Abstract

The development of low-cost, compact, high-power and broadband superluminescent light-emitting diodes is an important research subject for a wide range of applications. We describe how self-assembled quantum-dot structures can provide an efficient means of realizing such devices utilizing a number of their unique physical properties. Such quantum dot superluminescent diodes are leading to a revolution in the development of broadband emitters for widespread medical, biological and telecommunications applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Amann, J. Boeck, “High efficiency superluminescent diodes for optical-fibre transmission,” Electron. Lett. 15, 41–42 (1979).
    [CrossRef]
  2. G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24, 2454–2457 (1988).
    [CrossRef]
  3. V. R. Shidlovski, J. Wei, “Superluminescent diodes for optical coherence tomography,” Proc. SPIE. 4648, 139–147 (2002).
    [CrossRef]
  4. O. Mikami, H. Yasaks, Y. Noguchi, “Broader spectra width InGaAsP stacked active layer superluminescent diodes,” Appl. Phys. Lett. 56, 987–989 (1990).
    [CrossRef]
  5. C. F. Lin, B. L. Lee, P. C. Lin, “Broadband superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 18, 1456–1458 (1996).
  6. A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length,” Electron. Lett. 31, 314–315 (1995).
    [CrossRef]
  7. Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, Z. G. Wang, “Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31, 1235–1246 (1999).
    [CrossRef]
  8. Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
    [CrossRef]
  9. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, “The fabrication of the prototype device of quantum-dot superluminescent diodes,” China patent ZL02 1, 47587.3 (Oct. 23, 2002).
  10. D. C. Heo, J. D. Song, W. J. Choi, J. L. Lee, J. C. Jung, I. K. Han, “High power broadband InGaAs∕GaAs quantum dot superluminescent diodes,” Electron. Lett. 39, 863–865 (2003).
    [CrossRef]
  11. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Zh. Sun, F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
    [CrossRef]
  12. A. Fiore, A. Markus, M. Rossetti, L. H. Li, “Quantum-dot sources: quantum-dot development pursues new applications,” Laser Focus World 42(1), 124–127 (2006).
  13. N. Liu, P. Jin, Z. G. Wang, “InAs∕GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41, 1400–1402 (2005).
    [CrossRef]
  14. L. H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayer,” Electron. Lett. 41, 41–43 (2005).
    [CrossRef]
  15. M. Rossetti, A. Markus, A. Fiore, L. Occhi, C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photon. Technol. Lett. 17, 540–542 (2005).
    [CrossRef]
  16. B. S. Ooi, C. E. Dimas, H. S. Djie, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth. 288, 153–156 (2006).
    [CrossRef]
  17. S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18, 58–60 (2006).
    [CrossRef]
  18. H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007).
    [CrossRef]
  19. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
    [CrossRef]
  20. M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
    [CrossRef]
  21. E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron 37, 331–333 (2007).
    [CrossRef]
  22. C. Y. Ngo, S. F. Yoon, W. J. Fan, S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91, 191901 (2007).
    [CrossRef]
  23. M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
    [CrossRef]
  24. Y. C. Yoo, I. K. Han, J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43, 1045–1046 (2007).
    [CrossRef]
  25. Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, Z. G. Wang, “High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region,” IEEE Photon. Technol. Lett. 20, 782–784 (2008).
    [CrossRef]
  26. Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt Lett. 33, 1210–1212 (2008).
    [CrossRef] [PubMed]
  27. P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15, 757–763 (2009).
    [CrossRef]
  28. S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
    [CrossRef]
  29. O. B. Shchekin, D. G. Deppe, “1.3 μm InAs quantum dot laser with To=161 K from 0 to 80°C,” Appl. Phys. Lett. 80, 3277–3279 (2002).
    [CrossRef]
  30. X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 227–229 (2000).
    [CrossRef]
  31. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
    [CrossRef]
  32. Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
    [CrossRef]
  33. T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High power GaInAsP∕InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
    [CrossRef]
  34. G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
    [CrossRef]
  35. T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
    [CrossRef]
  36. H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
    [CrossRef]
  37. N. Tansu, A. Quandt, M. Kanskar, W. Mulheam, L. Mawst, “High performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum-well lasers by organometallic vapor phase epitaxy’,” Appl. Phys. Lett. 83, 18–20 (2003).
    [CrossRef]
  38. G. Park, O. B. Shchekin, D. G. Deppe, “Temperature dependence of gain saturation in multilevel quantum dot lasers,” IEEE J. Quantum Electron. 36, 1065–1071 (2000).
    [CrossRef]
  39. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
    [CrossRef]
  40. V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
    [CrossRef]
  41. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000).
    [CrossRef]
  42. K. Nishi, H. Saito, S. Sugou, J. S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).
    [CrossRef]
  43. A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
    [CrossRef]
  44. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
    [CrossRef]
  45. H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
    [CrossRef]
  46. D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.
  47. M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24.
    [CrossRef]
  48. Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20, 055204 (2009).
    [CrossRef] [PubMed]
  49. B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
    [CrossRef]
  50. W. Li, R. Ronkko, A. Rydefalk, P. Poyhonen, M. Pessa, “Superluminescent diodes at 1.55 μm based on quantum-well and quantum-dot active regions,” Proc. SPIE 5739, 116–121 (2005).
    [CrossRef]
  51. H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
    [CrossRef]
  52. H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000).
    [CrossRef]
  53. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
    [CrossRef]
  54. C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 1570–1572 (2000).
    [CrossRef]
  55. M. Klude, T. Passow, G. Alexe, H. Heinke, D. Hommel, “New laser sources for plastic optical fibers: ZnSe-based quantum well and quantum dot laser diodes with 560 nm emission,” Proc. SPIE 4594, 260–270 (2001).
    [CrossRef]
  56. J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
    [CrossRef]
  57. S. Fuchi, A. Sakano, R. Mizutani, Y. Takeda, “High power and high resolution near-infrared light source for optical coherence tomography using glass phosphor and light emitting diode,” Appl. Phys. Express 2, 032102 (2009).
    [CrossRef]
  58. X. Q. Lv, N. Liu, P. Jin, Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett. 20, 1742–1744 (2008).
    [CrossRef]
  59. W. Drexler, “Ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004).
    [CrossRef] [PubMed]
  60. R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996).
    [CrossRef]
  61. J. H. Song, K. Kim, Y. A. Leem, G. Kim, “High-power broadband superluminescent diode using selective area growth at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 19, 1415–1417 (2007).
    [CrossRef]
  62. S. Mokkapati, J. W. Leung, H. H. Tan, C. Jagadish, K. E. McBean, M. R. Phillips, “Tuning the bandgap of InAs quantum dots by selective-area MOCVD,” J. Phy. D 41, 085104 (2008).
    [CrossRef]
  63. J. Tatebayashi, M. Nishioka, T. Someya, Y. Arakawa, “Area-controlled growth of InAs quantum dots and improvement of density and size distribution,” Appl. Phys. Lett. 77, 3382–3384 (2000).
    [CrossRef]
  64. J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
    [CrossRef]
  65. Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
    [CrossRef]
  66. M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
    [CrossRef]
  67. S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, “High-power 1.3-μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett. 19, 109–111 (2007).
    [CrossRef]
  68. M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).
    [CrossRef]
  69. F. Heinrichsdor, M. Grundmann, O. Stier, A. Krost, D. Bimberg, “Influence of In∕Ga intermixing on the optical properties of InGaAs∕GaAs quantum dots,” J. Cryst. Growth. 195, 540–545 (1998).
    [CrossRef]
  70. S. Fafard, C. Nì. Allen, “Intermixing in quantum-dot ensembles with sharp adjustable shells,” Appl. Phys. Lett. 75, 2374–2376 (1999).
    [CrossRef]
  71. H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
    [CrossRef]
  72. J. H. Marsh, D. Bhattacharyya, A. S. Helmy, E. A. Avrutin, A. C. Bryce, “Engineering quantum-dot lasers,” Physica E (Amsterdam) 18, 154–163 (2000).
    [CrossRef]
  73. C. K. Chia, S. J. Chua, J. R. Dong, S. L. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett. 90, 061101 (2007).
    [CrossRef]
  74. C. L. Tan, H. S. Djie, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Realization of extended ultrabroadband quantum-dash laser emission using postgrowth intermixing,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008 (IEEE, 2008) pp. 529–530.
  75. DenseLight Semiconductors, http://www.denselight.com/tech.htm
  76. Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
    [CrossRef]
  77. Y. C. Yoo, L. H. Kim, I. K. Han, “InAs quantum dot superluminescent diodes with trench structure,” J. Mater. Sci. Mater. Electron. (July 7, 2009).
  78. C. F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27, 968–969 (1991).
    [CrossRef]
  79. Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
    [CrossRef]
  80. L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999).
    [CrossRef]
  81. J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, P. Blood, “Measurement of optical gain and Fermi level separation in semiconductor structures,” Proc. SPIE 3944, 201–208 (2000).
    [CrossRef]
  82. Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
    [CrossRef]
  83. M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009).
    [CrossRef] [PubMed]
  84. Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
    [CrossRef]
  85. O. B. Shchekin, J. Ahn, D. G Deppe, “High temperature performance of self-organised quantum dot laserwith stacked p-doped active region,” Electron. Lett. 38, 712–713 (2002).
    [CrossRef]
  86. S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
    [CrossRef]
  87. L. V. Asryan, R. A. Suris, “Temperature dependence of the threshold current density of a quantum dot laser,” IEEE J. Quantum Electron. 34, 841–850 (1998).
    [CrossRef]
  88. I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, A. Forchel, “Importance of auger recombination in InAs 1.3 μm quantum dot lasers,” Electron. Lett. 39, 58–59 (2003).
    [CrossRef]
  89. D. R. Matthews, H. D. Summers, P. M. Smowton, M. Hopkinson,“Experimental investigations of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
    [CrossRef]
  90. C. Y. Ngo, S. F. Yoon, S. J. Chua, “Ambient temperature dependence on emission spectrum of InAs quantum dots,” Phys. Status Solidi B 246, 799–802 (2009).
    [CrossRef]
  91. V. Shidlovski, “Superluminescent diodes. Application notes. SLD sensitivity to optical feedback,” (Superlum, 2006), http://www.superlumdiodes.com/pdf/sld_feedback.pdf.
  92. D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
    [CrossRef]
  93. T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).
  94. P. Bardella, M. Rossetti, I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
    [CrossRef]
  95. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [CrossRef] [PubMed]
  96. M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
    [CrossRef]
  97. P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
    [CrossRef]
  98. H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
    [CrossRef]
  99. P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
    [CrossRef]
  100. A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
    [CrossRef]
  101. C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005).
    [CrossRef]
  102. G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
    [CrossRef]
  103. A. Tierno, T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89, 585–588 (2007).
    [CrossRef]
  104. S. C. Woodworth, D. T. Cassidy, M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in an external cavity,” Appl. Opt. 40, 6719–6724 (2001).
    [CrossRef]
  105. W. J. Loo, S. W. Lanigan, “Recent advances in laser therapy for the treatment of cutaneous vascular disorders,” Lasers Med. Sci. 17, 9–12 (2002).
    [CrossRef] [PubMed]
  106. J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005).
    [CrossRef]
  107. N. Kuramoto, K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54, 868–871 (2005).
    [CrossRef]
  108. T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22, 567–573 (2004).
    [CrossRef]
  109. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
    [CrossRef] [PubMed]
  110. M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
    [CrossRef]
  111. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
    [CrossRef]
  112. D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
    [CrossRef]
  113. H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007).
    [CrossRef]
  114. A. E. Zhukov, A. R. Kovsh, E. V. Nikitina, V. M. Ustinov, Zh. I. Alferov, “Injection lasers with a broad emission spectrum on the basis of self-assembled quantum dots,” Semiconductors 41, 606–611 (2007).
    [CrossRef]
  115. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32, 793–795 (2007).
    [CrossRef] [PubMed]
  116. A. E. Zhukov, A. R. Kovsh, “Quantum dot diode lasers for optical communication systems,” Quantum Electron. 38, 409–423 (2008).
    [CrossRef]
  117. H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
    [CrossRef]
  118. C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008).
    [CrossRef]
  119. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12, 2112–2119 (2004).
    [CrossRef] [PubMed]
  120. C. F. Lin, C. S. Juang, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8, 206–208 (1996).
    [CrossRef]
  121. B. L. Lee, C. F. Lin, “Wide-range tunable semiconductor lasers using asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 10, 322–324 (1998).
    [CrossRef]

