Abstract

Nanophotonics is an important branch of modern optics dealing with light–matter interaction at the nanoscale. Nanoparticles can exhibit enhanced light absorption under illumination by light, and they become nanoscale sources of heat that can be precisely controlled and manipulated. For metal nanoparticles, such effects have been studied in the framework of thermoplasmonics, which, similar to plasmonics itself, has a number of limitations. Recently emerged all-dielectric resonant nanophotonics is associated with optically induced electric and magnetic Mie resonances, and this field hasdeveloped very rapidly over the past decade. As a result, thermoplasmonics is being complemented by all-dielectric thermonanophotonics with many important applications such as photothermal cancer therapy, drug and gene delivery, nanochemistry, and photothermal imaging. This review paper aims to introduce this new field of non-plasmonic nanophotonics and discuss associated thermally induced processes at the nanoscale.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Fano resonance for applications

Mikhail F. Limonov
Adv. Opt. Photon. 13(3) 703-771 (2021)

Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities

Svetlana V. Boriskina, Thomas Alan Cooper, Lingping Zeng, George Ni, Jonathan K. Tong, Yoichiro Tsurimaki, Yi Huang, Laureen Meroueh, Gerald Mahan, and Gang Chen
Adv. Opt. Photon. 9(4) 775-827 (2017)

Mie-enhanced photothermal/thermo-optical nonlinearity and applications on all-optical switch and super-resolution imaging [Invited]

Yu-Lung Tang, Te-Hsin Yen, Kentaro Nishida, Junichi Takahara, Tianyue Zhang, Xiangping Li, Katsumasa Fujita, and Shi-Wei Chu
Opt. Mater. Express 11(11) 3608-3626 (2021)

References

  • View by:

  1. J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
    [Crossref]
  2. V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
    [Crossref]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref]
  4. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [Crossref]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref]
  6. G. Baffou, F. Cichos, and R. Quidant, “Applications and challenges of thermoplasmonics,” Nat. Mater. 19, 946–958 (2020).
    [Crossref]
  7. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
    [Crossref]
  8. U. Aslam, V. G. Rao, S. Chavez, and S. Linic, “Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures,” Nat. Catal. 1, 656–665 (2018).
    [Crossref]
  9. G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
    [Crossref]
  10. G. Baffou, R. Quidant, and F. J. Garca de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
    [Crossref]
  11. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
    [Crossref]
  12. G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84, 035415 (2011).
    [Crossref]
  13. M. I. Tribelsky, A. E. Miroshnichenko, Y. S. Kivshar, B. S. Luk’yanchuk, and A. R. Khokhlov, “Laser pulse heating of spherical metal particles,” Phys. Rev. X 1, 021024 (2011).
    [Crossref]
  14. G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43, 3898–3907 (2014).
    [Crossref]
  15. S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120, 2343–2348 (2016).
    [Crossref]
  16. G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M. M. Rahman, T. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
    [Crossref]
  17. P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, and T. Deng, “Solar-driven interfacial evaporation,” Nat. Energy 3, 1031–1041 (2018).
    [Crossref]
  18. Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
    [Crossref]
  19. Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. USA 116, 15356–15361 (2019).
    [Crossref]
  20. P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009).
    [Crossref]
  21. A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
    [Crossref]
  22. J. Chen, Z. Ye, F. Yang, and Y. Yin, “Plasmonic nanostructures for photothermal conversion,” Small Sci. 1, 2000055 (2021).
    [Crossref]
  23. M. Li, T. Lohmuller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
    [Crossref]
  24. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
    [Crossref]
  25. L. R. Hirsch, R. J. Stafford, J. Bankson, S. R. Sershen, B. Rivera, R. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
    [Crossref]
  26. J. Beik, M. Khateri, Z. Khosravi, S. K. Kamrava, S. Kooranifar, H. Ghaznavi, and A. Shakeri-Zadeh, “Gold nanoparticles in combinatorial cancer therapy strategies,” Coord. Chem. Rev. 387, 299–324 (2019).
    [Crossref]
  27. G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14, 5268–5277 (2020).
    [Crossref]
  28. M. Pihl, E. Bruzell, and M. Andersson, “Bacterial biofilm elimination using gold nanorod localised surface plasmon resonance generated heat,” Mater. Sci. Eng. C 80, 54–58 (2017).
    [Crossref]
  29. D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
    [Crossref]
  30. T. J. Harris and A. A. C. Kim, “Hair removal with coated metal nanoparticles,” U.S. patent9,421,259 (6September2016).
  31. A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, and M. Meunier, “In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles,” Nano Lett. 18, 6981–6988 (2018).
    [Crossref]
  32. M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
    [Crossref]
  33. Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6, 7177–7184 (2012).
    [Crossref]
  34. J. T. Hugall and J. J. Baumberg, “Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds,” Nano Lett. 15, 2600–2604 (2015).
    [Crossref]
  35. X. Xie and D. G. Cahill, “Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering,” Appl. Phys. Lett. 109, 183104 (2016).
    [Crossref]
  36. J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
    [Crossref]
  37. G. Baffou, “Anti-Stokes thermometry in nanoplasmonics,” ACS Nano 15, 5785–5792 (2021).
    [Crossref]
  38. P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
    [Crossref]
  39. S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
    [Crossref]
  40. I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photon. 6, 802–814 (2019).
    [Crossref]
  41. M. L. Debasu, D. Ananias, I. Pastoriza-Santos, L. M. Liz-Marzán, J. Rocha, and L. D. Carlos, “All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation,” Adv. Mater. 25, 4868–4874 (2013).
    [Crossref]
  42. G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
    [Crossref]
  43. A. Carattino, M. Caldarola, and M. Orrit, “Gold nanoparticles as absolute nanothermometers,” Nano Lett. 18, 874–880 (2018).
    [Crossref]
  44. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
    [Crossref]
  45. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
    [Crossref]
  46. I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
    [Crossref]
  47. E. Tiguntseva, G. P. Zograf, F. E. Komissarenko, D. A. Zuev, A. A. Zakhidov, S. V. Makarov, and Y. S. Kivshar, “Light-emitting halide perovskite nanoantennas,” Nano Lett. 18, 1185–1190 (2018).
    [Crossref]
  48. E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
    [Crossref]
  49. A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photon. 5, 1359–1364 (2018).
    [Crossref]
  50. S. Liu, A. Vaskin, and S. Addamane, et al., “Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation,” Nano Lett. 18, 6906–6914 (2018).
    [Crossref]
  51. A. Vaskin, R. Kolkowski, A. F. Koenderink, and I. Staude, “Light-emitting metasurfaces,” Nanophotonics 8, 1151–1198 (2019).
    [Crossref]
  52. T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
    [Crossref]
  53. S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domnguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13, 1042–1047 (2018).
    [Crossref]
  54. R.-M. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol. 14, 12–22 (2019).
    [Crossref]
  55. R. Paniagua-Domnguez, S. T. Ha, and A. I. Kuznetsov, “Active and tunable nanophotonics with dielectric nanoantennas,” Proc. IEEE 108, 749–771 (2019).
    [Crossref]
  56. T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Dominguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov, “Collective Mie resonances for directional on-chip nanolasers,” Nano Lett. 20, 5655–5661 (2020).
    [Crossref]
  57. M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
    [Crossref]
  58. E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
    [Crossref]
  59. G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
    [Crossref]
  60. S.-T. Ha, C. Shen, J. Zhang, and Q. Xiong, “Laser cooling of organic–inorganic lead halide perovskites,” Nat. Photonics 10, 115–121 (2016).
    [Crossref]
  61. M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28, 1928–1934 (1983).
    [Crossref]
  62. I. Rodriguez, L. Shi, X. Lu, B. Korgel, R. Alvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6, 5666–5670 (2014).
    [Crossref]
  63. G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17, 2945–2952 (2017).
    [Crossref]
  64. N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
    [Crossref]
  65. O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
    [Crossref]
  66. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
    [Crossref]
  67. E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
    [Crossref]
  68. O. Yavas, M. Svedendahl, and R. Quidant, “Unravelling the role of electric and magnetic dipoles in biosensing with Si nanoresonators,” ACS Nano 13, 4582–4588 (2019).
    [Crossref]
  69. F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
    [Crossref]
  70. J. Garcia-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enhanced chiral sensing with dielectric nanoresonators,” Nano Lett. 20, 585–591 (2019).
    [Crossref]
  71. M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
    [Crossref]
  72. D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3, 1241–1255 (2016).
    [Crossref]
  73. G. Li, S. Zhang, and T. Zentgraf, “Nonlinear photonic metasurfaces,” Nat. Rev. Mater. 2, 17010 (2017).
    [Crossref]
  74. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11, 953–960 (2017).
    [Crossref]
  75. S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, and E. Ubyivovk, “Efficient second-harmonic generation in nanocrystalline silicon nanoparticles,” Nano Lett. 17, 3047–3053 (2017).
    [Crossref]
  76. S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9, 2507 (2018).
    [Crossref]
  77. S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear light generation in topological nanostructures,” Nat. Nanotechnol. 14, 126–130 (2019).
    [Crossref]
  78. L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
    [Crossref]
  79. B. Sain, C. Meier, and T. Zentgraf, “Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review,” Adv. Photon. 1, 024002 (2019).
    [Crossref]
  80. K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
    [Crossref]
  81. A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
    [Crossref]
  82. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
    [Crossref]
  83. G. Huttmann and R. Birngruber, “On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quantum Electron. 5, 954–962 (1999).
    [Crossref]
  84. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
    [Crossref]
  85. S. Anisimov, B. Kapeliovich, and T. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66, 375–377 (1974).
  86. E. J. Yoffa, “Screening of hot-carrier relaxation in highly photoexcited semiconductors,” Phys. Rev. B 23, 1909–1919 (1981).
    [Crossref]
  87. T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5668 (1998).
    [Crossref]
  88. M. Bernardi, D. Vigil-Fowler, C. S. Ong, J. B. Neaton, and S. G. Louie, “Ab initio study of hot electrons in GaAs,” Proc. Natl. Acad. Sci. USA 112, 5291–5296 (2015).
    [Crossref]
  89. S. Makarov, L. Kolotova, S. Starikov, U. Zywietz, and B. Chichkov, “Resonant silicon nanoparticles with controllable crystalline states and nonlinear optical responses,” Nanoscale 10, 11403–11409 (2018).
    [Crossref]
  90. A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
    [Crossref]
  91. N. Koroteev and I. L. Shumai, Physics of High-Power Laser Radiation (in Russian) (Nauka, 1991).
  92. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [Crossref]
  93. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  94. K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
    [Crossref]
  95. M. I. Tribelsky, “Anomalous light absorption by small particles,” Europhys. Lett. 94, 14004 (2011).
    [Crossref]
  96. A. E. Miroshnichenko and M. I. Tribelsky, “Ultimate absorption in light scattering by a finite obstacle,” Phys. Rev. Lett. 120, 033902 (2018).
    [Crossref]
  97. J. D. Jackson, Classical Electrodynamics (American Association of Physics Teachers, 1999).
  98. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  99. G. Chen, “Phonon heat conduction in nanostructures,” Int. J. Thermal Sci. 39, 471–480 (2000).
    [Crossref]
  100. J. Cunha, T.-L. Guo, G. Della Valle, A. N. Koya, R. P. Zaccaria, and A. Alabastri, “Controlling light, heat, and vibrations in plasmonics and phononics,” Adv. Opt. Mater. 8, 2001225 (2020).
    [Crossref]
  101. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
    [Crossref]
  102. S. Danesi and I. Alessandri, “Using optical resonances to control heat generation and propagation in silicon nanostructures,” Phys. Chem. Chem. Phys. 21, 11724–11730 (2019).
    [Crossref]
  103. S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20, 15307–15315 (2018).
    [Crossref]
  104. Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” J. Am. Chem. Soc. 137, 10276–10281 (2015).
    [Crossref]
  105. S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
    [Crossref]
  106. W. Spear and P. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun. 17, 1193–1196 (1975).
    [Crossref]
  107. T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
    [Crossref]
  108. C. Kittel and P. McEuen, Introduction to Solid State Physics (Wiley, 1976), Vol. 8.
  109. R. W. Boyd, Nonlinear Optics (Academic, 2020).
  110. D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
    [Crossref]
  111. Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C.-W. Qiu, “Transforming heat transfer with thermal metamaterials and devices,” Nat. Rev. Mater. 6, 488–507 (2021).
    [Crossref]
  112. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
    [Crossref]
  113. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
    [Crossref]
  114. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
    [Crossref]
  115. J.-M. Nam, J.-W. Oh, H. Lee, and Y. D. Suh, “Plasmonic nanogap-enhanced Raman scattering with nanoparticles,” Acc. Chem. Res. 49, 2746–2755 (2016).
    [Crossref]
  116. G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Phys. 525, 907–914 (2013).
    [Crossref]
  117. A. Lagarkov, I. Boginskaya, I. Bykov, I. Budashov, A. Ivanov, I. Kurochkin, I. Ryzhikov, I. Rodionov, M. Sedova, A. Zverev, and A. K. Sarychev, “Light localization and SERS in tip-shaped silicon metasurface,” Opt. Express 25, 17021–17038 (2017).
    [Crossref]
  118. C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
    [Crossref]
  119. C. Bradac, S. F. Lim, H.-C. Chang, and I. Aharonovich, “Optical nanoscale thermometry: from fundamental mechanisms to emerging practical applications,” Adv. Opt. Mater. 8, 2000183 (2020).
    [Crossref]
  120. Y. Hagiwara, K. Takahata, J. Torimoto, and J. Yamamoto, “CO2 Raman thermometer improvement: comparing hot band and stokes and anti-stokes Raman scattering thermometers,” J. Raman Spectrosc. 49, 1776–1781 (2018).
    [Crossref]
  121. E. Haro, M. Balkanski, R. Wallis, and K. Wanser, “Theory of the anharmonic damping and shift of the Raman mode in silicon,” Phys. Rev. B 34, 5358–5367 (1986).
    [Crossref]
  122. H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B 43, 2299–2304 (1991).
    [Crossref]
  123. J. Gonzalez, E. Moya, and J. Chervin, “Anharmonic effects in light scattering due to optical phonons in CuGaS2,” Phys. Rev. B 54, 4707–4713 (1996).
    [Crossref]
  124. P. Karpinski, S. Jones, H. Špová-Jungová, R. Verre, and M. Käll, “Optical rotation and thermometry of laser tweezed silicon nanorods,” Nano Lett. 20, 6494–6501 (2020).
    [Crossref]
  125. T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
    [Crossref]
  126. I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116, 14921–14981 (2016).
    [Crossref]
  127. D. G. Baranov, R. Verre, P. Karpinski, and M. Källl, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photon. 5, 2730–2736 (2018).
    [Crossref]
  128. K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, “Revealing low-radiative modes of nanoresonators with internal Raman scattering,” JETP Lett. 110, 25–30 (2019).
    [Crossref]
  129. G. P. Zograf, D. Ryabov, V. Rutckaia, P. Voroshilov, P. Tonkaev, D. V. Permyakov, Y. Kivshar, and S. V. Makarov, “Stimulated Raman scattering from Mie-resonant subwavelength nanoparticles,” Nano Lett. 20, 5786–5791 (2020).
    [Crossref]
  130. S. Raza and A. Kristensen, “Raman scattering in high-refractive-index nanostructures,” Nanophotonics 10, 1197–1209 (2020).
    [Crossref]
  131. G. Zograf, K. Baryshnikova, M. Petrov, and S. Makarov, “Enhanced Raman scattering for probing near-field distribution in all-dielectric nanostructures,” Adv. Photon. Res. 2, 2000139 (2021).
    [Crossref]
  132. K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97, 085414 (2018).
    [Crossref]
  133. S. Rudin, T. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
    [Crossref]
  134. J. Yan, Y. Li, Z. Lou, C. Ma, G. Yang, and B. Li, “Active tuning of Mie resonances to realize sensitive photothermal measurement of single nanoparticles,” Mater. Horiz. 7, 1542–1551 (2020).
    [Crossref]
  135. K. W. Mauser, M. Solà-Garcia, M. Liebtrau, B. Damilano, P.-M. Coulon, S. Vézian, P. A. Shields, S. Meuret, and A. Polman, “Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires,” ACS Nano 15, 11385–11395 (2021).
    [Crossref]
  136. Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
    [Crossref]
  137. Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6, 317–328 (2017).
    [Crossref]
  138. V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, and A. I. Kuznetsov, “Lasing action in single subwavelength particles supporting supercavity modes,” ACS Nano 14, 7338–7346 (2020).
    [Crossref]
  139. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88, 297–303 (2007).
    [Crossref]
  140. M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111, 243103 (2017).
    [Crossref]
  141. V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, and V. V. Vinogradov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photon. Rev. 12, 1700227 (2018).
    [Crossref]
  142. N. Odebo Länk, P. Johansson, and M. Källl, “Optical tweezing and photothermal properties of resonant dielectric and metallic nanospheres,” ACS Photon. 7, 2405–2412 (2020).
    [Crossref]
  143. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
    [Crossref]
  144. A. Kastler, “Some suggestions concerning the production and detection by optical means of inequalities in the populations of levels of spatial quantization in atoms. Application to the Stern and Gerlach and magnetic resonance experiments,” J. Phys. Radium 11, 255–265 (1950).
    [Crossref]
  145. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
    [Crossref]
  146. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
    [Crossref]
  147. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
    [Crossref]
  148. M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92, 247403 (2004).
    [Crossref]
  149. P. Tonkaev, G. Zograf, and S. Makarov, “Optical cooling of lead halide perovskite nanoparticles enhanced by Mie resonances,” Nanoscale 11, 17800–17806 (2019).
    [Crossref]
  150. S.-L. Wu, H. Chen, H.-L. Wang, X. Chen, H.-C. Yang, and S. B. Darling, “Solar-driven evaporators for water treatment: challenges and opportunities,” Environ. Sci. Water Res. Technol. 7, 24–39 (2021).
    [Crossref]
  151. H. Chen, S.-L. Wu, H.-L. Wang, Q.-Y. Wu, and H.-C. Yang, “Photothermal devices for sustainable uses beyond desalination,” Adv. Energy Sustain. Res. 2, 2000056 (2021).
    [Crossref]
  152. T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol. 43, 6082–6087 (2009).
    [Crossref]
  153. S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, “Solar water heating and vaporization with silicon nanoparticles at Mie resonances,” Opt. Mater. Express 6, 640–648 (2016).
    [Crossref]
  154. S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index germanium nanoparticles,” Adv. Opt. Mater. 5, 1600902 (2017).
    [Crossref]
  155. C. Ma, J. Yan, Y. Huang, C. Wang, and G. Yang, “The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion,” Sci. Adv. 4, eaas9894 (2018).
    [Crossref]
  156. B. L. Cohen, “Anomalous behavior of tellurium abundances,” Geochim. Cosmochim. Acta 48, 203–205 (1984).
    [Crossref]
  157. S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
    [Crossref]
  158. N. Bosio, H. Šípová Jungová, N. O. Länk, T. J. Antosiewicz, R. Verre, and M. Källl, “Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparison,” ACS Photon. 6, 1556–1564 (2019).
    [Crossref]
  159. E. Xifre-Perez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano 7, 664–668 (2012).
    [Crossref]
  160. T. Hutter, F. M. Huang, S. R. Elliott, and S. Mahajan, “Near-field plasmonics of an individual dielectric nanoparticle above a metallic substrate,” J. Phys. Chem. C 117, 7784–7790 (2013).
    [Crossref]
  161. S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
    [Crossref]
  162. Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119, 28127–28135 (2015).
    [Crossref]
  163. G. P. Zograf, A. S. Timin, A. R. Muslimov, I. I. Shishkin, A. Nominé, J. Ghanbaja, P. Ghosh, Q. Li, M. V. Zyuzin, and S. V. Makarov, “All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells,” Laser Photon. Rev. 14, 1900082 (2020).
    [Crossref]
  164. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Reinhart and Winston, 1976).
  165. A. Esser, K. Seibert, H. Kurz, G. Parsons, C. Wang, B. Davidson, G. Lucovsky, and R. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” J. Non-Cryst. Solids 114, 573–575 (1989).
    [Crossref]
  166. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [Crossref]
  167. T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
    [Crossref]
  168. T. Lewi, N. A. Butakov, and J. A. Schuller, “Thermal tuning capabilities of semiconductor metasurface resonators,” Nanophotonics 8, 331–338 (2018).
    [Crossref]
  169. T. Handa, H. Tahara, T. Aharen, and Y. Kanemitsu, “Large negative thermo-optic coefficients of a lead halide perovskite,” Sci. Adv. 5, eaax0786 (2019).
    [Crossref]
  170. C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, “Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I),” J. Phys. Chem. C 122, 15973–15978 (2018).
    [Crossref]
  171. M. Downer and C. Shank, “Ultrafast heating of silicon on sapphire by femtosecond optical pulses,” Phys. Rev. Lett. 56, 761–764 (1986).
    [Crossref]
  172. G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
    [Crossref]
  173. S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma,” Nano Lett. 15, 6187–6192 (2015).
    [Crossref]
  174. M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
    [Crossref]
  175. T. V. Tsoulos and G. Tagliabue, “Self-induced thermo-optical effects in silicon and germanium dielectric nanoresonators,” Nanophotonics 9, 3849–3861 (2020).
    [Crossref]
  176. M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
    [Crossref]
  177. K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
    [Crossref]
  178. L. Hsu and A. Ndao, “Diffraction-limited broadband optical meta-power-limiter,” Opt. Lett. 46, 1293–1296 (2021).
    [Crossref]
  179. T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
    [Crossref]
  180. E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
    [Crossref]
  181. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
    [Crossref]
  182. J. D. Joannopoulos and G. Lucovsky, eds., The Physics of Hydrogenated Amorphous Silicon II: Electronic and Vibrational Properties (Springer, 1984).
  183. L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
    [Crossref]
  184. G. P. Zograf, Y. F. Yu, K. V. Baryshnikova, A. I. Kuznetsov, and S. V. Makarov, “Local crystallization of a resonant amorphous silicon nanoparticle for the implementation of optical nanothermometry,” JETP Lett. 107, 699–704 (2018).
    [Crossref]
  185. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
    [Crossref]
  186. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
    [Crossref]
  187. Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
    [Crossref]
  188. M. V. Rybin, K. B. Samusev, S. Y. Lukashenko, Y. S. Kivshar, and M. F. Limonov, “Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure,” Sci. Rep. 6, 30773 (2016).
    [Crossref]
  189. J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
    [Crossref]
  190. C. R. de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. G.-C. Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. D. Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7, 476–484 (2020).
    [Crossref]
  191. A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
    [Crossref]
  192. P. Kepic, F. Ligmajer, M. Hrton, H. Ren, L. de S. Menezes, S. A. Maier, and T. Šikola, “Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible,” ACS Photon. 8, 1048–1057 (2021).
    [Crossref]
  193. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
    [Crossref]
  194. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
    [Crossref]
  195. A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
    [Crossref]
  196. P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
    [Crossref]
  197. Y. Nagasaki, M. Suzuki, I. Hotta, and J. Takahara, “Control of Si-based all-dielectric printing color through oxidation,” ACS Photon. 5, 1460–1466 (2018).
    [Crossref]
  198. M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68, 1272–1281 (1990).
    [Crossref]
  199. J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10, 7761–7767 (2016).
    [Crossref]
  200. S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11, 4445–4452 (2017).
    [Crossref]
  201. Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17, 7500–7506 (2017).
    [Crossref]
  202. T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
    [Crossref]
  203. V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photon. 4, 1076–1082 (2017).
    [Crossref]
  204. V. Flauraud, M. Reyes, R. Paniagua-Dominguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photon. 4, 1913–1919 (2017).
    [Crossref]
  205. S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
    [Crossref]
  206. C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Sci. 42, 399–434 (2012).
    [Crossref]
  207. J. Ye and C. V. Thompson, “Templated solid-state dewetting to controllably produce complex patterns,” Adv. Mater. 23, 1567–1571 (2011).
    [Crossref]
  208. K. Y. Suh and H. H. Lee, “Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting,” Adv. Funct. Mater. 12, 405–413 (2002).
    [Crossref]
  209. M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
    [Crossref]
  210. M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
    [Crossref]
  211. J. Ye, D. Zuev, and S. Makarov, “Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems,” Int. Mater. Rev. 64, 439–477 (2019).
    [Crossref]
  212. S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
    [Crossref]
  213. D. W. Bäuerle, Laser Processing and Chemistry (Springer, 2013).
  214. X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
    [Crossref]
  215. J. Berzinš, S. Indrišiūnas, S. Fasold, M. Steinert, O. Žukovskaja, D. Cialla-May, P. Gečys, S. M. Bäumer, T. Pertsch, and F. Setzpfandt, “Laser-induced spatially-selective tailoring of high-index dielectric metasurfaces,” Opt. Express 28, 1539–1553 (2020).
    [Crossref]
  216. J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
    [Crossref]
  217. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
    [Crossref]
  218. A. S. Zalogina, R. Savelev, E. V. Ushakova, G. Zograf, F. Komissarenko, V. Milichko, S. Makarov, D. Zuev, and I. Shadrivov, “Purcell effect in active diamond nanoantennas,” Nanoscale 10, 8721–8727 (2018).
    [Crossref]
  219. M. Celebrano, D. Rocco, and M. Gandolfi, et al., Optical tuning of dielectric nanoantennas for thermo-optically reconfigurable nonlinear metasurfaces,” Opt. Lett. 46, 2453–2456 (2021).
    [Crossref]
  220. N. Sharma, J. Bar-David, N. Mazurski, and U. Levy, “Metasurfaces for enhancing light absorption in thermoelectric photodetectors,” ACS Photon. 7, 2468–2473 (2020).
    [Crossref]
  221. W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
    [Crossref]
  222. H. K. Khattak, P. Bianucci, and A. D. Slepkov, “Linking plasma formation in grapes to microwave resonances of aqueous dimers,” Proc. Natl. Acad. Sci. USA 116, 4000–4005 (2019).
    [Crossref]
  223. L. L. Taylor, R. E. Scott, and J. Qiao, “Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon,” Opt. Mater. Express 8, 648–658 (2018).
    [Crossref]
  224. R. Powell, C. Y. Ho, and P. E. Liley, Thermal Conductivity of Selected Materials (U.S. Department of Commerce, National Bureau of Standards Washington, 1966), Vol. 8.
  225. H. Shanks, P. Maycock, P. Sidles, and G. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
    [Crossref]
  226. D. G. Cahill, “Thermal conductivity measurement from 30 to 750 K: the 3ω method,” Rev. Sci. Instrum. 61, 802–808 (1990).
    [Crossref]
  227. K. Stephan and A. Laesecke, “The thermal conductivity of fluid air,” J. Phys. Chem. Ref. Data 14, 227–234 (1985).
    [Crossref]
  228. Y. Takahashi and H. Akiyama, “Heat capacity of gold from 80 to 1000 K,” Thermochim. Acta 109, 105–109 (1986).
    [Crossref]
  229. A. Okhotin, A. Pushkarskii, and V. Gorbachev, Thermophysical Properties of Semiconductors (Atomizdat, 1972).
  230. M. W. Chase and N.-J. T. Tables, “Data reported in NIST standard reference database 69, June 2005 release: NIST chemistry webbook,” J. Phys. Chem. Ref. Data 9, 1–1951 (1998).
  231. J. Hilsenrath, Tables of Thermal Properties of Gases: Comprising Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen, and Steam (U.S. Department of Commerce, National Bureau of Standards, 1955), Vol. 564.
  232. M. E. Köse, B. F. Carroll, and K. S. Schanze, “Preparation and spectroscopic properties of multiluminophore luminescent oxygen and temperature sensor films,” Langmuir 21, 9121–9129 (2005).
    [Crossref]
  233. K. B. Migler and A. J. Bur, “Fluorescence based measurement of temperature profiles during polymer processing,” Polym. Eng. Sci. 38, 213–221 (1998).
    [Crossref]
  234. D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73, 4117–4123 (2001).
    [Crossref]
  235. G. Baffou, M. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
    [Crossref]
  236. J. Feng, K. Tian, D. Hu, S. Wang, S. Li, Y. Zeng, Y. Li, and G. Yang, “A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range,” Angew. Chem. 123, 8222–8226 (2011).
    [Crossref]
  237. S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7, 3102–3105 (2007).
    [Crossref]
  238. P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors 7, 3489–3534 (2007).
    [Crossref]
  239. V. A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, and D. R. Gamelin, “Tunable dual emission in doped semiconductor nanocrystals,” Nano Lett. 10, 3670–3674 (2010).
    [Crossref]
  240. P. Haro-González, L. Martnez-Maestro, I. Martn, J. Garca-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
    [Crossref]
  241. N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
    [Crossref]
  242. F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodrguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
    [Crossref]
  243. X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
    [Crossref]
  244. X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111, 15119–15124 (2007).
    [Crossref]
  245. K. Green, K. Huang, H. Pan, G. Han, and S. F. Lim, “Optical temperature sensing with infrared excited upconversion nanoparticles,” Front. Chem. 6, 416 (2018).
    [Crossref]
  246. T. Plakhotnik, H. Aman, and H.-C. Chang, “All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz-1/2,” Nanotechnology 26, 245501 (2015).
    [Crossref]
  247. J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
    [Crossref]
  248. C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
    [Crossref]
  249. M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
    [Crossref]
  250. T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
    [Crossref]
  251. P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).
    [Crossref]
  252. R. Nemanich, D. Biegelsen, R. Street, and L. Fennell, “Raman scattering from solid silicon at the melting temperature,” Phys. Rev. B 29, 6005–6007 (1984).
    [Crossref]
  253. I. Talyzin, M. Samsonov, V. Samsonov, M. Y. Pushkar, and V. Dronnikov, “Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation,” Semiconductors 53, 947–953 (2019).
    [Crossref]
  254. H. Scheel, S. Khachadorian, M. Cantoro, A. Colli, A. Ferrari, and C. Thomsen, “Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures,” Phys. Status Solidi B 245, 2090–2093 (2008).
    [Crossref]
  255. D. Lide, Handbook of Chemistry and Physics, 81st ed. (CRC Press, 2000), Sect. 11.
  256. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (Wiley, 2009), Vol. 28.
  257. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
    [Crossref]
  258. M. Levinshtein, Handbook Series on Semiconductor Parameters (World Scientific, 1997), Vol. 1.
  259. K. Tsang, H. Kui, and K. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
    [Crossref]
  260. B. Zink, R. Pietri, and F. Hellman, “Thermal conductivity and specific heat of thin-film amorphous silicon,” Phys. Rev. Lett. 96, 055902 (2006).
    [Crossref]
  261. O. Yavas, N. Do, A. C. Tam, P. Leung, W. P. Leung, H. K. Park, C. P. Grigoropoulos, J. Boneberg, and P. Leiderer, “Temperature dependence of optical properties for amorphous silicon at wavelengths of 632.8 and 752 nm,” Opt. Lett. 18, 540–542 (1993).
    [Crossref]
  262. K. Takimoto, A. Fukuta, Y. Yamamoto, N. Yoshida, T. Itoh, and S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299, 314–317 (2002).
    [Crossref]
  263. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2014).
  264. A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, 1967).
  265. Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
    [Crossref]
  266. J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W.-Y. Shih, “Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films,” J. Appl. Phys. 85, 6421–6424 (1999).
    [Crossref]
  267. Y. Li and W. Ching, “Band structures of all polycrystalline forms of silicon dioxide,” Phys. Rev. B 31, 2172–2179 (1985).
    [Crossref]
  268. G. Ghosh, Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).
  269. H. Koh, P. Rudolph, N. Schäfer, K. Umetsu, and T. Fukuda, “The effect of various thermal treatments on supercooling of PbTe melts,” Mater. Sci. Eng. B 34, 199–203 (1995).
    [Crossref]
  270. A. El-Sharkawy, A. Abou El-Azm, M. Kenawy, A. Hillal, and H. Abu-Basha, “Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K,” Int. J. Thermophys. 4, 261–269 (1983).
    [Crossref]
  271. T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
    [Crossref]
  272. J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, “Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles,” Phys. Rev. B 89, 205203 (2014).
    [Crossref]
  273. L. Balde, B. Legendre, and A. Balkhi, “Etude du diagramme d’equilibre entre phases du systeme ternaire germanium-etain-tellure,” J. Alloys Compd. 216, 285–293 (1995).
    [Crossref]
  274. E. Morales-Sanchez, E. Prokhorov, J. Gonzalez-Hernandez, and A. Mendoza-Galvan, “Structural, electric and kinetic parameters of ternary alloys of GeSbTe,” Thin Solid Films 471, 243–247 (2005).
    [Crossref]
  275. J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2 Sb2 Te5 interface from room temperature up to 400 C,” J. Appl. Phys. 107, 044314 (2010).
    [Crossref]
  276. H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2 Sb2 Te5,” Appl. Phys. Lett. 89, 151904 (2006).
    [Crossref]
  277. M. Stegmaier, C. Ros, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
    [Crossref]
  278. C.-A. Jong, W. Fang, C.-M. Lee, and T.-S. Chin, “Mechanical properties of phase-change recording media: GeSbTe films,” Jpn. J. Appl. Phys. 40, 3320–3325 (2001).
    [Crossref]
  279. B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, and A. Latini, “On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites,” Sci. Rep. 6, 31896 (2016).
    [Crossref]
  280. L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi A 207, 2303–2310 (2010).
    [Crossref]
  281. F. Nix and D. MacNair, “The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron,” Phys. Rev. 60, 597–605 (1941).
    [Crossref]
  282. R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42, 783–789 (2010).
    [Crossref]
  283. T. Favaloro, J.-H. Bahk, and A. Shakouri, “Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films,” Rev. Sci. Instrum. 86, 024903 (2015).
    [Crossref]

