossRef] [PubMed]
  30. H. K. Kim, M. J. F. Digonnet, G. S. Kino, “Air-core photonic-bandgap fiber-optic gyroscope,” J. Lightwave Technol. 24, 3169–3174 (2006).
    [CrossRef]
  31. S. Blin, H. K. Kim, M. J. F. Digonnet, G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861–865 (2007).
    [CrossRef]
  32. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
    [CrossRef]
  33. R. A. Bergh, H. C. Lefèvre, H. J. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
    [CrossRef]
  34. T. Buret, D. Ramecourt, J. Honthaas, Y. Paturel, E. Willemenot, T. Gaiffe, “Fibre optic gyroscopes for space application,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006) paper MC4.
  35. S. Divakaruni, S. Sanders, “Fiber optic gyros: a compelling choice for high precision applications,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006), paper MC2.
  36. S. Ezekiel, S. R. Balsamo, “Passive ring resonator laser gyroscope,” App. Phys. Lett. 30, 478–480 (1977).
    [CrossRef]
  37. C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optical angular velocity sensor based on the optimized design of a waveguide ring resonator,” presented at Future in Light, Metz, France, March 26–27, 2009.
  38. R. Adar, M. R. Serbin, V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369–1372 (1994).
    [CrossRef]
  39. C. Ciminelli, F. Peluso, M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93–100 (2005).
    [CrossRef]
  40. C. Ciminelli, “Innovative photonic technologies for gyroscope systems,” presented at EOS Topical Meeting—Photonic Devices in Space, Paris, Oct. 18–19, 2006.
  41. C. Ciminelli, F. Peluso, E. Armandillo, M. N. Armenise, “Modeling of a new integrated optical angular velocity sensor,” presented at Optronics Symposium (OPTRO), Paris, May 8–12, 2005.
  42. C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, M. N. Armenise, “Integrated optical gyroscope using a passive ring resonator,” presented at ESA Workshop, Noordwijk, The Netherlands, Oct. 3–5, 2005.
  43. European Space Agency (ESA), IOLG project 1678/02/NL/PA, Final Report, Dec. 2008.
  44. C. Ciminelli, C. E. Campanella, M. N. Armenise, “Design of passive ring resonators to be used for sensing applications,” J. Eur. Opt. Soc. 4, 09034 (2009).
    [CrossRef]
  45. C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
    [CrossRef]
  46. K. Suzuki, K. Takiguchi, K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).
    [CrossRef]
  47. H. Ma, X. Zhang, Z. Jin, C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
    [CrossRef]
  48. H. Ma, S. Wang, Z. Jin, “Silica waveguide ring resonators with multi-turn structure,” Opt. Commun. 281, 2509–2512 (2008).
    [CrossRef]
  49. C. Ciminelli, C. E. Campanella, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “A novel passive ring resonator gyroscope,” presented at 2009 DGaO/SIOF Joint Meeting, Brescia, Italy, June2–5, 2009.
  50. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
    [CrossRef]
  51. B. West, “Ion-exhanged glass waveguides,” in The Handbook of Photonics, M. Gupta and J. Ballato, eds. (CRC Press, 2007).
  52. C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in European Conference on Integrated Optics (ECIO), 2007, paper WE1.
  53. G. Li, K. A. Winick, B. R. Youmans, E. A. J. Vikjaer, “Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes,” presented at Institute of Navigation’s 60th Annual Meeting, Dayton, Ohio, 2004.
  54. A. Duwel, N. Barbour, “MEMS development at Draper Laboratory,” presented at SEM Annual Conference, Charlotte, N.C., June 2–4,2003.
  55. H. Hsiao, K. A. Winick, “Planar glass waveguide ring resonators with gain,” Opt. Express 15, 17783–17797 (2007).
    [CrossRef] [PubMed]
  56. J. L. Pleumeekers, P. W. Evans, W. Chen, R. P. Schneider, R. Nagarajan, “A new era in optical integration,” Opt. Photonics News 20(3), 20–25 (2009).
    [CrossRef]
  57. C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “Low-loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Research Center, Moffett Field, Calif., March 1–6, 2009.
  58. C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP∕InP and silica-on-silicon bent waveguides,” J. Eur. Opt. Soc. Rapid Publ. 4, 09015 (2009).
    [CrossRef]
  59. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
    [CrossRef]
  60. J. E. Heebner, R. W. Boyd, Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19, 722–731 (2002).
    [CrossRef]
  61. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B 21, 1818–1832 (2004).
    [CrossRef]
  62. C. Peng, Z. Li, A. Xu, “Rotating sensing based on slow light coupled resonator structure with EIT-like property,” Proc. SPIE 6722, 67222F (2007).
    [CrossRef]
  63. C. Peng, Z. Li, A. Xu, “Rotation sensing based on a slow-light resonating structure with high group dispersion,” Appl. Opt. 46, 4125–4131 (2007).
    [CrossRef] [PubMed]
  64. U. Leonhardt, P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000).
    [CrossRef]
  65. J. Scheuer, A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
    [CrossRef] [PubMed]
  66. M. A. Terrel, M. J. F. Digonnet, S. Fan, “Coupled resonator optical waveguide sensors: sensitivity and the role of slow light,” Proc. SPIE 7316, 73160I (2009).
    [CrossRef]
  67. Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
    [CrossRef]
  68. C. Peng, Z. Li, A. Xu, “Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency,” Opt. Express 15, 3864–3875 (2007).
    [CrossRef] [PubMed]
  69. B. Z. Steinberg, J. Scheuer, A. Boag, “Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity,” J. Opt. Soc. Am. B 24, 1216–1224 (2007).
    [CrossRef]
  70. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
    [CrossRef]
  71. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals-Molding the Flow of Light (Princeton Univ. Press, 1995).
  72. F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
    [CrossRef]
  73. M. Lončar, A. Scherer, “Microfabricated optical cavities and photonic crystals,” in Optical Microcavities, E. Vahala ed. (World Scientific, 2004).
  74. O. Painter, J. Vučković, A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
    [CrossRef]
  75. B. Z. Steinberg, A. Boag, “Splitting of microcavity degenerate modes in rotating photonic crystals-the miniature optical gyroscopes,” J. Opt. Soc. Am. B 24, 142–151 (2007).
    [CrossRef]
  76. A. Shamir, B. Z. Steinberg, “On the electrodynamics of rotating crystals, micro-cavities, and slow-light structures: from asymptotic theories to exact Green’s function based solutions,” in Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA 09) (IEEE, 2007), pp. 45–48.
  77. Honeywell, “HG1900 MEMS IMU,” http://www.honeywell.com
  78. R. Durrant, H. Crowle, J. Robertson, S. Dussy, “SIREUS—status of the European MEMS rate sensor,” presented at 7th International ESA Conference on Guidance, Navigation & Control Systems, Tralee, Ireland, June 2–5, 2008.
  79. M. F. Zaman, A. Sharma, Z. Hao, F. Ayazi, “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability,” J. Microelectromech. Syst. 17, 1526–1536 (2008).
    [CrossRef]

2010

2009

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Design of passive ring resonators to be used for sensing applications,” J. Eur. Opt. Soc. 4, 09034 (2009).
[CrossRef]

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

J. L. Pleumeekers, P. W. Evans, W. Chen, R. P. Schneider, R. Nagarajan, “A new era in optical integration,” Opt. Photonics News 20(3), 20–25 (2009).
[CrossRef]

