Abstract

Quantum cryptography is arguably the fastest growing area in quantum information science. Novel theoretical protocols are designed on a regular basis, security proofs are constantly improving, and experiments are gradually moving from proof-of-principle lab demonstrations to in-field implementations and technological prototypes. In this paper, we provide both a general introduction and a state-of-the-art description of the recent advances in the field, both theoretical and experimental. We start by reviewing protocols of quantum key distribution based on discrete variable systems. Next we consider aspects of device independence, satellite challenges, and protocols based on continuous-variable systems. We will then discuss the ultimate limits of point-to-point private communications and how quantum repeaters and networks may overcome these restrictions. Finally, we will discuss some aspects of quantum cryptography beyond standard quantum key distribution, including quantum random number generators and quantum digital signatures.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Finite-key analysis for twin-field quantum key distribution based on generalized operator dominance condition

Rui-Qiang Wang, Zhen-Qiang Yin, Feng-Yu Lu, Rong Wang, Shuang Wang, Wei Chen, Wei Huang, Bing-Jie Xu, Guang-Can Guo, and Zheng-Fu Han
Opt. Express 28(15) 22594-22605 (2020)

One-sided device-independent quantum key distribution for two independent parties

Jun Xin, Xiao-Ming Lu, Xingmin Li, and Guolong Li
Opt. Express 28(8) 11439-11450 (2020)

Efficient quantum digital signatures without symmetrization step

Yu-Shuo Lu, Xiao-Yu Cao, Chen-Xun Weng, Jie Gu, Yuan-Mei Xie, Min-Gang Zhou, Hua-Lei Yin, and Zeng-Bing Chen
Opt. Express 29(7) 10162-10171 (2021)

References

  • View by:

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. A. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction (De Gruyter, 2012).
  3. I. Bengtsson and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University, 2006).
  4. M. Hayashi, Quantum Information Theory: Mathematical Foundation (Springer-Verlag, 2017).
  5. J. Watrous, The Theory of Quantum Information (Cambridge University, 2018).
  6. M. Tomamichel, Quantum Information Processing with Finite Resources—Mathematical Foundations (Springer, 2016), Vol. 5.
  7. C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
    [Crossref]
  8. S. L. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
    [Crossref]
  9. R. Van Meter, Quantum Networking (Wiley, 2014).
  10. G. Adesso, S. Ragy, and A. R. Lee, “Continuous variable quantum information: Gaussian states and beyond,” Open Syst. Inf. Dyn. 21, 1440001 (2014).
    [Crossref]
  11. A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods (Taylor & Francis, 2017).
  12. U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and continuous-variable quantum information processing,” Nat. Phys. 11, 713–719 (2015).
    [Crossref]
  13. G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. USA 112, 3866–3873 (2015).
    [Crossref]
  14. S. Barnett, Quantum Information (Oxford University Press, 2009).
  15. B. Schumacher and M. Westmoreland, Quantum Processes Systems, and Information (Cambridge University Press, 2010).
  16. D. Bouwmeester, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer-Verlag, 2000).
  17. M. M. Wilde, Quantum Information Theory (Cambridge University Press, 2013).
  18. C. A. Fuchs, Coming of Age with Quantum Information: Notes on a Paulian Idea (Cambridge University Press, 2011).
  19. D. Mermin, Quantum Computer Science: An Introduction (Cambridge University Press, 2007).
  20. V. Vedral, Introduction to Quantum Information Science (Oxford University Press, 2006).
  21. G. Benenti, G. Casati, and D. Rossini, Principles of Quantum Computation and Information: A Comprehensive Textbook (World Scientific, 2019).
  22. J. Lars, The Second Quantum Revolution: From Entanglement to Quantum Computing and Other Super-Technologies (Springer, 2018).
  23. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
    [Crossref]
  24. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [Crossref]
  25. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872 (1998).
    [Crossref]
  26. S. L. Braunstein, G. M. D’Ariano, G. J. Milburn, and M. F. Sacchi, “Universal teleportation with a twist,” Phys. Rev. Lett. 84, 3486–3489 (2000).
    [Crossref]
  27. S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nat. Photonics 9, 641–652 (2015).
    [Crossref]
  28. W. Wootters and W. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
    [Crossref]
  29. J. Park, “The concept of transition in quantum mechanics,” Found. Phys. 1, 23–33 (1970).
    [Crossref]
  30. R. J. Schoelkopf and S. M. Girvin, “Wiring up quantum systems,” Nature 451, 664–669 (2008).
    [Crossref]
  31. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, November20–22, 1994.
  32. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484–1509 (1997).
    [Crossref]
  33. R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 21, 120–126 (1978).
    [Crossref]
  34. M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Ann. Math. 160,781–793 (2004).
    [Crossref]
  35. M. Mosca, “Setting the scene for the ETSI quantum-safe cryptography workshop,” in e-Proceedings of 1st Quantum-Safe-Crypto Workshop, Sophia Antipolis, September26–27, 2013.
  36. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  37. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
    [Crossref]
  38. E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: principle, security and implementations,” Entropy 17, 6072–6092 (2015).
    [Crossref]
  39. E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
    [Crossref]
  40. A. Shenoy-Hejamadi, A. Pathak, and S. Radhakrishna, “Quantum cryptography: key distribution and beyond,” Quanta 6, 1–147 (2017).
    [Crossref]
  41. D. Mayers and A. Yao, “Quantum cryptography with imperfect apparatus,” in Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS-98) (IEEE Computer Society, 1998), pp. 503–509.
  42. J. Barrett, L. Hardy, and A. Kent, “No signaling and quantum key distribution,” Phys. Rev. Lett. 95, 010503 (2005).
    [Crossref]
  43. S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental limits of repeaterless quantum communications,” Nat. Commun. 8, 15043 (2017). See also arXiv:1510.08863 (2015).
    [Crossref]
  44. S. Pirandola, R. García-Patrón, S. L. Braunstein, and S. Lloyd, “Direct and reverse secret-key capacities of a quantum channel,” Phys. Rev. Lett. 102, 050503 (2009).
    [Crossref]
  45. E. Chip, “Building the quantum network,” New J. Phys. 4, 46 (2002).
    [Crossref]
  46. E. Chip, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA quantum network,” Proc. SPIE 5815, 138–149 (2005).
    [Crossref]
  47. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11, 075001 (2009).
    [Crossref]
  48. F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, Y. Zaho, H. Li, D. Liu, Z. Han, and G. Cuo, “Field experiment on a robust hierarchical metropolitan quantum cryptography network,” Chin. Sci. Bull. 54, 2991–2997 (2009).
    [Crossref]
  49. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Langer, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19, 10387–10409 (2011).
    [Crossref]
  50. R. Courtland, “China’s 2000-Km Quantum Link Is Almost Complete,” https://spectrum.ieee.org/telecom/security/chinas-2000km-quantum-link-is-almost-complete
  51. L. Sharpe, “Ultra-secure quantum connection tests begin over UK network,” https://eandt.theiet.org/content/articles/2019/03/ultra-secure-quantum-connection-tests-begin-over-uk-network/ .
  52. S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
    [Crossref]
  53. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref]
  54. M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate-distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).
    [Crossref]
  55. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [Crossref]
  56. W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A 59, 169–181 (1999).
    [Crossref]
  57. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref]
  58. S. Pirandola, “Capacities of repeater-assisted quantum communications,” arXiv:1601.00966 (2016).
  59. S. Pirandola, “End-to-end capacities of a quantum communication network,” Commun. Phys. 2, 51 (2019).
    [Crossref]
  60. S. Pirandola, “Bounds for multi-end communication over quantum networks,” Quantum Sci. Technol. 4, 045006 (2019).
    [Crossref]
  61. M. Epping, H. Kampermann, and D. Bruß, “Large-scale quantum networks based on graphs,” New J. Phys. 18, 053036 (2016).
    [Crossref]
  62. M. Epping, H. Kampermann, and D. Bruß, “Robust entanglement distribution via quantum network coding,” New J. Phys. 18, 103052 (2016).
    [Crossref]
  63. K. Azuma, A. Mizutani, and H.-K. Lo, “Fundamental rate-loss trade-off for the quantum internet,” Nat. Commun. 7, 13523 (2016).
    [Crossref]
  64. K. Azuma and G. Kato, “Aggregating quantum repeaters for the quantum internet,” Phys. Rev. A 96, 032332 (2017).
    [Crossref]
  65. T. P. W. Cope, K. Goodenough, and S. Pirandola, “Converse bounds for quantum and private communication over Holevo–Werner channels,” J. Phys. A 51, 494001 (2018).
    [Crossref]
  66. L. Rigovacca, G. Kato, S. Bäuml, M. S. Kim, W. J. Munro, and K. Azuma, “Versatile relative entropy bounds for quantum networks,” New J. Phys. 20, 013033 (2018).
    [Crossref]
  67. M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, “Routing entanglement in the quantum internet,” npj Quantum Inf. 5, 25 (2019).
    [Crossref]
  68. S. Bäuml, K. Azuma, G. Kato, and D. Elkouss, “Linear programs for entanglement and key distribution in the quantum internet,” Commun. Phys. 355 (2020).
    [Crossref]
  69. S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92, 022357 (2015).
    [Crossref]
  70. M. Pant, H. Krovi, D. Englund, and S. Guha, “Rate-distance tradeoff and resource costs for all-optical quantum repeaters,” Phys. Rev. A 95, 012304 (2017).
    [Crossref]
  71. A. Khalique and B. C. Sanders, “Long-distance quantum key distribution using concatenated entanglement swapping with practical resources,” Opt. Eng. 56, 016114 (2017).
    [Crossref]
  72. J. Z. Bernád, “Hybrid quantum repeater based on resonant qubit-field interactions,” Phys. Rev. A 96, 052329 (2017).
    [Crossref]
  73. T. Holz, H. Kampermann, and D. Bruß, “Device-independent secret-key-rate analysis for quantum repeaters,” Phys. Rev. A 97, 012337 (2018).
    [Crossref]
  74. M. Zwerger, A. Pirker, V. Dunjko, H. J. Briegel, and W. Dür, “Long-range big quantum-data transmission,” Phys. Rev. Lett. 120, 030503 (2018).
    [Crossref]
  75. J. Wallnöfer, A. Pirker, M. Zwerger, and W. Dür, “Multipartite state generation in quantum networks with optimal scaling,” Sci. Rep. 9, 314 (2019).
    [Crossref]
  76. D. Miller, T. Holz, H. Kampermann, and D. Bruß, “Parameter regimes for surpassing the PLOB bound with error-corrected qudit repeaters,” Quantum 3, 216 (2019).
    [Crossref]
  77. G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic analysis of a quantum entanglement switch,” SIGMETRICS Perform. Evaluation Review 47, 27–29 (2019).
  78. S. Pirandola, “General upper bounds for distributing conferencing keys in arbitrary quantum networks,” IET Quantum Commun. 1, 22–25 (2020).
    [Crossref]
  79. S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. A. Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger, and J.-W. Pan, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett. 120, 030501 (2018).
    [Crossref]
  80. T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley Series in Telecommunications and Signal Processing (Wiley, 1996).