2009 (7)

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15, 757–763 (2009).
[CrossRef]

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20, 055204 (2009).
[CrossRef] [PubMed]

S. Fuchi, A. Sakano, R. Mizutani, Y. Takeda, “High power and high resolution near-infrared light source for optical coherence tomography using glass phosphor and light emitting diode,” Appl. Phys. Express 2, 032102 (2009).
[CrossRef]

M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009).
[CrossRef] [PubMed]

C. Y. Ngo, S. F. Yoon, S. J. Chua, “Ambient temperature dependence on emission spectrum of InAs quantum dots,” Phys. Status Solidi B 246, 799–802 (2009).
[CrossRef]

P. Bardella, M. Rossetti, I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
[CrossRef]

2008 (10)

A. E. Zhukov, A. R. Kovsh, “Quantum dot diode lasers for optical communication systems,” Quantum Electron. 38, 409–423 (2008).
[CrossRef]

C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008).
[CrossRef]

X. Q. Lv, N. Liu, P. Jin, Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett. 20, 1742–1744 (2008).
[CrossRef]

S. Mokkapati, J. W. Leung, H. H. Tan, C. Jagadish, K. E. McBean, M. R. Phillips, “Tuning the bandgap of InAs quantum dots by selective-area MOCVD,” J. Phy. D 41, 085104 (2008).
[CrossRef]

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
[CrossRef]

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, Z. G. Wang, “High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region,” IEEE Photon. Technol. Lett. 20, 782–784 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt Lett. 33, 1210–1212 (2008).
[CrossRef] [PubMed]

2007 (19)

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron 37, 331–333 (2007).
[CrossRef]

C. Y. Ngo, S. F. Yoon, W. J. Fan, S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91, 191901 (2007).
[CrossRef]

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Y. C. Yoo, I. K. Han, J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43, 1045–1046 (2007).
[CrossRef]

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, “High-power 1.3-μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett. 19, 109–111 (2007).
[CrossRef]

J. H. Song, K. Kim, Y. A. Leem, G. Kim, “High-power broadband superluminescent diode using selective area growth at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 19, 1415–1417 (2007).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007).
[CrossRef]

A. E. Zhukov, A. R. Kovsh, E. V. Nikitina, V. M. Ustinov, Zh. I. Alferov, “Injection lasers with a broad emission spectrum on the basis of self-assembled quantum dots,” Semiconductors 41, 606–611 (2007).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32, 793–795 (2007).
[CrossRef] [PubMed]

C. K. Chia, S. J. Chua, J. R. Dong, S. L. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett. 90, 061101 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

A. Tierno, T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89, 585–588 (2007).
[CrossRef]

V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32, 361–363 (2007).
[CrossRef] [PubMed]

2006 (9)

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).
[CrossRef]

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

A. Fiore, A. Markus, M. Rossetti, L. H. Li, “Quantum-dot sources: quantum-dot development pursues new applications,” Laser Focus World 42(1), 124–127 (2006).

B. S. Ooi, C. E. Dimas, H. S. Djie, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth. 288, 153–156 (2006).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18, 58–60 (2006).
[CrossRef]

2005 (9)

N. Liu, P. Jin, Z. G. Wang, “InAs∕GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41, 1400–1402 (2005).
[CrossRef]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayer,” Electron. Lett. 41, 41–43 (2005).
[CrossRef]

M. Rossetti, A. Markus, A. Fiore, L. Occhi, C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photon. Technol. Lett. 17, 540–542 (2005).
[CrossRef]

W. Li, R. Ronkko, A. Rydefalk, P. Poyhonen, M. Pessa, “Superluminescent diodes at 1.55 μm based on quantum-well and quantum-dot active regions,” Proc. SPIE 5739, 116–121 (2005).
[CrossRef]

J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
[CrossRef]

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005).
[CrossRef]

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005).
[CrossRef]

N. Kuramoto, K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54, 868–871 (2005).
[CrossRef]

2004 (7)

T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22, 567–573 (2004).
[CrossRef]

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express 12, 2112–2119 (2004).
[CrossRef] [PubMed]

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

W. Drexler, “Ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004).
[CrossRef] [PubMed]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Zh. Sun, F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

2003 (7)

N. Tansu, A. Quandt, M. Kanskar, W. Mulheam, L. Mawst, “High performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum-well lasers by organometallic vapor phase epitaxy’,” Appl. Phys. Lett. 83, 18–20 (2003).
[CrossRef]

D. C. Heo, J. D. Song, W. J. Choi, J. L. Lee, J. C. Jung, I. K. Han, “High power broadband InGaAs∕GaAs quantum dot superluminescent diodes,” Electron. Lett. 39, 863–865 (2003).
[CrossRef]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, A. Forchel, “Importance of auger recombination in InAs 1.3 μm quantum dot lasers,” Electron. Lett. 39, 58–59 (2003).
[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[CrossRef] [PubMed]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

2002 (8)

D. R. Matthews, H. D. Summers, P. M. Smowton, M. Hopkinson,“Experimental investigations of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

O. B. Shchekin, J. Ahn, D. G Deppe, “High temperature performance of self-organised quantum dot laserwith stacked p-doped active region,” Electron. Lett. 38, 712–713 (2002).
[CrossRef]

W. J. Loo, S. W. Lanigan, “Recent advances in laser therapy for the treatment of cutaneous vascular disorders,” Lasers Med. Sci. 17, 9–12 (2002).
[CrossRef] [PubMed]

V. R. Shidlovski, J. Wei, “Superluminescent diodes for optical coherence tomography,” Proc. SPIE. 4648, 139–147 (2002).
[CrossRef]

Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
[CrossRef]

O. B. Shchekin, D. G. Deppe, “1.3 μm InAs quantum dot laser with To=161 K from 0 to 80°C,” Appl. Phys. Lett. 80, 3277–3279 (2002).
[CrossRef]

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
[CrossRef]

2001 (2)

M. Klude, T. Passow, G. Alexe, H. Heinke, D. Hommel, “New laser sources for plastic optical fibers: ZnSe-based quantum well and quantum dot laser diodes with 560 nm emission,” Proc. SPIE 4594, 260–270 (2001).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in an external cavity,” Appl. Opt. 40, 6719–6724 (2001).
[CrossRef]

2000 (12)

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
[CrossRef]

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, P. Blood, “Measurement of optical gain and Fermi level separation in semiconductor structures,” Proc. SPIE 3944, 201–208 (2000).
[CrossRef]

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 1570–1572 (2000).
[CrossRef]

H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000).
[CrossRef]

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000).
[CrossRef]

J. Tatebayashi, M. Nishioka, T. Someya, Y. Arakawa, “Area-controlled growth of InAs quantum dots and improvement of density and size distribution,” Appl. Phys. Lett. 77, 3382–3384 (2000).
[CrossRef]

J. H. Marsh, D. Bhattacharyya, A. S. Helmy, E. A. Avrutin, A. C. Bryce, “Engineering quantum-dot lasers,” Physica E (Amsterdam) 18, 154–163 (2000).
[CrossRef]

X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 227–229 (2000).
[CrossRef]

G. Park, O. B. Shchekin, D. G. Deppe, “Temperature dependence of gain saturation in multilevel quantum dot lasers,” IEEE J. Quantum Electron. 36, 1065–1071 (2000).
[CrossRef]

1999 (8)

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, Z. G. Wang, “Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31, 1235–1246 (1999).
[CrossRef]

S. Fafard, C. Nì. Allen, “Intermixing in quantum-dot ensembles with sharp adjustable shells,” Appl. Phys. Lett. 75, 2374–2376 (1999).
[CrossRef]

K. Nishi, H. Saito, S. Sugou, J. S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).
[CrossRef]

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High power GaInAsP∕InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999).
[CrossRef]

1998 (6)

L. V. Asryan, R. A. Suris, “Temperature dependence of the threshold current density of a quantum dot laser,” IEEE J. Quantum Electron. 34, 841–850 (1998).
[CrossRef]

B. L. Lee, C. F. Lin, “Wide-range tunable semiconductor lasers using asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 10, 322–324 (1998).
[CrossRef]

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

F. Heinrichsdor, M. Grundmann, O. Stier, A. Krost, D. Bimberg, “Influence of In∕Ga intermixing on the optical properties of InGaAs∕GaAs quantum dots,” J. Cryst. Growth. 195, 540–545 (1998).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[CrossRef]

Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
[CrossRef]

1996 (3)

C. F. Lin, B. L. Lee, P. C. Lin, “Broadband superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 18, 1456–1458 (1996).

R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996).
[CrossRef]

C. F. Lin, C. S. Juang, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8, 206–208 (1996).
[CrossRef]

1995 (1)

A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length,” Electron. Lett. 31, 314–315 (1995).
[CrossRef]

1991 (1)

C. F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27, 968–969 (1991).
[CrossRef]

1990 (1)

O. Mikami, H. Yasaks, Y. Noguchi, “Broader spectra width InGaAsP stacked active layer superluminescent diodes,” Appl. Phys. Lett. 56, 987–989 (1990).
[CrossRef]

1988 (1)

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24, 2454–2457 (1988).
[CrossRef]

1982 (1)

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[CrossRef]

1979 (1)

M. C. Amann, J. Boeck, “High efficiency superluminescent diodes for optical-fibre transmission,” Electron. Lett. 15, 41–42 (1979).
[CrossRef]

Abe, M.

T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22, 567–573 (2004).
[CrossRef]

Abstreiter, G.

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

Ackemann, T.

A. Tierno, T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89, 585–588 (2007).
[CrossRef]

Adams, A. R.

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, A. Forchel, “Importance of auger recombination in InAs 1.3 μm quantum dot lasers,” Electron. Lett. 39, 58–59 (2003).
[CrossRef]

Adelmann, C.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 1570–1572 (2000).
[CrossRef]

Adler, D. C.

Ahn, J.

O. B. Shchekin, J. Ahn, D. G Deppe, “High temperature performance of self-organised quantum dot laserwith stacked p-doped active region,” Electron. Lett. 38, 712–713 (2002).
[CrossRef]

Airey, R. J.

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

Akiyama, T.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

Alexe, G.

M. Klude, T. Passow, G. Alexe, H. Heinke, D. Hommel, “New laser sources for plastic optical fibers: ZnSe-based quantum well and quantum dot laser diodes with 560 nm emission,” Proc. SPIE 4594, 260–270 (2001).
[CrossRef]

Alferov, Z. I.

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

Alferov, Zh. I.

A. E. Zhukov, A. R. Kovsh, E. V. Nikitina, V. M. Ustinov, Zh. I. Alferov, “Injection lasers with a broad emission spectrum on the basis of self-assembled quantum dots,” Semiconductors 41, 606–611 (2007).
[CrossRef]

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

Allen, C. N.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005).
[CrossRef]

Allen, C. Nì.

S. Fafard, C. Nì. Allen, “Intermixing in quantum-dot ensembles with sharp adjustable shells,” Appl. Phys. Lett. 75, 2374–2376 (1999).
[CrossRef]

Alphonse, G. A.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24, 2454–2457 (1988).
[CrossRef]

Amann, M. C.

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

M. C. Amann, J. Boeck, “High efficiency superluminescent diodes for optical-fibre transmission,” Electron. Lett. 15, 41–42 (1979).
[CrossRef]

Andreev, A. D.

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, A. Forchel, “Importance of auger recombination in InAs 1.3 μm quantum dot lasers,” Electron. Lett. 39, 58–59 (2003).
[CrossRef]

Andreeva, E. V.

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron 37, 331–333 (2007).
[CrossRef]

Arakawa, Y.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

J. Tatebayashi, M. Nishioka, T. Someya, Y. Arakawa, “Area-controlled growth of InAs quantum dots and improvement of density and size distribution,” Appl. Phys. Lett. 77, 3382–3384 (2000).
[CrossRef]

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[CrossRef]

Arnold, M. A.