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP∕InP and silica-on-silicon bent waveguides,” J. Eur. Opt. Soc. Rapid Publ. 4, 09015 (2009).
[CrossRef]

M. A. Terrel, M. J. F. Digonnet, S. Fan, “Coupled resonator optical waveguide sensors: sensitivity and the role of slow light,” Proc. SPIE 7316, 73160I (2009).
[CrossRef]

2008

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[CrossRef]

M. F. Zaman, A. Sharma, Z. Hao, F. Ayazi, “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability,” J. Microelectromech. Syst. 17, 1526–1536 (2008).
[CrossRef]

H. Ma, S. Wang, Z. Jin, “Silica waveguide ring resonators with multi-turn structure,” Opt. Commun. 281, 2509–2512 (2008).
[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

P. G. Eliseev, “Theory of nonlinear Sagnac effect,” Opto-Electron. Rev. 16, 118–123 (2008).
[CrossRef]

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, J.-P. Pocholle, “Suppression of nonlinear interactions in resonant microscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

2007

2006

J. Scheuer, A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

H. K. Kim, M. J. F. Digonnet, G. S. Kino, “Air-core photonic-bandgap fiber-optic gyroscope,” J. Lightwave Technol. 24, 3169–3174 (2006).
[CrossRef]

H. Ma, X. Zhang, Z. Jin, C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
[CrossRef]

M. Osiński, H. Cao, C. Liu, P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

2005

J. Scheuer, W. M. J. Green, G. A. DeRose, A. Yariv, “InGaAsP annular Bragg lasers: theory, applications, and modal properties,” IEEE J. Sel. Top. Quantum Electron. 11, 476–484 (2005).
[CrossRef]

C. Ciminelli, F. Peluso, M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93–100 (2005).
[CrossRef]

2004

J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B 21, 1818–1832 (2004).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[CrossRef]

2002

J. E. Heebner, R. W. Boyd, Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19, 722–731 (2002).
[CrossRef]

2001

2000

K. Suzuki, K. Takiguchi, K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).
[CrossRef]

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Self-detection characteristics of the Sagnac frequency shift in a mechanically rotated semiconductor ring laser,” Measurement 27, 251–256 (2000).
[CrossRef]

U. Leonhardt, P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000).
[CrossRef]

1999

O. Painter, J. Vučković, A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

1998

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Optical inertial rotation sensor using semiconductor ring laser,” Electron. Lett. 34, 1775–1776 (1998).
[CrossRef]

1996

D. A. Andrews, T. A. King, “Sources of error and noise in a magnetic mirror gyro,” IEEE J. Quantum Electron. 32, 543–548 (1996).
[CrossRef]

F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

1995

1994

R. Adar, M. R. Serbin, V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369–1372 (1994).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

1986

1984

R. A. Bergh, H. C. Lefèvre, H. J. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

1983

1982

1980

C. C. Cutler, S. A. Newton, H. J. Shaw, “Limitation of rotating sensing by scattering,” Opt. Lett. 5, 488–490 (1980).
[CrossRef] [PubMed]

W. W. Chow, J. B. Hambenne, T. J. Hutchings, V. E. Sanders, M. Sargent, M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. QE-16, 918–936 (1980).
[CrossRef]

J. Krebs, W. Maisch, G. Prinz, D. Forester, “Applications of magneto-optics in ring laser gyroscopes,” IEEE Trans. Magn. 16, 1179–1184 (1980).
[CrossRef]

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. QE-16, 1376–1379 (1980).
[CrossRef]

1977

S. Ezekiel, S. R. Balsamo, “Passive ring resonator laser gyroscope,” App. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

Adar, R.

R. Adar, M. R. Serbin, V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369–1372 (1994).
[CrossRef]

Andrews, D. A.

D. A. Andrews, T. A. King, “Sources of error and noise in a magnetic mirror gyro,” IEEE J. Quantum Electron. 32, 543–548 (1996).
[CrossRef]

Armandillo, E.

C. Ciminelli, F. Peluso, E. Armandillo, M. N. Armenise, “Modeling of a new integrated optical angular velocity sensor,” presented at Optronics Symposium (OPTRO), Paris, May 8–12, 2005.

C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, M. N. Armenise, “Integrated optical gyroscope using a passive ring resonator,” presented at ESA Workshop, Noordwijk, The Netherlands, Oct. 3–5, 2005.

Armenise, M.

M. N. Armenise, V. M. N. Passaro, F. De Leonardis, M. Armenise, “Modeling and design of a novel miniaturized integrated optical sensor for gyroscope applications,” J. Lightwave Technol. 19, 1476–1494 (2001).
[CrossRef]

M. N. Armenise, M. Armenise, V. M. N. Passaro, F. De Leonardis, “Integrated optical angular velocity sensor,” European patent EP1219926 (July 3, 2002).

Armenise, M. N.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18, 2973–2986 (2010).
[CrossRef] [PubMed]

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Design of passive ring resonators to be used for sensing applications,” J. Eur. Opt. Soc. 4, 09034 (2009).
[CrossRef]

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP∕InP and silica-on-silicon bent waveguides,” J. Eur. Opt. Soc. Rapid Publ. 4, 09015 (2009).
[CrossRef]

C. Ciminelli, F. Peluso, M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93–100 (2005).
[CrossRef]

M. N. Armenise, V. M. N. Passaro, F. De Leonardis, M. Armenise, “Modeling and design of a novel miniaturized integrated optical sensor for gyroscope applications,” J. Lightwave Technol. 19, 1476–1494 (2001).
[CrossRef]

M. N. Armenise, M. Armenise, V. M. N. Passaro, F. De Leonardis, “Integrated optical angular velocity sensor,” European patent EP1219926 (July 3, 2002).

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optical angular velocity sensor based on the optimized design of a waveguide ring resonator,” presented at Future in Light, Metz, France, March 26–27, 2009.

C. Ciminelli, F. Peluso, E. Armandillo, M. N. Armenise, “Modeling of a new integrated optical angular velocity sensor,” presented at Optronics Symposium (OPTRO), Paris, May 8–12, 2005.

C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “Low-loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Research Center, Moffett Field, Calif., March 1–6, 2009.

C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, M. N. Armenise, “Integrated optical gyroscope using a passive ring resonator,” presented at ESA Workshop, Noordwijk, The Netherlands, Oct. 3–5, 2005.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “A novel passive ring resonator gyroscope,” presented at 2009 DGaO/SIOF Joint Meeting, Brescia, Italy, June2–5, 2009.

Aronowitz, F.

F. Aronowitz, “Fundamentals of the ring laser gyro,” in Optical Gyros and Their Applications, D. Loukianov, R. Rodloff, H. Sorg, and B. Stieler, eds. (NATO Research and Technology Organization, 1999).

Aspect, A.

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Ayazi, F.

M. F. Zaman, A. Sharma, Z. Hao, F. Ayazi, “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability,” J. Microelectromech. Syst. 17, 1526–1536 (2008).
[CrossRef]

Balsamo, S. R.

S. Ezekiel, S. R. Balsamo, “Passive ring resonator laser gyroscope,” App. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

Bandini, B.

C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, M. N. Armenise, “Integrated optical gyroscope using a passive ring resonator,” presented at ESA Workshop, Noordwijk, The Netherlands, Oct. 3–5, 2005.

Barbour, N.