  81. I. Csiszar and J. Korner, Information Theory: Coding Theorems for Discrete Memoryless Systems, 2nd ed. (Akademiai Kiado, 1997).
  82. A. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel,” Probl. Inf. Transm. 9, 177–183 (1973).
  83. I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states,” Proc. R. Soc. A 461, 207–235 (2005).
    [Crossref]
  84. R. Renner, “Symmetry of large physical systems implies independence of subsystems, ” Nat. Phys. 3, 645–649 (2007).
    [Crossref]
  85. R. Renner, “Security of quantum key distribution,” Int. J. Quant. Inf. 6, 1–127 (2008).
    [Crossref]
  86. R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
    [Crossref]
  87. V. Scarani and R. Renner, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
    [Crossref]
  88. L. Sheridan, T. P. Le, and V. Scarani, “Finite-key security against coherent attacks in quantum key distribution,” New J. Phys. 12, 123019 (2010).
    [Crossref]
  89. M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
    [Crossref]
  90. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
    [Crossref]
  91. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Erratum: continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 112, 019902 (2014).
    [Crossref]
  92. A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118, 200501 (2017).
    [Crossref]
  93. C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, “Continuous-variable measurement-device-independent quantum key distribution: composable security against coherent attacks,” Phys. Rev. A 97, 052327 (2018).
    [Crossref]
  94. C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, “Parameter estimation with almost no public communication for continuous-variable quantum key distribution,” Phys. Rev. Lett. 120, 220505 (2018).
    [Crossref]
  95. S. Pirandola, “Limits and security of free-space quantum communications,” arXiv:2010.04168 (2020).
  96. D. Mayers, “Unconditional security in quantum cryptography,” J. ACM 48, 351–406 (2001).
    [Crossref]
  97. P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
    [Crossref]
  98. R. König, R. Renner, A. Bariska, and U. Maurer, “Small accessible quantum information does not imply security,” Phys. Rev. Lett. 98, 140502 (2007).
    [Crossref]
  99. R. Canetti, “Security and composition of multiparty cryptographic protocols,” J. Crypt. 13, 143–202 (2000).
    [Crossref]
  100. R. Canetti, “Universally composable security: a new paradigm for cryptographic protocols,” in Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS-01) (2001), pp. 136–145.
  101. B. Pfitzmann and M. Waidner, “Composition and integrity preservation of secure reactive systems,” in Proceedings of the 7th ACM Conference on Computer and Communications Security (2000), p. 245–254.
  102. B. Pfitzmann and M. Waidner, “A model for asynchronous reactive systems and its application to secure message transmission,” in Proceedings of the 2001 IEEE Symposium on Security and Privacy (SP01) (2001), pp. 184–200.
  103. M. Ben-Or and D. Mayers, “General security definition and composability for quantum and classical protocols,” arXiv:quant-ph/0409062 (2004).
  104. M. Ben-Or, M. Horodecki, D. W. Leung, D. Mayers, and J. Oppenheim, “The Universal composable security of quantum key distribution,” in Second Theory of Cryptography Conference (TCC), Lecture Notes in Computer Science (Springer, 2005), Vol. 3378, pp. 386–406.
  105. D. Unruh, “Simulatable security for quantum protocols,” arXiv:quant-ph/0409125 (2004).
  106. R. Renner and R. König, “Universally composable privacy amplification against quantum adversaries,” in Second Theory of Cryptography Conference (TCC), Lecture Notes in Computer Science (2005), Vol. 3378, pp. 407–425.
  107. R. Renner, Security of Quantum Key Distribution (PhD thesis, Swiss Federal Institute of Technology, 2005).
  108. J. Barrett, R. Colbeck, and A. Kent, “Unconditionally secure device-independent quantum key distribution with only two devices,” Phys. Rev. A 86, 062326 (2012).
    [Crossref]
  109. C. Portmann and R. Renner, “Cryptographic security of quantum key distribution,” arXiv:1409.3525v1 (2014).
  110. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the International Conference on Computers, Systems & Signal Processing, Bangalore, India, December 1984, pp. 175–179.
  111. G. Brassard, “Brief history of quantum cryptography: a personal perspective,” in Proceedings of IEEE Information Theory Workshop on Theory and Practice in Information Theoretic Security, Awaji Island, Japan (2005), pp. 19–23.
  112. C. H. Bennett, G. Brassard, S. Breidbart, and S. Wiesner, “Quantum cryptography, or unforgeable subway tokens,” in Advances in Cryptology: Proceedings of Crypto’ 82, California, USA (Plenum, 1982), pp. 267–275.
  113. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
    [Crossref]
  114. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [Crossref]
  115. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
    [Crossref]
  116. A. Acín, N. Gisin, and L. Masanes, “From Bell’s theorem to secure quantum key distribution,” Phys. Rev. Lett. 97, 120405 (2006).
    [Crossref]
  117. H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
    [Crossref]
  118. L. Goldenberg and L. Vaidman, “Quantum cryptography based on orthogonal states,” Phys. Rev. Lett. 75, 1239–1243 (1995).
    [Crossref]
  119. M. Koashi and N. Imoto, “Quantum cryptography based on split transmission of one-bit information in two steps,” Phys. Rev. Lett. 79, 2383–2386 (1997).
    [Crossref]
  120. T.-G. Noh, “Counterfactual quantum cryptography,” Phys. Rev. Lett. 103, 230501 (2009).
    [Crossref]
  121. T. Mor, “No cloning of orthogonal states in composite systems,” Phys. Rev. Lett. 80, 3137–3140 (1998).
    [Crossref]
  122. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
    [Crossref]
  123. K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
    [Crossref]
  124. S. Pirandola, “Quantum discord as a resource for quantum cryptography,” Sci. Rep. 4, 6956 (2014).
    [Crossref]
  125. S. Pirandola, “Symmetric collective attacks for the eavesdropping of symmetric quantum key distribution,” Int. J. Quant. Inf. 6, 765–771 (2008).
    [Crossref]
  126. C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163–1172 (1997).
    [Crossref]
  127. C. S. Niu and R. B. Griffiths, “Two-qubit copying machine for economical quantum eavesdropping,” Phys. Rev. A 60, 2764–2776 (1999).
    [Crossref]
  128. A. Peres, Quantum Theory: Concepts and Methods (Kluwer, 1997).
  129. A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77, 793–797 (1996).
    [Crossref]
  130. A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996).
    [Crossref]
  131. A. M. Steane, “Multiple-particle interference and quantum error correction,” Proc. R. Soc. Lond. A 452, 2551–2577 (1996).
    [Crossref]
  132. H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Crypt. 18, 133–165 (2005).
    [Crossref]
  133. D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,” Phys. Rev. Lett. 81, 3018–3021 (1998).
    [Crossref]
  134. H. Inamori, “Security of EPR-based quantum key distribution using three bases,” arXiv:quant-ph/0008076 (2000).
  135. H.-K. Lo, “Proof of unconditional security of six-state quantum key distribution scheme,” Quantum Inf. Comput. 1, 81–94 (2001).
  136. V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, “Quantum cloning,” Rev. Mod. Phys. 77, 1225–1256 (2005).
    [Crossref]
  137. D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
    [Crossref]
  138. A. Chefles, “Quantum state discrimination,” Contemp. Phys. 41, 401–424 (2000).
    [Crossref]
  139. S. M. Barnett and S. Croke, “Quantum state discrimination,” Adv. Opt. Photon. 1, 238–278 (2009).
    [Crossref]
  140. K. Tamaki, M. Koashi, and N. Imoto, “Unconditionally secure key distribution based on two nonorthogonal states,” Phys. Rev. Lett. 90, 167904 (2003).
    [Crossref]
  141. K. Tamaki and N. Lütkenhaus, “Unconditional security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel,” Phys. Rev. A 69, 032316 (2004).
    [Crossref]
  142. M. Koashi, “Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse,” Phys. Rev. Lett. 93, 120501 (2004).
    [Crossref]
  143. K. Tamaki, “Unconditionally secure quantum key distribution with relatively strong signal pulse,” Phys. Rev. A 77, 032341 (2008).
    [Crossref]
  144. K. Tamaki, N. Lütkenhaus, M. Koashi, and J. Batuwantudawe, “Unconditional security of the Bennett 1992 quantum-key-distribution scheme with a strong reference pulse,” Phys. Rev. A 80, 032302 (2009).
    [Crossref]
  145. M. Lucamarini, G. Di Giuseppe, and K. Tamaki, “Robust unconditionally secure quantum key distribution with two nonorthogonal and uninformative states,” Phys. Rev. A 80, 032327 (2009).
    [Crossref]
  146. M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A 86, 032325 (2012).
    [Crossref]
  147. J. F. Clauser and M. A. Horne, “Experimental consequences of objective local theories,” Phys. Rev. D 10, 526–535 (1974).
    [Crossref]
  148. L. Masanes, S. Pironio, and A. Acin, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun. 2, 238 (2011).
    [Crossref]
  149. M. Lucamarini, R. Kumar, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Compensating the noise of a communication channel via asymmetric encoding of quantum information,” Phys. Rev. Lett. 105, 140504 (2010).
    [Crossref]
  150. T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Rossbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
    [Crossref]
  151. T. Heindel, C. Schneider, M. Lermer, S. H. Kwona, T. Braun, S. Reitzensteinb, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
    [Crossref]
  152. M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
    [Crossref]
  153. M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
    [Crossref]
  154. B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995).
    [Crossref]
  155. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
    [Crossref]
  156. N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
    [Crossref]
  157. D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 5, 325–360 (2004).
  158. X. Ma, “Quantum cryptography: theory and practice,” Ph.D. thesis (University of Toronto, 2008).
  159. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [Crossref]
  160. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
    [Crossref]
  161. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [Crossref]
  162. X.-B. Wang, “Decoy-state protocol for quantum cryptography with four different intensities of coherent light,” Phys. Rev. A 72, 012322 (2005).
    [Crossref]
  163. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
    [Crossref]
  164. X.-B. Wang, C.-Z. Peng, J. Zhang, L. Yang, and J.-W. Pan, “General theory of decoy-state quantum cryptography with source errors,” Phys. Rev. A 77, 042311 (2008).
    [Crossref]
  165. X.-B. Wang, L. Yang, C.-Z. Peng, and J.-W. Pan, “Decoy-state quantum key distribution with both source errors and statistical fluctuations,” New J. Phys. 11, 075006 (2009).
    [Crossref]
  166. X.-B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states,” Phys. Rep. 448, 1–111 (2007).
    [Crossref]
  167. V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
    [Crossref]
  168. K. Tamaki and H.-K. Lo, “Unconditionally secure key distillation from multiphotons,” Phys. Rev. A 73, 010302 (2006).
    [Crossref]
  169. H.-L. Yin, Y. Fu, Y. Mao, and Z.-B. Chen, “Security of quantum key distribution with multiphoton components,” Sci. Rep. 6, 29482 (2016).
    [Crossref]
  170. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1970).
    [Crossref]
  171. A. Pirker, V. Dunjko, W. Dür, and H. J. Briegel, “Entanglement generation secure against general attacks,” New J. Phys. 19, 113012 (2017).