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005).
[CrossRef]

Arzberger, M.

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

Asakawa, K.

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
[CrossRef]

Ashmore, A. D.

L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999).
[CrossRef]

Asryan, L. V.

L. V. Asryan, R. A. Suris, “Temperature dependence of the threshold current density of a quantum dot laser,” IEEE J. Quantum Electron. 34, 841–850 (1998).
[CrossRef]

Auxier, J. M.

J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
[CrossRef]

Avrutin, E. A.

J. H. Marsh, D. Bhattacharyya, A. S. Helmy, E. A. Avrutin, A. C. Bryce, “Engineering quantum-dot lasers,” Physica E (Amsterdam) 18, 154–163 (2000).
[CrossRef]

Badcock, T.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Bardella, P.

P. Bardella, M. Rossetti, I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
[CrossRef]

M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009).
[CrossRef] [PubMed]

M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24.
[CrossRef]

Barrios, P.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005).
[CrossRef]

Barrios, P. J.

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

Batovrin, V. K.

A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length,” Electron. Lett. 31, 314–315 (1995).
[CrossRef]

Beattie, M. D.

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18, 58–60 (2006).
[CrossRef]

Bedarev, D. A.

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

Bell, G. R.

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000).
[CrossRef]

Bert, N. A.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

Bhattacharyya, D.

J. H. Marsh, D. Bhattacharyya, A. S. Helmy, E. A. Avrutin, A. C. Bryce, “Engineering quantum-dot lasers,” Physica E (Amsterdam) 18, 154–163 (2000).
[CrossRef]

Bian, L. F.

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

Biebersdorf, A.

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

Bimberg, D.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

F. Heinrichsdor, M. Grundmann, O. Stier, A. Krost, D. Bimberg, “Influence of In∕Ga intermixing on the optical properties of InGaAs∕GaAs quantum dots,” J. Cryst. Growth. 195, 540–545 (1998).
[CrossRef]

Blazek, M.

M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009).
[CrossRef] [PubMed]

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Blood, P.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, P. Blood, “Measurement of optical gain and Fermi level separation in semiconductor structures,” Proc. SPIE 3944, 201–208 (2000).
[CrossRef]

Boeck, J.

M. C. Amann, J. Boeck, “High efficiency superluminescent diodes for optical-fibre transmission,” Electron. Lett. 15, 41–42 (1979).
[CrossRef]

Böhm, G.

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

Borrelli, N. F.

J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
[CrossRef]

Bour, D.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
[CrossRef]

Breuer, S.

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Bryce, A. C.

J. H. Marsh, D. Bhattacharyya, A. S. Helmy, E. A. Avrutin, A. C. Bryce, “Engineering quantum-dot lasers,” Physica E (Amsterdam) 18, 154–163 (2000).
[CrossRef]

Cable, A. E.

Calligaro, M.

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24.
[CrossRef]

Cassidy, D. T.

Chang, R. P. H.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

Chang, W. H.

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007).
[CrossRef]

Chang, Y. L.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
[CrossRef]

Chen, J. X.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Cheng, J.

X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 227–229 (2000).
[CrossRef]

Chi, J.

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

Chia, C. K.

C. K. Chia, S. J. Chua, J. R. Dong, S. L. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett. 90, 061101 (2007).
[CrossRef]

Childs, D. T.

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000).
[CrossRef]

Childs, D. T. D.

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15, 757–763 (2009).
[CrossRef]

T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).

Choi, T. L.

Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, Z. G. Wang, “High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region,” IEEE Photon. Technol. Lett. 20, 782–784 (2008).
[CrossRef]

S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, “High-power 1.3-μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett. 19, 109–111 (2007).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).

Choi, W. J.

D. C. Heo, J. D. Song, W. J. Choi, J. L. Lee, J. C. Jung, I. K. Han, “High power broadband InGaAs∕GaAs quantum dot superluminescent diodes,” Electron. Lett. 39, 863–865 (2003).
[CrossRef]

Chua, S. J.

C. Y. Ngo, S. F. Yoon, S. J. Chua, “Ambient temperature dependence on emission spectrum of InAs quantum dots,” Phys. Status Solidi B 246, 799–802 (2009).
[CrossRef]

C. K. Chia, S. J. Chua, J. R. Dong, S. L. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett. 90, 061101 (2007).
[CrossRef]

C. Y. Ngo, S. F. Yoon, W. J. Fan, S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91, 191901 (2007).
[CrossRef]

Clark, J.

L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999).
[CrossRef]

Clarke, E.

D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.

Cockburn, J.

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

Corzine, S.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
[CrossRef]

Cullis, A.

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

Cullis, A. G.

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

Dalacu, D.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

Dang, G. T.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007).
[CrossRef]

Daudin, B.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 1570–1572 (2000).
[CrossRef]

Deppe, D. G

O. B. Shchekin, J. Ahn, D. G Deppe, “High temperature performance of self-organised quantum dot laserwith stacked p-doped active region,” Electron. Lett. 38, 712–713 (2002).
[CrossRef]

Deppe, D. G.

O. B. Shchekin, D. G. Deppe, “1.3 μm InAs quantum dot laser with To=161 K from 0 to 80°C,” Appl. Phys. Lett. 80, 3277–3279 (2002).
[CrossRef]

G. Park, O. B. Shchekin, D. G. Deppe, “Temperature dependence of gain saturation in multilevel quantum dot lasers,” IEEE J. Quantum Electron. 36, 1065–1071 (2000).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[CrossRef]

Devane, G.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

Dimas, C. E.

C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007).
[CrossRef]

B. S. Ooi, C. E. Dimas, H. S. Djie, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth. 288, 153–156 (2006).
[CrossRef]

C. L. Tan, H. S. Djie, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Realization of extended ultrabroadband quantum-dash laser emission using postgrowth intermixing,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008 (IEEE, 2008) pp. 529–530.

Ding, D.

H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000).
[CrossRef]

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, Z. G. Wang, “Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31, 1235–1246 (1999).
[CrossRef]

Ding, Y. H.

C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008).
[CrossRef]

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

C. L. Tan, H. S. Djie, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Realization of extended ultrabroadband quantum-dash laser emission using postgrowth intermixing,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008 (IEEE, 2008) pp. 529–530.

Dion, C.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

Djie, H. S

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

Djie, H. S.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007).
[CrossRef]

H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

B. S. Ooi, C. E. Dimas, H. S. Djie, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth. 288, 153–156 (2006).
[CrossRef]

C. L. Tan, H. S. Djie, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Realization of extended ultrabroadband quantum-dash laser emission using postgrowth intermixing,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008 (IEEE, 2008) pp. 529–530.

Dong, J. R.

C. K. Chia, S. J. Chua, J. R. Dong, S. L. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett. 90, 061101 (2007).
[CrossRef]

Drexler, W.

W. Drexler, “Ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004).
[CrossRef] [PubMed]

Du, G. T.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

Ebe, H.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

Ebiko, Y.

Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
[CrossRef]

Egorov, A. Yu.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

Eliseev, P.

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
[CrossRef]

Elsasser, W. E.

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Elsäßer, W.

Ettenberg, M.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24, 2454–2457 (1988).
[CrossRef]

Fafard, S.

C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005).
[CrossRef]

S. Fafard, C. Nì. Allen, “Intermixing in quantum-dot ensembles with sharp adjustable shells,” Appl. Phys. Lett. 75, 2374–2376 (1999).
[CrossRef]

Fan, W. J.

C. Y. Ngo, S. F. Yoon, W. J. Fan, S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91, 191901 (2007).
[CrossRef]

Fang, X. M.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

Fang, X.-M.

H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007).
[CrossRef]

Fastenau, J. M.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

Feldmann, J.

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

Feuillet, G.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 1570–1572 (2000).
[CrossRef]

Fiore, A.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

A. Fiore, A. Markus, M. Rossetti, L. H. Li, “Quantum-dot sources: quantum-dot development pursues new applications,” Laser Focus World 42(1), 124–127 (2006).

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).
[CrossRef]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayer,” Electron. Lett. 41, 41–43 (2005).
[CrossRef]

M. Rossetti, A. Markus, A. Fiore, L. Occhi, C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photon. Technol. Lett. 17, 540–542 (2005).
[CrossRef]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Fishman, G.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 1570–1572 (2000).
[CrossRef]

Flatte, M. E.

D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.

Forchel, A.

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, A. Forchel, “Importance of auger recombination in InAs 1.3 μm quantum dot lasers,” Electron. Lett. 39, 58–59 (2003).
[CrossRef]

Fuchi, S.

S. Fuchi, A. Sakano, R. Mizutani, Y. Takeda, “High power and high resolution near-infrared light source for optical coherence tomography using glass phosphor and light emitting diode,” Appl. Phys. Express 2, 032102 (2009).
[CrossRef]

Fuchs, B.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
[CrossRef]

Fuchs, B. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Fujii, K.

N. Kuramoto, K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54, 868–871 (2005).
[CrossRef]

Fujimoto, J. G.

Garmash, I. A.

A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length,” Electron. Lett. 31, 314–315 (1995).
[CrossRef]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Gensty, T.

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Gibbon, M. A.

R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996).
[CrossRef]

Gilbert, D. B.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24, 2454–2457 (1988).
[CrossRef]

Gioannini, M.

M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009).
[CrossRef] [PubMed]

M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24.
[CrossRef]

Giorgi, M. D.

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

Gomez-Iglesias, A.

D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.

Gong, Q.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, Z. G. Wang, “Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31, 1235–1246 (1999).
[CrossRef]

Gorczynska, I.

Gordeev, N. Y.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

Gray, A. L.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

Greenwood, P. D. L.

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15, 757–763 (2009).
[CrossRef]

Groiss, H.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Groom, K. M.

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15, 757–763 (2009).
[CrossRef]

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, “High-power 1.3-μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett. 19, 109–111 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18, 58–60 (2006).
[CrossRef]

T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).

Grundmann, M.

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

F. Heinrichsdor, M. Grundmann, O. Stier, A. Krost, D. Bimberg, “Influence of In∕Ga intermixing on the optical properties of InGaAs∕GaAs quantum dots,” J. Cryst. Growth. 195, 540–545 (1998).
[CrossRef]

Haffouz, S.

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

Haga, T.

Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
[CrossRef]

Hains, C. P.

X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 227–229 (2000).
[CrossRef]

Hamp, M. J.

Han, I. K.

Y. C. Yoo, I. K. Han, J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43, 1045–1046 (2007).
[CrossRef]

D. C. Heo, J. D. Song, W. J. Choi, J. L. Lee, J. C. Jung, I. K. Han, “High power broadband InGaAs∕GaAs quantum dot superluminescent diodes,” Electron. Lett. 39, 863–865 (2003).
[CrossRef]

Y. C. Yoo, L. H. Kim, I. K. Han, “InAs quantum dot superluminescent diodes with trench structure,” J. Mater. Sci. Mater. Electron. (July 7, 2009).

Han, Q.

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

Han, W. H.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

Harris, L.

L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999).
[CrossRef]

Harvey, M. G.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24, 2454–2457 (1988).
[CrossRef]

Hasbullah, F.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Hashimoto, T.

T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22, 567–573 (2004).
[CrossRef]

Hatori, N.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

He, Z. H.

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

Hegarty, S. P.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Heinke, H.

M. Klude, T. Passow, G. Alexe, H. Heinke, D. Hommel, “New laser sources for plastic optical fibers: ZnSe-based quantum well and quantum dot laser diodes with 560 nm emission,” Proc. SPIE 4594, 260–270 (2001).
[CrossRef]

Heinrichsdor, F.

F. Heinrichsdor, M. Grundmann, O. Stier, A. Krost, D. Bimberg, “Influence of In∕Ga intermixing on the optical properties of InGaAs∕GaAs quantum dots,” J. Cryst. Growth. 195, 540–545 (1998).
[CrossRef]

Heinrichsdorff, F.

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

Heiss, W.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Helmy, A. S.

J. H. Marsh, D. Bhattacharyya, A. S. Helmy, E. A. Avrutin, A. C. Bryce, “Engineering quantum-dot lasers,” Physica E (Amsterdam) 18, 154–163 (2000).
[CrossRef]

Heo, D. C.