A. Duwel, N. Barbour, “MEMS development at Draper Laboratory,” presented at SEM Annual Conference, Charlotte, N.C., June 2–4,2003.

Bergh, R. A.

R. A. Bergh, H. C. Lefèvre, H. J. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

Blin, S.

Boag, A.

Bouyer, P.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, J.-P. Pocholle, “Suppression of nonlinear interactions in resonant microscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Boyd, R. W.

J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B 21, 1818–1832 (2004).
[CrossRef]

J. E. Heebner, R. W. Boyd, Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19, 722–731 (2002).
[CrossRef]

Brand, S.

F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

Buret, T.

T. Buret, D. Ramecourt, J. Honthaas, Y. Paturel, E. Willemenot, T. Gaiffe, “Fibre optic gyroscopes for space application,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006) paper MC4.

Campanella, C. E.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18, 2973–2986 (2010).
[CrossRef] [PubMed]

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Design of passive ring resonators to be used for sensing applications,” J. Eur. Opt. Soc. 4, 09034 (2009).
[CrossRef]

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

C. Ciminelli, C. E. Campanella, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “A novel passive ring resonator gyroscope,” presented at 2009 DGaO/SIOF Joint Meeting, Brescia, Italy, June2–5, 2009.

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optical angular velocity sensor based on the optimized design of a waveguide ring resonator,” presented at Future in Light, Metz, France, March 26–27, 2009.

Cao, H.

M. Osiński, H. Cao, C. Liu, P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006).
[CrossRef]

H. Cao, A. L. Gray, G. A. Smolyakov, L. F. Lester, P. G. Eliseev, M. Osinski, “Microwave frequency beating between integrated quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThGG1.

Catalano, N.

C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, M. N. Armenise, “Integrated optical gyroscope using a passive ring resonator,” presented at ESA Workshop, Noordwijk, The Netherlands, Oct. 3–5, 2005.

Chak, P.

Chen, W.

J. L. Pleumeekers, P. W. Evans, W. Chen, R. P. Schneider, R. Nagarajan, “A new era in optical integration,” Opt. Photonics News 20(3), 20–25 (2009).
[CrossRef]

Chow, W. W.

W. W. Chow, J. B. Hambenne, T. J. Hutchings, V. E. Sanders, M. Sargent, M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. QE-16, 918–936 (1980).
[CrossRef]

Ciminelli, C.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18, 2973–2986 (2010).
[CrossRef] [PubMed]

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP∕InP and silica-on-silicon bent waveguides,” J. Eur. Opt. Soc. Rapid Publ. 4, 09015 (2009).
[CrossRef]

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Design of passive ring resonators to be used for sensing applications,” J. Eur. Opt. Soc. 4, 09034 (2009).
[CrossRef]

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

C. Ciminelli, F. Peluso, M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93–100 (2005).
[CrossRef]

C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, M. N. Armenise, “Integrated optical gyroscope using a passive ring resonator,” presented at ESA Workshop, Noordwijk, The Netherlands, Oct. 3–5, 2005.

C. Ciminelli, “Innovative photonic technologies for gyroscope systems,” presented at EOS Topical Meeting—Photonic Devices in Space, Paris, Oct. 18–19, 2006.

C. Ciminelli, F. Peluso, E. Armandillo, M. N. Armenise, “Modeling of a new integrated optical angular velocity sensor,” presented at Optronics Symposium (OPTRO), Paris, May 8–12, 2005.

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optical angular velocity sensor based on the optimized design of a waveguide ring resonator,” presented at Future in Light, Metz, France, March 26–27, 2009.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “A novel passive ring resonator gyroscope,” presented at 2009 DGaO/SIOF Joint Meeting, Brescia, Italy, June2–5, 2009.

C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “Low-loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Research Center, Moffett Field, Calif., March 1–6, 2009.

Crowle, H.

R. Durrant, H. Crowle, J. Robertson, S. Dussy, “SIREUS—status of the European MEMS rate sensor,” presented at 7th International ESA Conference on Guidance, Navigation & Control Systems, Tralee, Ireland, June 2–5, 2008.

Cui, H. L.

F. A. Karwacki, M. Shishkov, Z. Hasan, M. Sanzari, H. L. Cui, “Optical biasing of a ring laser gyroscope by a quantum well mirror,” in IEEE 1998 Symposium on Position Location and Navigation (IEEE,1998), pp. 161–168.

Cutler, C. C.

Davis, J. L.

de la Rue, R. M.

F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

De Leonardis, F.

M. N. Armenise, V. M. N. Passaro, F. De Leonardis, M. Armenise, “Modeling and design of a novel miniaturized integrated optical sensor for gyroscope applications,” J. Lightwave Technol. 19, 1476–1494 (2001).
[CrossRef]

M. N. Armenise, M. Armenise, V. M. N. Passaro, F. De Leonardis, “Integrated optical angular velocity sensor,” European patent EP1219926 (July 3, 2002).

Dell’Olio, F.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, M. N. Armenise, “Fast light generation through velocity manipulation in two vertically-stacked ring resonators,” Opt. Express 18, 2973–2986 (2010).
[CrossRef] [PubMed]

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP∕InP and silica-on-silicon bent waveguides,” J. Eur. Opt. Soc. Rapid Publ. 4, 09015 (2009).
[CrossRef]

C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “Low-loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Research Center, Moffett Field, Calif., March 1–6, 2009.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “A novel passive ring resonator gyroscope,” presented at 2009 DGaO/SIOF Joint Meeting, Brescia, Italy, June2–5, 2009.

DeRose, G. A.

J. Scheuer, W. M. J. Green, G. A. DeRose, A. Yariv, “InGaAsP annular Bragg lasers: theory, applications, and modal properties,” IEEE J. Sel. Top. Quantum Electron. 11, 476–484 (2005).
[CrossRef]

Digonnet, M. J. F.

M. A. Terrel, M. J. F. Digonnet, S. Fan, “Coupled resonator optical waveguide sensors: sensitivity and the role of slow light,” Proc. SPIE 7316, 73160I (2009).
[CrossRef]

S. Blin, H. K. Kim, M. J. F. Digonnet, G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861–865 (2007).
[CrossRef]

H. K. Kim, M. J. F. Digonnet, G. S. Kino, “Air-core photonic-bandgap fiber-optic gyroscope,” J. Lightwave Technol. 24, 3169–3174 (2006).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Ding, C.

H. Ma, X. Zhang, Z. Jin, C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
[CrossRef]

Divakaruni, S.

S. Divakaruni, S. Sanders, “Fiber optic gyros: a compelling choice for high precision applications,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006), paper MC2.

Dorschner, T. A.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. QE-16, 1376–1379 (1980).
[CrossRef]

Durrant, R.

R. Durrant, H. Crowle, J. Robertson, S. Dussy, “SIREUS—status of the European MEMS rate sensor,” presented at 7th International ESA Conference on Guidance, Navigation & Control Systems, Tralee, Ireland, June 2–5, 2008.

Dussy, S.

R. Durrant, H. Crowle, J. Robertson, S. Dussy, “SIREUS—status of the European MEMS rate sensor,” presented at 7th International ESA Conference on Guidance, Navigation & Control Systems, Tralee, Ireland, June 2–5, 2008.

Duwel, A.

A. Duwel, N. Barbour, “MEMS development at Draper Laboratory,” presented at SEM Annual Conference, Charlotte, N.C., June 2–4,2003.