    [Crossref]
  172. A. Pirker, M. Zwerger, V. Dunjko, H. J. Briegel, and W. Dür, “Simple proof of confidentiality for private quantum channels in noisy environments,” Quantum Sci. Technol. 4, 025009 (2019).
    [Crossref]
  173. K. Boström and T. Felbinger, “Deterministic secure direct communication using entanglement,” Phys. Rev. Lett. 89, 187902 (2002).
    [Crossref]
  174. Q.-Y. Cai and B.-W. Li, “Deterministic secure communication without using entanglement,” Chin. Phys. Lett. 21, 601 (2004).
    [Crossref]
  175. F.-G. Deng and G. L. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A 69, 052319 (2004).
    [Crossref]
  176. F.-G. Deng and G. L. Long, “Bidirectional quantum key distribution protocol with practical faint laser pulses,” Phys. Rev. A 70, 012311 (2004).
    [Crossref]
  177. M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett. 94, 140501 (2005).
    [Crossref]
  178. H. Lu, C.-H. F. Fung, X. Ma, and Q.-Y. Cai, “Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel,” Phys. Rev. A 84, 042344 (2011).
    [Crossref]
  179. K. Boström, “Secure direct communication using entanglement,” arXiv:0203064 v1 [quant-ph]) (2002).
  180. Q.-Y. Cai, “The “ping-pong” protocol can be attacked without eavesdropping,” Phys. Rev. Lett. 91, 109801 (2003).
    [Crossref]
  181. S. Pirandola, S. L. Braunstein, S. Mancini, and S. Lloyd, “Quantum direct communication with continuous variables,” Europhys. Lett. 84, 20013 (2008).
    [Crossref]
  182. S. Pirandola, S. L. Braunstein, S. Lloyd, and S. Mancini, “Confidential direct communications: a quantum approach using continuous variables,” IEEE J. Sel. Top. Quantum Electron. 15, 1570–1580 (2009).
    [Crossref]
  183. J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, “Quantum low probability of intercept,” J. Opt. Soc. Am. B 36, B41–B50 (2019).
    [Crossref]
  184. J. S. Shaari, M. Lucamarini, and S. Mancini, “Checking noise correlations for safer two-way quantum key distribution,” Quantum Inf. Process. 13, 1139–1153 (2014).
    [Crossref]
  185. A. Cerè, M. Lucamarini, G. Di Giuseppe, and P. Tombesi, “Experimental test of two-way quantum key distribution in presence of controlled noise,” Phys. Rev. Lett. 96, 200501 (2006).
    [Crossref]
  186. M. F. Abdul Khir, M. N. Mohd Zain, S. Soekardjo, S. Saharudin, and S. Shaari, “Implementation of two-way free space quantum key distribution,” Opt. Eng. 51, 045006 (2012).
    [Crossref]
  187. M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Experimental two way quantum key distribution with decoy state,” Opt. Commun. 285, 842–845 (2012).
    [Crossref]
  188. R. Kumar, M. Lucamarini, G. Di Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008).
    [Crossref]
  189. N. J. Beaudry, M. Lucamarini, S. Mancini, and R. Renner, “Security of two-way quantum key distribution,” Phys. Rev. A 88, 062302 (2013).
    [Crossref]
  190. Q.-Y. Cai, “Eavesdropping on the two-way quantum communication protocols with invisible photons,” Phys. Lett. A 351, 23–25 (2006).
    [Crossref]
  191. A. Wócjik, “Eavesdropping on the ping-pong quantum communication protocol,” Phys. Rev. Lett. 90, 157901 (2003).
    [Crossref]
  192. M. Lucamarini and S. Mancini, “Quantum key distribution using a two-way quantum channel,” Theor. Comput. Sci. 560, 46–61 (2014).
    [Crossref]
  193. M. Lucamarini, A. Cerè, G. Di Giuseppe, S. Mancini, D. Vitali, and P. Tombesi, “Two-way protocol with imperfect devices,” Open Syst. Inf. Dyn. 14, 169–178 (2007).
    [Crossref]
  194. J. S. Shaari and I. Bahari, “Independent attacks in imperfect settings: a case for a two-way quantum key distribution scheme,” Phys. Lett. A 374, 4205–4211 (2010).
    [Crossref]
  195. G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Optimal cloning of unitary transformation,” Phys. Rev. Lett. 101, 180504 (2008).
    [Crossref]
  196. A. Bisio, G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Information-disturbance tradeoff in estimating a unitary transformation,” Phys. Rev. A 82, 062305 (2010).
    [Crossref]
  197. J. S. Shaari, “Nonorthogonal unitaries in two-way quantum key distribution,” Phys. Lett. 378, 863–868 (2014).
    [Crossref]
  198. A. Laing, T. Rudolph, and J. L. O’Brien, “Experimental quantum process discrimination,” Phys. Rev. Lett. 102, 160502 (2009).
    [Crossref]
  199. J. S. Shaari and S. Soekardjo, “Indistinguishable encoding for bidirectional quantum key distribution: theory to experiment,” Europhys. Lett. 120, 60001 (2018).
    [Crossref]
  200. J. S. Shaari, R. N. M. Nasir, and S. Mancini, “Mutually unbiased unitary bases,” Phys. Rev. A 94, 052328 (2016).
    [Crossref]
  201. J. S. Shaari, M. Lucamarini, and M. R. B. Wahiddin, “Deterministic six states protocol for quantum communication,” Phys. Lett. A 358, 85–90 (2006).
    [Crossref]
  202. J. S. Shaari, M. R. B. Wahiddin, and S. Mancini, “Blind encoding into qudits,” Phys. Lett. A 372, 1963–1967 (2008).
    [Crossref]
  203. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
    [Crossref]
  204. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
    [Crossref]
  205. H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
    [Crossref]
  206. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
    [Crossref]
  207. B. S. Cirelson, “Quantum generalizations of Bell’s inequality,” Lett. Math. Phys. 4, 93–100 (1980).
    [Crossref]
  208. B. S. Tsirelson, “Some results and problems on quantum Bell-type inequalities,” Hadronic J. Suppl. 8, 329–345 (1993).
  209. L. A. Khalfin and B. S. Tsirelson, “Quantum and quasi-classical analogs of Bell inequalities,” in Symposium on the Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds. (World Scientific, 1985).
  210. S. Popescu and D. Rohrlich, “Quantum nonlocality as an axiom,” Found. Phys. 24, 379–385 (1994).
    [Crossref]
  211. M. Navascués, S. Pironio, and A. Acín, “Bounding the set of quantum correlations,” Phys. Rev. Lett. 98, 010401 (2007).
    [Crossref]
  212. R. Arnon-Friedman, R. Renner, and T. Vidick, “Simple and tight device-independent security proofs,” SIAM J. Comput. 48, 181–225 (2019).
    [Crossref]
  213. F. Dupuis, O. Fawzi, and R. Renner, “Entropy accumulation,” arXiv:1607.01796 (2016).
  214. A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
    [Crossref]
  215. M. Navascués, S. Pironio, and A. Acín, “A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations,” New J. Phys. 10, 073013 (2008).
    [Crossref]
  216. E. Hänggi and R. Renner, “Device-independent quantum key distribution with commuting measurements,” arXiv:1009.1833 (2010).
  217. P. J. Brown, S. Ragy, and R. Colbeck, “A framework for quantum-secure device-independent randomness expansion,” IEEE Trans. Inf. Theory 66, 2964–2987 (2020).
    [Crossref]
  218. Y. Zhang, H. Fu, and E. Knill, "Efficient randomness certification by quantum probability estimation," Phys. Rev. Res. 2, 013016 (2020).
    [Crossref]
  219. M. Winczewski, T. Das, and K. Horodecki, “Limitations on device independent secure key via squashed non-locality,” arXiv:1903.12154 (2019).
  220. E. Kaur, M. M. Wilde, and A. Winter, “Fundamental limits on key rates in device-independent quantum key distribution,” New J. Phys. 22, 023039 (2020).
    [Crossref]
  221. J. Barrett, R. Colbeck, and A. Kent, “Memory attacks on device-independent quantum cryptography,” Phys. Rev. Lett. 110, 010503 (2013).
    [Crossref]
  222. S. Pironio, A. Acin, N. Brunner, N. Gisin, S. Massar, and V. Scarani, “Device-independent quantum key distribution secure against collective attacks,” New J. Phys. 11, 045021 (2009).
    [Crossref]
  223. M. McKague, “Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices,” New J. Phys. 11, 103037 (2009).
    [Crossref]
  224. E. Hänggi, R. Renner, and S. Wolf, “Efficient device-independent quantum key distribution,” in Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques (Eurocrypt’10), H. Gilbert and F. Riviera, eds. (Springer, 2009), pp. 216–234.
  225. L. Masanes, R. Renner, M. Christandl, A. Winter, and J. Barrett, “Full security of quantum key distribution from no-signaling constraints,” IEEE Trans. Inf. Theory 60, 4973–4986 (2014).
    [Crossref]
  226. C. A. Miller and Y. Shi, “Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices,” in Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC’ 14 (ACM, 2014), pp. 417.
  227. U. Vazirani and T. Vidick, “Fully device-independent quantum key distribution,” Phys. Rev. Lett. 113, 140501 (2014).
    [Crossref]
  228. B. W. Richardt, F. Unger, and U. Vazirani, “Classical command of quantum systems,” Nature 496, 456–460 (2013).
    [Crossref]
  229. F. Dupuis and O. Fawzi, “Entropy accumulation with improved second-order term,” IEEE Trans. Inf. Theory 65, 7596–7612 (2019).
  230. R. Colbeck and V. Vilasini, “LPAssumptions (Mathematica package),” 2019, https://github.com/rogercolbeck/LPAssumptions .
  231. P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47, R747–R750 (1993).
    [Crossref]
  232. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
    [Crossref]
  233. M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, “Significant-loophole-free test of Bell’s theorem with entangled photons,” Phys. Rev. Lett. 115, 250401 (2015).
    [Crossref]
  234. B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
    [Crossref]
  235. L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,” Phys. Rev. Lett. 115, 250402 (2015).
    [Crossref]
  236. M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
    [Crossref]
  237. X.-B. Wang, “Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors,” Phys. Rev. A 87, 012320 (2013).
    [Crossref]
  238. Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
    [Crossref]
  239. T. Heinosaari and M. Ziman, “Guide to mathematical concepts of quantum theory,” Acta Phys. Slovaca 58, 487–674 (2008).
    [Crossref]
  240. S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate quantum cryptography in untrusted networks,” Nat. Photonics 9, 397–402 (2015).
    [Crossref]
  241. Q. Wang and X. B. Wang, “Simulating of the measurement-device independent quantum key distribution with phase randomized general sources,” Sci. Rep. 4, 4612 (2014).
    [Crossref]
  242. X.-Y. Zhou, C.-H. Zhang, C.-M. Zhang, and Q. Wang, “Obtaining better performance in the measurement-device-independent quantum key distribution with heralded single-photon sources,” Phys. Rev. A 96, 052337 (2017).