2021 (12)

J. Chen, Z. Ye, F. Yang, and Y. Yin, “Plasmonic nanostructures for photothermal conversion,” Small Sci. 1, 2000055 (2021).
[Crossref]

G. Baffou, “Anti-Stokes thermometry in nanoplasmonics,” ACS Nano 15, 5785–5792 (2021).
[Crossref]

Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C.-W. Qiu, “Transforming heat transfer with thermal metamaterials and devices,” Nat. Rev. Mater. 6, 488–507 (2021).
[Crossref]

G. Zograf, K. Baryshnikova, M. Petrov, and S. Makarov, “Enhanced Raman scattering for probing near-field distribution in all-dielectric nanostructures,” Adv. Photon. Res. 2, 2000139 (2021).
[Crossref]

K. W. Mauser, M. Solà-Garcia, M. Liebtrau, B. Damilano, P.-M. Coulon, S. Vézian, P. A. Shields, S. Meuret, and A. Polman, “Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires,” ACS Nano 15, 11385–11395 (2021).
[Crossref]

S.-L. Wu, H. Chen, H.-L. Wang, X. Chen, H.-C. Yang, and S. B. Darling, “Solar-driven evaporators for water treatment: challenges and opportunities,” Environ. Sci. Water Res. Technol. 7, 24–39 (2021).
[Crossref]

H. Chen, S.-L. Wu, H.-L. Wang, Q.-Y. Wu, and H.-C. Yang, “Photothermal devices for sustainable uses beyond desalination,” Adv. Energy Sustain. Res. 2, 2000056 (2021).
[Crossref]

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

L. Hsu and A. Ndao, “Diffraction-limited broadband optical meta-power-limiter,” Opt. Lett. 46, 1293–1296 (2021).
[Crossref]

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

P. Kepic, F. Ligmajer, M. Hrton, H. Ren, L. de S. Menezes, S. A. Maier, and T. Šikola, “Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible,” ACS Photon. 8, 1048–1057 (2021).
[Crossref]

M. Celebrano, D. Rocco, and M. Gandolfi, et al., Optical tuning of dielectric nanoantennas for thermo-optically reconfigurable nonlinear metasurfaces,” Opt. Lett. 46, 2453–2456 (2021).
[Crossref]

2020 (24)

N. Sharma, J. Bar-David, N. Mazurski, and U. Levy, “Metasurfaces for enhancing light absorption in thermoelectric photodetectors,” ACS Photon. 7, 2468–2473 (2020).
[Crossref]

J. Berzinš, S. Indrišiūnas, S. Fasold, M. Steinert, O. Žukovskaja, D. Cialla-May, P. Gečys, S. M. Bäumer, T. Pertsch, and F. Setzpfandt, “Laser-induced spatially-selective tailoring of high-index dielectric metasurfaces,” Opt. Express 28, 1539–1553 (2020).
[Crossref]

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

C. R. de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. G.-C. Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. D. Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7, 476–484 (2020).
[Crossref]

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

T. V. Tsoulos and G. Tagliabue, “Self-induced thermo-optical effects in silicon and germanium dielectric nanoresonators,” Nanophotonics 9, 3849–3861 (2020).
[Crossref]

G. P. Zograf, A. S. Timin, A. R. Muslimov, I. I. Shishkin, A. Nominé, J. Ghanbaja, P. Ghosh, Q. Li, M. V. Zyuzin, and S. V. Makarov, “All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells,” Laser Photon. Rev. 14, 1900082 (2020).
[Crossref]

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, and A. I. Kuznetsov, “Lasing action in single subwavelength particles supporting supercavity modes,” ACS Nano 14, 7338–7346 (2020).
[Crossref]

J. Yan, Y. Li, Z. Lou, C. Ma, G. Yang, and B. Li, “Active tuning of Mie resonances to realize sensitive photothermal measurement of single nanoparticles,” Mater. Horiz. 7, 1542–1551 (2020).
[Crossref]

N. Odebo Länk, P. Johansson, and M. Källl, “Optical tweezing and photothermal properties of resonant dielectric and metallic nanospheres,” ACS Photon. 7, 2405–2412 (2020).
[Crossref]

C. Bradac, S. F. Lim, H.-C. Chang, and I. Aharonovich, “Optical nanoscale thermometry: from fundamental mechanisms to emerging practical applications,” Adv. Opt. Mater. 8, 2000183 (2020).
[Crossref]

P. Karpinski, S. Jones, H. Špová-Jungová, R. Verre, and M. Käll, “Optical rotation and thermometry of laser tweezed silicon nanorods,” Nano Lett. 20, 6494–6501 (2020).
[Crossref]

G. P. Zograf, D. Ryabov, V. Rutckaia, P. Voroshilov, P. Tonkaev, D. V. Permyakov, Y. Kivshar, and S. V. Makarov, “Stimulated Raman scattering from Mie-resonant subwavelength nanoparticles,” Nano Lett. 20, 5786–5791 (2020).
[Crossref]

S. Raza and A. Kristensen, “Raman scattering in high-refractive-index nanostructures,” Nanophotonics 10, 1197–1209 (2020).
[Crossref]

A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
[Crossref]

J. Cunha, T.-L. Guo, G. Della Valle, A. N. Koya, R. P. Zaccaria, and A. Alabastri, “Controlling light, heat, and vibrations in plasmonics and phononics,” Adv. Opt. Mater. 8, 2001225 (2020).
[Crossref]

K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]

T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Dominguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov, “Collective Mie resonances for directional on-chip nanolasers,” Nano Lett. 20, 5655–5661 (2020).
[Crossref]

M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
[Crossref]

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14, 5268–5277 (2020).
[Crossref]

G. Baffou, F. Cichos, and R. Quidant, “Applications and challenges of thermoplasmonics,” Nat. Mater. 19, 946–958 (2020).
[Crossref]

2019 (27)

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

J. Beik, M. Khateri, Z. Khosravi, S. K. Kamrava, S. Kooranifar, H. Ghaznavi, and A. Shakeri-Zadeh, “Gold nanoparticles in combinatorial cancer therapy strategies,” Coord. Chem. Rev. 387, 299–324 (2019).
[Crossref]

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. USA 116, 15356–15361 (2019).
[Crossref]

O. Yavas, M. Svedendahl, and R. Quidant, “Unravelling the role of electric and magnetic dipoles in biosensing with Si nanoresonators,” ACS Nano 13, 4582–4588 (2019).
[Crossref]

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

J. Garcia-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enhanced chiral sensing with dielectric nanoresonators,” Nano Lett. 20, 585–591 (2019).
[Crossref]

I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photon. 6, 802–814 (2019).
[Crossref]

A. Vaskin, R. Kolkowski, A. F. Koenderink, and I. Staude, “Light-emitting metasurfaces,” Nanophotonics 8, 1151–1198 (2019).
[Crossref]

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

R.-M. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol. 14, 12–22 (2019).
[Crossref]

R. Paniagua-Domnguez, S. T. Ha, and A. I. Kuznetsov, “Active and tunable nanophotonics with dielectric nanoantennas,” Proc. IEEE 108, 749–771 (2019).
[Crossref]

S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear light generation in topological nanostructures,” Nat. Nanotechnol. 14, 126–130 (2019).
[Crossref]

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

B. Sain, C. Meier, and T. Zentgraf, “Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review,” Adv. Photon. 1, 024002 (2019).
[Crossref]

S. Danesi and I. Alessandri, “Using optical resonances to control heat generation and propagation in silicon nanostructures,” Phys. Chem. Chem. Phys. 21, 11724–11730 (2019).
[Crossref]

K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, “Revealing low-radiative modes of nanoresonators with internal Raman scattering,” JETP Lett. 110, 25–30 (2019).
[Crossref]

N. Bosio, H. Šípová Jungová, N. O. Länk, T. J. Antosiewicz, R. Verre, and M. Källl, “Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparison,” ACS Photon. 6, 1556–1564 (2019).
[Crossref]

P. Tonkaev, G. Zograf, and S. Makarov, “Optical cooling of lead halide perovskite nanoparticles enhanced by Mie resonances,” Nanoscale 11, 17800–17806 (2019).
[Crossref]

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

T. Handa, H. Tahara, T. Aharen, and Y. Kanemitsu, “Large negative thermo-optic coefficients of a lead halide perovskite,” Sci. Adv. 5, eaax0786 (2019).
[Crossref]

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

H. K. Khattak, P. Bianucci, and A. D. Slepkov, “Linking plasma formation in grapes to microwave resonances of aqueous dimers,” Proc. Natl. Acad. Sci. USA 116, 4000–4005 (2019).
[Crossref]

J. Ye, D. Zuev, and S. Makarov, “Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems,” Int. Mater. Rev. 64, 439–477 (2019).
[Crossref]

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

I. Talyzin, M. Samsonov, V. Samsonov, M. Y. Pushkar, and V. Dronnikov, “Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation,” Semiconductors 53, 947–953 (2019).
[Crossref]

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

2018 (34)

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
[Crossref]

K. Green, K. Huang, H. Pan, G. Han, and S. F. Lim, “Optical temperature sensing with infrared excited upconversion nanoparticles,” Front. Chem. 6, 416 (2018).
[Crossref]

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

L. L. Taylor, R. E. Scott, and J. Qiao, “Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon,” Opt. Mater. Express 8, 648–658 (2018).
[Crossref]

A. S. Zalogina, R. Savelev, E. V. Ushakova, G. Zograf, F. Komissarenko, V. Milichko, S. Makarov, D. Zuev, and I. Shadrivov, “Purcell effect in active diamond nanoantennas,” Nanoscale 10, 8721–8727 (2018).
[Crossref]

Y. Nagasaki, M. Suzuki, I. Hotta, and J. Takahara, “Control of Si-based all-dielectric printing color through oxidation,” ACS Photon. 5, 1460–1466 (2018).
[Crossref]

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

G. P. Zograf, Y. F. Yu, K. V. Baryshnikova, A. I. Kuznetsov, and S. V. Makarov, “Local crystallization of a resonant amorphous silicon nanoparticle for the implementation of optical nanothermometry,” JETP Lett. 107, 699–704 (2018).
[Crossref]

C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, “Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I),” J. Phys. Chem. C 122, 15973–15978 (2018).
[Crossref]

T. Lewi, N. A. Butakov, and J. A. Schuller, “Thermal tuning capabilities of semiconductor metasurface resonators,” Nanophotonics 8, 331–338 (2018).
[Crossref]

C. Ma, J. Yan, Y. Huang, C. Wang, and G. Yang, “The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion,” Sci. Adv. 4, eaas9894 (2018).
[Crossref]

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97, 085414 (2018).
[Crossref]

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, and V. V. Vinogradov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photon. Rev. 12, 1700227 (2018).
[Crossref]

D. G. Baranov, R. Verre, P. Karpinski, and M. Källl, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photon. 5, 2730–2736 (2018).
[Crossref]

Y. Hagiwara, K. Takahata, J. Torimoto, and J. Yamamoto, “CO2 Raman thermometer improvement: comparing hot band and stokes and anti-stokes Raman scattering thermometers,” J. Raman Spectrosc. 49, 1776–1781 (2018).
[Crossref]

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20, 15307–15315 (2018).
[Crossref]

A. E. Miroshnichenko and M. I. Tribelsky, “Ultimate absorption in light scattering by a finite obstacle,” Phys. Rev. Lett. 120, 033902 (2018).
[Crossref]

S. Makarov, L. Kolotova, S. Starikov, U. Zywietz, and B. Chichkov, “Resonant silicon nanoparticles with controllable crystalline states and nonlinear optical responses,” Nanoscale 10, 11403–11409 (2018).
[Crossref]

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9, 2507 (2018).
[Crossref]

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domnguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13, 1042–1047 (2018).
[Crossref]

E. Tiguntseva, G. P. Zograf, F. E. Komissarenko, D. A. Zuev, A. A. Zakhidov, S. V. Makarov, and Y. S. Kivshar, “Light-emitting halide perovskite nanoantennas,” Nano Lett. 18, 1185–1190 (2018).
[Crossref]

E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
[Crossref]

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photon. 5, 1359–1364 (2018).
[Crossref]

S. Liu, A. Vaskin, and S. Addamane, et al., “Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation,” Nano Lett. 18, 6906–6914 (2018).
[Crossref]

A. Carattino, M. Caldarola, and M. Orrit, “Gold nanoparticles as absolute nanothermometers,” Nano Lett. 18, 874–880 (2018).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref]

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, and M. Meunier, “In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles,” Nano Lett. 18, 6981–6988 (2018).
[Crossref]

U. Aslam, V. G. Rao, S. Chavez, and S. Linic, “Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures,” Nat. Catal. 1, 656–665 (2018).
[Crossref]

P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, and T. Deng, “Solar-driven interfacial evaporation,” Nat. Energy 3, 1031–1041 (2018).
[Crossref]

2017 (23)

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

M. Pihl, E. Bruzell, and M. Andersson, “Bacterial biofilm elimination using gold nanorod localised surface plasmon resonance generated heat,” Mater. Sci. Eng. C 80, 54–58 (2017).
[Crossref]

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17, 2945–2952 (2017).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref]

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

G. Li, S. Zhang, and T. Zentgraf, “Nonlinear photonic metasurfaces,” Nat. Rev. Mater. 2, 17010 (2017).
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11, 953–960 (2017).
[Crossref]

S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, and E. Ubyivovk, “Efficient second-harmonic generation in nanocrystalline silicon nanoparticles,” Nano Lett. 17, 3047–3053 (2017).
[Crossref]

A. Lagarkov, I. Boginskaya, I. Bykov, I. Budashov, A. Ivanov, I. Kurochkin, I. Ryzhikov, I. Rodionov, M. Sedova, A. Zverev, and A. K. Sarychev, “Light localization and SERS in tip-shaped silicon metasurface,” Opt. Express 25, 17021–17038 (2017).
[Crossref]

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111, 243103 (2017).
[Crossref]

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6, 317–328 (2017).
[Crossref]

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index germanium nanoparticles,” Adv. Opt. Mater. 5, 1600902 (2017).
[Crossref]

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11, 4445–4452 (2017).
[Crossref]

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17, 7500–7506 (2017).
[Crossref]

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photon. 4, 1076–1082 (2017).
[Crossref]

V. Flauraud, M. Reyes, R. Paniagua-Dominguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photon. 4, 1913–1919 (2017).
[Crossref]

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

2016 (21)

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10, 7761–7767 (2016).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

M. V. Rybin, K. B. Samusev, S. Y. Lukashenko, Y. S. Kivshar, and M. F. Limonov, “Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure,” Sci. Rep. 6, 30773 (2016).
[Crossref]

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, “Solar water heating and vaporization with silicon nanoparticles at Mie resonances,” Opt. Mater. Express 6, 640–648 (2016).
[Crossref]

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

M. Stegmaier, C. Ros, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, and A. Latini, “On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites,” Sci. Rep. 6, 31896 (2016).
[Crossref]

J.-M. Nam, J.-W. Oh, H. Lee, and Y. D. Suh, “Plasmonic nanogap-enhanced Raman scattering with nanoparticles,” Acc. Chem. Res. 49, 2746–2755 (2016).
[Crossref]

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116, 14921–14981 (2016).
[Crossref]

D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3, 1241–1255 (2016).
[Crossref]

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

S.-T. Ha, C. Shen, J. Zhang, and Q. Xiong, “Laser cooling of organic–inorganic lead halide perovskites,” Nat. Photonics 10, 115–121 (2016).
[Crossref]

X. Xie and D. G. Cahill, “Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering,” Appl. Phys. Lett. 109, 183104 (2016).
[Crossref]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120, 2343–2348 (2016).
[Crossref]

2015 (16)

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M. M. Rahman, T. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

M. Li, T. Lohmuller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
[Crossref]

J. T. Hugall and J. J. Baumberg, “Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds,” Nano Lett. 15, 2600–2604 (2015).
[Crossref]

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
[Crossref]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” J. Am. Chem. Soc. 137, 10276–10281 (2015).
[Crossref]

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
[Crossref]