Eliseev, P. G.

P. G. Eliseev, “Theory of nonlinear Sagnac effect,” Opto-Electron. Rev. 16, 118–123 (2008).
[CrossRef]

M. Osiński, H. Cao, C. Liu, P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006).
[CrossRef]

H. Cao, A. L. Gray, G. A. Smolyakov, L. F. Lester, P. G. Eliseev, M. Osinski, “Microwave frequency beating between integrated quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThGG1.

Evans, P. W.

J. L. Pleumeekers, P. W. Evans, W. Chen, R. P. Schneider, R. Nagarajan, “A new era in optical integration,” Opt. Photonics News 20(3), 20–25 (2009).
[CrossRef]

Ezekiel, S.

Fan, S.

M. A. Terrel, M. J. F. Digonnet, S. Fan, “Coupled resonator optical waveguide sensors: sensitivity and the role of slow light,” Proc. SPIE 7316, 73160I (2009).
[CrossRef]

Feugnet, G.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, J.-P. Pocholle, “Suppression of nonlinear interactions in resonant microscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

S. Schwartz, F. Gutty, J.-P. Pocholle, G. Feugnet, “Solid-state laser gyro with a mechanically activated gain medium,” U.S. patent 7,589,841 (Sept. 15, 2009).

S. Schwartz, F. Gutty, G. Feugnet, J. Pocholle, “Fine tuning of nonlinear interactions in a solid-state ring laser gyroscope,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (Optical Society of America, 2008), paper CMU7.

Forester, D.

J. Krebs, W. Maisch, G. Prinz, D. Forester, “Applications of magneto-optics in ring laser gyroscopes,” IEEE Trans. Magn. 16, 1179–1184 (1980).
[CrossRef]

Fukushima, K.

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Self-detection characteristics of the Sagnac frequency shift in a mechanically rotated semiconductor ring laser,” Measurement 27, 251–256 (2000).
[CrossRef]

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Optical inertial rotation sensor using semiconductor ring laser,” Electron. Lett. 34, 1775–1776 (1998).
[CrossRef]

Gaiffe, T.

T. Buret, D. Ramecourt, J. Honthaas, Y. Paturel, E. Willemenot, T. Gaiffe, “Fibre optic gyroscopes for space application,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006) paper MC4.

Gray, A. L.

H. Cao, A. L. Gray, G. A. Smolyakov, L. F. Lester, P. G. Eliseev, M. Osinski, “Microwave frequency beating between integrated quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThGG1.

Green, W. M. J.

J. Scheuer, W. M. J. Green, G. A. DeRose, A. Yariv, “InGaAsP annular Bragg lasers: theory, applications, and modal properties,” IEEE J. Sel. Top. Quantum Electron. 11, 476–484 (2005).
[CrossRef]

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

Gutty, F.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, J.-P. Pocholle, “Suppression of nonlinear interactions in resonant microscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

S. Schwartz, F. Gutty, G. Feugnet, J. Pocholle, “Fine tuning of nonlinear interactions in a solid-state ring laser gyroscope,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (Optical Society of America, 2008), paper CMU7.

S. Schwartz, F. Gutty, J.-P. Pocholle, G. Feugnet, “Solid-state laser gyro with a mechanically activated gain medium,” U.S. patent 7,589,841 (Sept. 15, 2009).

Hambenne, J. B.

W. W. Chow, J. B. Hambenne, T. J. Hutchings, V. E. Sanders, M. Sargent, M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. QE-16, 918–936 (1980).
[CrossRef]

Hao, Z.

M. F. Zaman, A. Sharma, Z. Hao, F. Ayazi, “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability,” J. Microelectromech. Syst. 17, 1526–1536 (2008).
[CrossRef]

Hasan, Z.

F. A. Karwacki, M. Shishkov, Z. Hasan, M. Sanzari, H. L. Cui, “Optical biasing of a ring laser gyroscope by a quantum well mirror,” in IEEE 1998 Symposium on Position Location and Navigation (IEEE,1998), pp. 161–168.

Haus, H. A.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. QE-16, 1376–1379 (1980).
[CrossRef]

Heebner, J. E.

J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B 21, 1818–1832 (2004).
[CrossRef]

J. E. Heebner, R. W. Boyd, Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19, 722–731 (2002).
[CrossRef]

Herrmann, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

Holz, M.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. QE-16, 1376–1379 (1980).
[CrossRef]

Honthaas, J.

T. Buret, D. Ramecourt, J. Honthaas, Y. Paturel, E. Willemenot, T. Gaiffe, “Fibre optic gyroscopes for space application,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006) paper MC4.

Hotate, K.

Hsiao, H.

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

Hutchings, T. J.

W. W. Chow, J. B. Hambenne, T. J. Hutchings, V. E. Sanders, M. Sargent, M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. QE-16, 918–936 (1980).
[CrossRef]

Ikeda, M.

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Self-detection characteristics of the Sagnac frequency shift in a mechanically rotated semiconductor ring laser,” Measurement 27, 251–256 (2000).
[CrossRef]

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Optical inertial rotation sensor using semiconductor ring laser,” Electron. Lett. 34, 1775–1776 (1998).
[CrossRef]

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[CrossRef]

Ishitani, A.

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Self-detection characteristics of the Sagnac frequency shift in a mechanically rotated semiconductor ring laser,” Measurement 27, 251–256 (2000).
[CrossRef]

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Optical inertial rotation sensor using semiconductor ring laser,” Electron. Lett. 34, 1775–1776 (1998).
[CrossRef]

Jin, S.

Jin, Z.

H. Ma, S. Wang, Z. Jin, “Silica waveguide ring resonators with multi-turn structure,” Opt. Commun. 281, 2509–2512 (2008).
[CrossRef]

H. Ma, X. Zhang, Z. Jin, C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals-Molding the Flow of Light (Princeton Univ. Press, 1995).

Karwacki, F. A.

F. A. Karwacki, M. Shishkov, Z. Hasan, M. Sanzari, H. L. Cui, “Optical biasing of a ring laser gyroscope by a quantum well mirror,” in IEEE 1998 Symposium on Position Location and Navigation (IEEE,1998), pp. 161–168.

Killpatrick, J.

J. Killpatrick, “Random bias for laser angular rate sensor,” U.S. patent 3,467,472, Sept. 16, 1969.

Kim, B. Y.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Kim, H. K.

King, T. A.

D. A. Andrews, T. A. King, “Sources of error and noise in a magnetic mirror gyro,” IEEE J. Quantum Electron. 32, 543–548 (1996).
[CrossRef]

Kino, G. S.

Krauss, F.

F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

Krebs, J.

J. Krebs, W. Maisch, G. Prinz, D. Forester, “Applications of magneto-optics in ring laser gyroscopes,” IEEE Trans. Magn. 16, 1179–1184 (1980).
[CrossRef]

Lariontsev, E.

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Lee, R. K.

Lefèvre, H.

H. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).

Lefèvre, H. C.

R. A. Bergh, H. C. Lefèvre, H. J. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

Leonhardt, U.

U. Leonhardt, P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000).
[CrossRef]

Lester, L. F.

H. Cao, A. L. Gray, G. A. Smolyakov, L. F. Lester, P. G. Eliseev, M. Osinski, “Microwave frequency beating between integrated quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThGG1.

Li, G.