    [Crossref]
  243. C. C. Mao, X. Y. Zhou, J. R. Zhu, C. H. Zhang, C. M. Zhang, and Q. Wang, “Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method,” Opt. Express 26, 13289–13300 (2018).
    [Crossref]
  244. X.-B. Wang, X.-L. Hu, and Z.-W. Yu, “Practical long-distance side-channel-free quantum key distribution,” Phys. Rev. Appl. 12, 054034 (2019).
    [Crossref]
  245. C. H. Zhang, C.-M. Zhang, and Q. Wang, “Efficient passive measurement-device-independent quantum key distribution,” Phys. Rev. A 99, 052325 (2019).
    [Crossref]
  246. K. Tamaki, H.-K. Lo, W. Wang, and M. Lucamarini, “Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound,” arXiv:1805.05511 (2018).
  247. X. Ma, P. Zeng, and H. Zhou, “Phase-matching quantum key distribution,” Phys. Rev. X 8, 031043 (2018).
  248. J. Lin and N. Lütkenhaus, “Simple security analysis of phase-matching measurement-device-independent quantum key distribution,” Phys. Rev. A 98, 042332 (2018).
    [Crossref]
  249. X.-B. Wang, Z.-W. Yu, and X.-L. Hu, “Twin-field quantum key distribution with large misalignment error,” Phys. Rev. A 98, 062323 (2018).
    [Crossref]
  250. Z.-W. Yu, X.-L. Hu, C. Jiang, H. Xu, and X.-B. Wang, “Sending-or-not-sending twin-field quantum key distribution in practice,” Sci. Rep. 9, 3080 (2019).
    [Crossref]
  251. C. Jiang, Z.-W. Yu, X.-L. Hu, and X.-B. Wang, “Unconditional security of sending or not sending twin-field quantum key distribution with finite pulses,” Phys. Rev. Appl. 12, 024061 (2019).
  252. H. Xu, Z.-W. Yu, C. Jiang, X.-L. Hu, and X.-B. Wang, “Improved results for sending-or-not-sending twin-field quantun key distribution: breaking the absolute limit of repeaterless key rate,” Phys. Rev. A 101, 042330 (2020).
  253. C. Cui, Z.-Q. Yin, R. Wang, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Twin-field quantum key distribution without phase postselection,” Phys. Rev. Appl. 11, 034053 (2019).
    [Crossref]
  254. F.-Y. Lu, Z.-Q. Yin, C.-H. Cui, G.-J. Fan-Yuan, S. Wang, D.-Y. He, W. Chen, G.-C. Guo, and Z.-F. Han, “Practical issues of twin-field quantum key distribution,” arXiv:1901.04264v3 (2019).
  255. F.-Y. Lu, Z.-Q. Yin, C.-H. Cui, G.-J. Fan-Yuan, R. Wang, S. Wang, W. Chen, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Improving the performance of twin-field quantum key distribution,” Phys. Rev. A 100, 022306 (2019).
  256. M. Curty, K. Azuma, and H.-K. Lo, “Simple security proof of twin-field type quantum key distribution protocol,” npj Quantum Inf. 5, 64 (2019).
    [Crossref]
  257. F. Grasselli and M. Curty, “Practical decoy-state method for twin-field quantum key distribution,” New J. Phys. 21, 073001 (2019).
  258. X. Zhong, J. Hu, M. Curty, L. Qian, and H.-K. Lo, “Proof-of-principle experimental demonstration of twin-field type quantum key distribution,” Phys. Rev. Lett. 123, 100506 (2019).
    [Crossref]
  259. M. Takeoka, S. Guha, and M. M. Wilde, “Fundamental rate-loss tradeoff for optical quantum key distribution,” Nat. Commun. 5, 5235 (2014).
    [Crossref]
  260. H.-L. Yin and Y. Fu, “Measurement-device-independent twin-field quantum key distribution,” Sci. Rep. 9, 3045 (2019).
    [Crossref]
  261. H.-L. Yin and Z.-B. Chen, “Twin-field quantum key distribution over 1000 km fibre,” Sci. Rep. 9, 14918 (2019).
  262. H.-L. Yin and Z.-B. Chen, “Finite-key analysis for twin-field quantum key distribution with composable security,” Sci. Rep. 9, 17113 (2019).
  263. C. H. Zhang, C.-M. Zhang, and Q. Wang, “Twin-field quantum key distribution with modified coherent states,” Opt. Lett. 44, 1468–1471 (2019).
    [Crossref]
  264. X. Y. Zhou, C. Zhang, C. Zhang, and Q. Wang, “Asymmetric sending or not sending twin-field quantum key distribution in practice,” Phys. Rev. A 99, 062316 (2019).
    [Crossref]
  265. M. Minder, M. Pittaluga, G. L. Roberts, M. Lucamarini, J. F. Dynes, Z. L. Yuan, and A. J. Shields, “Experimental quantum key distribution beyond the repeaterless secret key capacity,” Nat. Photonics 13, 334–338 (2019).
    [Crossref]
  266. S. Wang, D.-Y. He, Z.-Q. Yin, F.-Y. Lu, C.-H. Cui, W. Chen, Z. Zhou, G.-C. Guo, and Z.-F. Han, “Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system,” Phys. Rev. X 9, 021046 (2019).
    [Crossref]
  267. Y. Liu, Z.-W. Yu, W. Zhang, J.-Y. Guan, J.-P. Chen, C. Zhang, X.-L. Hu, H. Li, C. Jiang, J. Lin, T.-Y. Chen, L. You, Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan, “Experimental twin-field quantum key distribution through sending or not sending,” Phys. Rev. Lett. 123, 100505 (2019).
    [Crossref]
  268. H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599 (2007).
    [Crossref]
  269. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
    [Crossref]
  270. M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, and R. J. Warburton, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
    [Crossref]
  271. A. You, M. A. Y. Be, and I. In, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 092504 (2011).
    [Crossref]
  272. P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4, e338 (2015).
    [Crossref]
  273. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
    [Crossref]
  274. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Simulation and implementation of decoy state quantum key distribution over 60km telecom fiber,” in Proceedings of the 2006 IEEE International Symposium on Information Theory, Washington, USA (2006), pp. 2094–2098.
  275. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
    [Crossref]
  276. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
    [Crossref]
  277. J. Z. C.-Z. Peng, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
    [Crossref]
  278. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16, 18790–18797 (2008).
    [Crossref]
  279. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
    [Crossref]
  280. M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
    [Crossref]
  281. A. Boaron, G. Boso, D. Rusca, C. Autebert, M. Caloz, M. Perrenoud, and H. Zbinden, “Secure quantum key distribution over 421 km of optical fiber,” Phys. Rev. Lett. 121, 190502 (2018).
    [Crossref]
  282. S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
    [Crossref]
  283. B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9, 163 (2015).
    [Crossref]
  284. F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
    [Crossref]
  285. B. Fröhlich, M. Lucamarini, J. F. Dynes, L. C. Comandar, W. W.-S. Tam, A. Plews, A. W. Sharpe, Z. Yuan, and A. J. Shields, “Long-distance quantum key distribution secure against coherent attacks,” Optica 4, 163–167 (2017).
    [Crossref]
  286. T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
    [Crossref]
  287. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
    [Crossref]
  288. Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, “Megabits secure key rate quantum key distribution,” New J. Phys. 11, 045010 (2009).
    [Crossref]
  289. T. Honjo, T. Inoue, and K. Inoue, “Influence of light source linewidth in differential-phase-shift quantum key distribution systems,” Opt. Commun. 284, 5856–5859 (2011).
    [Crossref]
  290. K. Shimizu, T. Honjo, M. Fujiwara, T. Ito, K. Tamaki, S. Miki, T. Yamashita, H. Terai, Z. Wang, and M. Sasaki, “Performance of long-distance quantum key distribution over 90 km optical links installed in a field environment of Tokyo metropolitan area,” J. Lightwave Technol. 32, 141–151 (2014).
    [Crossref]
  291. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
    [Crossref]
  292. T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
    [Crossref]
  293. K. Inoue and Y. Iwai, “Differential-quadrature-phase-shift quantum key distribution,” Phys. Rev. A 79, 022319 (2009).
    [Crossref]
  294. S. Kawakami, T. Sasaki, and M. Koashi, “Security of the differential-quadrature-phase-shift quantum key distribution,” Phys. Rev. A 94, 022322 (2016).
    [Crossref]
  295. G. L. Roberts, M. Lucamarini, J. F. Dynes, S. J. Savory, Z. Yuan, and A. J. Shields, “Manipulating photon coherence to enhance the security of distributed phase reference quantum key distribution,” Appl. Phys. Lett. 111, 261106 (2017).
    [Crossref]
  296. D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
    [Crossref]
  297. D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express 17, 13326–13334 (2009).
    [Crossref]
  298. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
    [Crossref]
  299. N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16, 013047 (2014).
    [Crossref]
  300. A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
    [Crossref]
  301. Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
    [Crossref]
  302. T. Ferreira Da Silva, D. Vitoreti, G. B. Xavier, G. C. D. Amaral, G. P. Temporao, and J. P. Von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
    [Crossref]
  303. Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
    [Crossref]
  304. H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404 km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
    [Crossref]
  305. L. C. Comandar, S. W.-B. Tam, J. F. Dynes, M. Lucamarini, B. Fröhlich, Z. L. Yuan, A. W. Sharpe, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
    [Crossref]
  306. R. Valivarthi, Q. Zhou, J. Caleb, F. Marsili, V. B. Verma, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “A cost-effective measurement-device-independent quantum key distribution system for quantum networks,” Quantum Sci. Technol. 2, 04LT01 (2017).
    [Crossref]
  307. Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
    [Crossref]
  308. G. Z. Tang, S. H. Sun, F. Xu, H. Chen, C. Y. Li, and L. M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
    [Crossref]
  309. C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017).
    [Crossref]
  310. C. H. Park, M. K. Woo, B. K. Park, M. S. Lee, Y. S. Kim, Y. W. Cho, S. Kim, S. W. Han, and S. Moon, “Practical plug-and-play measurement-device-independent quantum key distribution with polarization division multiplexing,” IEEE Access 6, 58587–58593 (2018).
    [Crossref]
  311. H. Liu, J. Wang, H. Ma, and S. Sun, “Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration,” Optica 5, 902–909 (2018).
    [Crossref]
  312. C.-H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Crypt. 5, 3–28 (1992).
    [Crossref]
  313. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
    [Crossref]
  314. Z. Yuan, A. Plews, R. Takahashi, K. Doi, W. Tam, A. W. Sharpe, A. R. Dixon, E. Lavelle, J. F. Dynes, A. Murakami, M. Kujiraoka, M. Lucamarini, Y. Tanizawa, H. Sato, and A. J. Shields, “10 Mb/s quantum key distribution,” J. Lightwave Technol. 36, 3427–3433 (2018).