M. Bernardi, D. Vigil-Fowler, C. S. Ong, J. B. Neaton, and S. G. Louie, “Ab initio study of hot electrons in GaAs,” Proc. Natl. Acad. Sci. USA 112, 5291–5296 (2015).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

T. Favaloro, J.-H. Bahk, and A. Shakouri, “Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films,” Rev. Sci. Instrum. 86, 024903 (2015).
[Crossref]

T. Plakhotnik, H. Aman, and H.-C. Chang, “All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz-1/2,” Nanotechnology 26, 245501 (2015).
[Crossref]

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119, 28127–28135 (2015).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

2014 (6)

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, “Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles,” Phys. Rev. B 89, 205203 (2014).
[Crossref]

I. Rodriguez, L. Shi, X. Lu, B. Korgel, R. Alvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6, 5666–5670 (2014).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43, 3898–3907 (2014).
[Crossref]

2013 (7)

M. L. Debasu, D. Ananias, I. Pastoriza-Santos, L. M. Liz-Marzán, J. Rocha, and L. D. Carlos, “All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation,” Adv. Mater. 25, 4868–4874 (2013).
[Crossref]

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref]

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Phys. 525, 907–914 (2013).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
[Crossref]

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

T. Hutter, F. M. Huang, S. R. Elliott, and S. Mahajan, “Near-field plasmonics of an individual dielectric nanoparticle above a metallic substrate,” J. Phys. Chem. C 117, 7784–7790 (2013).
[Crossref]

2012 (7)

E. Xifre-Perez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano 7, 664–668 (2012).
[Crossref]

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Sci. 42, 399–434 (2012).
[Crossref]

P. Haro-González, L. Martnez-Maestro, I. Martn, J. Garca-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
[Crossref]

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6, 7177–7184 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

2011 (8)

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84, 035415 (2011).
[Crossref]

M. I. Tribelsky, A. E. Miroshnichenko, Y. S. Kivshar, B. S. Luk’yanchuk, and A. R. Khokhlov, “Laser pulse heating of spherical metal particles,” Phys. Rev. X 1, 021024 (2011).
[Crossref]

M. I. Tribelsky, “Anomalous light absorption by small particles,” Europhys. Lett. 94, 14004 (2011).
[Crossref]

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

J. Feng, K. Tian, D. Hu, S. Wang, S. Li, Y. Zeng, Y. Li, and G. Yang, “A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range,” Angew. Chem. 123, 8222–8226 (2011).
[Crossref]

J. Ye and C. V. Thompson, “Templated solid-state dewetting to controllably produce complex patterns,” Adv. Mater. 23, 1567–1571 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

2010 (10)

F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodrguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

V. A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, and D. R. Gamelin, “Tunable dual emission in doped semiconductor nanocrystals,” Nano Lett. 10, 3670–3674 (2010).
[Crossref]

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2 Sb2 Te5 interface from room temperature up to 400 C,” J. Appl. Phys. 107, 044314 (2010).
[Crossref]

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42, 783–789 (2010).
[Crossref]

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi A 207, 2303–2310 (2010).
[Crossref]

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

G. Baffou, R. Quidant, and F. J. Garca de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[Crossref]

2009 (6)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009).
[Crossref]

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[Crossref]

G. Baffou, M. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
[Crossref]

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[Crossref]

T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol. 43, 6082–6087 (2009).
[Crossref]

2008 (4)

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]

H. Scheel, S. Khachadorian, M. Cantoro, A. Colli, A. Ferrari, and C. Thomsen, “Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures,” Phys. Status Solidi B 245, 2090–2093 (2008).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[Crossref]

2007 (5)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88, 297–303 (2007).
[Crossref]

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7, 3102–3105 (2007).
[Crossref]

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors 7, 3489–3534 (2007).
[Crossref]

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111, 15119–15124 (2007).
[Crossref]

2006 (2)

B. Zink, R. Pietri, and F. Hellman, “Thermal conductivity and specific heat of thin-film amorphous silicon,” Phys. Rev. Lett. 96, 055902 (2006).
[Crossref]

H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2 Sb2 Te5,” Appl. Phys. Lett. 89, 151904 (2006).
[Crossref]

2005 (3)

E. Morales-Sanchez, E. Prokhorov, J. Gonzalez-Hernandez, and A. Mendoza-Galvan, “Structural, electric and kinetic parameters of ternary alloys of GeSbTe,” Thin Solid Films 471, 243–247 (2005).
[Crossref]

M. E. Köse, B. F. Carroll, and K. S. Schanze, “Preparation and spectroscopic properties of multiluminophore luminescent oxygen and temperature sensor films,” Langmuir 21, 9121–9129 (2005).
[Crossref]

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[Crossref]

2004 (1)

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92, 247403 (2004).
[Crossref]

2003 (3)

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[Crossref]

L. R. Hirsch, R. J. Stafford, J. Bankson, S. R. Sershen, B. Rivera, R. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[Crossref]

2002 (4)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]

K. Takimoto, A. Fukuta, Y. Yamamoto, N. Yoshida, T. Itoh, and S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299, 314–317 (2002).
[Crossref]

K. Y. Suh and H. H. Lee, “Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting,” Adv. Funct. Mater. 12, 405–413 (2002).
[Crossref]

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

2001 (2)

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73, 4117–4123 (2001).
[Crossref]

C.-A. Jong, W. Fang, C.-M. Lee, and T.-S. Chin, “Mechanical properties of phase-change recording media: GeSbTe films,” Jpn. J. Appl. Phys. 40, 3320–3325 (2001).
[Crossref]

2000 (1)

G. Chen, “Phonon heat conduction in nanostructures,” Int. J. Thermal Sci. 39, 471–480 (2000).
[Crossref]

1999 (2)

G. Huttmann and R. Birngruber, “On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quantum Electron. 5, 954–962 (1999).
[Crossref]

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W.-Y. Shih, “Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films,” J. Appl. Phys. 85, 6421–6424 (1999).
[Crossref]

1998 (3)

K. B. Migler and A. J. Bur, “Fluorescence based measurement of temperature profiles during polymer processing,” Polym. Eng. Sci. 38, 213–221 (1998).
[Crossref]

M. W. Chase and N.-J. T. Tables, “Data reported in NIST standard reference database 69, June 2005 release: NIST chemistry webbook,” J. Phys. Chem. Ref. Data 9, 1–1951 (1998).

T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5668 (1998).
[Crossref]

1997 (1)

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

1996 (1)

J. Gonzalez, E. Moya, and J. Chervin, “Anharmonic effects in light scattering due to optical phonons in CuGaS2,” Phys. Rev. B 54, 4707–4713 (1996).
[Crossref]

1995 (3)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

H. Koh, P. Rudolph, N. Schäfer, K. Umetsu, and T. Fukuda, “The effect of various thermal treatments on supercooling of PbTe melts,” Mater. Sci. Eng. B 34, 199–203 (1995).
[Crossref]

L. Balde, B. Legendre, and A. Balkhi, “Etude du diagramme d’equilibre entre phases du systeme ternaire germanium-etain-tellure,” J. Alloys Compd. 216, 285–293 (1995).
[Crossref]

1993 (2)

K. Tsang, H. Kui, and K. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
[Crossref]

O. Yavas, N. Do, A. C. Tam, P. Leung, W. P. Leung, H. K. Park, C. P. Grigoropoulos, J. Boneberg, and P. Leiderer, “Temperature dependence of optical properties for amorphous silicon at wavelengths of 632.8 and 752 nm,” Opt. Lett. 18, 540–542 (1993).
[Crossref]

1991 (1)

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B 43, 2299–2304 (1991).
[Crossref]

1990 (3)

S. Rudin, T. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
[Crossref]

D. G. Cahill, “Thermal conductivity measurement from 30 to 750 K: the 3ω method,” Rev. Sci. Instrum. 61, 802–808 (1990).
[Crossref]

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68, 1272–1281 (1990).
[Crossref]

1989 (1)

A. Esser, K. Seibert, H. Kurz, G. Parsons, C. Wang, B. Davidson, G. Lucovsky, and R. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” J. Non-Cryst. Solids 114, 573–575 (1989).
[Crossref]

1986 (3)

M. Downer and C. Shank, “Ultrafast heating of silicon on sapphire by femtosecond optical pulses,” Phys. Rev. Lett. 56, 761–764 (1986).
[Crossref]

Y. Takahashi and H. Akiyama, “Heat capacity of gold from 80 to 1000 K,” Thermochim. Acta 109, 105–109 (1986).
[Crossref]

E. Haro, M. Balkanski, R. Wallis, and K. Wanser, “Theory of the anharmonic damping and shift of the Raman mode in silicon,” Phys. Rev. B 34, 5358–5367 (1986).
[Crossref]

1985 (2)

K. Stephan and A. Laesecke, “The thermal conductivity of fluid air,” J. Phys. Chem. Ref. Data 14, 227–234 (1985).
[Crossref]

Y. Li and W. Ching, “Band structures of all polycrystalline forms of silicon dioxide,” Phys. Rev. B 31, 2172–2179 (1985).
[Crossref]

1984 (2)

R. Nemanich, D. Biegelsen, R. Street, and L. Fennell, “Raman scattering from solid silicon at the melting temperature,” Phys. Rev. B 29, 6005–6007 (1984).
[Crossref]

B. L. Cohen, “Anomalous behavior of tellurium abundances,” Geochim. Cosmochim. Acta 48, 203–205 (1984).
[Crossref]

1983 (2)

A. El-Sharkawy, A. Abou El-Azm, M. Kenawy, A. Hillal, and H. Abu-Basha, “Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K,” Int. J. Thermophys. 4, 261–269 (1983).
[Crossref]

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28, 1928–1934 (1983).
[Crossref]

1981 (1)

E. J. Yoffa, “Screening of hot-carrier relaxation in highly photoexcited semiconductors,” Phys. Rev. B 23, 1909–1919 (1981).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

1976 (1)

P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).
[Crossref]

1975 (1)

W. Spear and P. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun. 17, 1193–1196 (1975).
[Crossref]

1974 (1)

S. Anisimov, B. Kapeliovich, and T. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66, 375–377 (1974).

1970 (1)

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[Crossref]

1963 (1)

H. Shanks, P. Maycock, P. Sidles, and G. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[Crossref]

1950 (1)

A. Kastler, “Some suggestions concerning the production and detection by optical means of inequalities in the populations of levels of spatial quantization in atoms. Application to the Stern and Gerlach and magnetic resonance experiments,” J. Phys. Radium 11, 255–265 (1950).
[Crossref]

1941 (1)

F. Nix and D. MacNair, “The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron,” Phys. Rev. 60, 597–605 (1941).
[Crossref]

1929 (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Abbarchi, M.

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Abelson, J. R.

H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2 Sb2 Te5,” Appl. Phys. Lett. 89, 151904 (2006).
[Crossref]

Abou El-Azm, A.

A. El-Sharkawy, A. Abou El-Azm, M. Kenawy, A. Hillal, and H. Abu-Basha, “Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K,” Int. J. Thermophys. 4, 261–269 (1983).
[Crossref]

Abu-Basha, H.

A. El-Sharkawy, A. Abou El-Azm, M. Kenawy, A. Hillal, and H. Abu-Basha, “Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K,” Int. J. Thermophys. 4, 261–269 (1983).
[Crossref]

Abujetas, D. R.

M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
[Crossref]

Accornero, S.

Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” J. Am. Chem. Soc. 137, 10276–10281 (2015).
[Crossref]

Adachi, S.

S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (Wiley, 2009), Vol. 28.

Addamane, S.

S. Liu, A. Vaskin, and S. Addamane, et al., “Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation,” Nano Lett. 18, 6906–6914 (2018).
[Crossref]

Agafonov, V. N.

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

Ageev, E.

A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
[Crossref]

Aggarwal, R.

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[Crossref]

Aharen, T.

T. Handa, H. Tahara, T. Aharen, and Y. Kanemitsu, “Large negative thermo-optic coefficients of a lead halide perovskite,” Sci. Adv. 5, eaax0786 (2019).
[Crossref]

Aharonovich, I.

C. Bradac, S. F. Lim, H.-C. Chang, and I. Aharonovich, “Optical nanoscale thermometry: from fundamental mechanisms to emerging practical applications,” Adv. Opt. Mater. 8, 2000183 (2020).
[Crossref]

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Aizpurua, J.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

Akimov, A. V.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
[Crossref]

Akiyama, H.

Y. Takahashi and H. Akiyama, “Heat capacity of gold from 80 to 1000 K,” Thermochim. Acta 109, 105–109 (1986).
[Crossref]

Akkerman, Q. A.

Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” J. Am. Chem. Soc. 137, 10276–10281 (2015).
[Crossref]

Alabastri, A.

J. Cunha, T.-L. Guo, G. Della Valle, A. N. Koya, R. P. Zaccaria, and A. Alabastri, “Controlling light, heat, and vibrations in plasmonics and phononics,” Adv. Opt. Mater. 8, 2001225 (2020).
[Crossref]

Alajlan, A.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Albella, P.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Aleali, H.

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi A 207, 2303–2310 (2010).
[Crossref]

Alessandri, I.

S. Danesi and I. Alessandri, “Using optical resonances to control heat generation and propagation in silicon nanostructures,” Phys. Chem. Chem. Phys. 21, 11724–11730 (2019).
[Crossref]

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20, 15307–15315 (2018).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref]

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116, 14921–14981 (2016).
[Crossref]

Alexeev, A. M.

Alkahtani, M.

M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
[Crossref]

Alkahtani, M. H. A.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Altug, H.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref]

Alú, A.

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97, 085414 (2018).
[Crossref]

Alvarez-Puebla, R.

I. Rodriguez, L. Shi, X. Lu, B. Korgel, R. Alvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6, 5666–5670 (2014).
[Crossref]

Aman, H.

T. Plakhotnik, H. Aman, and H.-C. Chang, “All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz-1/2,” Nanotechnology 26, 245501 (2015).
[Crossref]

Amaral, V. S.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Ananias, D.

M. L. Debasu, D. Ananias, I. Pastoriza-Santos, L. M. Liz-Marzán, J. Rocha, and L. D. Carlos, “All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation,” Adv. Mater. 25, 4868–4874 (2013).
[Crossref]

Anderson, R. R.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[Crossref]

Andersson, M.

M. Pihl, E. Bruzell, and M. Andersson, “Bacterial biofilm elimination using gold nanorod localised surface plasmon resonance generated heat,” Mater. Sci. Eng. C 80, 54–58 (2017).
[Crossref]

Anisimov, S.

S. Anisimov, B. Kapeliovich, and T. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66, 375–377 (1974).

Antosiewicz, T. J.

N. Bosio, H. Šípová Jungová, N. O. Länk, T. J. Antosiewicz, R. Verre, and M. Källl, “Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparison,” ACS Photon. 6, 1556–1564 (2019).
[Crossref]

Aouassa, M.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111, 243103 (2017).
[Crossref]

Artemyev, Y. A.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Arvelo, E. R.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Reinhart and Winston, 1976).

Aslam, U.

U. Aslam, V. G. Rao, S. Chavez, and S. Linic, “Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures,” Nat. Catal. 1, 656–665 (2018).
[Crossref]

Atwater, H.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. USA 116, 15356–15361 (2019).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Baffou, G.

G. Baffou, “Anti-Stokes thermometry in nanoplasmonics,” ACS Nano 15, 5785–5792 (2021).
[Crossref]

G. Baffou, F. Cichos, and R. Quidant, “Applications and challenges of thermoplasmonics,” Nat. Mater. 19, 946–958 (2020).
[Crossref]

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
[Crossref]

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43, 3898–3907 (2014).
[Crossref]

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
[Crossref]

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84, 035415 (2011).
[Crossref]

G. Baffou, R. Quidant, and F. J. Garca de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[Crossref]

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[Crossref]

G. Baffou, M. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
[Crossref]

Bahk, J.-H.

T. Favaloro, J.-H. Bahk, and A. Shakouri, “Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films,” Rev. Sci. Instrum. 86, 024903 (2015).
[Crossref]

Bakker, R. M.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domnguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13, 1042–1047 (2018).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Balcytis, A.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Balde, L.

L. Balde, B. Legendre, and A. Balkhi, “Etude du diagramme d’equilibre entre phases du systeme ternaire germanium-etain-tellure,” J. Alloys Compd. 216, 285–293 (1995).
[Crossref]

Baldycheva, A.

Balkanski, M.

E. Haro, M. Balkanski, R. Wallis, and K. Wanser, “Theory of the anharmonic damping and shift of the Raman mode in silicon,” Phys. Rev. B 34, 5358–5367 (1986).
[Crossref]

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28, 1928–1934 (1983).
[Crossref]

Balkhi, A.

L. Balde, B. Legendre, and A. Balkhi, “Etude du diagramme d’equilibre entre phases du systeme ternaire germanium-etain-tellure,” J. Alloys Compd. 216, 285–293 (1995).
[Crossref]

Bañares, L.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Banfi, F.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20, 15307–15315 (2018).
[Crossref]

Bankson, J.

L. R. Hirsch, R. J. Stafford, J. Bankson, S. R. Sershen, B. Rivera, R. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Baranov, D. G.

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
[Crossref]

D. G. Baranov, R. Verre, P. Karpinski, and M. Källl, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photon. 5, 2730–2736 (2018).
[Crossref]

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, and V. V. Vinogradov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photon. Rev. 12, 1700227 (2018).
[Crossref]

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

Baranov, M. A.

K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, “Revealing low-radiative modes of nanoresonators with internal Raman scattering,” JETP Lett. 110, 25–30 (2019).
[Crossref]

Bar-David, J.

N. Sharma, J. Bar-David, N. Mazurski, and U. Levy, “Metasurfaces for enhancing light absorption in thermoelectric photodetectors,” ACS Photon. 7, 2468–2473 (2020).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Baryshnikova, K.

G. Zograf, K. Baryshnikova, M. Petrov, and S. Makarov, “Enhanced Raman scattering for probing near-field distribution in all-dielectric nanostructures,” Adv. Photon. Res. 2, 2000139 (2021).
[Crossref]

Baryshnikova, K. V.

K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, “Revealing low-radiative modes of nanoresonators with internal Raman scattering,” JETP Lett. 110, 25–30 (2019).
[Crossref]

G. P. Zograf, Y. F. Yu, K. V. Baryshnikova, A. I. Kuznetsov, and S. V. Makarov, “Local crystallization of a resonant amorphous silicon nanoparticle for the implementation of optical nanothermometry,” JETP Lett. 107, 699–704 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Battaglia, J.-L.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2 Sb2 Te5 interface from room temperature up to 400 C,” J. Appl. Phys. 107, 044314 (2010).
[Crossref]

Bäuerle, D. W.

D. W. Bäuerle, Laser Processing and Chemistry (Springer, 2013).

Baumberg, J. J.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

J. T. Hugall and J. J. Baumberg, “Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds,” Nano Lett. 15, 2600–2604 (2015).
[Crossref]

Bäumer, S. M.

J. Berzinš, S. Indrišiūnas, S. Fasold, M. Steinert, O. Žukovskaja, D. Cialla-May, P. Gečys, S. M. Bäumer, T. Pertsch, and F. Setzpfandt, “Laser-induced spatially-selective tailoring of high-index dielectric metasurfaces,” Opt. Express 28, 1539–1553 (2020).
[Crossref]

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

Bawendi, M. G.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[Crossref]

Beaulac, R.

V. A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, and D. R. Gamelin, “Tunable dual emission in doped semiconductor nanocrystals,” Nano Lett. 10, 3670–3674 (2010).
[Crossref]

Becker, J.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Bedu, F.

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10, 7761–7767 (2016).
[Crossref]

Beik, J.

J. Beik, M. Khateri, Z. Khosravi, S. K. Kamrava, S. Kooranifar, H. Ghaznavi, and A. Shakeri-Zadeh, “Gold nanoparticles in combinatorial cancer therapy strategies,” Coord. Chem. Rev. 387, 299–324 (2019).
[Crossref]

Belmonte, T.

A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
[Crossref]

Belov, P.

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Belov, P. A.

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17, 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

Benkouider, A.

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Berbezier, I.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Bergeron, E.

A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, and M. Meunier, “In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles,” Nano Lett. 18, 6981–6988 (2018).
[Crossref]

Berguiga, L.

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

Bermel, P.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Bermúdez Ureña, E.

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref]

Bernardi, M.

M. Bernardi, D. Vigil-Fowler, C. S. Ong, J. B. Neaton, and S. G. Louie, “Ab initio study of hot electrons in GaAs,” Proc. Natl. Acad. Sci. USA 112, 5291–5296 (2015).
[Crossref]

Berté, R.

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

Berthelot, J.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

Berto, P.

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref]

Bertolotti, J.

Berzinš, J.

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

J. Berzinš, S. Indrišiūnas, S. Fasold, M. Steinert, O. Žukovskaja, D. Cialla-May, P. Gečys, S. M. Bäumer, T. Pertsch, and F. Setzpfandt, “Laser-induced spatially-selective tailoring of high-index dielectric metasurfaces,” Opt. Express 28, 1539–1553 (2020).
[Crossref]

Bettinelli, M.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Bhaskar, M. K.

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

Bhaskaran, H.

M. Stegmaier, C. Ros, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

Bianucci, P.

H. K. Khattak, P. Bianucci, and A. D. Slepkov, “Linking plasma formation in grapes to microwave resonances of aqueous dimers,” Proc. Natl. Acad. Sci. USA 116, 4000–4005 (2019).
[Crossref]

Bidault, S.

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Biegelsen, D.

R. Nemanich, D. Biegelsen, R. Street, and L. Fennell, “Raman scattering from solid silicon at the melting temperature,” Phys. Rev. B 29, 6005–6007 (1984).
[Crossref]

Birngruber, R.

G. Huttmann and R. Birngruber, “On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quantum Electron. 5, 954–962 (1999).
[Crossref]

Bishop, S. G.

H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2 Sb2 Te5,” Appl. Phys. Lett. 89, 151904 (2006).
[Crossref]

Blakley, S.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Blomgren, R. D.

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

Bobod, N.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

Bogdanov, A.

K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]

Boginskaya, I.

Bohn, J.

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photon. 5, 1359–1364 (2018).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Boneberg, J.

Bonod, N.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photon. 4, 1076–1082 (2017).
[Crossref]

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10, 7761–7767 (2016).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Bontempi, N.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20, 15307–15315 (2018).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref]

Borel, J. P.

P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).
[Crossref]

Boriskina, S. V.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M. M. Rahman, T. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Borzdov, Y. M.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Bosio, N.

N. Bosio, H. Šípová Jungová, N. O. Länk, T. J. Antosiewicz, R. Verre, and M. Källl, “Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparison,” ACS Photon. 6, 1556–1564 (2019).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2020).

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]

Bozhevolnyi, S. I.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Bradac, C.

C. Bradac, S. F. Lim, H.-C. Chang, and I. Aharonovich, “Optical nanoscale thermometry: from fundamental mechanisms to emerging practical applications,” Adv. Opt. Mater. 8, 2000183 (2020).
[Crossref]

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Bratskaya, S.

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Brener, I.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9, 2507 (2018).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Brites, C. D.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Brugger, J.

V. Flauraud, M. Reyes, R. Paniagua-Dominguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photon. 4, 1913–1919 (2017).
[Crossref]

Brunetti, B.

B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, and A. Latini, “On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites,” Sci. Rep. 6, 31896 (2016).
[Crossref]

Bruyère, S.

A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
[Crossref]

Bruzell, E.

M. Pihl, E. Bruzell, and M. Andersson, “Bacterial biofilm elimination using gold nanorod localised surface plasmon resonance generated heat,” Mater. Sci. Eng. C 80, 54–58 (2017).
[Crossref]

Bucher, T.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photon. 5, 1359–1364 (2018).
[Crossref]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Budashov, I.

Buffat, P.

P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).
[Crossref]

Bur, A. J.

K. B. Migler and A. J. Bur, “Fluorescence based measurement of temperature profiles during polymer processing,” Polym. Eng. Sci. 38, 213–221 (1998).
[Crossref]

Butakov, N. A.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

T. Lewi, N. A. Butakov, and J. A. Schuller, “Thermal tuning capabilities of semiconductor metasurface resonators,” Nanophotonics 8, 331–338 (2018).
[Crossref]

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

Bykov, I.

Cahill, D. G.

X. Xie and D. G. Cahill, “Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering,” Appl. Phys. Lett. 109, 183104 (2016).
[Crossref]

H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2 Sb2 Te5,” Appl. Phys. Lett. 89, 151904 (2006).
[Crossref]

D. G. Cahill, “Thermal conductivity measurement from 30 to 750 K: the 3ω method,” Rev. Sci. Instrum. 61, 802–808 (1990).
[Crossref]

Cai, M.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Calabró, E.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Caldarola, M.

A. Carattino, M. Caldarola, and M. Orrit, “Gold nanoparticles as absolute nanothermometers,” Nano Lett. 18, 874–880 (2018).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Camacho-Morales, R.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Cantoro, M.