G. Li, K. A. Winick, B. R. Youmans, E. A. J. Vikjaer, “Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes,” presented at Institute of Navigation’s 60th Annual Meeting, Dayton, Ohio, 2004.

Li, Z.

Liu, C.

M. Osiński, H. Cao, C. Liu, P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006).
[CrossRef]

Loncar, M.

M. Lončar, A. Scherer, “Microfabricated optical cavities and photonic crystals,” in Optical Microcavities, E. Vahala ed. (World Scientific, 2004).

Lu, W.

Ma, H.

H. Ma, S. Wang, Z. Jin, “Silica waveguide ring resonators with multi-turn structure,” Opt. Commun. 281, 2509–2512 (2008).
[CrossRef]

H. Ma, X. Zhang, Z. Jin, C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
[CrossRef]

Maisch, W.

J. Krebs, W. Maisch, G. Prinz, D. Forester, “Applications of magneto-optics in ring laser gyroscopes,” IEEE Trans. Magn. 16, 1179–1184 (1980).
[CrossRef]

Maleki, L.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[CrossRef]

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals-Molding the Flow of Light (Princeton Univ. Press, 1995).

Meyer, R. E.

Min, Y.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

Mizrahi, V.

R. Adar, M. R. Serbin, V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369–1372 (1994).
[CrossRef]

Nagarajan, R.

J. L. Pleumeekers, P. W. Evans, W. Chen, R. P. Schneider, R. Nagarajan, “A new era in optical integration,” Opt. Photonics News 20(3), 20–25 (2009).
[CrossRef]

Newton, S. A.

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

Osinski, M.

M. Osiński, H. Cao, C. Liu, P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006).
[CrossRef]

H. Cao, A. L. Gray, G. A. Smolyakov, L. F. Lester, P. G. Eliseev, M. Osinski, “Microwave frequency beating between integrated quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThGG1.

Painter, O.

O. Painter, J. Vučković, A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

Park, Q.-H.

J. E. Heebner, R. W. Boyd, Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19, 722–731 (2002).
[CrossRef]

Passaro, V. M. N.

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP∕InP and silica-on-silicon bent waveguides,” J. Eur. Opt. Soc. Rapid Publ. 4, 09015 (2009).
[CrossRef]

M. N. Armenise, V. M. N. Passaro, F. De Leonardis, M. Armenise, “Modeling and design of a novel miniaturized integrated optical sensor for gyroscope applications,” J. Lightwave Technol. 19, 1476–1494 (2001).
[CrossRef]

M. N. Armenise, M. Armenise, V. M. N. Passaro, F. De Leonardis, “Integrated optical angular velocity sensor,” European patent EP1219926 (July 3, 2002).

C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “Low-loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Research Center, Moffett Field, Calif., March 1–6, 2009.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “A novel passive ring resonator gyroscope,” presented at 2009 DGaO/SIOF Joint Meeting, Brescia, Italy, June2–5, 2009.

Paturel, Y.

T. Buret, D. Ramecourt, J. Honthaas, Y. Paturel, E. Willemenot, T. Gaiffe, “Fibre optic gyroscopes for space application,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006) paper MC4.

Peluso, F.

C. Ciminelli, F. Peluso, M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93–100 (2005).
[CrossRef]

C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, M. N. Armenise, “Integrated optical gyroscope using a passive ring resonator,” presented at ESA Workshop, Noordwijk, The Netherlands, Oct. 3–5, 2005.

C. Ciminelli, F. Peluso, E. Armandillo, M. N. Armenise, “Modeling of a new integrated optical angular velocity sensor,” presented at Optronics Symposium (OPTRO), Paris, May 8–12, 2005.

Peng, C.

Pereira, S.

Piwnicki, P.

U. Leonhardt, P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000).
[CrossRef]

Pleumeekers, J. L.

J. L. Pleumeekers, P. W. Evans, W. Chen, R. P. Schneider, R. Nagarajan, “A new era in optical integration,” Opt. Photonics News 20(3), 20–25 (2009).
[CrossRef]

Pocholle, J.

S. Schwartz, F. Gutty, G. Feugnet, J. Pocholle, “Fine tuning of nonlinear interactions in a solid-state ring laser gyroscope,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (Optical Society of America, 2008), paper CMU7.

Pocholle, J.-P.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, J.-P. Pocholle, “Suppression of nonlinear interactions in resonant microscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

S. Schwartz, F. Gutty, J.-P. Pocholle, G. Feugnet, “Solid-state laser gyro with a mechanically activated gain medium,” U.S. patent 7,589,841 (Sept. 15, 2009).

Prinz, G.

J. Krebs, W. Maisch, G. Prinz, D. Forester, “Applications of magneto-optics in ring laser gyroscopes,” IEEE Trans. Magn. 16, 1179–1184 (1980).
[CrossRef]

Qiu, W.

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[CrossRef]

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in European Conference on Integrated Optics (ECIO), 2007, paper WE1.

Ramecourt, D.

T. Buret, D. Ramecourt, J. Honthaas, Y. Paturel, E. Willemenot, T. Gaiffe, “Fibre optic gyroscopes for space application,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006) paper MC4.

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in European Conference on Integrated Optics (ECIO), 2007, paper WE1.

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in European Conference on Integrated Optics (ECIO), 2007, paper WE1.

Robertson, J.

R. Durrant, H. Crowle, J. Robertson, S. Dussy, “SIREUS—status of the European MEMS rate sensor,” presented at 7th International ESA Conference on Guidance, Navigation & Control Systems, Tralee, Ireland, June 2–5, 2008.

Sanders, S.

S. Divakaruni, S. Sanders, “Fiber optic gyros: a compelling choice for high precision applications,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006), paper MC2.

Sanders, V. E.

W. W. Chow, J. B. Hambenne, T. J. Hutchings, V. E. Sanders, M. Sargent, M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. QE-16, 918–936 (1980).
[CrossRef]

Sanzari, M.

F. A. Karwacki, M. Shishkov, Z. Hasan, M. Sanzari, H. L. Cui, “Optical biasing of a ring laser gyroscope by a quantum well mirror,” in IEEE 1998 Symposium on Position Location and Navigation (IEEE,1998), pp. 161–168.

Sargent, M.

W. W. Chow, J. B. Hambenne, T. J. Hutchings, V. E. Sanders, M. Sargent, M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. QE-16, 918–936 (1980).
[CrossRef]

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[CrossRef]

Scherer, A.

O. Painter, J. Vučković, A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

M. Lončar, A. Scherer, “Microfabricated optical cavities and photonic crystals,” in Optical Microcavities, E. Vahala ed. (World Scientific, 2004).

Scheuer, J.

B. Z. Steinberg, J. Scheuer, A. Boag, “Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity,” J. Opt. Soc. Am. B 24, 1216–1224 (2007).
[CrossRef]

J. Scheuer, “Direct rotation-induced intensity modulation in circular Bragg micro-lasers,” Opt. Express 15, 15053–15059 (2007).
[CrossRef] [PubMed]

J. Scheuer, A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

J. Scheuer, W. M. J. Green, G. A. DeRose, A. Yariv, “InGaAsP annular Bragg lasers: theory, applications, and modal properties,” IEEE J. Sel. Top. Quantum Electron. 11, 476–484 (2005).
[CrossRef]

Schneider, R. P.