    [Crossref]
  315. L. Zhang, C. Silberhorn, and I. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett. 100, 110504 (2008).
    [Crossref]
  316. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
    [Crossref]
  317. R. T. Thew, A. Acín, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004).
    [Crossref]
  318. B. Qi, “Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation,” Opt. Lett. 31, 2795–2797 (2006).
    [Crossref]
  319. J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013).
    [Crossref]
  320. C. Lee, Z. Zhang, G. R. Steinbrecher, H. Zhou, J. Mower, T. Zhong, L. Wang, X. Hu, R. D. Horansky, V. B. Verma, A. E. Lita, R. P. Mirin, F. Marsili, M. D. Shaw, S. W. Nam, G. W. Wornell, F. N. C. Wong, J. H. Shapiro, and D. Englund, “Entanglement-based quantum communication secured by nonlocal dispersion cancellation,” Phys. Rev. A 90, 062331 (2014).
    [Crossref]
  321. I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).
    [Crossref]
  322. D. Bacco, J. B. Christensen, M. A. Usuga Castaneda, Y. Ding, S. Forchhammer, K. Rottwitt, and L. K. Oxenløwe, “Two-dimensional distributed-phase-reference protocol for quantum key distribution,” Sci. Rep. 6, 36756 (2016).
    [Crossref]
  323. B. Da Lio, D. Bacco, D. Cozzolino, Y. Ding, K. Dalgaard, K. Rottwitt, and L. Oxenløwe, “Experimental demonstration of the DPTS QKD protocol over a 170 km fiber link,” Appl. Phys. Lett. 114, 011101 (2019).
    [Crossref]
  324. A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “High-dimensional intracity quantum cryptography with structured photons,” Optica 4, 1006–1010 (2017).
    [Crossref]
  325. M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
    [Crossref]
  326. M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
    [Crossref]
  327. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
    [Crossref]
  328. G. M. Nikolopoulos and G. Alber, “Security bound of two-basis quantum-key-distribution protocols using qudits,” Phys. Rev. A 72, 032320 (2005).
    [Crossref]
  329. G. M. Nikolopoulos, K. S. Ranade, and G. Alber, “Error tolerance of two-basis quantum-key-distribution protocols using qudits and two-way classical communication,” Phys. Rev. A 73, 032325 (2006).
    [Crossref]
  330. J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
    [Crossref]
  331. Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112, 120506 (2014).
    [Crossref]
  332. T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. Woo Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
    [Crossref]
  333. C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. C. Wong, J. H. Shapiro, S. A. Hamilton, and D. Englund, “Large-alphabet encoding for higher-rate quantum key distribution,” Opt. Express 27, 17539–17549 (2019).
  334. N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
    [Crossref]
  335. D. Bunandar, Z. Zhang, J. H. Shapiro, and D. R. Englund, “Practical high-dimensional quantum key distribution with decoy states,” Phys. Rev. A 91, 022336 (2015).
    [Crossref]
  336. M. Yuezhen Niu, F. Xu, J. H. Shapiro, and F. Furrer, “Finite-key analysis for time-energy high-dimensional quantum key distribution,” Phys. Rev. A 94, 052323 (2016).
    [Crossref]
  337. C. Lee, J. Mower, Z. Zhang, J. H. Shapiro, and D. Englund, “Finite-key analysis of high-dimensional time–energy entanglement-based quantum key distribution,” Quantum Inf. Process. 14, 1005–1015 (2015).
    [Crossref]
  338. M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7, 17146 (2018).
    [Crossref]
  339. K. Brádler, M. Mirhosseini, R. Fickler, A. Broadbent, and R. Boyd, “Finite-key security analysis for multilevel quantum key distribution,” New J. Phys. 18, 073030 (2016).
    [Crossref]
  340. J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: a tutorial,” Proc. IEEE 78, 826–855 (1990).
    [Crossref]
  341. P.-A. J. Blanche, D. N. Carothers, J. Wissinger, and N. Peyghambarian, “Digital micromirror device as a diffractive reconfigurable optical switch for telecommunication,” J. Micro/Nanolithography MEMS MOEMS 13, 011104 (2013).
    [Crossref]
  342. Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).
    [Crossref]
  343. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
    [Crossref]
  344. Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. A. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link,” Optica 1, 376–382 (2014).
    [Crossref]
  345. D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11, 064058 (2019).
    [Crossref]
  346. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
    [Crossref]
  347. M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
    [Crossref]
  348. X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
    [Crossref]
  349. J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Generating and identifying optical orbital angular momentum with silicon photonic circuits,” Opt. Lett. 39, 5977–5980 (2014).
    [Crossref]
  350. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
    [Crossref]
  351. S. Restuccia, D. Giovannini, G. Gibson, and M. Padgett, “Comparing the information capacity of Laguerre–Gaussian and Hermite–Gaussian modal sets in a finite-aperture system,” Opt. Express 24, 27127–27136 (2016).
    [Crossref]
  352. I. Choi, Y. R. Zhou, J. F. Dynes, Z. Yuan, A. Klar, A. Sharpe, A. Plews, M. Lucamarini, C. Radig, J. Neubert, H. Griesser, M. Eiselt, C. Chunnilall, G. Lepert, A. Sinclair, J.-P. Elbers, A. Lord, and A. Shields, “Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber,” Opt. Express 22, 23121–23128 (2014).
    [Crossref]
  353. G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
    [Crossref]
  354. B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key distribution through dense wavelength division multiplexing network,” New J. Phys. 12, 103042 (2010).
    [Crossref]
  355. N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express 19, 10632–10639 (2011).
    [Crossref]
  356. K. Inoue, “Differential phase-shift quantum key distribution systems,” IEEE J. Sel. Top. Quantum Electron. 21, 6600207 (2015).
    [Crossref]
  357. J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
    [Crossref]
  358. A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, W. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “Quantum key distribution with hacking countermeasures and long term field trial,” Sci. Rep. 7, 1978 (2017).
    [Crossref]
  359. A. B. Price, P. Sibson, C. Erven, J. G. Rarity, and M. G. Thompson, “High-speed quantum key distribution with wavelength-division multiplexing on integrated photonic devices,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO, 2018), paper JTh2A.24.
  360. D. Bunandar, N. Harris, Z. Zhang, C. Lee, R. Ding, T. Baehr-Jones, M. Hochberg, J. Shapiro, F. Wong, and D. Englund, “Wavelength-division multiplexed quantum key distribution on silicon photonic integrated devices,” Bull. Am. Phys. Soc. 63, A180009 (2018).
  361. Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
    [Crossref]
  362. D. Bacco, Y. Ding, K. Dalgaard, K. Rottwit, and L. K. Oxenløwe, “Space division multiplexing chip-to-chip quantum key distribution,” Sci. Rep. 7, 12459 (2017).
    [Crossref]
  363. P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
    [Crossref]
  364. D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8, 021009 (2018).
    [Crossref]
  365. S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev, “Material platforms for integrated quantum photonics,” Opt. Mater. Express 7, 111–132 (2017).
    [Crossref]
  366. M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
    [Crossref]
  367. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on chip and intra chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
    [Crossref]
  368. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
    [Crossref]
  369. Y.-J. Chiu, H.-F. Chou, V. Kaman, P. Abraham, and J. E. Bowers, “High extinction ratio and saturation power traveling-wave electro-absorption modulator,” IEEE Photon. Technol. Lett. 14, 792–794 (2002).
    [Crossref]
  370. T. K. Paraïso, I. De Marco, T. Roger, D. G. Marangon, J. F. Dynes, M. Lucamarini, Z. Yuan, and A. J. Shields, “A modulator-free quantum key distribution transmitter chip,” npj Quantum Inf. 5, 42 (2019).
    [Crossref]
  371. Z. L. Yuan, B. Fröhlich, M. Lucamarini, G. L. Roberts, J. F. Dynes, and A. J. Shields, “Directly phase-modulated light source,” Phys. Rev. X 6, 031044 (2016).
    [Crossref]
  372. K. Wörhoff, R. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
    [Crossref]
  373. N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22, 10487–10493 (2014).
    [Crossref]
  374. C. M. Wilkes, X. Qiang, J. Wang, R. Santagati, S. Paesani, X. Zhou, D. A. B. Miller, G. D. Marshall, M. G. Thompson, and J. L. O’Brien, “60 dB high-extinction auto-configured Mach–Zehnder interferometer,” Opt. Lett. 41, 5318–5321 (2016).
    [Crossref]
  375. R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  376. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  377. H. Du, F. S. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines 7, 69 (2016).
    [Crossref]
  378. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
    [Crossref]
  379. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
    [Crossref]
  380. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
    [Crossref]
  381. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
    [Crossref]
  382. B. B. Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli, “Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers,” Opt. Express 19, 10317–10325 (2011).
    [Crossref]
  383. F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
    [Crossref]
  384. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
    [Crossref]
  385. F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
    [Crossref]
  386. P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, and M. G. Thompson, “Integrated silicon photonics for high-speed quantum key distribution,” Optica 4, 172–177 (2017).
    [Crossref]
  387. C. Ma, W. D. Sacher, Z. Tang, J. C. Mikkelsen, Y. Yang, F. Xu, T. Thiessen, H.-K. Lo, and J. K. S. Poon, “Silicon photonic transmitter for polarization-encoded quantum key distribution,” Optica 3, 1274–1278 (2016).
    [Crossref]
  388. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  389. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
    [Crossref]
  390. H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
    [Crossref]
  391. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
    [Crossref]
  392. L. Hanschke, K. A. Fischer, S. Appel, D. Lukin, J. Wierzbowski, S. Sun, R. Trivedi, J. Vuckovic, J. J. Finley, and K. Müller, “Quantum dot single-photon sources with ultra-low multi-photon probability,” npj Quantum Inf. 4, 43 (2018).
    [Crossref]
  393. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343 (2006).
    [Crossref]
  394. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  395. S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
    [Crossref]
  396. Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-L. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7, 064005 (2017).
    [Crossref]
  397. S. Fathpour, “Emerging heterogeneous integrated photonic platforms on silicon," Nanophotonics 4, 143–164 (2015).
  398. J. G. Rarity, P. R. Tapster, and P. M. Gorman, and P. Knight, “Ground to satellite secure key exchange using quantum cryptography,” New J. Phys. 4, 82 (2002).
    [Crossref]
  399. M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. Leeb, and A. Zeilinger, “Long-distance quantum communication with entangled photons using satellites,” IEEE J. Sel. Top. Quantum Electron. 9, 1541–1551 (2003).
    [Crossref]
  400. M. Pfennigbauer, M. Aspelmeyer, W. R. Leeb, G. Baister, T. Dreischer, T. Jennewein, G. Neckamm, J. M. Perdigues, H. Weinfurter, and A. Zeilinger, “Satellite-based quantum communication terminal employing state-of-the-art technology,” J. Opt. Netw. 4, 549–560 (2005).
    [Crossref]
  401. C. Bonato, A. Tomaello, V. Da Deppo, G. Naletto, and P. Villoresi, Feasibility Analysis for Quantum Key Distribution between a LEO Satellite and Earth, in Quantum Communication and Quantum Networking, A. Sergienko, S. Pascazio, and P. Villoresi, eds., Vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Springer, 2010), pp. 96–99.
  402. A. Tomaello, C. Bonato, V. Da Deppo, G. Naletto, and P. Villoresi, “Link budget and background noise for satellite quantum key distribution,” Adv. Space Res. 47, 802–810 (2011).
    [Crossref]
  403. R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, R. Laflamme, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. H. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. A. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest, experiments with quantum entanglement in space,” Europhys. News 40(3), 26–29 (2009).