H. Scheel, S. Khachadorian, M. Cantoro, A. Colli, A. Ferrari, and C. Thomsen, “Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures,” Phys. Status Solidi B 245, 2090–2093 (2008).
[Crossref]

Cao, B.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119, 28127–28135 (2015).
[Crossref]

Cao, Y.

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

Capobianco, J. A.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodrguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Cappella, A.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2 Sb2 Te5 interface from room temperature up to 400 C,” J. Appl. Phys. 107, 044314 (2010).
[Crossref]

Carattino, A.

A. Carattino, M. Caldarola, and M. Orrit, “Gold nanoparticles as absolute nanothermometers,” Nano Lett. 18, 874–880 (2018).
[Crossref]

Carletti, L.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20, 15307–15315 (2018).
[Crossref]

Carlos, L. D.

M. L. Debasu, D. Ananias, I. Pastoriza-Santos, L. M. Liz-Marzán, J. Rocha, and L. D. Carlos, “All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation,” Adv. Mater. 25, 4868–4874 (2013).
[Crossref]

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Carraro, C.

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

Carrillo, S. G.-C.

Carroll, B. F.

M. E. Köse, B. F. Carroll, and K. S. Schanze, “Preparation and spectroscopic properties of multiluminophore luminescent oxygen and temperature sensor films,” Langmuir 21, 9121–9129 (2005).
[Crossref]

Cavallo, C.

B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, and A. Latini, “On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites,” Sci. Rep. 6, 31896 (2016).
[Crossref]

Celebrano, M.

Cevher, V.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Challener, W.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Chang, C.-W.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Chang, H.-C.

C. Bradac, S. F. Lim, H.-C. Chang, and I. Aharonovich, “Optical nanoscale thermometry: from fundamental mechanisms to emerging practical applications,” Adv. Opt. Mater. 8, 2000183 (2020).
[Crossref]

T. Plakhotnik, H. Aman, and H.-C. Chang, “All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz-1/2,” Nanotechnology 26, 245501 (2015).
[Crossref]

Chang, J.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

Chang, W.-S.

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6, 7177–7184 (2012).
[Crossref]

Chase, M. W.

M. W. Chase and N.-J. T. Tables, “Data reported in NIST standard reference database 69, June 2005 release: NIST chemistry webbook,” J. Phys. Chem. Ref. Data 9, 1–1951 (1998).

Chavez, S.

U. Aslam, V. G. Rao, S. Chavez, and S. Linic, “Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures,” Nat. Catal. 1, 656–665 (2018).
[Crossref]

Che, Y.

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

Chen, F.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Chen, G.

P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, and T. Deng, “Solar-driven interfacial evaporation,” Nat. Energy 3, 1031–1041 (2018).
[Crossref]

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M. M. Rahman, T. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

G. Chen, “Phonon heat conduction in nanostructures,” Int. J. Thermal Sci. 39, 471–480 (2000).
[Crossref]

Chen, H.

S.-L. Wu, H. Chen, H.-L. Wang, X. Chen, H.-C. Yang, and S. B. Darling, “Solar-driven evaporators for water treatment: challenges and opportunities,” Environ. Sci. Water Res. Technol. 7, 24–39 (2021).
[Crossref]

H. Chen, S.-L. Wu, H.-L. Wang, Q.-Y. Wu, and H.-C. Yang, “Photothermal devices for sustainable uses beyond desalination,” Adv. Energy Sustain. Res. 2, 2000056 (2021).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Chen, J.

J. Chen, Z. Ye, F. Yang, and Y. Yin, “Plasmonic nanostructures for photothermal conversion,” Small Sci. 1, 2000055 (2021).
[Crossref]

Chen, K.

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index germanium nanoparticles,” Adv. Opt. Mater. 5, 1600902 (2017).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, “Solar water heating and vaporization with silicon nanoparticles at Mie resonances,” Opt. Mater. Express 6, 640–648 (2016).
[Crossref]

Chen, K.-P.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Chen, M.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

Chen, X.

S.-L. Wu, H. Chen, H.-L. Wang, X. Chen, H.-C. Yang, and S. B. Darling, “Solar-driven evaporators for water treatment: challenges and opportunities,” Environ. Sci. Water Res. Technol. 7, 24–39 (2021).
[Crossref]

Chen, Z.

C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, “Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I),” J. Phys. Chem. C 122, 15973–15978 (2018).
[Crossref]

Cheng, H.-Y.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Cheong, B.-K.

H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2 Sb2 Te5,” Appl. Phys. Lett. 89, 151904 (2006).
[Crossref]

Chervin, J.

J. Gonzalez, E. Moya, and J. Chervin, “Anharmonic effects in light scattering due to optical phonons in CuGaS2,” Phys. Rev. B 54, 4707–4713 (1996).
[Crossref]

Cheung, W. L.

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

Chichkov, B.

S. Makarov, L. Kolotova, S. Starikov, U. Zywietz, and B. Chichkov, “Resonant silicon nanoparticles with controllable crystalline states and nonlinear optical responses,” Nanoscale 10, 11403–11409 (2018).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

Chik, K.

K. Tsang, H. Kui, and K. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
[Crossref]

Chikkaraddy, R.

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

Chin, T.-S.

C.-A. Jong, W. Fang, C.-M. Lee, and T.-S. Chin, “Mechanical properties of phase-change recording media: GeSbTe films,” Jpn. J. Appl. Phys. 40, 3320–3325 (2001).
[Crossref]

Ching, W.

Y. Li and W. Ching, “Band structures of all polycrystalline forms of silicon dioxide,” Phys. Rev. B 31, 2172–2179 (1985).
[Crossref]

Choi, D.-Y.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref]

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photon. 5, 1359–1364 (2018).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Choi, J.-H.

K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]

Chon, J. W.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009).
[Crossref]

Chong, K. E.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photon. 5, 1359–1364 (2018).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Chorsi, H.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

Chu, H.-S.

T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Dominguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov, “Collective Mie resonances for directional on-chip nanolasers,” Nano Lett. 20, 5655–5661 (2020).
[Crossref]

Chu, S.-W.

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6, 317–328 (2017).
[Crossref]

Chuvilin, A.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

Cialla-May, D.

Ciccioli, A.

B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, and A. Latini, “On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites,” Sci. Rep. 6, 31896 (2016).
[Crossref]

Cichos, F.

G. Baffou, F. Cichos, and R. Quidant, “Applications and challenges of thermoplasmonics,” Nat. Mater. 19, 946–958 (2020).
[Crossref]

Claude, J.-B.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

Cohen, B. L.

B. L. Cohen, “Anomalous behavior of tellurium abundances,” Geochim. Cosmochim. Acta 48, 203–205 (1984).
[Crossref]

Cojocaru, I.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
[Crossref]

Colli, A.

H. Scheel, S. Khachadorian, M. Cantoro, A. Colli, A. Ferrari, and C. Thomsen, “Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures,” Phys. Status Solidi B 245, 2090–2093 (2008).
[Crossref]

Conti, G.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Cortés, E.

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Costantino, S.

A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, and M. Meunier, “In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles,” Nano Lett. 18, 6981–6988 (2018).
[Crossref]

Coulon, P.-M.

K. W. Mauser, M. Solà-Garcia, M. Liebtrau, B. Damilano, P.-M. Coulon, S. Vézian, P. A. Shields, S. Meuret, and A. Polman, “Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires,” ACS Nano 15, 11385–11395 (2021).
[Crossref]

Cueff, S.

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

Cunha, J.

J. Cunha, T.-L. Guo, G. Della Valle, A. N. Koya, R. P. Zaccaria, and A. Alabastri, “Controlling light, heat, and vibrations in plasmonics and phononics,” Adv. Opt. Mater. 8, 2001225 (2020).
[Crossref]

D’Innocenzo, V.

Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” J. Am. Chem. Soc. 137, 10276–10281 (2015).
[Crossref]

Dai, H.-L.

T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5668 (1998).
[Crossref]

Damilano, B.

K. W. Mauser, M. Solà-Garcia, M. Liebtrau, B. Damilano, P.-M. Coulon, S. Vézian, P. A. Shields, S. Meuret, and A. Polman, “Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires,” ACS Nano 15, 11385–11395 (2021).
[Crossref]

Danesi, S.

S. Danesi and I. Alessandri, “Using optical resonances to control heat generation and propagation in silicon nanostructures,” Phys. Chem. Chem. Phys. 21, 11724–11730 (2019).
[Crossref]

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20, 15307–15315 (2018).
[Crossref]

Danielson, G.

H. Shanks, P. Maycock, P. Sidles, and G. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[Crossref]

Dao, T. D.

Darling, S. B.

S.-L. Wu, H. Chen, H.-L. Wang, X. Chen, H.-C. Yang, and S. B. Darling, “Solar-driven evaporators for water treatment: challenges and opportunities,” Environ. Sci. Water Res. Technol. 7, 24–39 (2021).
[Crossref]

David, T.

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

Davidson, B.

A. Esser, K. Seibert, H. Kurz, G. Parsons, C. Wang, B. Davidson, G. Lucovsky, and R. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” J. Non-Cryst. Solids 114, 573–575 (1989).
[Crossref]

Davydov, V. A.

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

Daz-Núñez, P.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

De Angelis, C.

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20, 15307–15315 (2018).
[Crossref]

de Galarreta, C. R.

de la Fuente, A. J.

F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodrguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

de S. Menezes, L.

P. Kepic, F. Ligmajer, M. Hrton, H. Ren, L. de S. Menezes, S. A. Maier, and T. Šikola, “Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible,” ACS Photon. 8, 1048–1057 (2021).
[Crossref]

Debasu, M. L.

M. L. Debasu, D. Ananias, I. Pastoriza-Santos, L. M. Liz-Marzán, J. Rocha, and L. D. Carlos, “All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation,” Adv. Mater. 25, 4868–4874 (2013).
[Crossref]

Decker, M.

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Della Valle, G.

J. Cunha, T.-L. Guo, G. Della Valle, A. N. Koya, R. P. Zaccaria, and A. Alabastri, “Controlling light, heat, and vibrations in plasmonics and phononics,” Adv. Opt. Mater. 8, 2001225 (2020).
[Crossref]

Delobbe, A.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

Demir, H. V.

V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, and A. I. Kuznetsov, “Lasing action in single subwavelength particles supporting supercavity modes,” ACS Nano 14, 7338–7346 (2020).
[Crossref]

M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
[Crossref]

Deng, T.

P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, and T. Deng, “Solar-driven interfacial evaporation,” Nat. Energy 3, 1031–1041 (2018).
[Crossref]

Di Carlo, A.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Ding, F.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Ding, H.-X.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Ding, S.-Y.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Dmitriev, P. A.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, and V. V. Vinogradov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photon. Rev. 12, 1700227 (2018).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17, 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

Do, N.

Dobosz, P.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref]

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Dominguez-Medina, S.

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6, 7177–7184 (2012).
[Crossref]

Dong, N.-N.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Downer, M.

M. Downer and C. Shank, “Ultrafast heating of silicon on sapphire by femtosecond optical pulses,” Phys. Rev. Lett. 56, 761–764 (1986).
[Crossref]

Dronnikov, V.

I. Talyzin, M. Samsonov, V. Samsonov, M. Y. Pushkar, and V. Dronnikov, “Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation,” Semiconductors 53, 947–953 (2019).
[Crossref]

Duan, Z.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11, 4445–4452 (2017).
[Crossref]

Duh, Y.-S.

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Durmusoglu, E. G.

M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
[Crossref]

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Efros, A. L.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[Crossref]

Eilenberger, F.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

Ekimov, E. A.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Eliceiri, M.

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

Elliott, S. R.

T. Hutter, F. M. Huang, S. R. Elliott, and S. Mahajan, “Near-field plasmonics of an individual dielectric nanoparticle above a metallic substrate,” J. Phys. Chem. C 117, 7784–7790 (2013).
[Crossref]

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[Crossref]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[Crossref]

El-Sharkawy, A.

A. El-Sharkawy, A. Abou El-Azm, M. Kenawy, A. Hillal, and H. Abu-Basha, “Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K,” Int. J. Thermophys. 4, 261–269 (1983).
[Crossref]

Emani, N. K.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domnguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13, 1042–1047 (2018).
[Crossref]

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92, 247403 (2004).
[Crossref]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Erwin, S. C.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[Crossref]

Esser, A.

A. Esser, K. Seibert, H. Kurz, G. Parsons, C. Wang, B. Davidson, G. Lucovsky, and R. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” J. Non-Cryst. Solids 114, 573–575 (1989).
[Crossref]

Evans, H. A.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

Evans, R. E.

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

Evlyukhin, A. B.

K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, “Revealing low-radiative modes of nanoresonators with internal Raman scattering,” JETP Lett. 110, 25–30 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

Ezhov, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Fahim, N. F.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Phys. 525, 907–914 (2013).
[Crossref]

Fan, J.-W.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Fan, S.

Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C.-W. Qiu, “Transforming heat transfer with thermal metamaterials and devices,” Nat. Rev. Mater. 6, 488–507 (2021).
[Crossref]

Fan, Y.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119, 28127–28135 (2015).
[Crossref]

Fang, W.

C.-A. Jong, W. Fang, C.-M. Lee, and T.-S. Chin, “Mechanical properties of phase-change recording media: GeSbTe films,” Jpn. J. Appl. Phys. 40, 3320–3325 (2001).
[Crossref]

Fang, Y.

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6, 7177–7184 (2012).
[Crossref]

Farahi, F.

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors 7, 3489–3534 (2007).
[Crossref]

Farinelli, W. A.

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

Fasold, S.

J. Berzinš, S. Indrišiūnas, S. Fasold, M. Steinert, O. Žukovskaja, D. Cialla-May, P. Gečys, S. M. Bäumer, T. Pertsch, and F. Setzpfandt, “Laser-induced spatially-selective tailoring of high-index dielectric metasurfaces,” Opt. Express 28, 1539–1553 (2020).
[Crossref]

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

Faupel, L. J.

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

Favaloro, T.

T. Favaloro, J.-H. Bahk, and A. Shakouri, “Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films,” Rev. Sci. Instrum. 86, 024903 (2015).
[Crossref]

Favre, L.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Fedotov, I. V.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Fedyanin, A. A.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Feldmann, J.

M. Li, T. Lohmuller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
[Crossref]

Feng, J.

C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, “Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I),” J. Phys. Chem. C 122, 15973–15978 (2018).
[Crossref]

J. Feng, K. Tian, D. Hu, S. Wang, S. Li, Y. Zeng, Y. Li, and G. Yang, “A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range,” Angew. Chem. 123, 8222–8226 (2011).
[Crossref]

Feng, W.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

Fennell, L.

R. Nemanich, D. Biegelsen, R. Street, and L. Fennell, “Raman scattering from solid silicon at the melting temperature,” Phys. Rev. B 29, 6005–6007 (1984).
[Crossref]

Fenollosa, R.

E. Xifre-Perez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano 7, 664–668 (2012).
[Crossref]

Fernández-Domnguez, A. I.

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Ferrari, A.

H. Scheel, S. Khachadorian, M. Cantoro, A. Colli, A. Ferrari, and C. Thomsen, “Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures,” Phys. Status Solidi B 245, 2090–2093 (2008).
[Crossref]

Fischer, T.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

Flauraud, V.

V. Flauraud, M. Reyes, R. Paniagua-Dominguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photon. 4, 1913–1919 (2017).
[Crossref]

Fofang, N. T.

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Franckevicius, M.

E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
[Crossref]

Frizyuk, K.

K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, “Revealing low-radiative modes of nanoresonators with internal Raman scattering,” JETP Lett. 110, 25–30 (2019).
[Crossref]

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97, 085414 (2018).
[Crossref]

Fu, Y. H.

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domnguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13, 1042–1047 (2018).
[Crossref]

Fujita, K.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Fukuda, T.

H. Koh, P. Rudolph, N. Schäfer, K. Umetsu, and T. Fukuda, “The effect of various thermal treatments on supercooling of PbTe melts,” Mater. Sci. Eng. B 34, 199–203 (1995).
[Crossref]

Fukuta, A.

K. Takimoto, A. Fukuta, Y. Yamamoto, N. Yoshida, T. Itoh, and S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299, 314–317 (2002).
[Crossref]

Furasova, A.

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Gage, E. C.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Gai, Z.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14, 5268–5277 (2020).
[Crossref]

Gaiduk, A.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
[Crossref]

Gaitan, M.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73, 4117–4123 (2001).
[Crossref]

Gallas, B.

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10, 7761–7767 (2016).
[Crossref]

Gamelin, D. R.

V. A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, and D. R. Gamelin, “Tunable dual emission in doped semiconductor nanocrystals,” Nano Lett. 10, 3670–3674 (2010).
[Crossref]

Ganapati, V.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. USA 116, 15356–15361 (2019).
[Crossref]

Gandolfi, M.

M. Celebrano, D. Rocco, and M. Gandolfi, et al., Optical tuning of dielectric nanoantennas for thermo-optically reconfigurable nonlinear metasurfaces,” Opt. Lett. 46, 2453–2456 (2021).
[Crossref]

S. Danesi, M. Gandolfi, L. Carletti, N. Bontempi, C. De Angelis, F. Banfi, and I. Alessandri, “Photo-induced heat generation in non-plasmonic nanoantennas,” Phys. Chem. Chem. Phys. 20, 15307–15315 (2018).
[Crossref]

Gao, W.-B.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Gao, Y.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11, 4445–4452 (2017).
[Crossref]

Garca de Abajo, F. J.

G. Baffou, R. Quidant, and F. J. Garca de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[Crossref]

Garca-Solé, J.

P. Haro-González, L. Martnez-Maestro, I. Martn, J. Garca-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

Garcia-Guirado, J.

J. Garcia-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enhanced chiral sensing with dielectric nanoresonators,” Nano Lett. 20, 585–591 (2019).
[Crossref]

Ge, C.

C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, “Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I),” J. Phys. Chem. C 122, 15973–15978 (2018).
[Crossref]

Gecys, P.

J. Berzinš, S. Indrišiūnas, S. Fasold, M. Steinert, O. Žukovskaja, D. Cialla-May, P. Gečys, S. M. Bäumer, T. Pertsch, and F. Setzpfandt, “Laser-induced spatially-selective tailoring of high-index dielectric metasurfaces,” Opt. Express 28, 1539–1553 (2020).
[Crossref]

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

Gemo, E.

George, A.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

Gerini, G.

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

Gervinskas, G.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Phys. 525, 907–914 (2013).
[Crossref]

Ghanbaja, J.

G. P. Zograf, A. S. Timin, A. R. Muslimov, I. I. Shishkin, A. Nominé, J. Ghanbaja, P. Ghosh, Q. Li, M. V. Zyuzin, and S. V. Makarov, “All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells,” Laser Photon. Rev. 14, 1900082 (2020).
[Crossref]

A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
[Crossref]

Ghasemi, H.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M. M. Rahman, T. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Ghaznavi, H.

J. Beik, M. Khateri, Z. Khosravi, S. K. Kamrava, S. Kooranifar, H. Ghaznavi, and A. Shakeri-Zadeh, “Gold nanoparticles in combinatorial cancer therapy strategies,” Coord. Chem. Rev. 387, 299–324 (2019).
[Crossref]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Ghosh, G.

G. Ghosh, Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).

Ghosh, P.

G. P. Zograf, A. S. Timin, A. R. Muslimov, I. I. Shishkin, A. Nominé, J. Ghanbaja, P. Ghosh, Q. Li, M. V. Zyuzin, and S. V. Makarov, “All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells,” Laser Photon. Rev. 14, 1900082 (2020).
[Crossref]

Giannini, V.

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Gigli, G.

B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, and A. Latini, “On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites,” Sci. Rep. 6, 31896 (2016).
[Crossref]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[Crossref]

Gokemeijer, N.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Golden, J. S.

T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol. 43, 6082–6087 (2009).
[Crossref]

Gonzaga, L.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Gonzalez, J.

J. Gonzalez, E. Moya, and J. Chervin, “Anharmonic effects in light scattering due to optical phonons in CuGaS2,” Phys. Rev. B 54, 4707–4713 (1996).
[Crossref]

Gonzalez-Hernandez, J.

E. Morales-Sanchez, E. Prokhorov, J. Gonzalez-Hernandez, and A. Mendoza-Galvan, “Structural, electric and kinetic parameters of ternary alloys of GeSbTe,” Thin Solid Films 471, 243–247 (2005).
[Crossref]

González-Izquierdo, J.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

González-Rubio, G.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Gorbachev, V.

A. Okhotin, A. Pushkarskii, and V. Gorbachev, Thermophysical Properties of Semiconductors (Atomizdat, 1972).

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Govorov, A. O.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

Grabowski, B.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref]

Granda, J. D. V.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

Grange, R.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

Green, K.

K. Green, K. Huang, H. Pan, G. Han, and S. F. Lim, “Optical temperature sensing with infrared excited upconversion nanoparticles,” Front. Chem. 6, 416 (2018).
[Crossref]

Grigoropoulos, C. P.

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

O. Yavas, N. Do, A. C. Tam, P. Leung, W. P. Leung, H. K. Park, C. P. Grigoropoulos, J. Boneberg, and P. Leiderer, “Temperature dependence of optical properties for amorphous silicon at wavelengths of 632.8 and 752 nm,” Opt. Lett. 18, 540–542 (1993).
[Crossref]

Grinblat, G.

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11, 953–960 (2017).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Grove, A. S.

A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, 1967).

Gu, M.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009).
[Crossref]

Guan, B.-O.

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

Guerrero-Martínez, A.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Guo, T.-L.

J. Cunha, T.-L. Guo, G. Della Valle, A. N. Koya, R. P. Zaccaria, and A. Alabastri, “Controlling light, heat, and vibrations in plasmonics and phononics,” Adv. Opt. Mater. 8, 2001225 (2020).
[Crossref]

Gurbatov, S. O.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

Ha, S. T.

V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, and A. I. Kuznetsov, “Lasing action in single subwavelength particles supporting supercavity modes,” ACS Nano 14, 7338–7346 (2020).
[Crossref]

M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
[Crossref]

T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Dominguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov, “Collective Mie resonances for directional on-chip nanolasers,” Nano Lett. 20, 5655–5661 (2020).
[Crossref]

R. Paniagua-Domnguez, S. T. Ha, and A. I. Kuznetsov, “Active and tunable nanophotonics with dielectric nanoantennas,” Proc. IEEE 108, 749–771 (2019).
[Crossref]

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domnguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13, 1042–1047 (2018).
[Crossref]

Ha, S.-T.

S.-T. Ha, C. Shen, J. Zhang, and Q. Xiong, “Laser cooling of organic–inorganic lead halide perovskites,” Nat. Photonics 10, 115–121 (2016).
[Crossref]

Haftel, M. I.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[Crossref]

Hagiwara, Y.

Y. Hagiwara, K. Takahata, J. Torimoto, and J. Yamamoto, “CO2 Raman thermometer improvement: comparing hot band and stokes and anti-stokes Raman scattering thermometers,” J. Raman Spectrosc. 49, 1776–1781 (2018).
[Crossref]

Halas, N. J.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

L. R. Hirsch, R. J. Stafford, J. Bankson, S. R. Sershen, B. Rivera, R. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Han, G.

K. Green, K. Huang, H. Pan, G. Han, and S. F. Lim, “Optical temperature sensing with infrared excited upconversion nanoparticles,” Front. Chem. 6, 416 (2018).
[Crossref]

Han, J.

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

Han, T.

Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C.-W. Qiu, “Transforming heat transfer with thermal metamaterials and devices,” Nat. Rev. Mater. 6, 488–507 (2021).
[Crossref]

Hanawa, F.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Handa, T.

T. Handa, H. Tahara, T. Aharen, and Y. Kanemitsu, “Large negative thermo-optic coefficients of a lead halide perovskite,” Sci. Adv. 5, eaax0786 (2019).
[Crossref]

Haro, E.

E. Haro, M. Balkanski, R. Wallis, and K. Wanser, “Theory of the anharmonic damping and shift of the Raman mode in silicon,” Phys. Rev. B 34, 5358–5367 (1986).
[Crossref]

M. Balkanski, R. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Phys. Rev. B 28, 1928–1934 (1983).
[Crossref]

Haro-González, P.

P. Haro-González, L. Martnez-Maestro, I. Martn, J. Garca-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

Harris, T. J.

T. J. Harris and A. A. C. Kim, “Hair removal with coated metal nanoparticles,” U.S. patent9,421,259 (6September2016).

Hart, T.

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[Crossref]

Hartley, J. S.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Phys. 525, 907–914 (2013).
[Crossref]

Hasan, M.

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97, 085414 (2018).
[Crossref]

Hasegawa, E.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68, 1272–1281 (1990).
[Crossref]

Hassayoun, L.

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111, 243103 (2017).
[Crossref]

Hattori, K.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Haynes, W. M.

W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2014).

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. Bankson, S. R. Sershen, B. Rivera, R. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Heck, S. C.