D. C. Heo, J. D. Song, W. J. Choi, J. L. Lee, J. C. Jung, I. K. Han, “High power broadband InGaAs∕GaAs quantum dot superluminescent diodes,” Electron. Lett. 39, 863–865 (2003).
[CrossRef]

Hesser, G.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Hibino, Y.

T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22, 567–573 (2004).
[CrossRef]

Hill, G.

L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999).
[CrossRef]

Hogg, R. A.

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20, 055204 (2009).
[CrossRef] [PubMed]

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15, 757–763 (2009).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, Z. G. Wang, “High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region,” IEEE Photon. Technol. Lett. 20, 782–784 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt Lett. 33, 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, “High-power 1.3-μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett. 19, 109–111 (2007).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18, 58–60 (2006).
[CrossRef]

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).

Hommel, D.

M. Klude, T. Passow, G. Alexe, H. Heinke, D. Hommel, “New laser sources for plastic optical fibers: ZnSe-based quantum well and quantum dot laser diodes with 560 nm emission,” Proc. SPIE 4594, 260–270 (2001).
[CrossRef]

Hongpinyo, V.

C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008).
[CrossRef]

C. L. Tan, H. S. Djie, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Realization of extended ultrabroadband quantum-dash laser emission using postgrowth intermixing,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008 (IEEE, 2008) pp. 529–530.

Honkanen, S.

J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
[CrossRef]

Hopkinson, M.

M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009).
[CrossRef] [PubMed]

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15, 757–763 (2009).
[CrossRef]

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007).
[CrossRef]

S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, “High-power 1.3-μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett. 19, 109–111 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18, 58–60 (2006).
[CrossRef]

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

D. R. Matthews, H. D. Summers, P. M. Smowton, M. Hopkinson,“Experimental investigations of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999).
[CrossRef]

M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24.
[CrossRef]

T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).

Hotei, T.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Houston, P. A.

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

Huang, X.

X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 227–229 (2000).
[CrossRef]

Huber, R.

Huffaker, D. L.

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[CrossRef]

Hugues, M.

M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24.
[CrossRef]

Hulyer, P. J.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, P. Blood, “Measurement of optical gain and Fermi level separation in semiconductor structures,” Proc. SPIE 3944, 201–208 (2000).
[CrossRef]

Huyet, G.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Hwang, J. C. M.

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007).
[CrossRef]

Iga, K.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High power GaInAsP∕InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Ikeda, N.

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
[CrossRef]

Ishida, M.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

Itakura, T.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Itoh, S.

Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
[CrossRef]

Jagadish, C.

S. Mokkapati, J. W. Leung, H. H. Tan, C. Jagadish, K. E. McBean, M. R. Phillips, “Tuning the bandgap of InAs quantum dots by selective-area MOCVD,” J. Phy. D 41, 085104 (2008).
[CrossRef]

Jiang, J. Y.

Jiang, Q.

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20, 055204 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

Jiang, W. H.

H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000).
[CrossRef]

Jiang, X. Y.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

Jin, C. Y.

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Jin, P.

X. Q. Lv, N. Liu, P. Jin, Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett. 20, 1742–1744 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt Lett. 33, 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, Z. G. Wang, “High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region,” IEEE Photon. Technol. Lett. 20, 782–784 (2008).
[CrossRef]

N. Liu, P. Jin, Z. G. Wang, “InAs∕GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41, 1400–1402 (2005).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Zh. Sun, F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, “The fabrication of the prototype device of quantum-dot superluminescent diodes,” China patent ZL02 1, 47587.3 (Oct. 23, 2002).

Jones, T. S.

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000).
[CrossRef]

Joyce, P. B.

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000).
[CrossRef]

Juang, C. S.

C. F. Lin, C. S. Juang, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8, 206–208 (1996).
[CrossRef]

Jung, J. C.

D. C. Heo, J. D. Song, W. J. Choi, J. L. Lee, J. C. Jung, I. K. Han, “High power broadband InGaAs∕GaAs quantum dot superluminescent diodes,” Electron. Lett. 39, 863–865 (2003).
[CrossRef]

Kanskar, M.

N. Tansu, A. Quandt, M. Kanskar, W. Mulheam, L. Mawst, “High performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum-well lasers by organometallic vapor phase epitaxy’,” Appl. Phys. Lett. 83, 18–20 (2003).
[CrossRef]

Kasahara, R.

T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22, 567–573 (2004).
[CrossRef]

Kaufmann, E.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[CrossRef] [PubMed]

Kettler, T.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Kim, G.

J. H. Song, K. Kim, Y. A. Leem, G. Kim, “High-power broadband superluminescent diode using selective area growth at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 19, 1415–1417 (2007).
[CrossRef]

Kim, K.

J. H. Song, K. Kim, Y. A. Leem, G. Kim, “High-power broadband superluminescent diode using selective area growth at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 19, 1415–1417 (2007).
[CrossRef]

Kim, L. H.

Y. C. Yoo, L. H. Kim, I. K. Han, “InAs quantum dot superluminescent diodes with trench structure,” J. Mater. Sci. Mater. Electron. (July 7, 2009).

Kitagawa, Y.

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
[CrossRef]

Klude, M.

M. Klude, T. Passow, G. Alexe, H. Heinke, D. Hommel, “New laser sources for plastic optical fibers: ZnSe-based quantum well and quantum dot laser diodes with 560 nm emission,” Proc. SPIE 4594, 260–270 (2001).
[CrossRef]

Ko, T. H.

Koike, K.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Kolodka, R.

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

Kondrat’eva, E. Yu.

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

Kop’ev, P. S.

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

Kovsh, A.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32, 793–795 (2007).
[CrossRef] [PubMed]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).
[CrossRef]

Kovsh, A. R.

A. E. Zhukov, A. R. Kovsh, “Quantum dot diode lasers for optical communication systems,” Quantum Electron. 38, 409–423 (2008).
[CrossRef]

A. E. Zhukov, A. R. Kovsh, E. V. Nikitina, V. M. Ustinov, Zh. I. Alferov, “Injection lasers with a broad emission spectrum on the basis of self-assembled quantum dots,” Semiconductors 41, 606–611 (2007).
[CrossRef]

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

Koyama, F.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High power GaInAsP∕InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Kozhukhov, A. V.

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

Krakowski, M.

M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009).
[CrossRef] [PubMed]

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24.
[CrossRef]

Krebs, R.

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, A. Forchel, “Importance of auger recombination in InAs 1.3 μm quantum dot lasers,” Electron. Lett. 39, 58–59 (2003).
[CrossRef]

Krestnikov, I.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32, 793–795 (2007).
[CrossRef] [PubMed]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

Krestnikov, I. L.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

Krost, A.

F. Heinrichsdor, M. Grundmann, O. Stier, A. Krost, D. Bimberg, “Influence of In∕Ga intermixing on the optical properties of InGaAs∕GaAs quantum dots,” J. Cryst. Growth. 195, 540–545 (1998).
[CrossRef]

Kryzhanovskaya, N. V.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

Krzyzewski, T. J.

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000).
[CrossRef]

Kuramoto, N.

N. Kuramoto, K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54, 868–871 (2005).
[CrossRef]

Laemmlin, M.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Lanigan, S. W.

W. J. Loo, S. W. Lanigan, “Recent advances in laser therapy for the treatment of cutaneous vascular disorders,” Lasers Med. Sci. 17, 9–12 (2002).
[CrossRef] [PubMed]

Lapin, P. I.

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron 37, 331–333 (2007).
[CrossRef]

Lapointe, J.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

Ledentsov, N. N.

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

Lee, B. L.

B. L. Lee, C. F. Lin, “Wide-range tunable semiconductor lasers using asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 10, 322–324 (1998).
[CrossRef]

C. F. Lin, B. L. Lee, P. C. Lin, “Broadband superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 18, 1456–1458 (1996).

Lee, J. I.

Y. C. Yoo, I. K. Han, J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43, 1045–1046 (2007).
[CrossRef]

Lee, J. L.

D. C. Heo, J. D. Song, W. J. Choi, J. L. Lee, J. C. Jung, I. K. Han, “High power broadband InGaAs∕GaAs quantum dot superluminescent diodes,” Electron. Lett. 39, 863–865 (2003).
[CrossRef]

Lee, J. S.

K. Nishi, H. Saito, S. Sugou, J. S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).
[CrossRef]

Leem, Y. A.

J. H. Song, K. Kim, Y. A. Leem, G. Kim, “High-power broadband superluminescent diode using selective area growth at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 19, 1415–1417 (2007).
[CrossRef]

Lester, L. F.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
[CrossRef]

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Leung, J. W.

S. Mokkapati, J. W. Leung, H. H. Tan, C. Jagadish, K. E. McBean, M. R. Phillips, “Tuning the bandgap of InAs quantum dots by selective-area MOCVD,” J. Phy. D 41, 085104 (2008).
[CrossRef]

Li, Ch. M.

Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
[CrossRef]

Li, H.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
[CrossRef]

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Li, L. H.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

A. Fiore, A. Markus, M. Rossetti, L. H. Li, “Quantum-dot sources: quantum-dot development pursues new applications,” Laser Focus World 42(1), 124–127 (2006).

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).
[CrossRef]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayer,” Electron. Lett. 41, 41–43 (2005).
[CrossRef]

Li, W.

W. Li, R. Ronkko, A. Rydefalk, P. Poyhonen, M. Pessa, “Superluminescent diodes at 1.55 μm based on quantum-well and quantum-dot active regions,” Proc. SPIE 5739, 116–121 (2005).
[CrossRef]

Li, Y.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

Liang, J. B.

H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000).
[CrossRef]

Liew, S. L.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Lifshits, D. A.

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

Lin, C. F.

B. L. Lee, C. F. Lin, “Wide-range tunable semiconductor lasers using asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 10, 322–324 (1998).
[CrossRef]

C. F. Lin, C. S. Juang, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8, 206–208 (1996).
[CrossRef]

C. F. Lin, B. L. Lee, P. C. Lin, “Broadband superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 18, 1456–1458 (1996).

C. F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27, 968–969 (1991).
[CrossRef]

Lin, G.

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

Lin, J. C.

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

Lin, P. C.

C. F. Lin, B. L. Lee, P. C. Lin, “Broadband superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 18, 1456–1458 (1996).

Lingk, C.

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

Liu, A. K.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

Liu, A. W. K.

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

Liu, F. Q.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Zh. Sun, F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

Liu, G. T.

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
[CrossRef]

X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 227–229 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
[CrossRef]

Liu, H. Y.

S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, “High-power 1.3-μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett. 19, 109–111 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18, 58–60 (2006).
[CrossRef]

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000).
[CrossRef]

T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).

Liu, J. R.

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

Liu, N.

X. Q. Lv, N. Liu, P. Jin, Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett. 20, 1742–1744 (2008).
[CrossRef]

N. Liu, P. Jin, Z. G. Wang, “InAs∕GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41, 1400–1402 (2005).
[CrossRef]

Liu, W. K.

H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

Liu, Y.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

Livshits, D.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32, 793–795 (2007).
[CrossRef] [PubMed]

Livshits, D. A.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

Loo, W. J.

W. J. Loo, S. W. Lanigan, “Recent advances in laser therapy for the treatment of cutaneous vascular disorders,” Lasers Med. Sci. 17, 9–12 (2002).
[CrossRef] [PubMed]

Lu, Z. G.

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

Luan, H.-C.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
[CrossRef]

Lunev, A. V.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

Luong, S.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

Luxmoore, I. J.

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20, 055204 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

Lv, X. Q.

X. Q. Lv, N. Liu, P. Jin, Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett. 20, 1742–1744 (2008).
[CrossRef]

Maksimov, M. V.

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

Maleev, N. A.

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

Mali, S.

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000).
[CrossRef]

Malins, D. B.

D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.

Malloy, K. J.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
[CrossRef]

X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 227–229 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
[CrossRef]

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Mamedov, D.

Marinelli, C.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Marko, I. P.