    [Crossref]
  404. T. Scheidl, E. Wille, and R. Ursin, “Quantum optics experiments using the International Space Station: a proposal,” New J. Phys. 15, 043008 (2013).
    [Crossref]
  405. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450 (2002).
    [Crossref]
  406. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43 (2002).
    [Crossref]
  407. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
    [Crossref]
  408. R. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975).
    [Crossref]
  409. L. C. Andrews and R. L. Phillips, “Laser Beam Propagation through Random Media,” 2nd ed. (SPIE, 2005).
  410. P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri, “Experimental verification of the feasibility of a quantum channel between space and Earth,” New J. Phys. 10, 33038 (2008).
    [Crossref]
  411. G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
    [Crossref]
  412. G. Vallone, D. Dequal, M. Tomasin, F. Vedovato, M. Schiavon, V. Luceri, G. Bianco, and P. Villoresi, “Interference at the single photon level along satellite-ground channels,” Phys. Rev. Lett. 116, 253601 (2016).
    [Crossref]
  413. D. K. Oi, A. Ling, G. Vallone, P. Villoresi, S. Greenland, E. Kerr, M. Macdonald, H. Weinfurter, H. Kuiper, E. Charbon, and R. Ursin, “CubeSat quantum communications mission,” EPJ Quantum Technol. 4, 6 (2017).
    [Crossref]
  414. R. Bedington, J. M. Arrazola, and A. Ling, “Progress in satellite quantum key distribution,” npj Quantum Inf. 3, 30 (2017).
    [Crossref]
  415. A. E. Siegman, Lasers (University Science Books, 1986).
  416. C. Bonato, A. Tomaello, V. Da Deppo, G. Naletto, and P. Villoresi, “Feasibility of satellite quantum key distribution,” New J. Phys. 11, 45017 (2009).
    [Crossref]
  417. D. Bacco, M. Canale, N. Laurenti, G. Vallone, and P. Villoresi, “Experimental quantum key distribution with finite-key security analysis for noisy channels,” Nat. Commun. 4, 2363 (2013).
    [Crossref]
  418. J. H. Shapiro, “Near-field turbulence effects on quantum-key distribution,” Phys. Rev. A 67, 022309 (2003).
    [Crossref]
  419. J. H. Shapiro, “Scintillation has minimal impact on far-field Bennett-Brassard 1984 protocol quantum key distribution,” Phys. Rev. A 84, 032340 (2011).
    [Crossref]
  420. H. Xin, “Chinese academy takes space under its wing,” Science 332, 904 (2011).
    [Crossref]
  421. J. G. Ren, P. Xu, H. L. Yong, L. Zhang, S. K. Liao, J. Yin, W. Y. Liu, W. Q. Cai, M. Yang, L. Li, K.-X. Yang, X. Han, Y.-Q. Yao, J. Li, H.-Y. Wu, S. Wan, L. Liu, D.-Q. Liu, Y.-W. Kuang, Z.-P. He, P. Shang, C. Guo, R.-H. Zheng, K. Tian, Z.-C. Zhu, N.-L. Liu, C.-Y. Lu, R. Shu, Y.-A. Chen, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Ground-to-satellite quantum teleportation,” Nature 549, 70–73 (2017).
    [Crossref]
  422. S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549, 43–47 (2017).
    [Crossref]
  423. J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356, 1140–1144 (2017).
    [Crossref]
  424. J. Yin, Y. Cao, Y. H. Li, J. G. Ren, S. K. Liao, L. Zhang, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, M. Li, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground entanglement-based quantum key distribution,” Phys. Rev. Lett. 119, 200501 (2017).
    [Crossref]
  425. S. K. Liao, J. Lin, J. G. Ren, W. Y. Liu, J. Qiang, J. Yin, Y. Li, Q. Shen, L. Zhang, X.-F. Liang, H.-L. Yong, F.-Z. Li, Y.-Y. Yin, Y. Cao, W.-Q. Cai, W.-Z. Zhang, J.-J. Jia, J.-C. Wu, X.-W. Chen, S.-C. Zhang, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, L. Ma, L. Li, G.-S. Pan, Q. Zhang, Y.-A. Chen, C.-Y. Lu, N.-L. Liu, X. Ma, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Space-to-ground quantum key distribution using a small-sized payload on Tiangong-2 space lab,” Chin. Phys. Lett. 34, 090302 (2017).
    [Crossref]
  426. H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki, and M. Toyoshima, “Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite,” Nat. Photonics 11, 502–508 (2017).
    [Crossref]
  427. Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2015).
    [Crossref]
  428. Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. K. L. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons aboard a nanosatellite,” Phys. Rev. Appl. 5, 054022 (2016).
    [Crossref]
  429. D. Dequal, G. Vallone, D. Bacco, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental single-photon exchange along a space link of 7000 km,” Phys. Rev. A 93, 010301 (2016).
    [Crossref]
  430. L. Calderaro, C. Agnesi, D. Dequal, F. Vedovato, M. Schiavon, A. Santamato, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Towards quantum communication from global navigation satellite system,” Quantum Sci. Technol. 4, 015012 (2019).
    [Crossref]
  431. K. Günthner, I. Khan, D. Elser, B. Stiller, Ö. Bayraktar, C. R. Müller, K. Saucke, D. Tröndle, F. Heine, S. Seel, P. Greulich, H. Zech, B. Gütlich, S. Philipp-May, C. Marquardt, and G. Leuchs, “Quantum-limited measurements of optical signals from a geostationary satellite,” Optica 4, 611–616 (2017).
    [Crossref]
  432. S. K. Liao, H. L. Yong, C. Liu, G. L. Shentu, D. D. Li, J. Lin, H. Dai, S. Q. Zhao, B. Li, J. Y. Guan, W. Chen, Y.-H. Gong, Y. Li, Z.-H. Lin, G.-S. Pan, J. S. Pelc, M. M. Fejer, W.-Z. Zhang, W.-Y. Liu, J. Yin, J.-G. Ren, X.-B. Wang, Q. Zhang, C.-Z. Peng, and J.-W. Pan, “Long-distance free-space quantum key distribution in daylight towards inter-satellite communication,” Nat. Photonics 11, 509–513 (2017).
    [Crossref]
  433. H.-L. Yin, Y. Fu, H. Liu, Q.-J. Tang, J. Wang, L.-X. You, W.-J. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, T.-Y. Chen, Z.-B. Chen, and J.-W. Pan, “Experimental quantum digital signature over 102 km,” Phys. Rev. A 95, 032334 (2017).
    [Crossref]
  434. J. F. Fitzsimons, “Private quantum computation: an introduction to blind quantum computing and related protocols,” npj Quantum Information 3, 23 (2017).
    [Crossref]
  435. N. Hosseinidehaj, Z. Babar, R. Malaney, S. X. Ng, and L. Hanzo, “Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook,” Commun. Surv. Tutorials 21, 881–919 (2019).
    [Crossref]
  436. N. Hosseinidehaj and R. Malaney, “Gaussian entanglement distribution via satellite,” Phys. Rev. A 91, 022304 (2015).
    [Crossref]
  437. N. Hosseinidehaj and R. Malaney, “Entanglement generation via non-Gaussian transfer over atmospheric fading channels,” Phys. Rev. A 92, 062336 (2015).
    [Crossref]
  438. N. Hosseinidehaj and R. Malaney, “CV-QKD with Gaussian and non-Gaussian entangled states over satellite-based channels,” in IEEE Global Communications Conference (GLOBECOM), Washington, D.C., USA (2016).
  439. C. Agnesi, F. Vedovato, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Exploring the boundaries of quantum mechanics: advances in satellite quantum communications,” Philos. Trans. R. Soc. London, Ser. A 376, 20170461 (2018).
    [Crossref]
  440. D. Rideout, T. Jennewein, G. Amelino-Camelia, T. F. Demarie, B. L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R. B. Mann, E. Martín-Martínez, N. C. Menicucci, J. Moffat, C. Simon, R. Sorkin, L. Smolin, and D. R. Terno, “Fundamental quantum optics experiments conceivable with satellites reaching relativistic distances and velocities,” Classical Quantum Gravity 29, 224011 (2012).
    [Crossref]
  441. D. E. Bruschi, T. C. Ralph, I. Fuentes, T. Jennewein, and M. Razavi, “Spacetime effects on satellite-based quantum communications,” Phys. Rev. D 90, 045041 (2014).
    [Crossref]
  442. D. E. Bruschi, A. Datta, R. Ursin, T. C. Ralph, and I. Fuentes, “Quantum estimation of the Schwarzschild spacetime parameters of the Earth,” Phys. Rev. D 90, 124001 (2014).
    [Crossref]
  443. J. Kohlrus, D. E. Bruschi, J. Louko, and I. Fuentes, “Quantum communications and quantum metrology in the spacetime of a rotating planet,” EPJ Quantum Technol. 4, 7 (2017).
    [Crossref]
  444. J. Kohlrus, D. E. Bruschi, and I. Fuentes, “Quantum-metrology estimation of spacetime parameters of the Earth outperforming classical precision,” Phys. Rev. A 99, 032350 (2019).
    [Crossref]
  445. F. Vedovato, C. Agnesi, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Extending Wheeler’s delayed-choice experiment to space,” Sci. Adv. 3, e1701180 (2017).
    [Crossref]
  446. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).
    [Crossref]
  447. J. Gallicchio, A. S. Friedman, and D. I. Kaiser, “Testing Bell’s inequality with cosmic photons: closing the setting-independence loophole,” Phys. Rev. Lett. 112, 110405 (2014).
    [Crossref]
  448. J. Handsteiner, A. S. Friedman, D. Rauch, J. Gallicchio, B. Liu, H. Hosp, J. Kofler, D. Bricher, M. Fink, C. Leung, A. Mark, H. T. Nguyen, I. Sanders, F. Steinlechner, R. Ursin, S. Wengerowsky, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, “Cosmic Bell test: measurement settings from milky way stars,” Phys. Rev. Lett. 118, 060401 (2017).
    [Crossref]
  449. D. Rauch, J. Handsteiner, A. Hochrainer, J. Gallicchio, A. S. Friedman, C. Leung, B. Liu, L. Bulla, S. Ecker, F. Steinlechner, R. Ursin, B. Hu, D. Leon, C. Benn, A. Ghedina, M. Cecconi, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, “Cosmic Bell test using random measurement settings from high-redshift quasars,” Phys. Rev. Lett. 121, 080403 (2018).
    [Crossref]
  450. T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21, 23241–23249 (2013).
    [Crossref]
  451. J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, and T. E. Weiss, “Violation of the Leggett–Garg inequality in neutrino oscillations,” Phys. Rev. Lett. 117, 050402 (2016).
    [Crossref]
  452. J. A. Wheeler, “The ‘past’ and the ‘delayed-choice’ double-slit experiment,” in Mathematical Foundations of Quantum Theory, A. R. Marlow, ed. (Academic, 1978).
  453. X.-S. Ma, J. Kofler, and A. Zeilinger, “Delayed-choice gedanken experiments and their realizations,” Rev. Mod. Phys. 88, 015005 (2016).