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Hegde, R. S.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photon. 4, 1076–1082 (2017).
[Crossref]

Hellman, F.

B. Zink, R. Pietri, and F. Hellman, “Thermal conductivity and specific heat of thin-film amorphous silicon,” Phys. Rev. Lett. 96, 055902 (2006).
[Crossref]

Hemmer, P.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Hemmer, P. R.

M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
[Crossref]

Herman, I. P.

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B 43, 2299–2304 (1991).
[Crossref]

Herzig, T.

M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
[Crossref]

Hickel, T.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref]

Higgs, D.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

Hillal, A.

A. El-Sharkawy, A. Abou El-Azm, M. Kenawy, A. Hillal, and H. Abu-Basha, “Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K,” Int. J. Thermophys. 4, 261–269 (1983).
[Crossref]

Hilsenrath, J.

J. Hilsenrath, Tables of Thermal Properties of Gases: Comprising Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen, and Steam (U.S. Department of Commerce, National Bureau of Standards, 1955), Vol. 564.

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. Bankson, S. R. Sershen, B. Rivera, R. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Ho, C. Y.

R. Powell, C. Y. Ho, and P. E. Liley, Thermal Conductivity of Selected Materials (U.S. Department of Commerce, National Bureau of Standards Washington, 1966), Vol. 8.

Ho, P. S.

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W.-Y. Shih, “Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films,” J. Appl. Phys. 85, 6421–6424 (1999).
[Crossref]

Hoang, T. X.

T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Dominguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov, “Collective Mie resonances for directional on-chip nanolasers,” Nano Lett. 20, 5655–5661 (2020).
[Crossref]

Holzrichter, J.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. USA 116, 15356–15361 (2019).
[Crossref]

Hon, P. W. C.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

Hong, S.

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

Hopkins, B.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Hotta, I.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Y. Nagasaki, M. Suzuki, I. Hotta, and J. Takahara, “Control of Si-based all-dielectric printing color through oxidation,” ACS Photon. 5, 1460–1466 (2018).
[Crossref]

Hrton, M.

P. Kepic, F. Ligmajer, M. Hrton, H. Ren, L. de S. Menezes, S. A. Maier, and T. Šikola, “Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible,” ACS Photon. 8, 1048–1057 (2021).
[Crossref]

Hsia, Y.-T.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Hsu, L.

Hu, D.

J. Feng, K. Tian, D. Hu, S. Wang, S. Li, Y. Zeng, Y. Li, and G. Yang, “A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range,” Angew. Chem. 123, 8222–8226 (2011).
[Crossref]

Hu, M.

C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, “Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I),” J. Phys. Chem. C 122, 15973–15978 (2018).
[Crossref]

Huang, F. M.

T. Hutter, F. M. Huang, S. R. Elliott, and S. Mahajan, “Near-field plasmonics of an individual dielectric nanoparticle above a metallic substrate,” J. Phys. Chem. C 117, 7784–7790 (2013).
[Crossref]

Huang, K.

K. Green, K. Huang, H. Pan, G. Han, and S. F. Lim, “Optical temperature sensing with infrared excited upconversion nanoparticles,” Front. Chem. 6, 416 (2018).
[Crossref]

Huang, L.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

Huang, X.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M. M. Rahman, T. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[Crossref]

Huang, Y.

C. Ma, J. Yan, Y. Huang, C. Wang, and G. Yang, “The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion,” Sci. Adv. 4, eaas9894 (2018).
[Crossref]

Huang, Z.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119, 28127–28135 (2015).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Hugall, J. T.

J. T. Hugall and J. J. Baumberg, “Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds,” Nano Lett. 15, 2600–2604 (2015).
[Crossref]

Hutter, T.

T. Hutter, F. M. Huang, S. R. Elliott, and S. Mahajan, “Near-field plasmonics of an individual dielectric nanoparticle above a metallic substrate,” J. Phys. Chem. C 117, 7784–7790 (2013).
[Crossref]

Huttmann, G.

G. Huttmann and R. Birngruber, “On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins,” IEEE J. Sel. Top. Quantum Electron. 5, 954–962 (1999).
[Crossref]

Iglesias-de la Cruz, M. C.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Indrišionas, S.

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

Indrišiunas, S.

Inoue, Y.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Iorsh, I. V.

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

Ishii, S.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index germanium nanoparticles,” Adv. Opt. Mater. 5, 1600902 (2017).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, “Solar water heating and vaporization with silicon nanoparticles at Mie resonances,” Opt. Mater. Express 6, 640–648 (2016).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120, 2343–2348 (2016).
[Crossref]

Itagi, A.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Itoh, T.

K. Takimoto, A. Fukuta, Y. Yamamoto, N. Yoshida, T. Itoh, and S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299, 314–317 (2002).
[Crossref]

Ivanov, A.

Ivanova, E.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Iyer, P. P.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (American Association of Physics Teachers, 1999).

Jadli, I.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111, 243103 (2017).
[Crossref]

Jagadish, C.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

Jahani, Y.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23, 217–228 (2008).
[Crossref]

Janssen, N.

V. A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, and D. R. Gamelin, “Tunable dual emission in doped semiconductor nanocrystals,” Nano Lett. 10, 3670–3674 (2010).
[Crossref]

Jaque, D.

P. Haro-González, L. Martnez-Maestro, I. Martn, J. Garca-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodrguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Jelezko, F.

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

Jeon, K.-S.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Jing, J.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

Joe, E. K.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[Crossref]

Johansson, P.

N. Odebo Länk, P. Johansson, and M. Källl, “Optical tweezing and photothermal properties of resonant dielectric and metallic nanospheres,” ACS Photon. 7, 2405–2412 (2020).
[Crossref]

John, J.

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

Jones, S.

P. Karpinski, S. Jones, H. Špová-Jungová, R. Verre, and M. Käll, “Optical rotation and thermometry of laser tweezed silicon nanorods,” Nano Lett. 20, 6494–6501 (2020).
[Crossref]

Jong, C.-A.

C.-A. Jong, W. Fang, C.-M. Lee, and T.-S. Chin, “Mechanical properties of phase-change recording media: GeSbTe films,” Jpn. J. Appl. Phys. 40, 3320–3325 (2001).
[Crossref]

Jorge, P.

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors 7, 3489–3534 (2007).
[Crossref]

Ju, G.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Juarranz, A.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Juodkazis, S.

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Phys. 525, 907–914 (2013).
[Crossref]

Kalcheim, Y.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

Käll, M.

P. Karpinski, S. Jones, H. Špová-Jungová, R. Verre, and M. Käll, “Optical rotation and thermometry of laser tweezed silicon nanorods,” Nano Lett. 20, 6494–6501 (2020).
[Crossref]

Källl, M.

N. Odebo Länk, P. Johansson, and M. Källl, “Optical tweezing and photothermal properties of resonant dielectric and metallic nanospheres,” ACS Photon. 7, 2405–2412 (2020).
[Crossref]

N. Bosio, H. Šípová Jungová, N. O. Länk, T. J. Antosiewicz, R. Verre, and M. Källl, “Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparison,” ACS Photon. 6, 1556–1564 (2019).
[Crossref]

D. G. Baranov, R. Verre, P. Karpinski, and M. Källl, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photon. 5, 2730–2736 (2018).
[Crossref]

Kamali, K. Z.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

Kamrava, S. K.

J. Beik, M. Khateri, Z. Khosravi, S. K. Kamrava, S. Kooranifar, H. Ghaznavi, and A. Shakeri-Zadeh, “Gold nanoparticles in combinatorial cancer therapy strategies,” Coord. Chem. Rev. 387, 299–324 (2019).
[Crossref]

Kandasamy, S.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Phys. 525, 907–914 (2013).
[Crossref]

Kaneko, A.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Kanemitsu, Y.

T. Handa, H. Tahara, T. Aharen, and Y. Kanemitsu, “Large negative thermo-optic coefficients of a lead halide perovskite,” Sci. Adv. 5, eaax0786 (2019).
[Crossref]

Kapeliovich, B.

S. Anisimov, B. Kapeliovich, and T. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66, 375–377 (1974).

Karabchevsky, A.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Karimzadeh, R.

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42, 783–789 (2010).
[Crossref]

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi A 207, 2303–2310 (2010).
[Crossref]

Karns, D.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Karouta, F.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

Karpinski, P.

P. Karpinski, S. Jones, H. Špová-Jungová, R. Verre, and M. Käll, “Optical rotation and thermometry of laser tweezed silicon nanorods,” Nano Lett. 20, 6494–6501 (2020).
[Crossref]

D. G. Baranov, R. Verre, P. Karpinski, and M. Källl, “Anapole-enhanced intrinsic Raman scattering from silicon nanodisks,” ACS Photon. 5, 2730–2736 (2018).
[Crossref]

Kashyap, R.

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[Crossref]

Kastler, A.

A. Kastler, “Some suggestions concerning the production and detection by optical means of inequalities in the populations of levels of spatial quantization in atoms. Application to the Stern and Gerlach and magnetic resonance experiments,” J. Phys. Radium 11, 255–265 (1950).
[Crossref]

Kato, K.

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Kauvar, A. N.

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

Kawakami, M.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68, 1272–1281 (1990).
[Crossref]

Keeler, G. A.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9, 2507 (2018).
[Crossref]

Kenawy, M.

A. El-Sharkawy, A. Abou El-Azm, M. Kenawy, A. Hillal, and H. Abu-Basha, “Thermophysical properties of polycrystalline PbS, PbSe, and PbTe in the temperature range 300–700 K,” Int. J. Thermophys. 4, 261–269 (1983).
[Crossref]

Kennedy, T. A.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[Crossref]

Kepic, P.

P. Kepic, F. Ligmajer, M. Hrton, H. Ren, L. de S. Menezes, S. A. Maier, and T. Šikola, “Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible,” ACS Photon. 8, 1048–1057 (2021).
[Crossref]

Khachadorian, S.

H. Scheel, S. Khachadorian, M. Cantoro, A. Colli, A. Ferrari, and C. Thomsen, “Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures,” Phys. Status Solidi B 245, 2090–2093 (2008).
[Crossref]

Khardikov, V. V.

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
[Crossref]

Khateri, M.

J. Beik, M. Khateri, Z. Khosravi, S. K. Kamrava, S. Kooranifar, H. Ghaznavi, and A. Shakeri-Zadeh, “Gold nanoparticles in combinatorial cancer therapy strategies,” Coord. Chem. Rev. 387, 299–324 (2019).
[Crossref]

Khattak, H. K.

H. K. Khattak, P. Bianucci, and A. D. Slepkov, “Linking plasma formation in grapes to microwave resonances of aqueous dimers,” Proc. Natl. Acad. Sci. USA 116, 4000–4005 (2019).
[Crossref]

Khatua, S.

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
[Crossref]

Khokhlov, A. R.

M. I. Tribelsky, A. E. Miroshnichenko, Y. S. Kivshar, B. S. Luk’yanchuk, and A. R. Khokhlov, “Laser pulse heating of spherical metal particles,” Phys. Rev. X 1, 021024 (2011).
[Crossref]

Khosravi, Z.

J. Beik, M. Khateri, Z. Khosravi, S. K. Kamrava, S. Kooranifar, H. Ghaznavi, and A. Shakeri-Zadeh, “Gold nanoparticles in combinatorial cancer therapy strategies,” Coord. Chem. Rev. 387, 299–324 (2019).
[Crossref]

Kim, A. A. C.

T. J. Harris and A. A. C. Kim, “Hair removal with coated metal nanoparticles,” U.S. patent9,421,259 (6September2016).

Kim, H. M.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Kim, K.-B.

H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2 Sb2 Te5,” Appl. Phys. Lett. 89, 151904 (2006).
[Crossref]

Kittel, C.

C. Kittel and P. McEuen, Introduction to Solid State Physics (Wiley, 1976), Vol. 8.

Kivshar, Y.

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

G. P. Zograf, D. Ryabov, V. Rutckaia, P. Voroshilov, P. Tonkaev, D. V. Permyakov, Y. Kivshar, and S. V. Makarov, “Stimulated Raman scattering from Mie-resonant subwavelength nanoparticles,” Nano Lett. 20, 5786–5791 (2020).
[Crossref]

K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear light generation in topological nanostructures,” Nat. Nanotechnol. 14, 126–130 (2019).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Kivshar, Y. S.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photon. 6, 802–814 (2019).
[Crossref]

E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
[Crossref]

E. Tiguntseva, G. P. Zograf, F. E. Komissarenko, D. A. Zuev, A. A. Zakhidov, S. V. Makarov, and Y. S. Kivshar, “Light-emitting halide perovskite nanoantennas,” Nano Lett. 18, 1185–1190 (2018).
[Crossref]

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photon. 5, 1359–1364 (2018).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

M. V. Rybin, K. B. Samusev, S. Y. Lukashenko, Y. S. Kivshar, and M. F. Limonov, “Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure,” Sci. Rep. 6, 30773 (2016).
[Crossref]

D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3, 1241–1255 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. I. Tribelsky, A. E. Miroshnichenko, Y. S. Kivshar, B. S. Luk’yanchuk, and A. R. Khokhlov, “Laser pulse heating of spherical metal particles,” Phys. Rev. X 1, 021024 (2011).
[Crossref]

Kivshar, Y. U.

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

Kleemann, M.-E.

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

Knight, M. W.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

Koenderink, A. F.

A. Vaskin, R. Kolkowski, A. F. Koenderink, and I. Staude, “Light-emitting metasurfaces,” Nanophotonics 8, 1151–1198 (2019).
[Crossref]

Koh, H.

H. Koh, P. Rudolph, N. Schäfer, K. Umetsu, and T. Fukuda, “The effect of various thermal treatments on supercooling of PbTe melts,” Mater. Sci. Eng. B 34, 199–203 (1995).
[Crossref]

Koh, W.-K.

M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
[Crossref]

Kolkowski, R.

A. Vaskin, R. Kolkowski, A. F. Koenderink, and I. Staude, “Light-emitting metasurfaces,” Nanophotonics 8, 1151–1198 (2019).
[Crossref]

Kolotova, L.

A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
[Crossref]

S. Makarov, L. Kolotova, S. Starikov, U. Zywietz, and B. Chichkov, “Resonant silicon nanoparticles with controllable crystalline states and nonlinear optical responses,” Nanoscale 10, 11403–11409 (2018).
[Crossref]

Komar, A.

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Komissarenko, F.

E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
[Crossref]

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

A. S. Zalogina, R. Savelev, E. V. Ushakova, G. Zograf, F. Komissarenko, V. Milichko, S. Makarov, D. Zuev, and I. Shadrivov, “Purcell effect in active diamond nanoantennas,” Nanoscale 10, 8721–8727 (2018).
[Crossref]

Komissarenko, F. E.

E. Tiguntseva, G. P. Zograf, F. E. Komissarenko, D. A. Zuev, A. A. Zakhidov, S. V. Makarov, and Y. S. Kivshar, “Light-emitting halide perovskite nanoantennas,” Nano Lett. 18, 1185–1190 (2018).
[Crossref]

Kong, X.

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111, 15119–15124 (2007).
[Crossref]

Kooranifar, S.

J. Beik, M. Khateri, Z. Khosravi, S. K. Kamrava, S. Kooranifar, H. Ghaznavi, and A. Shakeri-Zadeh, “Gold nanoparticles in combinatorial cancer therapy strategies,” Coord. Chem. Rev. 387, 299–324 (2019).
[Crossref]

Korgel, B.

I. Rodriguez, L. Shi, X. Lu, B. Korgel, R. Alvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6, 5666–5670 (2014).
[Crossref]

Koroteev, N.

N. Koroteev and I. L. Shumai, Physics of High-Power Laser Radiation (in Russian) (Nauka, 1991).

Köse, M. E.

M. E. Köse, B. F. Carroll, and K. S. Schanze, “Preparation and spectroscopic properties of multiluminophore luminescent oxygen and temperature sensor films,” Langmuir 21, 9121–9129 (2005).
[Crossref]

Koshelev, K.

K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

Kositratna, G.

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

Koya, A. N.

J. Cunha, T.-L. Guo, G. Della Valle, A. N. Koya, R. P. Zaccaria, and A. Alabastri, “Controlling light, heat, and vibrations in plasmonics and phononics,” Adv. Opt. Mater. 8, 2001225 (2020).
[Crossref]

Krasilin, A. A.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, and V. V. Vinogradov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photon. Rev. 12, 1700227 (2018).
[Crossref]

Krasnok, A.

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97, 085414 (2018).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Krasnok, A. E.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

Kravchenko, I.

S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear light generation in topological nanostructures,” Nat. Nanotechnol. 14, 126–130 (2019).
[Crossref]

Krawczyk, M.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photon. 4, 1076–1082 (2017).
[Crossref]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]

Kreuzer, M.

Kristensen, A.

S. Raza and A. Kristensen, “Raman scattering in high-refractive-index nanostructures,” Nanophotonics 10, 1197–1209 (2020).
[Crossref]

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Krivitsky, L.

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

Kruk, S.

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]

S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear light generation in topological nanostructures,” Nat. Nanotechnol. 14, 126–130 (2019).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

Kubo, M.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Kuchmizhak, A.

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111, 243103 (2017).
[Crossref]

Kuchmizhak, A. A.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

Kucsko, G.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Kudryashov, S.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Kudryashov, S. I.

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

Kui, H.

K. Tsang, H. Kui, and K. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
[Crossref]

Kuksin, A.

S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, and E. Ubyivovk, “Efficient second-harmonic generation in nanocrystalline silicon nanoparticles,” Nano Lett. 17, 3047–3053 (2017).
[Crossref]

Kulikova, L. F.

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

Kulinich, S. A.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

Kullak-Ublick, G. A.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14, 5268–5277 (2020).
[Crossref]

Kulzer, F.

Küpper, J.

M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
[Crossref]

Kurochkin, I.

Kurz, H.

A. Esser, K. Seibert, H. Kurz, G. Parsons, C. Wang, B. Davidson, G. Lucovsky, and R. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” J. Non-Cryst. Solids 114, 573–575 (1989).
[Crossref]

Kusiak, A.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2 Sb2 Te5 interface from room temperature up to 400 C,” J. Appl. Phys. 107, 044314 (2010).
[Crossref]

Kuznetsov, A.

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

Kuznetsov, A. I.

M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
[Crossref]

T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Dominguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov, “Collective Mie resonances for directional on-chip nanolasers,” Nano Lett. 20, 5655–5661 (2020).
[Crossref]

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, and A. I. Kuznetsov, “Lasing action in single subwavelength particles supporting supercavity modes,” ACS Nano 14, 7338–7346 (2020).
[Crossref]

R. Paniagua-Domnguez, S. T. Ha, and A. I. Kuznetsov, “Active and tunable nanophotonics with dielectric nanoantennas,” Proc. IEEE 108, 749–771 (2019).
[Crossref]

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domnguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13, 1042–1047 (2018).
[Crossref]

G. P. Zograf, Y. F. Yu, K. V. Baryshnikova, A. I. Kuznetsov, and S. V. Makarov, “Local crystallization of a resonant amorphous silicon nanoparticle for the implementation of optical nanothermometry,” JETP Lett. 107, 699–704 (2018).
[Crossref]

V. Flauraud, M. Reyes, R. Paniagua-Dominguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photon. 4, 1913–1919 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Kwon, M.-H.

H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2 Sb2 Te5,” Appl. Phys. Lett. 89, 151904 (2006).
[Crossref]

Ladutenko, K.

Laesecke, A.

K. Stephan and A. Laesecke, “The thermal conductivity of fluid air,” J. Phys. Chem. Ref. Data 14, 227–234 (1985).
[Crossref]

Lagarkov, A.

Lamanna, E.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Länk, N. O.

N. Bosio, H. Šípová Jungová, N. O. Länk, T. J. Antosiewicz, R. Verre, and M. Källl, “Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparison,” ACS Photon. 6, 1556–1564 (2019).
[Crossref]

Larin, A.

A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
[Crossref]

Latini, A.

B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, and A. Latini, “On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites,” Sci. Rep. 6, 31896 (2016).
[Crossref]

Lax, B.

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[Crossref]

Le Comber, P.

W. Spear and P. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun. 17, 1193–1196 (1975).
[Crossref]

Lee, B.-S.

H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2 Sb2 Te5,” Appl. Phys. Lett. 89, 151904 (2006).
[Crossref]

Lee, C.-M.

C.-A. Jong, W. Fang, C.-M. Lee, and T.-S. Chin, “Mechanical properties of phase-change recording media: GeSbTe films,” Jpn. J. Appl. Phys. 40, 3320–3325 (2001).
[Crossref]

Lee, H.

J.-M. Nam, J.-W. Oh, H. Lee, and Y. D. Suh, “Plasmonic nanogap-enhanced Raman scattering with nanoparticles,” Acc. Chem. Res. 49, 2746–2755 (2016).
[Crossref]

Lee, H. H.

K. Y. Suh and H. H. Lee, “Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting,” Adv. Funct. Mater. 12, 405–413 (2002).
[Crossref]

Legendre, B.

L. Balde, B. Legendre, and A. Balkhi, “Etude du diagramme d’equilibre entre phases du systeme ternaire germanium-etain-tellure,” J. Alloys Compd. 216, 285–293 (1995).
[Crossref]

Leiderer, P.

Leitis, A.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref]

Lencer, D.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]

Lermusiaux, L.

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Leung, P.

Leung, W. P.

Levinshtein, M.

M. Levinshtein, Handbook Series on Semiconductor Parameters (World Scientific, 1997), Vol. 1.

Levy, U.

N. Sharma, J. Bar-David, N. Mazurski, and U. Levy, “Metasurfaces for enhancing light absorption in thermoelectric photodetectors,” ACS Photon. 7, 2468–2473 (2020).
[Crossref]

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

Lewi, T.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

T. Lewi, N. A. Butakov, and J. A. Schuller, “Thermal tuning capabilities of semiconductor metasurface resonators,” Nanophotonics 8, 331–338 (2018).
[Crossref]

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

Li, B.

Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C.-W. Qiu, “Transforming heat transfer with thermal metamaterials and devices,” Nat. Rev. Mater. 6, 488–507 (2021).
[Crossref]

J. Yan, Y. Li, Z. Lou, C. Ma, G. Yang, and B. Li, “Active tuning of Mie resonances to realize sensitive photothermal measurement of single nanoparticles,” Mater. Horiz. 7, 1542–1551 (2020).
[Crossref]

Li, F.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

Li, G.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

G. Li, S. Zhang, and T. Zentgraf, “Nonlinear photonic metasurfaces,” Nat. Rev. Mater. 2, 17010 (2017).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–658 (1980).
[Crossref]

Li, J.

Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C.-W. Qiu, “Transforming heat transfer with thermal metamaterials and devices,” Nat. Rev. Mater. 6, 488–507 (2021).
[Crossref]

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

Li, J.-F.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Li, M.

M. Li, T. Lohmuller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
[Crossref]

Li, Q.

G. P. Zograf, A. S. Timin, A. R. Muslimov, I. I. Shishkin, A. Nominé, J. Ghanbaja, P. Ghosh, Q. Li, M. V. Zyuzin, and S. V. Makarov, “All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells,” Laser Photon. Rev. 14, 1900082 (2020).
[Crossref]

Li, S.

J. Feng, K. Tian, D. Hu, S. Wang, S. Li, Y. Zeng, Y. Li, and G. Yang, “A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range,” Angew. Chem. 123, 8222–8226 (2011).
[Crossref]

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7, 3102–3105 (2007).
[Crossref]

Li, W.

Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C.-W. Qiu, “Transforming heat transfer with thermal metamaterials and devices,” Nat. Rev. Mater. 6, 488–507 (2021).
[Crossref]

Li, X.

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

Li, Y.

Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C.-W. Qiu, “Transforming heat transfer with thermal metamaterials and devices,” Nat. Rev. Mater. 6, 488–507 (2021).
[Crossref]

J. Yan, Y. Li, Z. Lou, C. Ma, G. Yang, and B. Li, “Active tuning of Mie resonances to realize sensitive photothermal measurement of single nanoparticles,” Mater. Horiz. 7, 1542–1551 (2020).
[Crossref]

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11, 953–960 (2017).
[Crossref]

J. Feng, K. Tian, D. Hu, S. Wang, S. Li, Y. Zeng, Y. Li, and G. Yang, “A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range,” Angew. Chem. 123, 8222–8226 (2011).
[Crossref]

Y. Li and W. Ching, “Band structures of all polycrystalline forms of silicon dioxide,” Phys. Rev. B 31, 2172–2179 (1985).
[Crossref]

Lide, D.

D. Lide, Handbook of Chemistry and Physics, 81st ed. (CRC Press, 2000), Sect. 11.

Liebtrau, M.

K. W. Mauser, M. Solà-Garcia, M. Liebtrau, B. Damilano, P.-M. Coulon, S. Vézian, P. A. Shields, S. Meuret, and A. Polman, “Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires,” ACS Nano 15, 11385–11395 (2021).
[Crossref]

Ligmajer, F.