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, A. Forchel, “Importance of auger recombination in InAs 1.3 μm quantum dot lasers,” Electron. Lett. 39, 58–59 (2003).
[CrossRef]

Markus, A.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

A. Fiore, A. Markus, M. Rossetti, L. H. Li, “Quantum-dot sources: quantum-dot development pursues new applications,” Laser Focus World 42(1), 124–127 (2006).

M. Rossetti, A. Markus, A. Fiore, L. Occhi, C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photon. Technol. Lett. 17, 540–542 (2005).
[CrossRef]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Marsh, J. H.

J. H. Marsh, D. Bhattacharyya, A. S. Helmy, E. A. Avrutin, A. C. Bryce, “Engineering quantum-dot lasers,” Physica E (Amsterdam) 18, 154–163 (2000).
[CrossRef]

Marshall, P.

C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005).
[CrossRef]

Martin, R. W.

R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996).
[CrossRef]

Martinez, A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

Matthews, D. R.

D. R. Matthews, H. D. Summers, P. M. Smowton, M. Hopkinson,“Experimental investigations of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

Mawst, L.

N. Tansu, A. Quandt, M. Kanskar, W. Mulheam, L. Mawst, “High performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum-well lasers by organometallic vapor phase epitaxy’,” Appl. Phys. Lett. 83, 18–20 (2003).
[CrossRef]

Maximov, M. V.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

McBean, K. E.

S. Mokkapati, J. W. Leung, H. H. Tan, C. Jagadish, K. E. McBean, M. R. Phillips, “Tuning the bandgap of InAs quantum dots by selective-area MOCVD,” J. Phy. D 41, 085104 (2008).
[CrossRef]

McInerney, J. G.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Meng, X. Q.

Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
[CrossRef]

Mermelstein, C.

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005).
[CrossRef]

Mikami, O.

O. Mikami, H. Yasaks, Y. Noguchi, “Broader spectra width InGaAsP stacked active layer superluminescent diodes,” Appl. Phys. Lett. 56, 987–989 (1990).
[CrossRef]

Mikhrin, S.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32, 793–795 (2007).
[CrossRef] [PubMed]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).
[CrossRef]

Mikhrin, S. S.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

Miller, A.

D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.

Mizutani, R.

S. Fuchi, A. Sakano, R. Mizutani, Y. Takeda, “High power and high resolution near-infrared light source for optical coherence tomography using glass phosphor and light emitting diode,” Appl. Phys. Express 2, 032102 (2009).
[CrossRef]

Mokkapati, S.

S. Mokkapati, J. W. Leung, H. H. Tan, C. Jagadish, K. E. McBean, M. R. Phillips, “Tuning the bandgap of InAs quantum dots by selective-area MOCVD,” J. Phy. D 41, 085104 (2008).
[CrossRef]

Montrosset, I.

P. Bardella, M. Rossetti, I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
[CrossRef]

M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009).
[CrossRef] [PubMed]

M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24.
[CrossRef]

Mori, S.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High power GaInAsP∕InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Morrell, M. M.

J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
[CrossRef]

Moscho, A. J.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Mowbray, D. J.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999).
[CrossRef]

Mulheam, W.

N. Tansu, A. Quandt, M. Kanskar, W. Mulheam, L. Mawst, “High performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum-well lasers by organometallic vapor phase epitaxy’,” Appl. Phys. Lett. 83, 18–20 (2003).
[CrossRef]

Murray, R.

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000).
[CrossRef]

D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.

Musikhin, Yu. G.

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

Muto, S.

Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
[CrossRef]

Nakata, Y.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
[CrossRef]

Newell, T. C.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
[CrossRef]

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Ngo, C. Y.

C. Y. Ngo, S. F. Yoon, S. J. Chua, “Ambient temperature dependence on emission spectrum of InAs quantum dots,” Phys. Status Solidi B 246, 799–802 (2009).
[CrossRef]

C. Y. Ngo, S. F. Yoon, W. J. Fan, S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91, 191901 (2007).
[CrossRef]

Ni, H. Q.

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

Nicholas, R. J.

R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996).
[CrossRef]

Nikitina, E. V.

A. E. Zhukov, A. R. Kovsh, E. V. Nikitina, V. M. Ustinov, Zh. I. Alferov, “Injection lasers with a broad emission spectrum on the basis of self-assembled quantum dots,” Semiconductors 41, 606–611 (2007).
[CrossRef]

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

Nilsen, T. A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Nishi, K.

K. Nishi, H. Saito, S. Sugou, J. S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).
[CrossRef]

Nishioka, M.

J. Tatebayashi, M. Nishioka, T. Someya, Y. Arakawa, “Area-controlled growth of InAs quantum dots and improvement of density and size distribution,” Appl. Phys. Lett. 77, 3382–3384 (2000).
[CrossRef]

Niu, Z. C.

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

Noguchi, Y.

O. Mikami, H. Yasaks, Y. Noguchi, “Broader spectra width InGaAsP stacked active layer superluminescent diodes,” Appl. Phys. Lett. 56, 987–989 (1990).
[CrossRef]

Novikov, I. I.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

O’Brien, D.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

Occhi, L.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).
[CrossRef]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayer,” Electron. Lett. 41, 41–43 (2005).
[CrossRef]

M. Rossetti, A. Markus, A. Fiore, L. Occhi, C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photon. Technol. Lett. 17, 540–542 (2005).
[CrossRef]

Ohkouchi, S.

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
[CrossRef]

Okumura, S.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

Olesberg, J. T.

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005).
[CrossRef]

Ooi, B. S.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007).
[CrossRef]

B. S. Ooi, C. E. Dimas, H. S. Djie, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth. 288, 153–156 (2006).
[CrossRef]

C. L. Tan, H. S. Djie, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Realization of extended ultrabroadband quantum-dash laser emission using postgrowth intermixing,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008 (IEEE, 2008) pp. 529–530.

Ortner, G.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

Otsubo, K.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

Ozaki, N.

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
[CrossRef]

Pakulski, G.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005).
[CrossRef]

Paranthoën, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Park, G.

G. Park, O. B. Shchekin, D. G. Deppe, “Temperature dependence of gain saturation in multilevel quantum dot lasers,” IEEE J. Quantum Electron. 36, 1065–1071 (2000).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[CrossRef]

Passow, T.

M. Klude, T. Passow, G. Alexe, H. Heinke, D. Hommel, “New laser sources for plastic optical fibers: ZnSe-based quantum well and quantum dot laser diodes with 560 nm emission,” Proc. SPIE 4594, 260–270 (2001).
[CrossRef]

Paul, F.

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

Payusov, A. S.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

Pease, E. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Pelekanos, N. T.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 1570–1572 (2000).
[CrossRef]

Penty, R. V.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Pessa, M.

W. Li, R. Ronkko, A. Rydefalk, P. Poyhonen, M. Pessa, “Superluminescent diodes at 1.55 μm based on quantum-well and quantum-dot active regions,” Proc. SPIE 5739, 116–121 (2005).
[CrossRef]

Peyghambarian, N. N.

J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
[CrossRef]

Phillips, M. R.

S. Mokkapati, J. W. Leung, H. H. Tan, C. Jagadish, K. E. McBean, M. R. Phillips, “Tuning the bandgap of InAs quantum dots by selective-area MOCVD,” J. Phy. D 41, 085104 (2008).
[CrossRef]

Platz, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

Poitras, D.

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

Poole, P. J.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005).
[CrossRef]

Poyhonen, P.

W. Li, R. Ronkko, A. Rydefalk, P. Poyhonen, M. Pessa, “Superluminescent diodes at 1.55 μm based on quantum-well and quantum-dot active regions,” Proc. SPIE 5739, 116–121 (2005).
[CrossRef]

Prokhorov, V.

Prokhorov, V. V.

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron 37, 331–333 (2007).
[CrossRef]

Pryor, C. E.

D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.

Qu, S. C.

Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
[CrossRef]

Quandt, A.

N. Tansu, A. Quandt, M. Kanskar, W. Mulheam, L. Mawst, “High performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum-well lasers by organometallic vapor phase epitaxy’,” Appl. Phys. Lett. 83, 18–20 (2003).
[CrossRef]

Rae, A.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Ray, S. K.

S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, “High-power 1.3-μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett. 19, 109–111 (2007).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18, 58–60 (2006).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).

Raymond, S.

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005).
[CrossRef]

Reisen, P.

Reithmaier, J. P.

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, A. Forchel, “Importance of auger recombination in InAs 1.3 μm quantum dot lasers,” Electron. Lett. 39, 58–59 (2003).
[CrossRef]

Render, W.

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

Resneau, P.

M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009).
[CrossRef] [PubMed]

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24.
[CrossRef]

Ribbat, C.

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

Ronkko, R.

W. Li, R. Ronkko, A. Rydefalk, P. Poyhonen, M. Pessa, “Superluminescent diodes at 1.55 μm based on quantum-well and quantum-dot active regions,” Proc. SPIE 5739, 116–121 (2005).
[CrossRef]

Ross, I.

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

Rossetti, M.

M. Blazek, W. Elsäßer, M. Hopkinson, P. Resneau, M. Krakowski, M. Rossetti, P. Bardella, M. Gioannini, I. Montrosset, “Coherence function control of quantum dot superluminescent light emitting diodes by frequency selective optical feedback,” Opt. Express 17, 13365–13372 (2009).
[CrossRef] [PubMed]

P. Bardella, M. Rossetti, I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
[CrossRef]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

A. Fiore, A. Markus, M. Rossetti, L. H. Li, “Quantum-dot sources: quantum-dot development pursues new applications,” Laser Focus World 42(1), 124–127 (2006).

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).
[CrossRef]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayer,” Electron. Lett. 41, 41–43 (2005).
[CrossRef]

M. Rossetti, A. Markus, A. Fiore, L. Occhi, C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photon. Technol. Lett. 17, 540–542 (2005).
[CrossRef]

Rotter, T. J.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

Roy-Guay, D.

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

Rydefalk, A.

W. Li, R. Ronkko, A. Rydefalk, P. Poyhonen, M. Pessa, “Superluminescent diodes at 1.55 μm based on quantum-well and quantum-dot active regions,” Proc. SPIE 5739, 116–121 (2005).
[CrossRef]

Sacher, J.

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

Saito, H.

K. Nishi, H. Saito, S. Sugou, J. S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).
[CrossRef]

Saiz, T.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Sakaki, H.

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[CrossRef]

Sakano, A.

S. Fuchi, A. Sakano, R. Mizutani, Y. Takeda, “High power and high resolution near-infrared light source for optical coherence tomography using glass phosphor and light emitting diode,” Appl. Phys. Express 2, 032102 (2009).
[CrossRef]

Schäffler, F.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Schmitz, J.

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005).
[CrossRef]

Schülzgen, A.

J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
[CrossRef]

Schwarzl, T.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Sellers, I. R.

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

Sellin, R. L.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Semenov, A. T.

A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length,” Electron. Lett. 31, 314–315 (1995).
[CrossRef]

Sen, S.

J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
[CrossRef]

Shchekin, O. B.

O. B. Shchekin, D. G. Deppe, “1.3 μm InAs quantum dot laser with To=161 K from 0 to 80°C,” Appl. Phys. Lett. 80, 3277–3279 (2002).
[CrossRef]

O. B. Shchekin, J. Ahn, D. G Deppe, “High temperature performance of self-organised quantum dot laserwith stacked p-doped active region,” Electron. Lett. 38, 712–713 (2002).
[CrossRef]

G. Park, O. B. Shchekin, D. G. Deppe, “Temperature dependence of gain saturation in multilevel quantum dot lasers,” IEEE J. Quantum Electron. 36, 1065–1071 (2000).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[CrossRef]

Shernyakov, Y. M.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

Shernyakov, Yu. M.

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

Shidlovski, V.

Shidlovski, V. R.

V. R. Shidlovski, J. Wei, “Superluminescent diodes for optical coherence tomography,” Proc. SPIE. 4648, 139–147 (2002).
[CrossRef]

Shidlovsky, V. R.

A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length,” Electron. Lett. 31, 314–315 (1995).
[CrossRef]

Shiramine, K.

Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
[CrossRef]

Shramenko, M. V.

A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length,” Electron. Lett. 31, 314–315 (1995).
[CrossRef]

Simon, J.