    [Crossref]
  454. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
    [Crossref]
  455. T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999).
    [Crossref]
  456. T. C. Ralph, “Security of continuous-variable quantum cryptography,” Phys. Rev. A 62, 062306 (2000).
    [Crossref]
  457. M. Hillery, “Quantum cryptography with squeezed states,” Phys. Rev. A 61, 022309 (2000).
    [Crossref]
  458. M. D. Reid, “Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations,” Phys. Rev. A 62, 062308 (2000).
    [Crossref]
  459. N. J. Cerf, M. Lévy, and G. V. Assche, “Quantum distribution of Gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
    [Crossref]
  460. G. Van Assche, J. Cardinal, and N. Cerf, “Reconciliation of a quantum-distributed Gaussian key,” IEEE Trans. Inf. Theory 50, 394–400 (2004).
    [Crossref]
  461. D. Gottesman and J. Preskill, “Secure quantum key distribution using squeezed states,” Phys. Rev. A 63, 022309 (2001).
    [Crossref]
  462. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
    [Crossref]
  463. F. Grosshans and P. Grangier, “Quantum cloning and teleportation criteria for continuous quantum variables,” Phys. Rev. A 64, 010301 (2001).
    [Crossref]
  464. C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901 (2002).
    [Crossref]
  465. F. Grosshans and P. Grangier, “Reverse reconciliation protocols for quantum cryptography with continuous variables,” arXiv:quant-ph/0204127 (2002).
  466. C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
    [Crossref]
  467. M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
    [Crossref]
  468. R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
    [Crossref]
  469. S. Pirandola, S. Lloyd, and S. L. Braunstein, “Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography,” Phys. Rev. Lett. 101, 200504 (2008).
    [Crossref]
  470. R. García-Patrón, “Quantum information with optical continuous variables,” Ph.D. thesis (Université Libre de Bruxelles, 2007).
  471. V. Usenko and R. Filip, “Trusted noise in continuous-variable quantum key distribution: a threat and a defense,” Entropy 18, 20 (2016).
    [Crossref]
  472. F. Laudenbach and C. Pacher, “Analysis of the trusted-device scenario in continuous-variable quantum key distribution,” Adv. Quantum Technol. 2, 1900055 (2019).
    [Crossref]
  473. N. Hosseinidehaj, N. Walk, and T. C. Ralph, “Optimal realistic attacks in continuous-variable quantum key distribution,” Phys. Rev. A 99, 052336 (2019).
    [Crossref]
  474. Z. Pan, K. P. Seshadreesan, W. Clark, M. R. Adcock, I. B. Djordjevic, J. H. Shapiro, and S. Guha, “Secret key distillation across a quantum wiretap channel under restricted eavesdropping,” in Proceedings of IEEE International Symposium on Information Theory (ISIT) (IEEE, 2019), pp. 3032–3036.
  475. Y. Guo, Q. Liao, Y. Wang, D. Huang, P. Huang, and G. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
    [Crossref]
  476. Y. Guo, W. Ye, H. Zhong, and Q. Liao, “Continuous-variable quantum key distribution with non-Gaussian quantum catalysis,” Phys. Rev. A 99, 032327 (2019).
    [Crossref]
  477. M. Ghalaii, C. Ottaviani, R. Kumar, S. Pirandola, and M. Razavi, “Long-distance continuous-variable quantum key distribution with quantum scissors,” IEEE J. Sel. Top. Quantum Electron. 26, 6400212 (2020).
    [Crossref]
  478. P. Papanastasiou, C. Weedbrook, and S. Pirandola, “Continuous-variable quantum key distribution in fast fading channels,” Phys. Rev. A 97, 032311 (2018).
    [Crossref]
  479. S. Tserkis, N. Hosseinidehaj, N. Walk, and T. C. Ralph, “Teleportation-based collective attacks in Gaussian quantum key distribution,” arXiv:1908.07665 (2019).
  480. V. C. Usenko, “Generalized security analysis framework for continuous-variable quantum key distribution,” arXiv:1908.01127 (2019).
  481. M. Lasota, R. Filip, and V. C. Usenko, “Robustness of quantum key distribution with discrete and continuous variables to channel noise,” Phys. Rev. A 95, 062312 (2017).
    [Crossref]
  482. R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102, 130501 (2009).
    [Crossref]
  483. R. García-Patrón, S. Pirandola, S. Lloyd, and J. H. Shapiro, “Reverse coherent information,” Phys. Rev. Lett. 102, 210501 (2009).
    [Crossref]
  484. L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3, 1083 (2012).
    [Crossref]
  485. C. Ottaviani, R. Laurenza, T. P. W. Cope, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Secret key capacity of the thermal-loss channel: improving the lower bound,” Proc. SPIE 9996, 999609 (2016).
    [Crossref]
  486. G. Wang, C. Ottaviani, H. Guo, and S. Pirandola, “Improving the lower bound to the secret-key capacity of the thermal amplifier channel,” Eur. Phys. J. D 73, 17 (2019).
    [Crossref]
  487. S. Pirandola, S. L. Braunstein, R. Laurenza, C. Ottaviani, T. P. W. Cope, G. Spedalieri, and L. Banchi, “Theory of channel simulation and bounds for private communication,” Quantum Sci. Technol.3, 035009 (2018).
  488. A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
    [Crossref]
  489. L. Ruppert, V. C. Usenko, and R. Filip, “Long-distance continuous-variable quantum key distribution with efficient channel estimation,” Phys. Rev. A 90, 062310 (2014).
    [Crossref]
  490. O. Thearle, S. M. Assad, and T. Symul, “Estimation of output-channel noise for continuous-variable quantum key distribution,” Phys. Rev. A 93, 042343 (2016).
    [Crossref]
  491. F. Furrer, “Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle,” Phys. Rev. A 90, 042325 (2014).
    [Crossref]
  492. A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110, 030502 (2013).
    [Crossref]
  493. S. Pirandola, S. Mancini, S. Lloyd, and S. L. Braunstein, “Continuous variable quantum cryptography using two-way quantum communication,” Nat. Phys. 4, 726–730 (2008).
    [Crossref]
  494. C. Ottaviani, S. Mancini, and S. Pirandola, “Gaussian two-mode attacks in one-way quantum cryptography,” Phys. Rev. A 92, 062323 (2015).
    [Crossref]
  495. C. Ottaviani and S. Pirandola, “General immunity and superadditivity of two-way Gaussian quantum cryptography,” Sci. Rep. 6, 22225 (2016).
    [Crossref]
  496. M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of Gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006).
    [Crossref]
  497. S. Pirandola, “Entanglement reactivation in separable environments,” New J. Phys. 15, 113046 (2013).
    [Crossref]
  498. Q. Zhuang, Z. Zhang, N. Lütkenhaus, and J. H. Shapiro, “Security-proof framework for two-way Gaussian quantum-key-distribution protocols,” Phys. Rev. A 98, 032332 (2018).
    [Crossref]
  499. S. Ghorai, E. Diamanti, and A. Leverrier, “Composable security of two-way continuous-variable quantum key distribution without active symmetrization,” Phys. Rev. A 99, 012311 (2019).
    [Crossref]
  500. M. Sun, X. Peng, Y. Shen, and H. Guo, “Security of new two-way continuous-variable quantum key distribution protocol,” Int. J. Quantum Inform. 10, 1250059 (2012).
    [Crossref]
  501. Y. Zhang, Z. Li, Y. Zhao, S. Yu, and H. Guo, “Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation,” J. Phys. B 50, 035501 (2017).
    [Crossref]
  502. Y. C. Zhang, Z. Li, C. Weedbrook, S. Yu, W. Gu, M. Sun, X. Peng, and H. Guo, “Improvement of two-way continuous-variable quantum key distribution using optical amplifiers,” J. Phys. B 47, 035501 (2014).
    [Crossref]
  503. Z. Zhang, M. Tengner, T. Zhong, F. N. Wong, and J. H. Shapiro, “Entanglement’s benefit survives an entanglementbreaking channel,” Phys. Rev. Lett. 111, 010501 (2013).
    [Crossref]
  504. Q. Zhuang, Z. Zhang, J. Dove, F. N. C. Wong, and J. H. Shapiro, “Floodlight quantum key distribution: a practical route to gigabit-per-second secret-key rates,” Phys. Rev. A 94, 012322 (2016).
    [Crossref]
  505. Q. Zhuang, Z. Zhang, and J. H. Shapiro, “High-order encoding schemes for floodlight quantum key distribution,” Phys. Rev. A 98, 012323 (2018).
    [Crossref]
  506. Z. Zhang, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, “Floodlight quantum key distribution: demonstrating a framework for high-rate secure communication,” Phys. Rev. A 95, 012332 (2017).
    [Crossref]
  507. Z. Zhang, C. Chen, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, “Experimental quantum key distribution at 1.3 gigabit-per-second secret-key rate over a 10 dB loss channel,” Quantum Sci. Technol. 3, 025007 (2018).
    [Crossref]
  508. R. Filip, “Continuous-variable quantum key distribution with noisy coherent states,” Phys. Rev. A 77, 022310 (2008).
    [Crossref]
  509. V. C. Usenko and R. Filip, “Feasibility of continuous-variable quantum key distribution with noisy coherent states,” Phys. Rev. A 81, 022318 (2010).
    [Crossref]
  510. C. Weedbrook, S. Pirandola, S. Lloyd, and T. C. Ralph, “Quantum cryptography approaching the classical limit,” Phys. Rev. Lett. 105, 110501 (2010).
    [Crossref]
  511. C. Weedbrook, S. Pirandola, and T. C. Ralph, “Continuous-variable quantum key distribution using thermal states,” Phys. Rev. A 86, 022318 (2012).
    [Crossref]
  512. C. Weedbrook, C. Ottaviani, and S. Pirandola, “Two-way quantum cryptography at different wavelengths,” Phys. Rev. A 89, 012309 (2014).
    [Crossref]
  513. P. Papanastasiou, C. Ottaviani, and S. Pirandola, “Gaussian one-way thermal quantum cryptography with finite-size effects,” Phys. Rev. A 98, 032314 (2018).
    [Crossref]
  514. C. Ottaviani, M. J. Woolley, M. Erementchouk, J. F. Federici, P. Mazumder, S. Pirandola, and C. Weedbrook, “Terahertz quantum cryptography,” IEEE J. Sel. Areas Commun. 38, 483–495 (2020).
  515. V. C. Usenko and F. Grosshans, “Unidimensional continuous-variable quantum key distribution,” Phys. Rev. A 92, 062337 (2015).
    [Crossref]
  516. T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Single-quadrature continuous-variable quantum key distribution,” Quantum Inf. Comput. 16, 1081–1095 (2016).
  517. X. Wang, W. Liu, P. Wang, and Y. Li, “Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution,” Phys. Rev. A 95, 062330 (2017).
    [Crossref]
  518. S. Pirandola, A. Serafini, and S. Lloyd, “Correlation matrices of two-mode Bosonic systems,” Phys. Rev. A 79, 052327 (2009).
    [Crossref]
  519. F. Grosshans, “Collective attacks and unconditional security in continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020504 (2005).