P. Kepic, F. Ligmajer, M. Hrton, H. Ren, L. de S. Menezes, S. A. Maier, and T. Šikola, “Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible,” ACS Photon. 8, 1048–1057 (2021).
[Crossref]

Liley, P. E.

R. Powell, C. Y. Ho, and P. E. Liley, Thermal Conductivity of Selected Materials (U.S. Department of Commerce, National Bureau of Standards Washington, 1966), Vol. 8.

Lim, D.-K.

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Lim, S. F.

C. Bradac, S. F. Lim, H.-C. Chang, and I. Aharonovich, “Optical nanoscale thermometry: from fundamental mechanisms to emerging practical applications,” Adv. Opt. Mater. 8, 2000183 (2020).
[Crossref]

K. Green, K. Huang, H. Pan, G. Han, and S. F. Lim, “Optical temperature sensing with infrared excited upconversion nanoparticles,” Front. Chem. 6, 416 (2018).
[Crossref]

Lima, P. P.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Limonov, M. F.

M. V. Rybin, K. B. Samusev, S. Y. Lukashenko, Y. S. Kivshar, and M. F. Limonov, “Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure,” Sci. Rep. 6, 30773 (2016).
[Crossref]

Lin, C. P.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[Crossref]

Lin, C.-T.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M. M. Rahman, T. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Lin, K.-H.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Lin, L.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang, “Single quantum dots as local temperature markers,” Nano Lett. 7, 3102–3105 (2007).
[Crossref]

Linic, S.

U. Aslam, V. G. Rao, S. Chavez, and S. Linic, “Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures,” Nat. Catal. 1, 656–665 (2018).
[Crossref]

Link, S.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6, 7177–7184 (2012).
[Crossref]

Linklater, D.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Liu, M.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref]

Liu, S.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9, 2507 (2018).
[Crossref]

S. Liu, A. Vaskin, and S. Addamane, et al., “Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation,” Nano Lett. 18, 6906–6914 (2018).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Liu, X.

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
[Crossref]

Liu, Z.

Z. Huang, J. Wang, Z. Liu, G. Xu, Y. Fan, H. Zhong, B. Cao, C. Wang, and K. Xu, “Strong-field-enhanced spectroscopy in silicon nanoparticle electric and magnetic dipole resonance near a metal surface,” J. Phys. Chem. C 119, 28127–28135 (2015).
[Crossref]

Liz-Marzán, L. M.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

M. L. Debasu, D. Ananias, I. Pastoriza-Santos, L. M. Liz-Marzán, J. Rocha, and L. D. Carlos, “All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation,” Adv. Mater. 25, 4868–4874 (2013).
[Crossref]

Llombart, P.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Lloyd, J. R.

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

Lo, P. K.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Lo, Y.-P.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Locascio, L. E.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73, 4117–4123 (2001).
[Crossref]

Löchner, F. J.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

Lohmuller, T.

M. Li, T. Lohmuller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
[Crossref]

Lombardi, J. R.

I. Alessandri and J. R. Lombardi, “Enhanced Raman scattering with dielectrics,” Chem. Rev. 116, 14921–14981 (2016).
[Crossref]

Longo, M.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2 Sb2 Te5 interface from room temperature up to 400 C,” J. Appl. Phys. 107, 044314 (2010).
[Crossref]

Lopanitsyna, N.

S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, and E. Ubyivovk, “Efficient second-harmonic generation in nanocrystalline silicon nanoparticles,” Nano Lett. 17, 3047–3053 (2017).
[Crossref]

Lou, Z.

J. Yan, Y. Li, Z. Lou, C. Ma, G. Yang, and B. Li, “Active tuning of Mie resonances to realize sensitive photothermal measurement of single nanoparticles,” Mater. Horiz. 7, 1542–1551 (2020).
[Crossref]

Louie, S. G.

M. Bernardi, D. Vigil-Fowler, C. S. Ong, J. B. Neaton, and S. G. Louie, “Ab initio study of hot electrons in GaAs,” Proc. Natl. Acad. Sci. USA 112, 5291–5296 (2015).
[Crossref]

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]

Lu, G.

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

Lu, X.

I. Rodriguez, L. Shi, X. Lu, B. Korgel, R. Alvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6, 5666–5670 (2014).
[Crossref]

Lucovsky, G.

A. Esser, K. Seibert, H. Kurz, G. Parsons, C. Wang, B. Davidson, G. Lucovsky, and R. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” J. Non-Cryst. Solids 114, 573–575 (1989).
[Crossref]

Lühmann, T.

M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
[Crossref]

Luk, T. S.

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Luk’yanchuk, B. S.

M. I. Tribelsky, A. E. Miroshnichenko, Y. S. Kivshar, B. S. Luk’yanchuk, and A. R. Khokhlov, “Laser pulse heating of spherical metal particles,” Phys. Rev. X 1, 021024 (2011).
[Crossref]

Lukashenko, S. Y.

M. V. Rybin, K. B. Samusev, S. Y. Lukashenko, Y. S. Kivshar, and M. F. Limonov, “Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure,” Sci. Rep. 6, 30773 (2016).
[Crossref]

Lukin, M. D.

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Luo, H.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Luther-Davies, B.

S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear light generation in topological nanostructures,” Nat. Nanotechnol. 14, 126–130 (2019).
[Crossref]

Lyamkina, A.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Lyeo, H.-K.

H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B.-K. Cheong, “Thermal conductivity of phase-change material Ge2 Sb2 Te5,” Appl. Phys. Lett. 89, 151904 (2006).
[Crossref]

Lysevych, M.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

Ma, C.

J. Yan, Y. Li, Z. Lou, C. Ma, G. Yang, and B. Li, “Active tuning of Mie resonances to realize sensitive photothermal measurement of single nanoparticles,” Mater. Horiz. 7, 1542–1551 (2020).
[Crossref]

C. Ma, J. Yan, Y. Huang, C. Wang, and G. Yang, “The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion,” Sci. Adv. 4, eaas9894 (2018).
[Crossref]

Ma, R.-M.

R.-M. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol. 14, 12–22 (2019).
[Crossref]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]

Macdowell, L. G.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

MacNair, D.

F. Nix and D. MacNair, “The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron,” Phys. Rev. 60, 597–605 (1941).
[Crossref]

Maestro, L. M.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodrguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Mahajan, S.

T. Hutter, F. M. Huang, S. R. Elliott, and S. Mahajan, “Near-field plasmonics of an individual dielectric nanoparticle above a metallic substrate,” J. Phys. Chem. C 117, 7784–7790 (2013).
[Crossref]

Maier, S. A.

P. Kepic, F. Ligmajer, M. Hrton, H. Ren, L. de S. Menezes, S. A. Maier, and T. Šikola, “Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible,” ACS Photon. 8, 1048–1057 (2021).
[Crossref]

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11, 953–960 (2017).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[Crossref]

Makarov, S.

G. Zograf, K. Baryshnikova, M. Petrov, and S. Makarov, “Enhanced Raman scattering for probing near-field distribution in all-dielectric nanostructures,” Adv. Photon. Res. 2, 2000139 (2021).
[Crossref]

A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
[Crossref]

K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, “Revealing low-radiative modes of nanoresonators with internal Raman scattering,” JETP Lett. 110, 25–30 (2019).
[Crossref]

P. Tonkaev, G. Zograf, and S. Makarov, “Optical cooling of lead halide perovskite nanoparticles enhanced by Mie resonances,” Nanoscale 11, 17800–17806 (2019).
[Crossref]

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

J. Ye, D. Zuev, and S. Makarov, “Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems,” Int. Mater. Rev. 64, 439–477 (2019).
[Crossref]

A. S. Zalogina, R. Savelev, E. V. Ushakova, G. Zograf, F. Komissarenko, V. Milichko, S. Makarov, D. Zuev, and I. Shadrivov, “Purcell effect in active diamond nanoantennas,” Nanoscale 10, 8721–8727 (2018).
[Crossref]

S. Makarov, L. Kolotova, S. Starikov, U. Zywietz, and B. Chichkov, “Resonant silicon nanoparticles with controllable crystalline states and nonlinear optical responses,” Nanoscale 10, 11403–11409 (2018).
[Crossref]

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111, 243103 (2017).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Makarov, S. V.

G. P. Zograf, A. S. Timin, A. R. Muslimov, I. I. Shishkin, A. Nominé, J. Ghanbaja, P. Ghosh, Q. Li, M. V. Zyuzin, and S. V. Makarov, “All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells,” Laser Photon. Rev. 14, 1900082 (2020).
[Crossref]

G. P. Zograf, D. Ryabov, V. Rutckaia, P. Voroshilov, P. Tonkaev, D. V. Permyakov, Y. Kivshar, and S. V. Makarov, “Stimulated Raman scattering from Mie-resonant subwavelength nanoparticles,” Nano Lett. 20, 5786–5791 (2020).
[Crossref]

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
[Crossref]

E. Tiguntseva, G. P. Zograf, F. E. Komissarenko, D. A. Zuev, A. A. Zakhidov, S. V. Makarov, and Y. S. Kivshar, “Light-emitting halide perovskite nanoantennas,” Nano Lett. 18, 1185–1190 (2018).
[Crossref]

G. P. Zograf, Y. F. Yu, K. V. Baryshnikova, A. I. Kuznetsov, and S. V. Makarov, “Local crystallization of a resonant amorphous silicon nanoparticle for the implementation of optical nanothermometry,” JETP Lett. 107, 699–704 (2018).
[Crossref]

S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, and E. Ubyivovk, “Efficient second-harmonic generation in nanocrystalline silicon nanoparticles,” Nano Lett. 17, 3047–3053 (2017).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17, 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

Makraov, S.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

Manna, L.

Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” J. Am. Chem. Soc. 137, 10276–10281 (2015).
[Crossref]

Mansour, N.

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi A 207, 2303–2310 (2010).
[Crossref]

R. Karimzadeh and N. Mansour, “The effect of concentration on the thermo-optical properties of colloidal silver nanoparticles,” Opt. Laser Technol. 42, 783–789 (2010).
[Crossref]

Marcoux-Valiquette, P.

A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, and M. Meunier, “In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles,” Nano Lett. 18, 6981–6988 (2018).
[Crossref]

Markovich, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Martins, M. A.

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors 7, 3489–3534 (2007).
[Crossref]

Martn, I.

P. Haro-González, L. Martnez-Maestro, I. Martn, J. Garca-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

Martnez-Maestro, L.

P. Haro-González, L. Martnez-Maestro, I. Martn, J. Garca-Solé, and D. Jaque, “High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots,” Small 8, 2652–2658 (2012).
[Crossref]

Maurer, P. C.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Mauser, K. W.

K. W. Mauser, M. Solà-Garcia, M. Liebtrau, B. Damilano, P.-M. Coulon, S. Vézian, P. A. Shields, S. Meuret, and A. Polman, “Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires,” ACS Nano 15, 11385–11395 (2021).
[Crossref]

Maycock, P.

H. Shanks, P. Maycock, P. Sidles, and G. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[Crossref]

Mazur, E.

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Mazurski, N.

N. Sharma, J. Bar-David, N. Mazurski, and U. Levy, “Metasurfaces for enhancing light absorption in thermoelectric photodetectors,” ACS Photon. 7, 2468–2473 (2020).
[Crossref]

Mazzaferri, J.

A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, and M. Meunier, “In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles,” Nano Lett. 18, 6981–6988 (2018).
[Crossref]

McEuen, P.

C. Kittel and P. McEuen, Introduction to Solid State Physics (Wiley, 1976), Vol. 8.

McKerrow, A. J.

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W.-Y. Shih, “Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films,” J. Appl. Phys. 85, 6421–6424 (1999).
[Crossref]

Meier, C.

B. Sain, C. Meier, and T. Zentgraf, “Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review,” Adv. Photon. 1, 024002 (2019).
[Crossref]

Meijer, J.

M. Alkahtani, I. Cojocaru, X. Liu, T. Herzig, J. Meijer, J. Küpper, T. Lühmann, A. V. Akimov, and P. R. Hemmer, “Tin-vacancy in diamonds for luminescent thermometry,” Appl. Phys. Lett. 112, 241902 (2018).
[Crossref]

Melik-Gaykazyan, E.

K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]

Melik-Gaykazyan, E. V.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Mendoza-Galvan, A.

E. Morales-Sanchez, E. Prokhorov, J. Gonzalez-Hernandez, and A. Mendoza-Galvan, “Structural, electric and kinetic parameters of ternary alloys of GeSbTe,” Thin Solid Films 471, 243–247 (2005).
[Crossref]

Mensah, S.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
[Crossref]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Reinhart and Winston, 1976).

Mertens, J.

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

Meseguer, F.

I. Rodriguez, L. Shi, X. Lu, B. Korgel, R. Alvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6, 5666–5670 (2014).
[Crossref]

E. Xifre-Perez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano 7, 664–668 (2012).
[Crossref]

Métayer, L.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

Metwally, K.

K. Metwally, S. Mensah, and G. Baffou, “Fluence threshold for photothermal bubble generation using plasmonic nanoparticles,” J. Phys. Chem. C 119, 28586–28596 (2015).
[Crossref]

Meunier, M.

A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, and M. Meunier, “In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles,” Nano Lett. 18, 6981–6988 (2018).
[Crossref]

Meuret, S.

K. W. Mauser, M. Solà-Garcia, M. Liebtrau, B. Damilano, P.-M. Coulon, S. Vézian, P. A. Shields, S. Meuret, and A. Polman, “Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires,” ACS Nano 15, 11385–11395 (2021).
[Crossref]

Meyer, T. J.

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Migler, K. B.

K. B. Migler and A. J. Bur, “Fluorescence based measurement of temperature profiles during polymer processing,” Polym. Eng. Sci. 38, 213–221 (1998).
[Crossref]

Mikhailovskii, V.

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

Mikhailovsky, A. A.

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

Mikkelsen, M. H.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

Milichko, V.

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

A. S. Zalogina, R. Savelev, E. V. Ushakova, G. Zograf, F. Komissarenko, V. Milichko, S. Makarov, D. Zuev, and I. Shadrivov, “Purcell effect in active diamond nanoantennas,” Nanoscale 10, 8721–8727 (2018).
[Crossref]

S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, and E. Ubyivovk, “Efficient second-harmonic generation in nanocrystalline silicon nanoparticles,” Nano Lett. 17, 3047–3053 (2017).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Milichko, V. A.

K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, “Revealing low-radiative modes of nanoresonators with internal Raman scattering,” JETP Lett. 110, 25–30 (2019).
[Crossref]

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, and V. V. Vinogradov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photon. Rev. 12, 1700227 (2018).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17, 2945–2952 (2017).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

D. G. Baranov, S. V. Makarov, V. A. Milichko, S. I. Kudryashov, A. E. Krasnok, and P. A. Belov, “Nonlinear transient dynamics of photoexcited resonant silicon nanostructures,” ACS Photon. 3, 1546–1551 (2016).
[Crossref]

Miljkovic, N.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M. M. Rahman, T. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Millán, A.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Mintcheva, N.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

Mironenko, A.

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Miroshnichenko, A. E.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

A. E. Miroshnichenko and M. I. Tribelsky, “Ultimate absorption in light scattering by a finite obstacle,” Phys. Rev. Lett. 120, 033902 (2018).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354, aag2472 (2016).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

M. I. Tribelsky, A. E. Miroshnichenko, Y. S. Kivshar, B. S. Luk’yanchuk, and A. R. Khokhlov, “Laser pulse heating of spherical metal particles,” Phys. Rev. X 1, 021024 (2011).
[Crossref]

Mitsai, E.

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111, 243103 (2017).
[Crossref]

Modin, E.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

Monneret, S.

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref]

Morales-Sanchez, E.

E. Morales-Sanchez, E. Prokhorov, J. Gonzalez-Hernandez, and A. Mendoza-Galvan, “Structural, electric and kinetic parameters of ternary alloys of GeSbTe,” Thin Solid Films 471, 243–247 (2005).
[Crossref]

Morita, M.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68, 1272–1281 (1990).
[Crossref]

Mortensen, N. A.

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant laser printing of structural colors on high-index dielectric metasurfaces,” Sci. Adv. 3, e1602487 (2017).
[Crossref]

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Moya, E.

J. Gonzalez, E. Moya, and J. Chervin, “Anharmonic effects in light scattering due to optical phonons in CuGaS2,” Phys. Rev. B 54, 4707–4713 (1996).
[Crossref]

Mozharov, A.

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Mu, Z.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Mukhin, I.

K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, “Revealing low-radiative modes of nanoresonators with internal Raman scattering,” JETP Lett. 110, 25–30 (2019).
[Crossref]

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, and E. Ubyivovk, “Efficient second-harmonic generation in nanocrystalline silicon nanoparticles,” Nano Lett. 17, 3047–3053 (2017).
[Crossref]

S. Makarov, S. Kudryashov, I. Mukhin, A. Mozharov, V. Milichko, A. Krasnok, and P. Belov, “Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron–hole plasma,” Nano Lett. 15, 6187–6192 (2015).
[Crossref]

Mukhin, I. S.

V. A. Milichko, D. A. Zuev, D. G. Baranov, G. P. Zograf, K. Volodina, A. A. Krasilin, I. S. Mukhin, P. A. Dmitriev, and V. V. Vinogradov, “Metal-dielectric nanocavity for real-time tracing molecular events with temperature feedback,” Laser Photon. Rev. 12, 1700227 (2018).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
[Crossref]

Munkhbat, B.

E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
[Crossref]

Mupparapu, R.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

Muslimov, A. R.

G. P. Zograf, A. S. Timin, A. R. Muslimov, I. I. Shishkin, A. Nominé, J. Ghanbaja, P. Ghosh, Q. Li, M. V. Zyuzin, and S. V. Makarov, “All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells,” Laser Photon. Rev. 14, 1900082 (2020).
[Crossref]

Mylnikov, V.

V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, and A. I. Kuznetsov, “Lasing action in single subwavelength particles supporting supercavity modes,” ACS Nano 14, 7338–7346 (2020).
[Crossref]

Naccache, R.

F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodrguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Naffouti, M.

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Nagao, T.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index germanium nanoparticles,” Adv. Opt. Mater. 5, 1600902 (2017).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, “Solar water heating and vaporization with silicon nanoparticles at Mie resonances,” Opt. Mater. Express 6, 640–648 (2016).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120, 2343–2348 (2016).
[Crossref]

Nagarajan, A.

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

Nagasaki, Y.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Y. Nagasaki, M. Suzuki, I. Hotta, and J. Takahara, “Control of Si-based all-dielectric printing color through oxidation,” ACS Photon. 5, 1460–1466 (2018).
[Crossref]

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17, 7500–7506 (2017).
[Crossref]

Nam, J.-M.

J.-M. Nam, J.-W. Oh, H. Lee, and Y. D. Suh, “Plasmonic nanogap-enhanced Raman scattering with nanoparticles,” Acc. Chem. Res. 49, 2746–2755 (2016).
[Crossref]

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Narang, P.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

J. Mertens, M.-E. Kleemann, R. Chikkaraddy, P. Narang, and J. J. Baumberg, “How light is emitted by plasmonic metals,” Nano Lett. 17, 2568–2574 (2017).
[Crossref]

Ndao, A.

Neaton, J. B.

M. Bernardi, D. Vigil-Fowler, C. S. Ong, J. B. Neaton, and S. G. Louie, “Ab initio study of hot electrons in GaAs,” Proc. Natl. Acad. Sci. USA 112, 5291–5296 (2015).
[Crossref]

Nemanich, R.

A. Esser, K. Seibert, H. Kurz, G. Parsons, C. Wang, B. Davidson, G. Lucovsky, and R. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” J. Non-Cryst. Solids 114, 573–575 (1989).
[Crossref]

R. Nemanich, D. Biegelsen, R. Street, and L. Fennell, “Raman scattering from solid silicon at the melting temperature,” Phys. Rev. B 29, 6005–6007 (1984).
[Crossref]

Nemova, G.

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010).
[Crossref]

Neshev, D.

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

Neshev, D. N.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref]

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photon. 5, 1359–1364 (2018).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Neugebauer, J.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref]

Neumann, C.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

Nguyen, C. T.

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

Nguyen, H. S.

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

Ni, G.

P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, and T. Deng, “Solar-driven interfacial evaporation,” Nat. Energy 3, 1031–1041 (2018).
[Crossref]

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M. M. Rahman, T. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Nielsen, M. P.

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11, 953–960 (2017).
[Crossref]

Nishida, K.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Nix, F.

F. Nix and D. MacNair, “The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron,” Phys. Rev. 60, 597–605 (1941).
[Crossref]

Nocera, D. G.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[Crossref]

Noh, H. J.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Nominé, A.

A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
[Crossref]

G. P. Zograf, A. S. Timin, A. R. Muslimov, I. I. Shishkin, A. Nominé, J. Ghanbaja, P. Ghosh, Q. Li, M. V. Zyuzin, and S. V. Makarov, “All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells,” Laser Photon. Rev. 14, 1900082 (2020).
[Crossref]

Nonomura, S.

K. Takimoto, A. Fukuta, Y. Yamamoto, N. Yoshida, T. Itoh, and S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299, 314–317 (2002).
[Crossref]

Nordlander, P.

A. Kristensen, J. K. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2, 16088 (2016).
[Crossref]

Norris, D. J.

S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, “Doping semiconductor nanocrystals,” Nature 436, 91–94 (2005).
[Crossref]

Odebo Länk, N.

N. Odebo Länk, P. Johansson, and M. Källl, “Optical tweezing and photothermal properties of resonant dielectric and metallic nanospheres,” ACS Photon. 7, 2405–2412 (2020).
[Crossref]

Oh, J.-W.

J.-M. Nam, J.-W. Oh, H. Lee, and Y. D. Suh, “Plasmonic nanogap-enhanced Raman scattering with nanoparticles,” Acc. Chem. Res. 49, 2746–2755 (2016).
[Crossref]

Ohmi, T.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68, 1272–1281 (1990).
[Crossref]

Ohwada, M.

M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, “Growth of native oxide on a silicon surface,” J. Appl. Phys. 68, 1272–1281 (1990).
[Crossref]

Okhotin, A.

A. Okhotin, A. Pushkarskii, and V. Gorbachev, Thermophysical Properties of Semiconductors (Atomizdat, 1972).

Okuyama, H.

S. Ishii, K. Chen, H. Okuyama, and T. Nagao, “Resonant optical absorption and photothermal process in high refractive index germanium nanoparticles,” Adv. Opt. Mater. 5, 1600902 (2017).
[Crossref]

Omair, Z.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. USA 116, 15356–15361 (2019).
[Crossref]

Ong, C. S.

M. Bernardi, D. Vigil-Fowler, C. S. Ong, J. B. Neaton, and S. G. Louie, “Ab initio study of hot electrons in GaAs,” Proc. Natl. Acad. Sci. USA 112, 5291–5296 (2015).
[Crossref]

Orobtchouk, R.

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

Orrit, M.

A. Carattino, M. Caldarola, and M. Orrit, “Gold nanoparticles as absolute nanothermometers,” Nano Lett. 18, 874–880 (2018).
[Crossref]

M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, and M. Orrit, “Luminescence quantum yield of single gold nanorods,” Nano Lett. 12, 4385–4391 (2012).
[Crossref]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]

Orton, H. W.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref]

Otanicar, T. P.

T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol. 43, 6082–6087 (2009).
[Crossref]

Oulton, R. F.

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

R.-M. Ma and R. F. Oulton, “Applications of nanolasers,” Nat. Nanotechnol. 14, 12–22 (2019).
[Crossref]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk,” ACS Nano 11, 953–960 (2017).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Ozerov, I.

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10, 7761–7767 (2016).
[Crossref]

Paithankar, D. Y.

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

Palacio, F.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Palafox, M. A.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Palyanov, Y. N.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Pan, H.

K. Green, K. Huang, H. Pan, G. Han, and S. F. Lim, “Optical temperature sensing with infrared excited upconversion nanoparticles,” Front. Chem. 6, 416 (2018).
[Crossref]

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

Pan, Z.

V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, and A. I. Kuznetsov, “Lasing action in single subwavelength particles supporting supercavity modes,” ACS Nano 14, 7338–7346 (2020).
[Crossref]

T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Dominguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov, “Collective Mie resonances for directional on-chip nanolasers,” Nano Lett. 20, 5655–5661 (2020).
[Crossref]

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domnguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13, 1042–1047 (2018).
[Crossref]

Paniagua-Dominguez, R.

T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Dominguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov, “Collective Mie resonances for directional on-chip nanolasers,” Nano Lett. 20, 5655–5661 (2020).
[Crossref]

M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
[Crossref]

V. Flauraud, M. Reyes, R. Paniagua-Dominguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photon. 4, 1913–1919 (2017).
[Crossref]

Paniagua-Domínguez, R.