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 1570–1572 (2000).
[CrossRef]

Skolnick, M.

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

Skolnick, M. S.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999).
[CrossRef]

Smowton, P. M.

D. R. Matthews, H. D. Summers, P. M. Smowton, M. Hopkinson,“Experimental investigations of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, P. Blood, “Measurement of optical gain and Fermi level separation in semiconductor structures,” Proc. SPIE 3944, 201–208 (2000).
[CrossRef]

Someya, T.

J. Tatebayashi, M. Nishioka, T. Someya, Y. Arakawa, “Area-controlled growth of InAs quantum dots and improvement of density and size distribution,” Appl. Phys. Lett. 77, 3382–3384 (2000).
[CrossRef]

Song, J. D.

D. C. Heo, J. D. Song, W. J. Choi, J. L. Lee, J. C. Jung, I. K. Han, “High power broadband InGaAs∕GaAs quantum dot superluminescent diodes,” Electron. Lett. 39, 863–865 (2003).
[CrossRef]

Song, J. H.

J. H. Song, K. Kim, Y. A. Leem, G. Kim, “High-power broadband superluminescent diode using selective area growth at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 19, 1415–1417 (2007).
[CrossRef]

Spencer, P.

D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.

Springholz, G.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Srinivasan, V. J.

Stagg, J. P.

R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996).
[CrossRef]

Stair, K. A.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

Steer, M. J.

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

Stevens, B.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Stevens, B. J.

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15, 757–763 (2009).
[CrossRef]

T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).

Stier, O.

F. Heinrichsdor, M. Grundmann, O. Stier, A. Krost, D. Bimberg, “Influence of In∕Ga intermixing on the optical properties of InGaAs∕GaAs quantum dots,” J. Cryst. Growth. 195, 540–545 (1998).
[CrossRef]

Stintz, A.

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
[CrossRef]

X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 227–229 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Su, H.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

Sugawara, M.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

Sugimoto, Y.

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
[CrossRef]

Sugou, S.

K. Nishi, H. Saito, S. Sugou, J. S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).
[CrossRef]

Summers, H. D.

D. R. Matthews, H. D. Summers, P. M. Smowton, M. Hopkinson,“Experimental investigations of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, P. Blood, “Measurement of optical gain and Fermi level separation in semiconductor structures,” Proc. SPIE 3944, 201–208 (2000).
[CrossRef]

Sun, K.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

Sun, Z. Z.

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, Z. G. Wang, “Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31, 1235–1246 (1999).
[CrossRef]

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

Sun, Zh. Zh.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Zh. Sun, F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

Suris, R. A.

L. V. Asryan, R. A. Suris, “Temperature dependence of the threshold current density of a quantum dot laser,” IEEE J. Quantum Electron. 34, 841–850 (1998).
[CrossRef]

Suzuki, D.

Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
[CrossRef]

Symons, D. M.

R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996).
[CrossRef]

Takata, Y.

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
[CrossRef]

Takeda, Y.

S. Fuchi, A. Sakano, R. Mizutani, Y. Takeda, “High power and high resolution near-infrared light source for optical coherence tomography using glass phosphor and light emitting diode,” Appl. Phys. Express 2, 032102 (2009).
[CrossRef]

Takeuchi, T.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
[CrossRef]

Tan, C. L.

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

C. L. Tan, H. S. Djie, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Realization of extended ultrabroadband quantum-dash laser emission using postgrowth intermixing,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008 (IEEE, 2008) pp. 529–530.

Tan, H. H.

S. Mokkapati, J. W. Leung, H. H. Tan, C. Jagadish, K. E. McBean, M. R. Phillips, “Tuning the bandgap of InAs quantum dots by selective-area MOCVD,” J. Phy. D 41, 085104 (2008).
[CrossRef]

Tan, M.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
[CrossRef]

Tanaka, T.

T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22, 567–573 (2004).
[CrossRef]

Tandon, A.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
[CrossRef]

Tansu, N.

N. Tansu, A. Quandt, M. Kanskar, W. Mulheam, L. Mawst, “High performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum-well lasers by organometallic vapor phase epitaxy’,” Appl. Phys. Lett. 83, 18–20 (2003).
[CrossRef]

Tartakovskii, A.

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

Tatebayashi, J.

J. Tatebayashi, M. Nishioka, T. Someya, Y. Arakawa, “Area-controlled growth of InAs quantum dots and improvement of density and size distribution,” Appl. Phys. Lett. 77, 3382–3384 (2000).
[CrossRef]

Teo, S. L.

C. K. Chia, S. J. Chua, J. R. Dong, S. L. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett. 90, 061101 (2007).
[CrossRef]

Thompson, M. G.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Thomson, J. D.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, P. Blood, “Measurement of optical gain and Fermi level separation in semiconductor structures,” Proc. SPIE 3944, 201–208 (2000).
[CrossRef]

Thrush, E. J.

R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996).
[CrossRef]

Tierno, A.

A. Tierno, T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89, 585–588 (2007).
[CrossRef]

Tohmori, Y.

T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22, 567–573 (2004).
[CrossRef]

Tsatsul’Nikov, A. F.

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

Twist, R.

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
[CrossRef]

Ulbrich, C.

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

Ustinov, V. M.

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

A. E. Zhukov, A. R. Kovsh, E. V. Nikitina, V. M. Ustinov, Zh. I. Alferov, “Injection lasers with a broad emission spectrum on the basis of self-assembled quantum dots,” Semiconductors 41, 606–611 (2007).
[CrossRef]

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

Varangis, P. M.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
[CrossRef]

Vasil’ev, A. P.

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

Velez, C.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).
[CrossRef]

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayer,” Electron. Lett. 41, 41–43 (2005).
[CrossRef]

M. Rossetti, A. Markus, A. Fiore, L. Occhi, C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photon. Technol. Lett. 17, 540–542 (2005).
[CrossRef]

Volovik, B. V.

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

Wagner, J.

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005).
[CrossRef]

Wang, D. N.

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007).
[CrossRef]

Wang, Y.

C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008).
[CrossRef]

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

Wang, Z. G.

Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, Z. G. Wang, “High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region,” IEEE Photon. Technol. Lett. 20, 782–784 (2008).
[CrossRef]

X. Q. Lv, N. Liu, P. Jin, Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett. 20, 1742–1744 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt Lett. 33, 1210–1212 (2008).
[CrossRef] [PubMed]

N. Liu, P. Jin, Z. G. Wang, “InAs∕GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41, 1400–1402 (2005).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Zh. Sun, F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
[CrossRef]

H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000).
[CrossRef]

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, Z. G. Wang, “Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31, 1235–1246 (1999).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, “The fabrication of the prototype device of quantum-dot superluminescent diodes,” China patent ZL02 1, 47587.3 (Oct. 23, 2002).

Wasilewski, Z. R.

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

Watanabe, Y.

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
[CrossRef]

Wei, J.

V. R. Shidlovski, J. Wei, “Superluminescent diodes for optical coherence tomography,” Proc. SPIE. 4648, 139–147 (2002).
[CrossRef]

Wei, X.

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

Weimert, J.

West, B. R.

J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
[CrossRef]

White, I. H.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Wojtowicz, T.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Wong, S. L.

R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996).
[CrossRef]

Woodworth, S. C.

Wu, R. H.

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

Wu, S. L.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

Wu, X.

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

Wu, Y.

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

Xin, Y. C.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

Xu, B.

Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, Z. G. Wang, “High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region,” IEEE Photon. Technol. Lett. 20, 782–784 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt Lett. 33, 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Zh. Sun, F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
[CrossRef]

H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000).
[CrossRef]

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, Z. G. Wang, “Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31, 1235–1246 (1999).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, “The fabrication of the prototype device of quantum-dot superluminescent diodes,” China patent ZL02 1, 47587.3 (Oct. 23, 2002).

Xu, X. H.

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

Xu, Y. Q.

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

Yakubovich, S.

Yakubovich, S. D.

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron 37, 331–333 (2007).
[CrossRef]

A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length,” Electron. Lett. 31, 314–315 (1995).
[CrossRef]

Yamatoya, T.

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High power GaInAsP∕InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

Yano, M.

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

Yasaks, H.

O. Mikami, H. Yasaks, Y. Noguchi, “Broader spectra width InGaAsP stacked active layer superluminescent diodes,” Appl. Phys. Lett. 56, 987–989 (1990).
[CrossRef]

Ye, X. L.

Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
[CrossRef]

Yokoyama, N.

Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
[CrossRef]

Yoo, Y. C.

Y. C. Yoo, I. K. Han, J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43, 1045–1046 (2007).
[CrossRef]

Y. C. Yoo, L. H. Kim, I. K. Han, “InAs quantum dot superluminescent diodes with trench structure,” J. Mater. Sci. Mater. Electron. (July 7, 2009).

Yoon, S. F.

C. Y. Ngo, S. F. Yoon, S. J. Chua, “Ambient temperature dependence on emission spectrum of InAs quantum dots,” Phys. Status Solidi B 246, 799–802 (2009).
[CrossRef]

C. Y. Ngo, S. F. Yoon, W. J. Fan, S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91, 191901 (2007).
[CrossRef]

Zhang, L.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

Zhang, W.

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20, 055204 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt Lett. 33, 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, Z. G. Wang, “High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region,” IEEE Photon. Technol. Lett. 20, 782–784 (2008).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Zh. Sun, F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
[CrossRef]

T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, “The fabrication of the prototype device of quantum-dot superluminescent diodes,” China patent ZL02 1, 47587.3 (Oct. 23, 2002).

Zhao, Y. S.

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

Zhou, W.

H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000).
[CrossRef]

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, Z. G. Wang, “Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31, 1235–1246 (1999).
[CrossRef]

Zhukov, A.

Zhukov, A. E.

A. E. Zhukov, A. R. Kovsh, “Quantum dot diode lasers for optical communication systems,” Quantum Electron. 38, 409–423 (2008).
[CrossRef]

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

A. E. Zhukov, A. R. Kovsh, E. V. Nikitina, V. M. Ustinov, Zh. I. Alferov, “Injection lasers with a broad emission spectrum on the basis of self-assembled quantum dots,” Semiconductors 41, 606–611 (2007).
[CrossRef]

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

Zilk, J.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

Zou, Z.

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[CrossRef]

Appl. Phys. Lett. (5)

C. Y. Ngo, S. F. Yoon, W. J. Fan, S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91, 191901 (2007).
[CrossRef]

H. Q. Ni, Z. C. Niu, X. H. Xu, Y. Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, R. H. Wu, “High-indium-content InxGa1−xAs∕GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature,” Appl. Phys. Lett. 84, 5100–5102 (2004).
[CrossRef]

K. Nishi, H. Saito, S. Sugou, J. S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett. 74, 1111–1113 (1999).
[CrossRef]

C. K. Chia, S. J. Chua, J. R. Dong, S. L. Teo, “Ultrawide band quantum dot light emitting device by postfabrication laser annealing,” Appl. Phys. Lett. 90, 061101 (2007).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, C. Y. Jin, H. Y. Liu, Q. Jiang, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Effect of facet angle on effective facet reflectivity and operating characteristics of quantum dot edge emitting lasers and superluminescent light emitting diodes,” Appl. Phys. Lett. 91, 081112 (2007).
[CrossRef]

Appl. Spectrosc. (1)

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Fafard, C. Nì. Allen, “Intermixing in quantum-dot ensembles with sharp adjustable shells,” Appl. Phys. Lett. 75, 2374–2376 (1999).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jin, M. Hopkinson, R. A. Hogg, “ p-doped 1.3 μmInAs∕GaAs quantum-dot laser with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett. 76, 1570–1572 (2000).
[CrossRef]

O. Mikami, H. Yasaks, Y. Noguchi, “Broader spectra width InGaAsP stacked active layer superluminescent diodes,” Appl. Phys. Lett. 56, 987–989 (1990).
[CrossRef]

Appl. Phys. B (1)

A. Tierno, T. Ackemann, “Tunable, narrow-band light source in the 1.25 μm region based on broad-area quantum dot lasers with feedback,” Appl. Phys. B 89, 585–588 (2007).
[CrossRef]

Appl. Phys. Express (1)