J. L. Pleumeekers, P. W. Evans, W. Chen, R. P. Schneider, R. Nagarajan, “A new era in optical integration,” Opt. Photonics News 20(3), 20–25 (2009).
[CrossRef]

Schwartz, S.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, J.-P. Pocholle, “Suppression of nonlinear interactions in resonant microscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

S. Schwartz, F. Gutty, J.-P. Pocholle, G. Feugnet, “Solid-state laser gyro with a mechanically activated gain medium,” U.S. patent 7,589,841 (Sept. 15, 2009).

S. Schwartz, F. Gutty, G. Feugnet, J. Pocholle, “Fine tuning of nonlinear interactions in a solid-state ring laser gyroscope,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (Optical Society of America, 2008), paper CMU7.

Scully, M. O.

W. W. Chow, J. B. Hambenne, T. J. Hutchings, V. E. Sanders, M. Sargent, M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. QE-16, 918–936 (1980).
[CrossRef]

Serbin, M. R.

R. Adar, M. R. Serbin, V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369–1372 (1994).
[CrossRef]

Shamir, A.

A. Shamir, B. Z. Steinberg, “On the electrodynamics of rotating crystals, micro-cavities, and slow-light structures: from asymptotic theories to exact Green’s function based solutions,” in Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA 09) (IEEE, 2007), pp. 45–48.

Sharma, A.

M. F. Zaman, A. Sharma, Z. Hao, F. Ayazi, “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability,” J. Microelectromech. Syst. 17, 1526–1536 (2008).
[CrossRef]

Shaw, H. J.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

R. A. Bergh, H. C. Lefèvre, H. J. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

C. C. Cutler, S. A. Newton, H. J. Shaw, “Limitation of rotating sensing by scattering,” Opt. Lett. 5, 488–490 (1980).
[CrossRef] [PubMed]

Shi, K.

Shishkov, M.

F. A. Karwacki, M. Shishkov, Z. Hasan, M. Sanzari, H. L. Cui, “Optical biasing of a ring laser gyroscope by a quantum well mirror,” in IEEE 1998 Symposium on Position Location and Navigation (IEEE,1998), pp. 161–168.

Siegman, A.

A. Siegman, Lasers (University Science Books, 1986).

Sipe, J. E.

Smith, I. W.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. QE-16, 1376–1379 (1980).
[CrossRef]

Smolyakov, G. A.

H. Cao, A. L. Gray, G. A. Smolyakov, L. F. Lester, P. G. Eliseev, M. Osinski, “Microwave frequency beating between integrated quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThGG1.

Sohler, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in European Conference on Integrated Optics (ECIO), 2007, paper WE1.

Statz, H.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. QE-16, 1376–1379 (1980).
[CrossRef]

Steinberg, B. Z.

B. Z. Steinberg, A. Boag, “Splitting of microcavity degenerate modes in rotating photonic crystals-the miniature optical gyroscopes,” J. Opt. Soc. Am. B 24, 142–151 (2007).
[CrossRef]

B. Z. Steinberg, J. Scheuer, A. Boag, “Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity,” J. Opt. Soc. Am. B 24, 1216–1224 (2007).
[CrossRef]

A. Shamir, B. Z. Steinberg, “On the electrodynamics of rotating crystals, micro-cavities, and slow-light structures: from asymptotic theories to exact Green’s function based solutions,” in Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA 09) (IEEE, 2007), pp. 45–48.

Stowe, D. W.

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in European Conference on Integrated Optics (ECIO), 2007, paper WE1.

Suzuki, K.

Taguchi, K.

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Self-detection characteristics of the Sagnac frequency shift in a mechanically rotated semiconductor ring laser,” Measurement 27, 251–256 (2000).
[CrossRef]

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Optical inertial rotation sensor using semiconductor ring laser,” Electron. Lett. 34, 1775–1776 (1998).
[CrossRef]

Takiguchi, K.

Tekippe, V. J.

Terrel, M. A.

M. A. Terrel, M. J. F. Digonnet, S. Fan, “Coupled resonator optical waveguide sensors: sensitivity and the role of slow light,” Proc. SPIE 7316, 73160I (2009).
[CrossRef]

Tian, H.

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[CrossRef]

Titterton, D.

D. Titterton, J. Weston, Strapdown Inertial Navigation Technology (Institution of Electrical Engineers, 2004).
[CrossRef]

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in European Conference on Integrated Optics (ECIO), 2007, paper WE1.

Vikjaer, E. A. J.

G. Li, K. A. Winick, B. R. Youmans, E. A. J. Vikjaer, “Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes,” presented at Institute of Navigation’s 60th Annual Meeting, Dayton, Ohio, 2004.

Vuckovic, J.

O. Painter, J. Vučković, A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

Wang, H.

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[CrossRef]

Wang, J.

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[CrossRef]

Wang, N.

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[CrossRef]

Wang, S.

H. Ma, S. Wang, Z. Jin, “Silica waveguide ring resonators with multi-turn structure,” Opt. Commun. 281, 2509–2512 (2008).
[CrossRef]

West, B.

B. West, “Ion-exhanged glass waveguides,” in The Handbook of Photonics, M. Gupta and J. Ballato, eds. (CRC Press, 2007).

Weston, J.

D. Titterton, J. Weston, Strapdown Inertial Navigation Technology (Institution of Electrical Engineers, 2004).
[CrossRef]

Willemenot, E.

T. Buret, D. Ramecourt, J. Honthaas, Y. Paturel, E. Willemenot, T. Gaiffe, “Fibre optic gyroscopes for space application,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006) paper MC4.

Winick, K. A.

H. Hsiao, K. A. Winick, “Planar glass waveguide ring resonators with gain,” Opt. Express 15, 17783–17797 (2007).
[CrossRef] [PubMed]

G. Li, K. A. Winick, B. R. Youmans, E. A. J. Vikjaer, “Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes,” presented at Institute of Navigation’s 60th Annual Meeting, Dayton, Ohio, 2004.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals-Molding the Flow of Light (Princeton Univ. Press, 1995).

Wysocki, P. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

Xu, A.

Xu, Y.

Yariv, A.

J. Scheuer, A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

J. Scheuer, W. M. J. Green, G. A. DeRose, A. Yariv, “InGaAsP annular Bragg lasers: theory, applications, and modal properties,” IEEE J. Sel. Top. Quantum Electron. 11, 476–484 (2005).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
[CrossRef]

Yi, Y.

Youmans, B. R.

G. Li, K. A. Winick, B. R. Youmans, E. A. J. Vikjaer, “Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes,” presented at Institute of Navigation’s 60th Annual Meeting, Dayton, Ohio, 2004.

Yuan, P.

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[CrossRef]

Zaman, M. F.

M. F. Zaman, A. Sharma, Z. Hao, F. Ayazi, “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability,” J. Microelectromech. Syst. 17, 1526–1536 (2008).
[CrossRef]

Zarinetchi, F.

Zhang, X.

H. Ma, X. Zhang, Z. Jin, C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
[CrossRef]

Zhang, Y.

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[CrossRef]

App. Phys. Lett.

S. Ezekiel, S. R. Balsamo, “Passive ring resonator laser gyroscope,” App. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

Appl. Opt.

Electron. Lett.