V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, and A. I. Kuznetsov, “Lasing action in single subwavelength particles supporting supercavity modes,” ACS Nano 14, 7338–7346 (2020).
[Crossref]

Paniagua-Domnguez, R.

R. Paniagua-Domnguez, S. T. Ha, and A. I. Kuznetsov, “Active and tunable nanophotonics with dielectric nanoantennas,” Proc. IEEE 108, 749–771 (2019).
[Crossref]

S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domnguez, and A. I. Kuznetsov, “Directional lasing in resonant semiconductor nanoantenna arrays,” Nat. Nanotechnol. 13, 1042–1047 (2018).
[Crossref]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Panneerselvam, R.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Park, H.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Park, H. K.

Park, H.-G.

K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J.-H. Choi, A. Bogdanov, H.-G. Park, and Y. Kivshar, “Subwavelength dielectric resonators for nonlinear nanophotonics,” Science 367, 288–292 (2020).
[Crossref]

Parker, S. C.

J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, “Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles,” Phys. Rev. B 89, 205203 (2014).
[Crossref]

Parsons, G.

A. Esser, K. Seibert, H. Kurz, G. Parsons, C. Wang, B. Davidson, G. Lucovsky, and R. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” J. Non-Cryst. Solids 114, 573–575 (1989).
[Crossref]

Pastoriza-Santos, I.

M. L. Debasu, D. Ananias, I. Pastoriza-Santos, L. M. Liz-Marzán, J. Rocha, and L. D. Carlos, “All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation,” Adv. Mater. 25, 4868–4874 (2013).
[Crossref]

Patskovsky, S.

A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, and M. Meunier, “In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles,” Nano Lett. 18, 6981–6988 (2018).
[Crossref]

Pavlov, D.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111, 243103 (2017).
[Crossref]

Pazos-Outón, L. M.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. USA 116, 15356–15361 (2019).
[Crossref]

Pedroni, M.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Peña-Rodríguez, O.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Peng, C.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Peng, W.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Peng, Y.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Perelman, T.

S. Anisimov, B. Kapeliovich, and T. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Zh. Eksp. Teor. Fiz 66, 375–377 (1974).

Permyakov, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Permyakov, D. V.

G. P. Zograf, D. Ryabov, V. Rutckaia, P. Voroshilov, P. Tonkaev, D. V. Permyakov, Y. Kivshar, and S. V. Makarov, “Stimulated Raman scattering from Mie-resonant subwavelength nanoparticles,” Nano Lett. 20, 5786–5791 (2020).
[Crossref]

Pernice, W. H.

M. Stegmaier, C. Ros, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

Pertsch, T.

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

J. Berzinš, S. Indrišiūnas, S. Fasold, M. Steinert, O. Žukovskaja, D. Cialla-May, P. Gečys, S. M. Bäumer, T. Pertsch, and F. Setzpfandt, “Laser-induced spatially-selective tailoring of high-index dielectric metasurfaces,” Opt. Express 28, 1539–1553 (2020).
[Crossref]

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photon. 6, 802–814 (2019).
[Crossref]

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photon. 5, 1359–1364 (2018).
[Crossref]

Petek, H.

T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5668 (1998).
[Crossref]

Peterson, P. F.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. USA 116, 15356–15361 (2019).
[Crossref]

Petrov, M.

G. Zograf, K. Baryshnikova, M. Petrov, and S. Makarov, “Enhanced Raman scattering for probing near-field distribution in all-dielectric nanostructures,” Adv. Photon. Res. 2, 2000139 (2021).
[Crossref]

K. V. Baryshnikova, K. Frizyuk, G. Zograf, S. Makarov, M. A. Baranov, D. Zuev, V. A. Milichko, I. Mukhin, M. Petrov, and A. B. Evlyukhin, “Revealing low-radiative modes of nanoresonators with internal Raman scattering,” JETP Lett. 110, 25–30 (2019).
[Crossref]

K. Frizyuk, M. Hasan, A. Krasnok, A. Alú, and M. Petrov, “Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances,” Phys. Rev. B 97, 085414 (2018).
[Crossref]

Petrov, M. I.

S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, and E. Ubyivovk, “Efficient second-harmonic generation in nanocrystalline silicon nanoparticles,” Nano Lett. 17, 3047–3053 (2017).
[Crossref]

G. P. Zograf, M. I. Petrov, D. A. Zuev, P. A. Dmitriev, V. A. Milichko, S. V. Makarov, and P. A. Belov, “Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating,” Nano Lett. 17, 2945–2952 (2017).
[Crossref]

Petrozza, A.

Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” J. Am. Chem. Soc. 137, 10276–10281 (2015).
[Crossref]

Phua, W. K.

T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Dominguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov, “Collective Mie resonances for directional on-chip nanolasers,” Nano Lett. 20, 5655–5661 (2020).
[Crossref]

Piccinelli, F.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Pietri, R.

B. Zink, R. Pietri, and F. Hellman, “Thermal conductivity and specific heat of thin-film amorphous silicon,” Phys. Rev. Lett. 96, 055902 (2006).
[Crossref]

Pihl, M.

M. Pihl, E. Bruzell, and M. Andersson, “Bacterial biofilm elimination using gold nanorod localised surface plasmon resonance generated heat,” Mater. Sci. Eng. C 80, 54–58 (2017).
[Crossref]

Pitsillides, C. M.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84, 4023–4032 (2003).
[Crossref]

Plakhotnik, T.

T. Plakhotnik, H. Aman, and H.-C. Chang, “All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz-1/2,” Nanotechnology 26, 245501 (2015).
[Crossref]

Png, C. E.

T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-Dominguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov, “Collective Mie resonances for directional on-chip nanolasers,” Nano Lett. 20, 5655–5661 (2020).
[Crossref]

Poddubny, A.

S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear light generation in topological nanostructures,” Nat. Nanotechnol. 14, 126–130 (2019).
[Crossref]

Poddubny, A. N.

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

Polleux, J.

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref]

Polman, A.

K. W. Mauser, M. Solà-Garcia, M. Liebtrau, B. Damilano, P.-M. Coulon, S. Vézian, P. A. Shields, S. Meuret, and A. Polman, “Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires,” ACS Nano 15, 11385–11395 (2021).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Powell, R.

R. Powell, C. Y. Ho, and P. E. Liley, Thermal Conductivity of Selected Materials (U.S. Department of Commerce, National Bureau of Standards Washington, 1966), Vol. 8.

Prada, A.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Prato, M.

Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” J. Am. Chem. Soc. 137, 10276–10281 (2015).
[Crossref]

Price, R.

L. R. Hirsch, R. J. Stafford, J. Bankson, S. R. Sershen, B. Rivera, R. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
[Crossref]

Prokhorov, E.

E. Morales-Sanchez, E. Prokhorov, J. Gonzalez-Hernandez, and A. Mendoza-Galvan, “Structural, electric and kinetic parameters of ternary alloys of GeSbTe,” Thin Solid Films 471, 243–247 (2005).
[Crossref]

Proust, J.

J. Proust, F. Bedu, B. Gallas, I. Ozerov, and N. Bonod, “All-dielectric colored metasurfaces with silicon Mie resonators,” ACS Nano 10, 7761–7767 (2016).
[Crossref]

Puigdollers, J.

J. Garcia-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enhanced chiral sensing with dielectric nanoresonators,” Nano Lett. 20, 585–591 (2019).
[Crossref]

Pushkar, M. Y.

I. Talyzin, M. Samsonov, V. Samsonov, M. Y. Pushkar, and V. Dronnikov, “Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation,” Semiconductors 53, 947–953 (2019).
[Crossref]

Pushkarev, A. P.

E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
[Crossref]

Pushkarskii, A.

A. Okhotin, A. Pushkarskii, and V. Gorbachev, Thermophysical Properties of Semiconductors (Atomizdat, 1972).

Pustovalov, E.

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Puzikov, V.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

Qi, D.

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

Qiao, J.

Qiu, C.-W.

Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C.-W. Qiu, “Transforming heat transfer with thermal metamaterials and devices,” Nat. Rev. Mater. 6, 488–507 (2021).
[Crossref]

Qiu, G.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14, 5268–5277 (2020).
[Crossref]

Qiu, M.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Qu, Y.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Quidant, R.

G. Baffou, F. Cichos, and R. Quidant, “Applications and challenges of thermoplasmonics,” Nat. Mater. 19, 946–958 (2020).
[Crossref]

J. Garcia-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enhanced chiral sensing with dielectric nanoresonators,” Nano Lett. 20, 585–591 (2019).
[Crossref]

O. Yavas, M. Svedendahl, and R. Quidant, “Unravelling the role of electric and magnetic dipoles in biosensing with Si nanoresonators,” ACS Nano 13, 4582–4588 (2019).
[Crossref]

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref]

G. Baffou and R. Quidant, “Nanoplasmonics for chemistry,” Chem. Soc. Rev. 43, 3898–3907 (2014).
[Crossref]

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photon. Rev. 7, 171–187 (2013).
[Crossref]

E. Xifre-Perez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano 7, 664–668 (2012).
[Crossref]

G. Baffou, R. Quidant, and F. J. Garca de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010).
[Crossref]

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[Crossref]

G. Baffou, M. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009).
[Crossref]

Rahman, M. M.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M. M. Rahman, T. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Rahmani, M.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

K. Z. Kamali, L. Xu, J. Ward, K. Wang, G. Li, A. E. Miroshnichenko, D. Neshev, and M. Rahmani, “Reversible image contrast manipulation with thermally tunable dielectric metasurfaces,” Small 15, 1805142 (2019).
[Crossref]

M. Rahmani, L. Xu, A. E. Miroshnichenko, A. Komar, R. Camacho-Morales, H. Chen, Y. Zárate, S. Kruk, G. Zhang, D. N. Neshev, and Y. S. Kivshar, “Reversible thermal tuning of all-dielectric metasurfaces,” Adv. Funct. Mater. 27, 1700580 (2017).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Rai, V. K.

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88, 297–303 (2007).
[Crossref]

Ramanathan, S.

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

Ramiro-Manzano, F.

E. Xifre-Perez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano 7, 664–668 (2012).
[Crossref]

Ramrez-Hernández, J. E.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Rao, V. G.

U. Aslam, V. G. Rao, S. Chavez, and S. Linic, “Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures,” Nat. Catal. 1, 656–665 (2018).
[Crossref]

Raza, S.

S. Raza and A. Kristensen, “Raman scattering in high-refractive-index nanostructures,” Nanophotonics 10, 1197–1209 (2020).
[Crossref]

Regan, B.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Reinecke, T.

S. Rudin, T. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

Ren, B.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Ren, H.

P. Kepic, F. Ligmajer, M. Hrton, H. Ren, L. de S. Menezes, S. A. Maier, and T. Šikola, “Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible,” ACS Photon. 8, 1048–1057 (2021).
[Crossref]

Reno, J. L.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9, 2507 (2018).
[Crossref]

Reyes, M.

V. Flauraud, M. Reyes, R. Paniagua-Dominguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photon. 4, 1913–1919 (2017).
[Crossref]

Rezaee, M.

J.-W. Fan, I. Cojocaru, J. Becker, I. V. Fedotov, M. H. A. Alkahtani, A. Alajlan, S. Blakley, M. Rezaee, A. Lyamkina, Y. N. Palyanov, Y. M. Borzdov, Y.-P. Yang, A. Zheltikov, P. Hemmer, and A. V. Akimov, “Germanium-vacancy color center in diamond as a temperature sensor,” ACS Photon. 5, 765–770 (2018).
[Crossref]

Rho, Y.

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

Richardson, H. H.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

Rigneault, H.

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced heating of nanoparticle arrays,” ACS Nano 7, 6478–6488 (2013).
[Crossref]

G. Baffou and H. Rigneault, “Femtosecond-pulsed optical heating of gold nanoparticles,” Phys. Rev. B 84, 035415 (2011).
[Crossref]

Rivera, A.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. Bankson, S. R. Sershen, B. Rivera, R. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]

Rocco, D.

Rocha, J.

M. L. Debasu, D. Ananias, I. Pastoriza-Santos, L. M. Liz-Marzán, J. Rocha, and L. D. Carlos, “All-in-one optical heater-thermometer nanoplatform operative from 300 to 2000 K based on Er3+ emission and blackbody radiation,” Adv. Mater. 25, 4868–4874 (2013).
[Crossref]

Rodionov, I.

Rodriguez, E. M.

F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodrguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Rodriguez, I.

I. Rodriguez, L. Shi, X. Lu, B. Korgel, R. Alvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6, 5666–5670 (2014).
[Crossref]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Romeo, P. R.

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

Ronda, A.

T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bobod, and M. Abbarchi, “All-dielectric color filters using SiGe-based Mie resonator arrays,” ACS Photon. 4, 873–883 (2017).
[Crossref]

M. Naffouti, T. David, A. Benkouider, L. Favre, A. Ronda, I. Berbezier, S. Bidault, N. Bonod, and M. Abbarchi, “Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting,” Nanoscale 8, 2844–2849 (2016).
[Crossref]

M. Abbarchi, M. Naffouti, B. Vial, A. Benkouider, L. Lermusiaux, L. Favre, A. Ronda, S. Bidault, I. Berbezier, and N. Bonod, “Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting,” ACS Nano 8, 11181–11190 (2014).
[Crossref]

Ros, C.

M. Stegmaier, C. Ros, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

Roschuk, T.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref]

Ross, D.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye,” Anal. Chem. 73, 4117–4123 (2001).
[Crossref]

Rottmayer, R. E.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Rudin, S.

S. Rudin, T. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
[Crossref]

Rudolph, P.

H. Koh, P. Rudolph, N. Schäfer, K. Umetsu, and T. Fukuda, “The effect of various thermal treatments on supercooling of PbTe melts,” Mater. Sci. Eng. B 34, 199–203 (1995).
[Crossref]

Rudzinski, C. M.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[Crossref]

Rutckaia, V.

G. P. Zograf, D. Ryabov, V. Rutckaia, P. Voroshilov, P. Tonkaev, D. V. Permyakov, Y. Kivshar, and S. V. Makarov, “Stimulated Raman scattering from Mie-resonant subwavelength nanoparticles,” Nano Lett. 20, 5786–5791 (2020).
[Crossref]

Ryabov, D.

G. P. Zograf, D. Ryabov, V. Rutckaia, P. Voroshilov, P. Tonkaev, D. V. Permyakov, Y. Kivshar, and S. V. Makarov, “Stimulated Raman scattering from Mie-resonant subwavelength nanoparticles,” Nano Lett. 20, 5786–5791 (2020).
[Crossref]

Ryan, T.

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W.-Y. Shih, “Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films,” J. Appl. Phys. 85, 6421–6424 (1999).
[Crossref]

Rybin, M. V.

M. V. Rybin, K. B. Samusev, S. Y. Lukashenko, Y. S. Kivshar, and M. F. Limonov, “Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure,” Sci. Rep. 6, 30773 (2016).
[Crossref]

Ryzhikov, I.

Saerens, G.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

Sain, B.

B. Sain, C. Meier, and T. Zentgraf, “Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review,” Adv. Photon. 1, 024002 (2019).
[Crossref]

Sakamoto, F. H.

D. Y. Paithankar, F. H. Sakamoto, W. A. Farinelli, G. Kositratna, R. D. Blomgren, T. J. Meyer, L. J. Faupel, A. N. Kauvar, J. R. Lloyd, and W. L. Cheung, “Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles,” J. Invest. Dermatol. 135, 1727–1734 (2015).
[Crossref]

Sakr, E.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

Salinga, M.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7, 972–977 (2008).
[Crossref]

Samsonov, M.

I. Talyzin, M. Samsonov, V. Samsonov, M. Y. Pushkar, and V. Dronnikov, “Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation,” Semiconductors 53, 947–953 (2019).
[Crossref]

Samsonov, V.

I. Talyzin, M. Samsonov, V. Samsonov, M. Y. Pushkar, and V. Dronnikov, “Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation,” Semiconductors 53, 947–953 (2019).
[Crossref]

Samusev, A.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domnguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15, 2137–2142 (2015).
[Crossref]

Samusev, A. K.

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

P. A. Dmitriev, D. G. Baranov, V. A. Milichko, S. V. Makarov, I. S. Mukhin, A. K. Samusev, A. E. Krasnok, P. A. Belov, and Y. S. Kivshar, “Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response,” Nanoscale 8, 9721–9726 (2016).
[Crossref]

Samusev, K. B.

M. V. Rybin, K. B. Samusev, S. Y. Lukashenko, Y. S. Kivshar, and M. F. Limonov, “Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure,” Sci. Rep. 6, 30773 (2016).
[Crossref]

Sánchez-Gil, J. A.

M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
[Crossref]

Santos, J. L.

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors 7, 3489–3534 (2007).
[Crossref]

Sanz, V.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref]

Sanz-Rodrguez, F.

F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodrguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Sanz-Rodriguez, F.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Sapieha, P.

A. M. Wilson, J. Mazzaferri, E. Bergeron, S. Patskovsky, P. Marcoux-Valiquette, S. Costantino, P. Sapieha, and M. Meunier, “In vivo laser-mediated retinal ganglion cell optoporation using KV1.1 conjugated gold nanoparticles,” Nano Lett. 18, 6981–6988 (2018).
[Crossref]

Sarkhosh, L.

L. Sarkhosh, H. Aleali, R. Karimzadeh, and N. Mansour, “Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone,” Phys. Status Solidi A 207, 2303–2310 (2010).
[Crossref]

Sarychev, A. K.

Savelev, R.

A. S. Zalogina, R. Savelev, E. V. Ushakova, G. Zograf, F. Komissarenko, V. Milichko, S. Makarov, D. Zuev, and I. Shadrivov, “Purcell effect in active diamond nanoantennas,” Nanoscale 10, 8721–8727 (2018).
[Crossref]

Sbarbati, A.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Scarpellini, A.

Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, “Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions,” J. Am. Chem. Soc. 137, 10276–10281 (2015).
[Crossref]

Schäfer, N.

H. Koh, P. Rudolph, N. Schäfer, K. Umetsu, and T. Fukuda, “The effect of various thermal treatments on supercooling of PbTe melts,” Mater. Sci. Eng. B 34, 199–203 (1995).
[Crossref]

Schanze, K. S.

M. E. Köse, B. F. Carroll, and K. S. Schanze, “Preparation and spectroscopic properties of multiluminophore luminescent oxygen and temperature sensor films,” Langmuir 21, 9121–9129 (2005).
[Crossref]

Scheel, H.

H. Scheel, S. Khachadorian, M. Cantoro, A. Colli, A. Ferrari, and C. Thomsen, “Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures,” Phys. Status Solidi B 245, 2090–2093 (2008).
[Crossref]

Schick, V.

J.-L. Battaglia, A. Kusiak, V. Schick, A. Cappella, C. Wiemer, M. Longo, and E. Varesi, “Thermal characterization of the SiO2-Ge2 Sb2 Te5 interface from room temperature up to 400 C,” J. Appl. Phys. 107, 044314 (2010).
[Crossref]

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

Schmitt, J.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14, 5268–5277 (2020).
[Crossref]

Schuller, I. K.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

Schuller, J. A.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

T. Lewi, N. A. Butakov, and J. A. Schuller, “Thermal tuning capabilities of semiconductor metasurface resonators,” Nanophotonics 8, 331–338 (2018).
[Crossref]

T. Lewi, H. A. Evans, N. A. Butakov, and J. A. Schuller, “Ultrawide thermo-optic tuning of PbTe meta-atoms,” Nano Lett. 17, 3940–3945 (2017).
[Crossref]

T. Lewi, P. P. Iyer, N. A. Butakov, A. A. Mikhailovsky, and J. A. Schuller, “Widely tunable infrared antennas using free carrier refraction,” Nano Lett. 15, 8188–8193 (2015).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Scott, R. E.

Scranton, G.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. USA 116, 15356–15361 (2019).
[Crossref]

Sedova, M.

Segall, B.

S. Rudin, T. Reinecke, and B. Segall, “Temperature-dependent exciton linewidths in semiconductors,” Phys. Rev. B 42, 11218–11231 (1990).
[Crossref]

Seibert, K.

A. Esser, K. Seibert, H. Kurz, G. Parsons, C. Wang, B. Davidson, G. Lucovsky, and R. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” J. Non-Cryst. Solids 114, 573–575 (1989).
[Crossref]

Seigler, M. A.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[Crossref]

Seniutinas, G.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Phys. 525, 907–914 (2013).
[Crossref]

Serebryannikov, A. E.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photon. 4, 1076–1082 (2017).
[Crossref]

Sergeev, A.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

E. Mitsai, A. Kuchmizhak, E. Pustovalov, A. Sergeev, A. Mironenko, S. Bratskaya, D. Linklater, A. Balčytis, E. Ivanova, and S. Juodkazis, “Chemically non-perturbing SERS detection of a catalytic reaction with black silicon,” Nanoscale 10, 9780–9787 (2018).
[Crossref]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. Bankson, S. R. Sershen, B. Rivera, R. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Setzpfandt, F.

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

J. Berzinš, S. Indrišiūnas, S. Fasold, M. Steinert, O. Žukovskaja, D. Cialla-May, P. Gečys, S. M. Bäumer, T. Pertsch, and F. Setzpfandt, “Laser-induced spatially-selective tailoring of high-index dielectric metasurfaces,” Opt. Express 28, 1539–1553 (2020).
[Crossref]

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

Shadrivov, I.

A. S. Zalogina, R. Savelev, E. V. Ushakova, G. Zograf, F. Komissarenko, V. Milichko, S. Makarov, D. Zuev, and I. Shadrivov, “Purcell effect in active diamond nanoantennas,” Nanoscale 10, 8721–8727 (2018).
[Crossref]

Shakeri-Zadeh, A.

J. Beik, M. Khateri, Z. Khosravi, S. K. Kamrava, S. Kooranifar, H. Ghaznavi, and A. Shakeri-Zadeh, “Gold nanoparticles in combinatorial cancer therapy strategies,” Coord. Chem. Rev. 387, 299–324 (2019).
[Crossref]

Shakouri, A.

T. Favaloro, J.-H. Bahk, and A. Shakouri, “Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films,” Rev. Sci. Instrum. 86, 024903 (2015).
[Crossref]

Shalin, A. S.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Shang, W.

P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, and T. Deng, “Solar-driven interfacial evaporation,” Nat. Energy 3, 1031–1041 (2018).
[Crossref]

Shank, C.

M. Downer and C. Shank, “Ultrafast heating of silicon on sapphire by femtosecond optical pulses,” Phys. Rev. Lett. 56, 761–764 (1986).
[Crossref]

Shanks, H.

H. Shanks, P. Maycock, P. Sidles, and G. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[Crossref]

Sharma, N.

N. Sharma, J. Bar-David, N. Mazurski, and U. Levy, “Metasurfaces for enhancing light absorption in thermoelectric photodetectors,” ACS Photon. 7, 2468–2473 (2020).
[Crossref]

Shcherbakov, M. R.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Shegai, T.

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009).
[Crossref]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92, 247403 (2004).
[Crossref]

Shen, C.

S.-T. Ha, C. Shen, J. Zhang, and Q. Xiong, “Laser cooling of organic–inorganic lead halide perovskites,” Nat. Photonics 10, 115–121 (2016).
[Crossref]

Shendre, S.

M. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W.-K. Koh, D. R. Abujetas, J. A. Sánchez-Gil, R. Paniagua-Dominguez, H. V. Demir, and A. I. Kuznetsov, “Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum,” Nano Lett. 20, 6005–6011 (2020).
[Crossref]

Shi, J.

C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, “Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I),” J. Phys. Chem. C 122, 15973–15978 (2018).
[Crossref]

Shi, L.

I. Rodriguez, L. Shi, X. Lu, B. Korgel, R. Alvarez-Puebla, and F. Meseguer, “Silicon nanoparticles as Raman scattering enhancers,” Nanoscale 6, 5666–5670 (2014).
[Crossref]

E. Xifre-Perez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano 7, 664–668 (2012).
[Crossref]

Shi, M.

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

Shields, P. A.

K. W. Mauser, M. Solà-Garcia, M. Liebtrau, B. Damilano, P.-M. Coulon, S. Vézian, P. A. Shields, S. Meuret, and A. Polman, “Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires,” ACS Nano 15, 11385–11395 (2021).
[Crossref]

Shih, W.-Y.

J.-H. Zhao, T. Ryan, P. S. Ho, A. J. McKerrow, and W.-Y. Shih, “Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films,” J. Appl. Phys. 85, 6421–6424 (1999).
[Crossref]

Shishkin, I. I.

G. P. Zograf, A. S. Timin, A. R. Muslimov, I. I. Shishkin, A. Nominé, J. Ghanbaja, P. Ghosh, Q. Li, M. V. Zyuzin, and S. V. Makarov, “All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells,” Laser Photon. Rev. 14, 1900082 (2020).
[Crossref]

Shorokhov, A.