S. Fuchi, A. Sakano, R. Mizutani, Y. Takeda, “High power and high resolution near-infrared light source for optical coherence tomography using glass phosphor and light emitting diode,” Appl. Phys. Express 2, 032102 (2009).
[CrossRef]

Appl. Phys. Lett. (17)

J. Tatebayashi, M. Nishioka, T. Someya, Y. Arakawa, “Area-controlled growth of InAs quantum dots and improvement of density and size distribution,” Appl. Phys. Lett. 77, 3382–3384 (2000).
[CrossRef]

H. Y. Liu, I. R. Sellers, R. J. Airey, M. J. Steer, P. A. Houston, D. J. Mowbray, J. Cockburn, M. S. Skolnick, B. Xu, Z. G. Wang, “Room-temperature, ground-state lasing for red-emitting vertically aligned InAlAs∕AlGaAs quantum dots grown on a GaAs(100) substrate,” Appl. Phys. Lett. 80, 3769–3771 (2002).
[CrossRef]

H. Y. Liu, W. Zhou, D. Ding, W. H. Jiang, B. Xu, J. B. Liang, Z. G. Wang, “Self-organized type-II In0.55Al0.45As∕Al0.50Ga0.50As quantum dots realized on GaAs(311)A ,” Appl. Phys. Lett. 76, 3741–3743 (2000).
[CrossRef]

H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, T. Wojtowicz, “Size control and midinfrared emission of epitaxial PbTe∕CdTe quantum dot precipitates grown by molecular beam epitaxy,” Appl. Phys. Lett. 91, 222106 (2007).
[CrossRef]

N. Tansu, A. Quandt, M. Kanskar, W. Mulheam, L. Mawst, “High performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum-well lasers by organometallic vapor phase epitaxy’,” Appl. Phys. Lett. 83, 18–20 (2003).
[CrossRef]

D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot laser,” Appl. Phys. Lett. 73, 2564–2566 (1998).
[CrossRef]

V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, “InAs∕InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm,” Appl. Phys. Lett. 74, 2815–2817 (1999).
[CrossRef]

O. B. Shchekin, D. G. Deppe, “1.3 μm InAs quantum dot laser with To=161 K from 0 to 80°C,” Appl. Phys. Lett. 80, 3277–3279 (2002).
[CrossRef]

T. Takeuchi, Y. L. Chang, A. Tandon, D. Bour, S. Corzine, R. Twist, M. Tan, H.-C. Luan, “Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio,” Appl. Phys. Lett. 80, 2445–2447 (2002).
[CrossRef]

G. Ortner, C. N. Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, S. Raymond, “External cavity InAs∕InP quantum dot laser with a tuning range of 166 nm,” Appl. Phys. Lett. 88, 121119 (2006).
[CrossRef]

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82, 1818–1820 (2003).
[CrossRef]

L. Harris, A. D. Ashmore, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, J. Clark, “Gain characteristics of InAs∕GaAs self-organized quantum-dot lasers,” Appl. Phys. Lett. 75, 3512–3514 (1999).
[CrossRef]

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982).
[CrossRef]

D. R. Matthews, H. D. Summers, P. M. Smowton, M. Hopkinson,“Experimental investigations of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, W. H. Chang, “Ultrabroad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91, 111116 (2007).
[CrossRef]

C. L. Tan, H. S. Djie, Y. Wang, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93, 111101 (2008).
[CrossRef]

Electron. Lett. (7)

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, “Feedback sensitivity of 1.3 μmInAs∕GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[CrossRef]

I. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, A. Forchel, “Importance of auger recombination in InAs 1.3 μm quantum dot lasers,” Electron. Lett. 39, 58–59 (2003).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36, 1544–1545 (2000).
[CrossRef]

Y. C. Yoo, I. K. Han, J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43, 1045–1046 (2007).
[CrossRef]

M. C. Amann, J. Boeck, “High efficiency superluminescent diodes for optical-fibre transmission,” Electron. Lett. 15, 41–42 (1979).
[CrossRef]

A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, S. D. Yakubovich, “(GaAl)As SQW superluminescent diodes with extremely low coherence length,” Electron. Lett. 31, 314–315 (1995).
[CrossRef]

N. Liu, P. Jin, Z. G. Wang, “InAs∕GaAs quantum-dot superluminescent diodes with 110 nm bandwidth,” Electron. Lett. 41, 1400–1402 (2005).
[CrossRef]

Electron. Lett. (5)

L. H. Li, M. Rossetti, A. Fiore, L. Occhi, C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayer,” Electron. Lett. 41, 41–43 (2005).
[CrossRef]

D. C. Heo, J. D. Song, W. J. Choi, J. L. Lee, J. C. Jung, I. K. Han, “High power broadband InGaAs∕GaAs quantum dot superluminescent diodes,” Electron. Lett. 39, 863–865 (2003).
[CrossRef]

O. B. Shchekin, J. Ahn, D. G Deppe, “High temperature performance of self-organised quantum dot laserwith stacked p-doped active region,” Electron. Lett. 38, 712–713 (2002).
[CrossRef]

Z. Y. Zhang, I. J. Luxmoore, Q. Jiang, H. Y. Liu, K. M. Groom, D. T. Childs, M. Hopkinson, A. G. Cullis, R. A. Hogg, “Broadband quantum dot superluminescent LED with angled facet formed by focused ion beam etching,” Electron. Lett. 43, 587–589 (2007).
[CrossRef]

C. F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching,” Electron. Lett. 27, 968–969 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Q. Lv, N. Liu, P. Jin, Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett. 20, 1742–1744 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. V. Asryan, R. A. Suris, “Temperature dependence of the threshold current density of a quantum dot laser,” IEEE J. Quantum Electron. 34, 841–850 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Park, O. B. Shchekin, D. G. Deppe, “Temperature dependence of gain saturation in multilevel quantum dot lasers,” IEEE J. Quantum Electron. 36, 1065–1071 (2000).
[CrossRef]

IEEE J. Quantum Electron. (4)

G. A. Alphonse, D. B. Gilbert, M. G. Harvey, M. Ettenberg, “High-power superluminescent diodes,” IEEE J. Quantum Electron. 24, 2454–2457 (1988).
[CrossRef]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2–1.3 μm,” IEEE J. Quantum Electron. 43, 676–686 (2007).
[CrossRef]

Y. C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilk, P. M. Varangis, L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42, 725–732 (2006).
[CrossRef]

P. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, L. F. Lester, “Tunable grating-coupled laser oscillation and spectral hole burning in an InAs quantum-dot laser diode,” IEEE J. Quantum Electron. 36, 479–485 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. K. Liu, G. T. Dang, W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron 14, 1230–1238 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Bardella, M. Rossetti, I. Montrosset, “Modeling of broadband chirped quantum-dot super-luminescent diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

H. S Djie, Y. Wang, Y. H. Ding, D. N. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron 14, 1239–1249 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. D. L. Greenwood, D. T. D. Childs, K. M. Groom, B. J. Stevens, M. Hopkinson, R. A. Hogg, “Tuning superluminescent diode characteristics for optical coherence tomography systems by utilizing a multicontact device incorporating wavelength-modulated quantum dots,” IEEE J. Sel. Top. Quantum Electron. 15, 757–763 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. H. Song, K. Kim, Y. A. Leem, G. Kim, “High-power broadband superluminescent diode using selective area growth at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 19, 1415–1417 (2007).
[CrossRef]

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photon. Technol. Lett. 18, 1946–1948 (2006).
[CrossRef]

B. L. Lee, C. F. Lin, “Wide-range tunable semiconductor lasers using asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 10, 322–324 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, R. A. Hogg, “High-power 1.3-μm quantum-dot superluminescent light-emitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett. 19, 109–111 (2007).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Zh. Sun, F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16, 27–29 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (9)

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18, 58–60 (2006).
[CrossRef]

M. Rossetti, A. Markus, A. Fiore, L. Occhi, C. Velez, “Quantum dot superluminescent diodes emitting at 1.3 μm,” IEEE Photon. Technol. Lett. 17, 540–542 (2005).
[CrossRef]

C. F. Lin, B. L. Lee, P. C. Lin, “Broadband superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells,” IEEE Photon. Technol. Lett. 18, 1456–1458 (1996).

G. T. Du, G. Devane, K. A. Stair, S. L. Wu, R. P. H. Chang, Y. S. Zhao, Z. Z. Sun, Y. Liu, X. Y. Jiang, W. H. Han, “The monolithic integration of a superluminescent diode with a power amplifier,” IEEE Photon. Technol. Lett. 10, 57–59 (1998).
[CrossRef]

X. Huang, A. Stintz, C. P. Hains, G. T. Liu, J. Cheng, K. J. Malloy, “Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 227–229 (2000).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, Z. G. Wang, “High-power quantum-dot superluminescent LED with broadband drive current insensitive emission spectra using a tapered active region,” IEEE Photon. Technol. Lett. 20, 782–784 (2008).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12, 759–761 (2000).
[CrossRef]

C. F. Lin, C. S. Juang, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8, 206–208 (1996).
[CrossRef]

IEEE Sens. J. (1)

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, W. H. Chang, “InGaAs∕GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7, 251–257 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

N. Kuramoto, K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54, 868–871 (2005).
[CrossRef]

J. Lightwave Technol. (1)

T. Tanaka, Y. Hibino, T. Hashimoto, M. Abe, R. Kasahara, Y. Tohmori, “100-GHz spacing 8-channel light source integrated with external cavity lasers on planar lightwave circuit platform,” J. Lightwave Technol. 22, 567–573 (2004).
[CrossRef]

J. Phys. D (1)

A. Biebersdorf, C. Lingk, M. D. Giorgi, J. Feldmann, J. Sacher, M. Arzberger, C. Ulbrich, G. Böhm, M. C. Amann, G. Abstreiter, “Tunable single and dual mode operation of an external cavity quantum-dot injection laser,” J. Phys. D 36, 1928–1930 (2003).
[CrossRef]

J. Biomed. Opt. (1)

W. Drexler, “Ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004).
[CrossRef] [PubMed]

J. Cryst. Growth. (2)

F. Heinrichsdor, M. Grundmann, O. Stier, A. Krost, D. Bimberg, “Influence of In∕Ga intermixing on the optical properties of InGaAs∕GaAs quantum dots,” J. Cryst. Growth. 195, 540–545 (1998).
[CrossRef]

S. Haffouz, S. Raymond, Z. G. Lu, P. J. Barrios, D. Roy-Guay, X. Wu, J. R. Liu, D. Poitras, Z. R. Wasilewski, “Growth and fabrication of quantum dots superluminescent diodes using the indium-flush technique: a new approach in controlling the bandwidth,” J. Cryst. Growth. 311, 1803–1806 (2009).
[CrossRef]

J. Cryst. Growth. (3)

B. S. Ooi, C. E. Dimas, H. S. Djie, “Superluminescent diodes using quantum dots superlattice,” J. Cryst. Growth. 288, 153–156 (2006).
[CrossRef]

Z. Y. Zhang, X. Q. Meng, P. Jin, Ch. M. Li, S. C. Qu, B. Xu, X. L. Ye, Z. G. Wang, “A novel application to quantum dot materials to the active region of superluminescent diodes,” J. Cryst. Growth. 243, 25–29 (2002).
[CrossRef]

J. C. Lin, R. A. Hogg, F. Paul, M. Hopkinson, I. Ross, A. Cullis, R. Kolodka, A. Tartakovskii, M. Skolnick, “Effect of GaAs polycrystal on the size and areal density of InAs quantum dots in selective area molecular beam epitaxy,” J. Cryst. Growth. 297, 38–43 (2006).
[CrossRef]

J. Phy. D (1)

S. Mokkapati, J. W. Leung, H. H. Tan, C. Jagadish, K. E. McBean, M. R. Phillips, “Tuning the bandgap of InAs quantum dots by selective-area MOCVD,” J. Phy. D 41, 085104 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (4)

Y. Kitagawa, N. Ozaki, Y. Takata, N. Ikeda, S. Ohkouchi, Y. Watanabe, Y. Sugimoto, K. Asakawa, “Optical-nonlinearity-induced phase shift via selective-area grown InAs quantum dots in a photonic crystal waveguide,” Jpn. J. Appl. Phys. 47, 2893–2896 (2008).
[CrossRef]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb∕s modulation of 1.3-μm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43, L1124–L1126 (2004).
[CrossRef]

T. Yamatoya, S. Mori, F. Koyama, K. Iga, “High power GaInAsP∕InP strained quantum well superluminescent diode with tapered active region,” Jpn. J. Appl. Phys. 38, 5121–5122 (1999).
[CrossRef]

M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, C. Ribbat, D. Bimberg, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, D. A. Lifshits, V. M. Ustinov, Z. I. Alferov, “Progress in quantum dot lasers: 1100 nm, 1300 nm, and high power applications,” Jpn. J. Appl. Phys. 39, 2341–2343 (2000).
[CrossRef]

Laser Focus World (1)

A. Fiore, A. Markus, M. Rossetti, L. H. Li, “Quantum-dot sources: quantum-dot development pursues new applications,” Laser Focus World 42(1), 124–127 (2006).