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Optical inertial rotation sensor using semiconductor ring laser,” Electron. Lett. 34, 1775–1776 (1998).
[CrossRef]

IEEE J. Quantum Electron.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. QE-16, 1376–1379 (1980).
[CrossRef]

D. A. Andrews, T. A. King, “Sources of error and noise in a magnetic mirror gyro,” IEEE J. Quantum Electron. 32, 543–548 (1996).
[CrossRef]

W. W. Chow, J. B. Hambenne, T. J. Hutchings, V. E. Sanders, M. Sargent, M. O. Scully, “Multioscillator laser gyros,” IEEE J. Quantum Electron. QE-16, 918–936 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Scheuer, W. M. J. Green, G. A. DeRose, A. Yariv, “InGaAsP annular Bragg lasers: theory, applications, and modal properties,” IEEE J. Sel. Top. Quantum Electron. 11, 476–484 (2005).
[CrossRef]

IEEE Trans. Magn.

J. Krebs, W. Maisch, G. Prinz, D. Forester, “Applications of magneto-optics in ring laser gyroscopes,” IEEE Trans. Magn. 16, 1179–1184 (1980).
[CrossRef]

J. Cryst. Growth

M. Osiński, H. Cao, C. Liu, P. G. Eliseev, “Monolithically integrated twin ring diode lasers for rotation sensing applications,” J. Cryst. Growth 288, 144–147 (2006).
[CrossRef]

J. Opt. Soc. Am. B

J. E. Heebner, R. W. Boyd, Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19, 722–731 (2002).
[CrossRef]

O. Painter, J. Vučković, A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

J. Eur. Opt. Soc.

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Design of passive ring resonators to be used for sensing applications,” J. Eur. Opt. Soc. 4, 09034 (2009).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP∕InP and silica-on-silicon bent waveguides,” J. Eur. Opt. Soc. Rapid Publ. 4, 09015 (2009).
[CrossRef]

J. Lightwave Technol.

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optimized design of integrated optical angular velocity sensors based on a passive ring resonator,” J. Lightwave Technol. 27, 2658–2666 (2009).
[CrossRef]

K. Suzuki, K. Takiguchi, K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).
[CrossRef]

H. K. Kim, M. J. F. Digonnet, G. S. Kino, “Air-core photonic-bandgap fiber-optic gyroscope,” J. Lightwave Technol. 24, 3169–3174 (2006).
[CrossRef]

S. Blin, H. K. Kim, M. J. F. Digonnet, G. S. Kino, “Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861–865 (2007).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” J. Lightwave Technol. 12, 550–567 (1994).
[CrossRef]

R. A. Bergh, H. C. Lefèvre, H. J. Shaw, “An overview of fiber-optic gyroscopes,” J. Lightwave Technol. LT-2, 91–107 (1984).
[CrossRef]

R. Adar, M. R. Serbin, V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12, 1369–1372 (1994).
[CrossRef]

M. N. Armenise, V. M. N. Passaro, F. De Leonardis, M. Armenise, “Modeling and design of a novel miniaturized integrated optical sensor for gyroscope applications,” J. Lightwave Technol. 19, 1476–1494 (2001).
[CrossRef]

J. Microelectromech. Syst.

M. F. Zaman, A. Sharma, Z. Hao, F. Ayazi, “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour Allan deviation bias instability,” J. Microelectromech. Syst. 17, 1526–1536 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Measurement

K. Taguchi, K. Fukushima, A. Ishitani, M. Ikeda, “Self-detection characteristics of the Sagnac frequency shift in a mechanically rotated semiconductor ring laser,” Measurement 27, 251–256 (2000).
[CrossRef]

Nature

F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

Opt. Express

J. Scheuer, “Direct rotation-induced intensity modulation in circular Bragg micro-lasers,” Opt. Express 15, 15053–15059 (2007).
[CrossRef] [PubMed]

Opt. Commun.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun. 233, 107–112 (2004).
[CrossRef]

H. Ma, S. Wang, Z. Jin, “Silica waveguide ring resonators with multi-turn structure,” Opt. Commun. 281, 2509–2512 (2008).
[CrossRef]

Opt. Eng.

H. Ma, X. Zhang, Z. Jin, C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photonics News

J. L. Pleumeekers, P. W. Evans, W. Chen, R. P. Schneider, R. Nagarajan, “A new era in optical integration,” Opt. Photonics News 20(3), 20–25 (2009).
[CrossRef]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[CrossRef]

Opto-Electron. Rev.

P. G. Eliseev, “Theory of nonlinear Sagnac effect,” Opto-Electron. Rev. 16, 118–123 (2008).
[CrossRef]

Phys. Rev. Lett.

S. Schwartz, G. Feugnet, P. Bouyer, E. Lariontsev, A. Aspect, J.-P. Pocholle, “Mode-coupling control in resonant devices: application to solid-state ring lasers,” Phys. Rev. Lett. 97, 093902 (2006).
[CrossRef] [PubMed]

Phys. Lett. A

Y. Zhang, N. Wang, H. Tian, H. Wang, W. Qiu, J. Wang, P. Yuan, “A high sensitivity optical gyroscope based on slow light in coupled-resonator-induced transparency,” Phys. Lett. A 372, 5848–5852 (2008).
[CrossRef]

Phys. Rev. Lett.

J. Scheuer, A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006).
[CrossRef] [PubMed]

Phys. Rev. A

U. Leonhardt, P. Piwnicki, “Ultrahigh sensitivity of slow-light gyroscope,” Phys. Rev. A 62, 055801 (2000).
[CrossRef]

Phys. Rev. Lett.

S. Schwartz, F. Gutty, G. Feugnet, P. Bouyer, J.-P. Pocholle, “Suppression of nonlinear interactions in resonant microscopic quantum devices: the example of the solid-state ring laser gyroscope,” Phys. Rev. Lett. 100, 183901 (2008).
[CrossRef]

Proc. SPIE

C. Peng, Z. Li, A. Xu, “Rotating sensing based on slow light coupled resonator structure with EIT-like property,” Proc. SPIE 6722, 67222F (2007).
[CrossRef]

M. A. Terrel, M. J. F. Digonnet, S. Fan, “Coupled resonator optical waveguide sensors: sensitivity and the role of slow light,” Proc. SPIE 7316, 73160I (2009).
[CrossRef]

Proc. SPIE

C. Ciminelli, F. Peluso, M. N. Armenise, “A new integrated optical angular velocity sensor,” Proc. SPIE 5728, 93–100 (2005).
[CrossRef]

Other

C. Ciminelli, “Innovative photonic technologies for gyroscope systems,” presented at EOS Topical Meeting—Photonic Devices in Space, Paris, Oct. 18–19, 2006.

C. Ciminelli, F. Peluso, E. Armandillo, M. N. Armenise, “Modeling of a new integrated optical angular velocity sensor,” presented at Optronics Symposium (OPTRO), Paris, May 8–12, 2005.

C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, M. N. Armenise, “Integrated optical gyroscope using a passive ring resonator,” presented at ESA Workshop, Noordwijk, The Netherlands, Oct. 3–5, 2005.

European Space Agency (ESA), IOLG project 1678/02/NL/PA, Final Report, Dec. 2008.

T. Buret, D. Ramecourt, J. Honthaas, Y. Paturel, E. Willemenot, T. Gaiffe, “Fibre optic gyroscopes for space application,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006) paper MC4.

S. Divakaruni, S. Sanders, “Fiber optic gyros: a compelling choice for high precision applications,” in Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2006), paper MC2.