S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear light generation in topological nanostructures,” Nat. Nanotechnol. 14, 126–130 (2019).
[Crossref]

Shorokhov, A. S.

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

Shou, W.

L. Wang, Y. Rho, W. Shou, S. Hong, K. Kato, M. Eliceiri, M. Shi, C. P. Grigoropoulos, H. Pan, C. Carraro, and D. Qi, “Programming nanoparticles in multiscale: optically modulated assembly and phase switching of silicon nanoparticle array,” ACS Nano 12, 2231–2241 (2018).
[Crossref]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7, 653–658 (2008).
[Crossref]

Shumai, I. L.

N. Koroteev and I. L. Shumai, Physics of High-Power Laser Radiation (in Russian) (Nauka, 1991).

Sidles, P.

H. Shanks, P. Maycock, P. Sidles, and G. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[Crossref]

Šikola, T.

P. Kepic, F. Ligmajer, M. Hrton, H. Ren, L. de S. Menezes, S. A. Maier, and T. Šikola, “Optically tunable Mie resonance VO2 nanoantennas for metasurfaces in the visible,” ACS Photon. 8, 1048–1057 (2021).
[Crossref]

Silva, N. J.

C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4, 4799–4829 (2012).
[Crossref]

Sinclair, M. B.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9, 2507 (2018).
[Crossref]

Sinev, I.

C. R. de Galarreta, I. Sinev, A. M. Alexeev, P. Trofimov, K. Ladutenko, S. G.-C. Carrillo, E. Gemo, A. Baldycheva, J. Bertolotti, and C. D. Wright, “Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces,” Optica 7, 476–484 (2020).
[Crossref]

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

Sipahigil, A.

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

Šípová Jungová, H.

N. Bosio, H. Šípová Jungová, N. O. Länk, T. J. Antosiewicz, R. Verre, and M. Källl, “Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparison,” ACS Photon. 6, 1556–1564 (2019).
[Crossref]

Sivan, Y.

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6, 317–328 (2017).
[Crossref]

Sjodin, T.

T. Sjodin, H. Petek, and H.-L. Dai, “Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett. 81, 5664–5668 (1998).
[Crossref]

Skelton, J. M.

J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, “Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles,” Phys. Rev. B 89, 205203 (2014).
[Crossref]

Slepkov, A. D.

H. K. Khattak, P. Bianucci, and A. D. Slepkov, “Linking plasma formation in grapes to microwave resonances of aqueous dimers,” Proc. Natl. Acad. Sci. USA 116, 4000–4005 (2019).
[Crossref]

Slobozhanyuk, A.

S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear light generation in topological nanostructures,” Nat. Nanotechnol. 14, 126–130 (2019).
[Crossref]

Smirnova, D.

S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, “Nonlinear light generation in topological nanostructures,” Nat. Nanotechnol. 14, 126–130 (2019).
[Crossref]

D. Smirnova and Y. S. Kivshar, “Multipolar nonlinear nanophotonics,” Optica 3, 1241–1255 (2016).
[Crossref]

Smirnova, D. A.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

Smith, D. R.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. 18, 668–678 (2019).
[Crossref]

Solà-Garcia, M.

K. W. Mauser, M. Solà-Garcia, M. Liebtrau, B. Damilano, P.-M. Coulon, S. Vézian, P. A. Shields, S. Meuret, and A. Polman, “Employing cathodoluminescence for nanothermometry and thermal transport measurements in semiconductor nanowires,” ACS Nano 15, 11385–11395 (2021).
[Crossref]

Sole, J. G.

F. Vetrone, R. Naccache, A. Zamarrón, A. J. de la Fuente, F. Sanz-Rodrguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, and J. A. Capobianco, “Temperature sensing using fluorescent nanothermometers,” ACS Nano 4, 3254–3258 (2010).
[Crossref]

Solé, J. G.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Solntsev, A. S.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Song, C.

P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, and T. Deng, “Solar-driven interfacial evaporation,” Nat. Energy 3, 1031–1041 (2018).
[Crossref]

Song, Q.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11, 4445–4452 (2017).
[Crossref]

Spear, W.

W. Spear and P. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun. 17, 1193–1196 (1975).
[Crossref]

Speghini, A.

N.-N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramrez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5, 8665–8671 (2011).
[Crossref]

Špová-Jungová, H.

P. Karpinski, S. Jones, H. Špová-Jungová, R. Verre, and M. Käll, “Optical rotation and thermometry of laser tweezed silicon nanorods,” Nano Lett. 20, 6494–6501 (2020).
[Crossref]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. Bankson, S. R. Sershen, B. Rivera, R. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref]

Starikov, S.

A. Larin, A. Nominé, E. Ageev, J. Ghanbaja, L. Kolotova, S. Starikov, S. Bruyère, T. Belmonte, S. Makarov, and D. Zuev, “Plasmonic nanosponges filled with silicon for enhanced white light emission,” Nanoscale 12, 1013–1021 (2020).
[Crossref]

S. Makarov, L. Kolotova, S. Starikov, U. Zywietz, and B. Chichkov, “Resonant silicon nanoparticles with controllable crystalline states and nonlinear optical responses,” Nanoscale 10, 11403–11409 (2018).
[Crossref]

Staude, I.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

I. Staude, T. Pertsch, and Y. S. Kivshar, “All-dielectric resonant meta-optics lightens up,” ACS Photon. 6, 802–814 (2019).
[Crossref]

A. Vaskin, R. Kolkowski, A. F. Koenderink, and I. Staude, “Light-emitting metasurfaces,” Nanophotonics 8, 1151–1198 (2019).
[Crossref]

A. Vaskin, J. Bohn, K. E. Chong, T. Bucher, M. Zilk, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Directional and spectral shaping of light emission with Mie-resonant silicon nanoantenna arrays,” ACS Photon. 5, 1359–1364 (2018).
[Crossref]

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9, 2507 (2018).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11, 274–284 (2017).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Y. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photon. 2, 172–177 (2015).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, and I. Brener, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14, 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Stegmaier, M.

M. Stegmaier, C. Ros, H. Bhaskaran, and W. H. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

Steiner, M. A.

Z. Omair, G. Scranton, L. M. Pazos-Outón, T. P. Xiao, M. A. Steiner, V. Ganapati, P. F. Peterson, J. Holzrichter, H. Atwater, and E. Yablonovitch, “Ultraefficient thermophotovoltaic power conversion by band-edge spectral filtering,” Proc. Natl. Acad. Sci. USA 116, 15356–15361 (2019).
[Crossref]

Steinert, M.

J. Berzinš, S. Indrišiōnas, K. van Erve, A. Nagarajan, S. Fasold, M. Steinert, G. Gerini, P. Gečys, T. Pertsch, S. M. Bäumer, and F. Setzpfandt, “Direct and high-throughput fabrication of Mie-resonant metasurfaces via single-pulse laser interference,” ACS Nano 14, 6138–6149 (2020).
[Crossref]

J. Berzinš, S. Indrišiūnas, S. Fasold, M. Steinert, O. Žukovskaja, D. Cialla-May, P. Gečys, S. M. Bäumer, T. Pertsch, and F. Setzpfandt, “Laser-induced spatially-selective tailoring of high-index dielectric metasurfaces,” Opt. Express 28, 1539–1553 (2020).
[Crossref]

Stephan, K.

K. Stephan and A. Laesecke, “The thermal conductivity of fluid air,” J. Phys. Chem. Ref. Data 14, 227–234 (1985).
[Crossref]

Stoddart, P. R.

G. Gervinskas, G. Seniutinas, J. S. Hartley, S. Kandasamy, P. R. Stoddart, N. F. Fahim, and S. Juodkazis, “Surface-enhanced Raman scattering sensing on black silicon,” Ann. Phys. 525, 907–914 (2013).
[Crossref]

Storozhenko, D.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

E. Mitsai, M. Naffouti, T. David, M. Abbarchi, L. Hassayoun, D. Storozhenko, A. Mironenko, S. Bratskaya, S. Juodkazis, S. Makarov, and A. Kuchmizhak, “Si1-x Gex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications,” Nanoscale 11, 11634–11641 (2019).
[Crossref]

Street, R.

R. Nemanich, D. Biegelsen, R. Street, and L. Fennell, “Raman scattering from solid silicon at the melting temperature,” Phys. Rev. B 29, 6005–6007 (1984).
[Crossref]

Sugavaneshwar, R. P.

S. Ishii, R. P. Sugavaneshwar, K. Chen, T. D. Dao, and T. Nagao, “Solar water heating and vaporization with silicon nanoparticles at Mie resonances,” Opt. Mater. Express 6, 640–648 (2016).
[Crossref]

S. Ishii, R. P. Sugavaneshwar, and T. Nagao, “Titanium nitride nanoparticles as plasmonic solar heat transducers,” J. Phys. Chem. C 120, 2343–2348 (2016).
[Crossref]

Suh, K. Y.

K. Y. Suh and H. H. Lee, “Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting,” Adv. Funct. Mater. 12, 405–413 (2002).
[Crossref]

Suh, Y. D.

J.-M. Nam, J.-W. Oh, H. Lee, and Y. D. Suh, “Plasmonic nanogap-enhanced Raman scattering with nanoparticles,” Acc. Chem. Res. 49, 2746–2755 (2016).
[Crossref]

D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2010).
[Crossref]

Sukachev, D. D.

C. T. Nguyen, R. E. Evans, A. Sipahigil, M. K. Bhaskar, D. D. Sukachev, V. N. Agafonov, V. A. Davydov, L. F. Kulikova, F. Jelezko, and M. D. Lukin, “All-optical nanoscale thermometry with silicon-vacancy centers in diamond,” Appl. Phys. Lett. 112, 203102 (2018).
[Crossref]

Sumida, S.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Sun, S.

S. Sun, W. Yang, C. Zhang, J. Jing, Y. Gao, X. Yu, Q. Song, and S. Xiao, “Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces,” ACS Nano 12, 2151–2159 (2018).
[Crossref]

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11, 4445–4452 (2017).
[Crossref]

Sun, Y.

Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, “Solar thermophotovoltaics: reshaping the solar spectrum,” Nanophotonics 5, 1–21 (2016).
[Crossref]

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity,” J. Phys. Chem. C 111, 15119–15124 (2007).
[Crossref]

Sundar, V. C.

G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, and D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003).
[Crossref]

Sundaram, S.

S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[Crossref]

Suzuki, M.

Y. Nagasaki, M. Suzuki, I. Hotta, and J. Takahara, “Control of Si-based all-dielectric printing color through oxidation,” ACS Photon. 5, 1460–1466 (2018).
[Crossref]

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17, 7500–7506 (2017).
[Crossref]

Svedendahl, M.

J. Garcia-Guirado, M. Svedendahl, J. Puigdollers, and R. Quidant, “Enhanced chiral sensing with dielectric nanoresonators,” Nano Lett. 20, 585–591 (2019).
[Crossref]

O. Yavas, M. Svedendahl, and R. Quidant, “Unravelling the role of electric and magnetic dipoles in biosensing with Si nanoresonators,” ACS Nano 13, 4582–4588 (2019).
[Crossref]

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref]

Swanglap, P.

Y. Fang, W.-S. Chang, B. Willingham, P. Swanglap, S. Dominguez-Medina, and S. Link, “Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio,” ACS Nano 6, 7177–7184 (2012).
[Crossref]

Syubaev, S.

M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, “Temperature-feedback direct laser reshaping of silicon nanostructures,” Appl. Phys. Lett. 111, 243103 (2017).
[Crossref]

Tables, N.-J. T.

M. W. Chase and N.-J. T. Tables, “Data reported in NIST standard reference database 69, June 2005 release: NIST chemistry webbook,” J. Phys. Chem. Ref. Data 9, 1–1951 (1998).

Tagliabue, G.

T. V. Tsoulos and G. Tagliabue, “Self-induced thermo-optical effects in silicon and germanium dielectric nanoresonators,” Nanophotonics 9, 3849–3861 (2020).
[Crossref]

Tahara, H.

T. Handa, H. Tahara, T. Aharen, and Y. Kanemitsu, “Large negative thermo-optic coefficients of a lead halide perovskite,” Sci. Adv. 5, eaax0786 (2019).
[Crossref]

Takahar, J.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

Takahara, J.

Y. Nagasaki, M. Suzuki, I. Hotta, and J. Takahara, “Control of Si-based all-dielectric printing color through oxidation,” ACS Photon. 5, 1460–1466 (2018).
[Crossref]

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17, 7500–7506 (2017).
[Crossref]

Takahashi, H.

Y. Inoue, A. Kaneko, F. Hanawa, H. Takahashi, K. Hattori, and S. Sumida, “Athermal silica-based arrayed-waveguide grating multiplexer,” Electron. Lett. 33, 1945–1947 (1997).
[Crossref]

Takahashi, Y.

Y. Takahashi and H. Akiyama, “Heat capacity of gold from 80 to 1000 K,” Thermochim. Acta 109, 105–109 (1986).
[Crossref]

Takahata, K.

Y. Hagiwara, K. Takahata, J. Torimoto, and J. Yamamoto, “CO2 Raman thermometer improvement: comparing hot band and stokes and anti-stokes Raman scattering thermometers,” J. Raman Spectrosc. 49, 1776–1781 (2018).
[Crossref]

Takimoto, K.

K. Takimoto, A. Fukuta, Y. Yamamoto, N. Yoshida, T. Itoh, and S. Nonomura, “Linear thermal expansion coefficients of amorphous and microcrystalline silicon films,” J. Non-Cryst. Solids 299, 314–317 (2002).
[Crossref]

Talyzin, I.

I. Talyzin, M. Samsonov, V. Samsonov, M. Y. Pushkar, and V. Dronnikov, “Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation,” Semiconductors 53, 947–953 (2019).
[Crossref]

Tam, A. C.

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref]

Tan, H. H.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

Tan, Q.

C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, and J. Feng, “Ultralow thermal conductivity and ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I),” J. Phys. Chem. C 122, 15973–15978 (2018).
[Crossref]

Tan, Y.-W.

X. Zhu, W. Feng, J. Chang, Y.-W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, “Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature,” Nat. Commun. 7, 10437 (2016).
[Crossref]

Tanaka, I.

J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, “Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles,” Phys. Rev. B 89, 205203 (2014).
[Crossref]

Tang, H.

H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B 43, 2299–2304 (1991).
[Crossref]

Tang, Y.-L.

Y.-S. Duh, Y. Nagasaki, Y.-L. Tang, P.-H. Wu, H.-Y. Cheng, T.-H. Yen, H.-X. Ding, K. Nishida, I. Hotta, J.-H. Yang, Y.-P. Lo, K.-P. Chen, K. Fujita, C.-W. Chang, K.-H. Lin, J. Takahar, and S.-W. Chu, “Giant photothermal nonlinearity in a single silicon nanostructure,” Nat. Commun. 11, 4101 (2020).
[Crossref]

T. Zhang, Y. Che, K. Chen, J. Xu, Y. Xu, T. Wen, G. Lu, X. Liu, B. Wang, X. Xu, Y.-S. Duh, Y.-L. Tang, J. Han, Y. Cao, B.-O. Guan, S.-W. Chu, and X. Li, “Anapole mediated giant photothermal nonlinearity in nanostructured silicon,” Nat. Commun. 11, 3027 (2020).
[Crossref]

Tao, P.

P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, and T. Deng, “Solar-driven interfacial evaporation,” Nat. Energy 3, 1031–1041 (2018).
[Crossref]

Tao, Y.

G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection,” ACS Nano 14, 5268–5277 (2020).
[Crossref]

Tarasenka, N. N.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

Tardajos, G.

G. González-Rubio, P. Daz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Taylor, L. L.

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10, 60–65 (2016).
[Crossref]

Terekhov, P. D.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 035443 (2017).
[Crossref]

Thompson, C. V.

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Sci. 42, 399–434 (2012).
[Crossref]

J. Ye and C. V. Thompson, “Templated solid-state dewetting to controllably produce complex patterns,” Adv. Mater. 23, 1567–1571 (2011).
[Crossref]

Thomsen, C.

H. Scheel, S. Khachadorian, M. Cantoro, A. Colli, A. Ferrari, and C. Thomsen, “Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures,” Phys. Status Solidi B 245, 2090–2093 (2008).
[Crossref]

Tian, J.

J. Tian, H. Luo, Y. Yang, F. Ding, Y. Qu, D. Zhao, M. Qiu, and S. I. Bozhevolnyi, “Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5,” Nat. Commun. 10, 396 (2019).
[Crossref]

Tian, K.

J. Feng, K. Tian, D. Hu, S. Wang, S. Li, Y. Zeng, Y. Li, and G. Yang, “A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range,” Angew. Chem. 123, 8222–8226 (2011).
[Crossref]

Tian, Z.-Q.

S.-Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, “Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials,” Nat. Rev. Mater. 1, 16021 (2016).
[Crossref]

Tiguntseva, E.

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

E. Tiguntseva, G. P. Zograf, F. E. Komissarenko, D. A. Zuev, A. A. Zakhidov, S. V. Makarov, and Y. S. Kivshar, “Light-emitting halide perovskite nanoantennas,” Nano Lett. 18, 1185–1190 (2018).
[Crossref]

Tiguntseva, E. Y.

E. Y. Tiguntseva, D. G. Baranov, A. P. Pushkarev, B. Munkhbat, F. Komissarenko, M. Franckevicius, A. A. Zakhidov, T. Shegai, Y. S. Kivshar, and S. V. Makarov, “Tunable hybrid Fano resonances in halide perovskite nanoparticles,” Nano Lett. 18, 5522–5529 (2018).
[Crossref]

Tilmann, B.

G. Grinblat, H. Zhang, M. P. Nielsen, L. Krivitsky, R. Berté, Y. Li, B. Tilmann, E. Cortés, R. F. Oulton, A. I. Kuznetsov, and S. A. Maier, “Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation,” Sci. Adv. 6, eabb3123 (2020).
[Crossref]

Timin, A. S.

G. P. Zograf, A. S. Timin, A. R. Muslimov, I. I. Shishkin, A. Nominé, J. Ghanbaja, P. Ghosh, Q. Li, M. V. Zyuzin, and S. V. Makarov, “All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells,” Laser Photon. Rev. 14, 1900082 (2020).
[Crossref]

Timofeeva, M.

L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Zangeneh Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, “Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas,” ACS Nano 14, 1379–1389 (2019).
[Crossref]

Tittl, A.

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics 13, 390–396 (2019).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref]

Togo, A.

J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, “Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles,” Phys. Rev. B 89, 205203 (2014).
[Crossref]

Tonkaev, P.

S. O. Gurbatov, E. Modin, V. Puzikov, P. Tonkaev, D. Storozhenko, A. Sergeev, N. Mintcheva, S. Yamaguchi, N. N. Tarasenka, A. Chuvilin, S. Makraov, S. A. Kulinich, and A. A. Kuchmizhak, “Black Au-decorated TiO2 produced via laser ablation in liquid,” ACS Appl. Mater. Interfaces 13, 6522–6531 (2021).
[Crossref]

G. P. Zograf, D. Ryabov, V. Rutckaia, P. Voroshilov, P. Tonkaev, D. V. Permyakov, Y. Kivshar, and S. V. Makarov, “Stimulated Raman scattering from Mie-resonant subwavelength nanoparticles,” Nano Lett. 20, 5786–5791 (2020).
[Crossref]

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

P. Tonkaev, G. Zograf, and S. Makarov, “Optical cooling of lead halide perovskite nanoparticles enhanced by Mie resonances,” Nanoscale 11, 17800–17806 (2019).
[Crossref]

Torimoto, J.

Y. Hagiwara, K. Takahata, J. Torimoto, and J. Yamamoto, “CO2 Raman thermometer improvement: comparing hot band and stokes and anti-stokes Raman scattering thermometers,” J. Raman Spectrosc. 49, 1776–1781 (2018).
[Crossref]

Toth, M.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Tran, T. T.

T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W.-B. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, and C. Bradac, “Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry,” Sci. Adv. 5, eaav9180 (2019).
[Crossref]

Trastoy, J.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

Tribelsky, M. I.

A. E. Miroshnichenko and M. I. Tribelsky, “Ultimate absorption in light scattering by a finite obstacle,” Phys. Rev. Lett. 120, 033902 (2018).
[Crossref]

M. I. Tribelsky, “Anomalous light absorption by small particles,” Europhys. Lett. 94, 14004 (2011).
[Crossref]

M. I. Tribelsky, A. E. Miroshnichenko, Y. S. Kivshar, B. S. Luk’yanchuk, and A. R. Khokhlov, “Laser pulse heating of spherical metal particles,” Phys. Rev. X 1, 021024 (2011).
[Crossref]

Trindade, T.

P. Jorge, M. A. Martins, T. Trindade, J. L. Santos, and F. Farahi, “Optical fiber sensing using quantum dots,” Sensors 7, 3489–3534 (2007).
[Crossref]

Tripathi, A.

A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, “Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-transition materials,” ACS Photon. 8, 1206–1213 (2021).
[Crossref]

Trofimov, P.

Tsang, K.

K. Tsang, H. Kui, and K. Chik, “Calorimetric studies of the heat capacity and relaxation of amorphous Si prepared by electron beam evaporation,” J. Appl. Phys. 74, 4932–4935 (1993).
[Crossref]

Tsoulos, T. V.

T. V. Tsoulos and G. Tagliabue, “Self-induced thermo-optical effects in silicon and germanium dielectric nanoresonators,” Nanophotonics 9, 3849–3861 (2020).
[Crossref]

Turchanin, A.

T. Bucher, A. Vaskin, R. Mupparapu, F. J. Löchner, A. George, K. E. Chong, S. Fasold, C. Neumann, D.-Y. Choi, F. Eilenberger, F. Setzpfandt, Y. S. Kivshar, T. Pertsch, A. Turchanin, and I. Staude, “Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces,” ACS Photon. 6, 1002–1009 (2019).
[Crossref]

Tuzer, U.

E. Xifre-Perez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano 7, 664–668 (2012).
[Crossref]

Ubyivovk, E.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

S. V. Makarov, M. I. Petrov, U. Zywietz, V. Milichko, D. Zuev, N. Lopanitsyna, A. Kuksin, I. Mukhin, G. Zograf, and E. Ubyivovk, “Efficient second-harmonic generation in nanocrystalline silicon nanoparticles,” Nano Lett. 17, 3047–3053 (2017).
[Crossref]

Umetsu, K.

H. Koh, P. Rudolph, N. Schäfer, K. Umetsu, and T. Fukuda, “The effect of various thermal treatments on supercooling of PbTe melts,” Mater. Sci. Eng. B 34, 199–203 (1995).
[Crossref]

Urban, C.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

Ushakova, E.

A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, V. Mikhailovskii, A. Zakhidov, S. Makarov, and A. Di Carlo, “Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells,” Adv. Opt. Mater. 6, 1800576 (2018).
[Crossref]

S. Makarov, I. Sinev, V. Milichko, F. Komissarenko, D. Zuev, E. Ushakova, I. Mukhin, Y. Yu, A. Kuznetsov, P. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. U. Kivshar, “Nanoscale generation of white light for ultrabroadband nanospectroscopy,” Nano Lett. 18, 535–539 (2018).
[Crossref]

Ushakova, E. V.

E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev, V. Mikhailovskii, E. V. Ushakova, D. G. Baranov, T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Makarov, “Room-temperature lasing from Mie-resonant non-plasmonic nanoparticles,” ACS Nano 14, 8149–8156 (2020).
[Crossref]

A. S. Zalogina, R. Savelev, E. V. Ushakova, G. Zograf, F. Komissarenko, V. Milichko, S. Makarov, D. Zuev, and I. Shadrivov, “Purcell effect in active diamond nanoantennas,” Nanoscale 10, 8721–8727 (2018).
[Crossref]

Vabishchevich, P. P.

S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, “An all-dielectric metasurface as a broadband optical frequency mixer,” Nat. Commun. 9, 2507 (2018).
[Crossref]

M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, “Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures,” Nano Lett. 15, 6985–6990 (2015).
[Crossref]

Vaidya, G.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photon. 4, 1076–1082 (2017).
[Crossref]

Valmianski, I.

T. Lewi, N. A. Butakov, H. A. Evans, M. W. Knight, P. P. Iyer, D. Higgs, H. Chorsi, J. Trastoy, J. D. V. Granda, I. Valmianski, C. Urban, Y. Kalcheim, P. Y. Wang, P. W. C. Hon, I. K. Schuller, and J. A. Schuller, “Thermally reconfigurable meta-optics,” IEEE Photon. J. 11, 1–16 (2019).
[Crossref]

Valuckas, V.

V. Mylnikov, S. T. Ha, Z. Pan, V. Valuckas, R. Paniagua-Domínguez, H. V. Demir, and A. I. Kuznetsov, “Lasing action in single subwavelength particles supporting supercavity modes,” ACS Nano 14, 7338–7346 (2020).
[Crossref]

van Erve, K.

J. Berzinš, S.