Lasers Med. Sci. (1)

W. J. Loo, S. W. Lanigan, “Recent advances in laser therapy for the treatment of cutaneous vascular disorders,” Lasers Med. Sci. 17, 9–12 (2002).
[CrossRef] [PubMed]

Nanotechnology (1)

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20, 055204 (2009).
[CrossRef] [PubMed]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[CrossRef] [PubMed]

Opt Lett. (1)

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt Lett. 33, 1210–1212 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

H. S. Djie, B. S. Ooi, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, M. Hopkinson, “Room-temperature broadband emission of an InGaAs∕GaAs quantum dots laser,” Opt. Lett. 32, 44–46 (2007).
[CrossRef]

Opt. Quantum Electron. (1)

Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, Z. G. Wang, “Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31, 1235–1246 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B. (1)

P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Mali, D. T. Childs, R. Murray, “Effect of growth rate on the size, composition, and optical properties of InAs∕GaAs quantum dots grown by molecular-beam epitaxy,” Phys. Rev. B. 62, 10891–10895 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, N. Yokoyama, “Island size scaling in InAs∕GaAs self-assembled quantum dots,” Phys. Rev. Lett. 80, 2650–2653 (1998).
[CrossRef]

Phys. Status Solidi B (1)

C. Y. Ngo, S. F. Yoon, S. J. Chua, “Ambient temperature dependence on emission spectrum of InAs quantum dots,” Phys. Status Solidi B 246, 799–802 (2009).
[CrossRef]

Physica E (Amsterdam) (2)

C. N. Allen, P. J. Poole, P. Barrios, P. Marshall, G. Pakulski, S. Raymond, S. Fafard, “External cavity quantum dot tunable laser through 1.55 μm,” Physica E (Amsterdam) 26, 372–376 (2005).
[CrossRef]

J. H. Marsh, D. Bhattacharyya, A. S. Helmy, E. A. Avrutin, A. C. Bryce, “Engineering quantum-dot lasers,” Physica E (Amsterdam) 18, 154–163 (2000).
[CrossRef]

Proc. SPIE (1)

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, P. Blood, “Measurement of optical gain and Fermi level separation in semiconductor structures,” Proc. SPIE 3944, 201–208 (2000).
[CrossRef]

Proc. SPIE (4)

W. Li, R. Ronkko, A. Rydefalk, P. Poyhonen, M. Pessa, “Superluminescent diodes at 1.55 μm based on quantum-well and quantum-dot active regions,” Proc. SPIE 5739, 116–121 (2005).
[CrossRef]

M. Klude, T. Passow, G. Alexe, H. Heinke, D. Hommel, “New laser sources for plastic optical fibers: ZnSe-based quantum well and quantum dot laser diodes with 560 nm emission,” Proc. SPIE 4594, 260–270 (2001).
[CrossRef]

J. M. Auxier, A. Schülzgen, M. M. Morrell, B. R. West, S. Honkanen, S. Sen, N. F. Borrelli, N. N. Peyghambarian, “Quantum dot for fiber laser sources,” Proc. SPIE 5709, 249–262 (2005).
[CrossRef]

M. Blazek, S. Breuer, T. Gensty, W. E. Elsasser, M. Hopkinson, K. M. Groom, M. Calligaro, P. Resneau, M. Krakowski, “Intensity noise of ultrabroadband quantum dot light emitting diodes and lasers at 1.3 μm,” Proc. SPIE 6603, 66031Y (2007).
[CrossRef]

Proc. SPIE. (1)

V. R. Shidlovski, J. Wei, “Superluminescent diodes for optical coherence tomography,” Proc. SPIE. 4648, 139–147 (2002).
[CrossRef]

Quantum Electron (1)

E. V. Andreeva, P. I. Lapin, V. V. Prokhorov, S. D. Yakubovich, “Quantum-dot superluminescent diodes with improved performance,” Quantum Electron 37, 331–333 (2007).
[CrossRef]

Quantum Electron. (1)

A. E. Zhukov, A. R. Kovsh, “Quantum dot diode lasers for optical communication systems,” Quantum Electron. 38, 409–423 (2008).
[CrossRef]

Semicond. Sci. Technol. (1)

S. S. Mikhrin, A. R. Kovsh, I. L. Krestnikov, A. V. Kozhukhov, D. A. Livshits, N. N. Ledentsov, Yu. M. Shernyakov, I. I. Novikov, M. V. Maximov, V. M. Ustinov, Zh. I. Alferov, “High power temperature-insensitive 1.3 μmInAs∕InGaAs∕GaAs quantum dot lasers,” Semicond. Sci. Technol. 20, 340–342 (2005).
[CrossRef]

Semicond. Sci. Technol. (1)

M. V. Maximov, V. M. Ustinov, A. E. Zhukov, N. V. Kryzhanovskaya, A. S. Payusov, I. I. Novikov, N. Y. Gordeev, Y. M. Shernyakov, I. Krestnikov, D. Livshits, S. Mikhrin, A. Kovsh, “A 1.33 μmInAs∕GaAs quantum dot laser with a 46 cm−1 modal gain,” Semicond. Sci. Technol. 23, 105004 (2008).
[CrossRef]

Semicond. Sci. Technol. (1)

R. W. Martin, S. L. Wong, D. M. Symons, R. J. Nicholas, M. A. Gibbon, E. J. Thrush, J. P. Stagg, “Selective area epitaxy of InGaAs∕InGaAsP quantum wells studied by magnetotransport,” Semicond. Sci. Technol. 11, 735–740 (1996).
[CrossRef]

Semiconductors (2)

A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul’Nikov, M. V. Maksimov, B. V. Volovik, D. A. Bedarev, Yu. M. Shernyakov, E. Yu. Kondrat’eva, N. N. Ledentsov, P. S. Kop’ev, Zh. I. Alferov, D. Bimberg, “Lasing at a wavelength close to 1.3 μm in InAs quantum-dot structures,” Semiconductors 33, 929–932 (1999).
[CrossRef]

A. E. Zhukov, A. R. Kovsh, E. V. Nikitina, V. M. Ustinov, Zh. I. Alferov, “Injection lasers with a broad emission spectrum on the basis of self-assembled quantum dots,” Semiconductors 41, 606–611 (2007).
[CrossRef]

Tech. Phys. Lett. (1)

D. A. Livshits, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. V. Nikitina, V. M. Ustinov, N. N. Ledentsov, G. Lin, J. Chi, “High-power single-mode 1.3-μm lasers based on InAs∕AlGaAs∕GaAs quantum dot heterostructures,” Tech. Phys. Lett. 30, 9–11 (2004).
[CrossRef]

Other (8)

V. Shidlovski, “Superluminescent diodes. Application notes. SLD sensitivity to optical feedback,” (Superlum, 2006), http://www.superlumdiodes.com/pdf/sld_feedback.pdf.

T. L. Choi, S. K. Ray, Z. Y. Zhang, D. T. D. Childs, K. M. Groom, B. J. Stevens, H. Y. Liu, M. Hopkinson, R. A. Hogg, “Quantum dot superluminescent diodes—bandwidth engineering and epitaxy for high powers,” in IEEE 19th International Conference on Indium Phosphide & Related Materials, 2007. IPRM '07, 289–292 (IEEE, 2007).

Y. C. Yoo, L. H. Kim, I. K. Han, “InAs quantum dot superluminescent diodes with trench structure,” J. Mater. Sci. Mater. Electron. (July 7, 2009).

D. B. Malins, A. Gomez-Iglesias, A. Miller, P. Spencer, E. Clarke, R. Murray, M. E. Flatte, C. E. Pryor, “Time-resolved carrier dynamics and the quantum confined Stark effect in a bilayer quantum dot waveguide at 1340 nm,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWA3.

M. Krakowski, P. Resneau, M. Calligaro, M. Hugues, M. Hopkinson, M. Gioannini, P. Bardella, I. Montrosset, “High power, broad spectral width, 1300 nm quantum-dot superluminescent diodes,” in IEEE 21st International Semiconductor Laser Conference, 2008. ISLC 2008 (2008), pp 23–24.
[CrossRef]

C. L. Tan, H. S. Djie, C. E. Dimas, V. Hongpinyo, Y. H. Ding, B. S. Ooi, “Realization of extended ultrabroadband quantum-dash laser emission using postgrowth intermixing,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2008. LEOS 2008 (IEEE, 2008) pp. 529–530.

DenseLight Semiconductors, http://www.denselight.com/tech.htm

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, “The fabrication of the prototype device of quantum-dot superluminescent diodes,” China patent ZL02 1, 47587.3 (Oct. 23, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Size distribution and emission spectra of ideal and real QD ensembles.

Fig. 2
Fig. 2

Schematic of spectral coverage of GaAs- and InP-based epitaxial QD or QW materials for SLEDs.

Fig. 3
Fig. 3

(a) Emission spectra of InP Qdash SLED at different injection current densities ( 2 8 kA cm 2 ) measured at 20 ° C . (b) Bandwidth as functions of current density at 20 ° C (c) Bandwidth and optical power as a function of temperature at J = 8 kA cm 2 . Adapted with permission from [49] (© 2008 IEEE), image courtesy of B.S. Ooi, University of Lehigh.

Fig. 4
Fig. 4

Schematic epitaxial structure of a QD-SLED with an active region of multiple chirped QD layers.

Fig. 5
Fig. 5

Electroluminescence emission spectra of a QD-SLED under various injection currents with simultaneous GS and ES emission. Adapted with permission from [48] (© 2009 IOP).

Fig. 6
Fig. 6

Electroluminescence emission spectra of a QD-SLED with In As Al Ga As QD active region at various injection currents. Adapted with permission from [58] (© 2008 IEEE).

Fig. 7
Fig. 7

Electroluminescence emission spectra of a postgrowth intermixed QD-SLED under various injection currents. Adapted with permission from [26] (© 2008 OSA).

Fig. 8
Fig. 8

(a) Schematic plan view of various device structures of QD-SLEDs. (b) Schematic of a hybrid device utilizing a number of design features. Adapted with permission from [26] (© 2008 OSA).

Fig. 9
Fig. 9

(a) Schematic diagrams of a multicontact QD-SLED with different cavity lengths in each section. Adapted with permission from [19] (© 2007 IEEE), image courtesy of Y. C. Xin, University of New Mexico. (b) Schematic diagrams of a multicontact QD-SLED incorporating a rear absorber with same cavity length in each section. Adapted with permission from [27] (© 2009 IEEE).

Fig. 10
Fig. 10

Measured and simulated QD-SLED properties with optimal feedback and without feedback: (a) visibility, (b) optical spectra. Adapted with permission from [83] (© 2009 OSA), image courtesy of M. Blazek, Darmstadt University.

Fig. 11
Fig. 11

Simulated L-I and spectral characteristics of an unchirped QD-SLED. Adapted with permission from [94] (© 2009 IEEE), image courtesy of P. Bardella, Politecnico di Torino.

Tables (2)

Tables Icon

Table 1 Summary of Differences in Operation, Characteristics, and Structures of LDs, SLEDs, and LEDs

Tables Icon

Table 2 High-Performance QD-SLEDs Working near the 1 1.3 μ m Range

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P out = β P sp g ( e g L 1 ) ,

Metrics