H. Cao, A. L. Gray, G. A. Smolyakov, L. F. Lester, P. G. Eliseev, M. Osinski, “Microwave frequency beating between integrated quantum-dot ring lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CThGG1.

S. Schwartz, F. Gutty, G. Feugnet, J. Pocholle, “Fine tuning of nonlinear interactions in a solid-state ring laser gyroscope,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (Optical Society of America, 2008), paper CMU7.

F. A. Karwacki, M. Shishkov, Z. Hasan, M. Sanzari, H. L. Cui, “Optical biasing of a ring laser gyroscope by a quantum well mirror,” in IEEE 1998 Symposium on Position Location and Navigation (IEEE,1998), pp. 161–168.

J. Killpatrick, “Random bias for laser angular rate sensor,” U.S. patent 3,467,472, Sept. 16, 1969.

M. N. Armenise, M. Armenise, V. M. N. Passaro, F. De Leonardis, “Integrated optical angular velocity sensor,” European patent EP1219926 (July 3, 2002).

S. Schwartz, F. Gutty, J.-P. Pocholle, G. Feugnet, “Solid-state laser gyro with a mechanically activated gain medium,” U.S. patent 7,589,841 (Sept. 15, 2009).

A. Siegman, Lasers (University Science Books, 1986).

D. Titterton, J. Weston, Strapdown Inertial Navigation Technology (Institution of Electrical Engineers, 2004).
[CrossRef]

F. Aronowitz, “Fundamentals of the ring laser gyro,” in Optical Gyros and Their Applications, D. Loukianov, R. Rodloff, H. Sorg, and B. Stieler, eds. (NATO Research and Technology Organization, 1999).

H. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 1993).

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals-Molding the Flow of Light (Princeton Univ. Press, 1995).

M. Lončar, A. Scherer, “Microfabricated optical cavities and photonic crystals,” in Optical Microcavities, E. Vahala ed. (World Scientific, 2004).

A. Shamir, B. Z. Steinberg, “On the electrodynamics of rotating crystals, micro-cavities, and slow-light structures: from asymptotic theories to exact Green’s function based solutions,” in Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA 09) (IEEE, 2007), pp. 45–48.

Honeywell, “HG1900 MEMS IMU,” http://www.honeywell.com

R. Durrant, H. Crowle, J. Robertson, S. Dussy, “SIREUS—status of the European MEMS rate sensor,” presented at 7th International ESA Conference on Guidance, Navigation & Control Systems, Tralee, Ireland, June 2–5, 2008.

B. West, “Ion-exhanged glass waveguides,” in The Handbook of Photonics, M. Gupta and J. Ballato, eds. (CRC Press, 2007).

C. Vannahme, H. Suche, S. Reza, R. Ricken, V. Quiring, W. Sohler, “Integrated optical Ti:LiNbO3 ring resonator for rotation rate sensing,” in European Conference on Integrated Optics (ECIO), 2007, paper WE1.

G. Li, K. A. Winick, B. R. Youmans, E. A. J. Vikjaer, “Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes,” presented at Institute of Navigation’s 60th Annual Meeting, Dayton, Ohio, 2004.

A. Duwel, N. Barbour, “MEMS development at Draper Laboratory,” presented at SEM Annual Conference, Charlotte, N.C., June 2–4,2003.

C. Ciminelli, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “Low-loss InP-based ring resonators for integrated optical gyroscopes,” presented at Caneus 2009 Workshop, NASA Ames Research Center, Moffett Field, Calif., March 1–6, 2009.

C. Ciminelli, C. E. Campanella, F. Dell’Olio, V. M. N. Passaro, M. N. Armenise, “A novel passive ring resonator gyroscope,” presented at 2009 DGaO/SIOF Joint Meeting, Brescia, Italy, June2–5, 2009.

C. Ciminelli, C. E. Campanella, M. N. Armenise, “Optical angular velocity sensor based on the optimized design of a waveguide ring resonator,” presented at Future in Light, Metz, France, March 26–27, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Architecture of the bulk-optic solid-state RLG (PD, photodetector) [11].

Fig. 2
Fig. 2

Active integrated optical gyroscope proposed in [17].

Fig. 3
Fig. 3

Experimental setup adopted to detect the frequency shift due to the Sagnac effect in the spectrum of the voltage signal between the terminals of a SRL [19].

Fig. 4
Fig. 4

PIC for rotation sensing, including two unidirectional SRLs, two directional couplers (DCs), seven photodiodes (PDs), and a beam combiner [21].

Fig. 5
Fig. 5

Circular Bragg microlaser for rotation sensing [23].

Fig. 6
Fig. 6

FOG closed-loop configuration [28].

Fig. 7
Fig. 7

Minimum detectable angular rate of the FOG as dependent on R × L and optical power coming in the photodetector.

Fig. 8
Fig. 8

Typical architecture of high-performance FOGs [34].

Fig. 9
Fig. 9

Ring resonator compensated with two SOAs.

Fig. 10
Fig. 10

Passive integrated optical gyro in silica-on-silicon technology [46].

Fig. 11
Fig. 11

Readout system for a passive gyroscope based on a lithium niobate resonator [52].

Fig. 12
Fig. 12

Compensated ring resonator realized by ion exchange in glass [55].

Fig. 13
Fig. 13

Architecture of the InP-based PIC for angular rate sensing (PD, photodetector).

Fig. 14
Fig. 14

CROW-based integrated gyro architecture [65].

Fig. 15
Fig. 15

Architecture of the phase-sensitive gyroscope including a ring-in-ring resonator [67].

Fig. 16
Fig. 16

Coupling between CW and CCW resonant modes in a CROW.

Fig. 17
Fig. 17

Forbidden and transmission bands in a CROW spectral response at the drop port and rotation-induced additional forbidden band.

Fig. 18
Fig. 18

Passive integrated optical gyro including a circular waveguide coupled to high-Q microresonators [70].

Tables (3)

Tables Icon

Table 1 Basic Classes of Photonic Gyroscopes

Tables Icon

Table 2 Fully Integrated Active Optical Gyros: Performance and Geometrical Parameters

Tables Icon

Table 3 Performance Comparison among RLGs, FOGs, Passive Integrated Optical Gyros, MEMS gyros, and HRGs

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

δ Ω = δ ν S P out B h c η λ × 180 × 3600 π ( deg h ) ,
ARW = δ Ω 60 B = δ ν S P out h c η λ × 180 × 60 π ( deg h ) ,
i = i 0 [ 1 + cos ( ψ ) ] ,
Δ φ = 8 π 2 R 2 c λ k Ω = 4 π L R c λ Ω = S Ω ,
P pd ( t ) = P in 2 { 1 + cos [ Δ ϕ ( t ) ] } ,
δ Ω = c 4 R L B h c λ η P pd × 3600 × 180 π ( deg h ) ,
δ Ω = 1 d Q P pd 2 B h c 3 λ η × ( 3600 × 180 π ) ( deg h ) ,
ARW = 1 d Q P pd 2 h c 3 λ η × ( 60 × 180 π ) ( deg h ) ,
P out , 1 = P in cos 2 ( Δ φ 2 ) , P out , 2 = P in sin 2 ( Δ φ 2 ) ,
Δ φ = n g n eff × 8 π 2 R 1 2 c λ Ω ,
n g n eff = T ϕ ϕ 1 ,
ϕ 1 = β 1 ( 2 π R 1 )
T ϕ = arg [ E in E out ] ,

Metrics