    [Crossref]
  520. V. C. Usenko, “Unidimensional continuous-variable quantum key distribution using squeezed states,” Phys. Rev. A 98, 032321 (2018).
    [Crossref]
  521. X. Wang, Y. Cao, P. Wang, and Y. Li, “Advantages of the coherent state compared with squeezed state in unidimensional continuous variable quantum key distribution,” Quantum Inf. Process. 17, 344 (2018).
    [Crossref]
  522. P. Wang, X. Wang, J. Li, and Y. Li, “Finite-size analysis of unidimensional continuous-variable quantum key distribution under realistic conditions,” Opt. Express 25, 27995–28009 (2017).
    [Crossref]
  523. Q. Liao, Y. Guo, C. Xie, D. Huang, P. Huang, and G. Zeng, “Composable security of unidimensional continuous-variable quantum key distribution,” Quantum Inf. Process. 17, 113 (2018).
    [Crossref]
  524. A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102, 180504 (2009).
    [Crossref]
  525. Y.-B. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, “Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks,” Phys. Rev. A 79, 012307 (2009).
    [Crossref]
  526. M. Heid and N. Lütkenhaus, “Security of coherent state quantum cryptography in the presence of Gaussian noise,” Phys. Rev. A 76, 022313 (2007).
    [Crossref]
  527. K. Bradler and C. Weedbrook, “A security proof of continuous-variable QKD using three coherent states,” Phys. Rev. A 97, 022310 (2018).
    [Crossref]
  528. P. Papanastasiou, C. Lupo, C. Weedbrook, and S. Pirandola, “Quantum key distribution with phase-encoded coherent states: asymptotic security analysis in thermal-loss channels,” Phys. Rev. A 98, 012340 (2018).
    [Crossref]
  529. D. Sych and G. Leuchs, “Coherent state quantum key distribution with multi letter phase-shift keying,” New J. Phys. 12, 053019 (2010).
    [Crossref]
  530. Q. Liao, Y. Guo, D. Huang, P. Huang, and G. Zeng, “Long-distance continuous-variable quantum key distribution using non-Gaussian state-discrimination detection,” New J. Phys. 20, 023015 (2018).
    [Crossref]
  531. Y. Guo, R. Li, Q. Liao, J. Zhou, and D. Huang, “Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier,” Phys. Lett. A 382, 372–381 (2018).
    [Crossref]
  532. Z. Li, Y. Zhang, and H. Guo, “User-defined quantum key distribution,” arXiv:1805.04249 (2018).
  533. M. Ghalaii, C. Ottaviani, R. Kumar, S. Pirandola, and M. Razavi, “Discrete-modulation continuous-variable quantum key distribution enhanced by quantum scissors,” IEEE J. Sel. Areas Commun. 38, 506–516 (2020).
  534. U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39, 733–742 (1993).
    [Crossref]
  535. C. Cachin and U. M. Maurer, “Linking information reconciliation and privacy amplification,” J. Crypt. 10, 97–110 (1997).
    [Crossref]
  536. T. Symul, D. J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303 (2007).
    [Crossref]
  537. A. Leverrier and P. Grangier, “Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation,” Phys. Rev. A 83, 042312 (2011).
    [Crossref]
  538. S. Ghorai, P. Grangier, E. Diamanti, and A. Leverrier, “Asymptotic security of continuous-variable quantum key distribution with a discrete modulation,” Phys. Rev. X 9, 021059 (2019).
    [Crossref]
  539. P. Papanastasiou and S. Pirandola, “Continuous-variable quantum cryptography with discrete alphabets: composable security under collective Gaussian attacks,” arXiv:1912.11418 (2019).
  540. Z. Li, Y.-C. Zhang, F. Xu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052301 (2014).
    [Crossref]
  541. G. Spedalieri, C. Ottaviani, and S. Pirandola, “Covariance matrices under Bell-like detections,” Open Syst. Inf. Dyn. 20, 1350011 (2013).
    [Crossref]
  542. C. Ottaviani, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Continuous-variable quantum cryptography with an untrusted relay: detailed security analysis of the symmetric configuration,” Phys. Rev. A 91, 022320 (2015).
    [Crossref]
  543. G. Spedalieri, C. Ottaviani, S. L. Braunstein, T. Gehring, C. S. Jacobsen, U. L. Andersen, and S. Pirandola, “Quantum cryptography with an ideal local relay,” Proc. SPIE 9648, 96480Z (2015).
    [Crossref]
  544. P. Papanastasiou, C. Ottaviani, and S. Pirandola, “Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables,” Phys. Rev. A 96, 042332 (2017).
    [Crossref]
  545. X. Zhang, Y.-C. Zhang, Y. Zhao, X. Wang, S. Yu, and H. Guo, “Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 96, 042334 (2017).
    [Crossref]
  546. M. Tomamichel, “A framework for non-asymptotic quantum information theory,” Ph.D. thesis (Swiss Federal Institute of Technology, 2012).
  547. M. Tomamichel, C. Schaffner, A. Smith, and R. Renner, “Leftover hashing against quantum side information,” IEEE Trans. Inf. Theory 57, 5524–5535 (2011).
    [Crossref]
  548. J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
    [Crossref]
  549. Y. Zhang, Z. Li, C. Weedbrook, K. Marshall, S. Pirandola, S. Yu, and H. Guo, “Noiseless linear amplifiers in entanglement-based continuous-variable quantum key distribution,” Entropy 17, 4547–4562 (2015).
    [Crossref]
  550. Y. Zhao, Y. Zhang, B. Xu, S. Yu, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction,” Phys. Rev. A 97, 042328 (2018).
    [Crossref]
  551. H.-X. Ma, P. Huang, D.-Y. Bai, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
    [Crossref]
  552. Y.-C. Zhang, Z. Li, S. Yu, W. Gu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution using squeezed states,” Phys. Rev. A 90, 052325 (2014).
    [Crossref]
  553. P. Wang, X. Wang, and Y. Li, “Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers,” Phys. Rev. A 99, 042309 (2019).
    [Crossref]
  554. H.-X. Ma, P. Huang, D.-Y. Bai, T. Wang, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation,” Phys. Rev. A 99, 022322 (2019).
    [Crossref]
  555. H.-L. Yin, W. Zhu, and Y. Fu, “Phase self-aligned continuous-variable measurement-device-independent quantum key distribution,” Sci. Rep. 9, 49 (2019).
    [Crossref]
  556. H.-X. Ma, P. Huang, T. Wang, D.-Y. Bai, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Security bound of continuous-variable measurement-device-independent quantum key distribution with imperfect phase reference calibration,” Phys. Rev. A 100, 052330 (2019).
  557. Q. Liao, Y. Wang, D. Huang, and Y. Guo, “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution,” Opt. Express 26, 19907–19920 (2018).
    [Crossref]
  558. Y. Guo, Q. Liao, D. Huang, and G. Zeng, “Quantum relay schemes for continuous-variable quantum key distribution,” Phys. Rev. A 95, 042326 (2017).
    [Crossref]
  559. N. Hosseinidehaj and R. Malaney, “CV-MDI quantum key distribution via satellite,” Quant. Inf. Comput. 17, 361–379 (2017).
    [Crossref]
  560. D. Bai, P. Huang, Y. Zhu, H. Ma, T. Xiao, T. Wang, and G. Zeng, “Unidimensional continuous-variable measurement-device-independent quantum key distribution,” J. Phys. B: At. Mol. Opt. Phys. 52135502 (2019).
  561. C. Ottaviani, C. Lupo, R. Laurenza, and S. Pirandola, “Modular network for high-rate quantum conferencing,” Commun. Phys. 2, 118 (2019).
    [Crossref]
  562. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
    [Crossref]
  563. R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
    [Crossref]
  564. D. Markham and B. C. Sanders, “Graph states for quantum secret sharing,” Phys. Rev. A 78, 042309 (2008).
    [Crossref]
  565. D. Markham and B. C. Sanders, “Erratum: graph states for quantum secret sharing,” Phys. Rev. A 83, 019901 (2011).
    [Crossref]
  566. A. Keet, B. Fortescue, D. Markham, and B. C. Sanders, “Quantum secret sharing with qudit graph states,” Phys. Rev. A 82, 062315 (2010).
    [Crossref]
  567. J. Ribeiro, G. Murta, and S. Wehner, “Fully device independent conference key agreement,” Phys. Rev. A 97, 022307 (2018).
  568. F. Grasselli, H. Kampermann, and D. Bruß, “Conference key agreement with single-photon interference,” New J. Phys. 21, 123002 (2019).
  569. Y. Wu, J. Zhou, X. Gong, Y. Guo, Z.-M. Zhang, and G. He, “Continuous-variable measurement-device-independent multipartite quantum communication,” Phys. Rev. A 93, 022325 (2016).
    [Crossref]
  570. P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482 (2000).
    [Crossref]
  571. F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-variable quantum key distribution with Gaussian modulation—the theory of practical implementations,” Adv. Quantum Technol. 1, 1800011 (2018).
    [Crossref]
  572. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
    [Crossref]
  573. A. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
    [Crossref]
  574. J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
    [Crossref]
  575. S. Lorenz, N. Korolkova, and G. Leuchs, “Continuous-variable quantum key distribution using polarization encoding and post selection,” Appl. Phys. B 79, 273–277 (2004).
    [Crossref]
  576. P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
    [Crossref]
  577. D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps key rate,” Opt. Express 23, 17511–17519 (2015).
    [Crossref]
  578. D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695–3698 (2015).
    [Crossref]
  579. D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
    [Crossref]
  580. Y.-M. Li, X.-Y. Wang, Z.-L. Bai, W.-Y. Liu, S.-S. Yang, and K.-C. Peng, “Continuous variable quantum key distribution,” Chin. Phys. B 26, 040303 (2017).
    [Crossref]
  581. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
    [Crossref]
  582. F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” Quantum 3, 193 (2019).
    [Crossref]
  583. B. Qi, L. L. Huang, L. Qian, and H.-K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
    [Crossref]
  584. Y. Shen, Y. Chen, H. Zou, and J. Yuan, “A fiber-based quasi-continuous-wave quantum key distribution system,” Sci. Rep. 4, 4563 (2014).
    [Crossref]
  585. X. Y. Wang, Z.-L. Bai, S.-F. Wang, Y.-M. Li, and K.-C. Peng, “Four-state modulation continuous variable quantum key distribution over a 30 km fiber and analysis of excess noise,” Chin. Phys. Lett. 30, 010305 (2013).
    [Crossref]
  586. Q.-D. Xuan, Z. Zhang, and P.-L. Voss, “A 24 km fiber-based discretely signaled continuous variable quantum key distribution system,” Opt. Express 17, 24244–24249 (2009).
    [Crossref]
  587. T. Hirano, T. Ichikawa, T. Matsubara, M. Ono, Y. Oguri, R. Namiki, K. Kasai, R. Matsumoto, and T. Tsurumaru, “Implementation of continuous variable quantum key distribution with discrete modulation,” Quantum Sci. Technol. 2, 024010 (2017).
    [Crossref]
  588. H. H. Brunner, L. C. Comandar, F. Karinou, S. Bettelli, D. Hillerkuss, F. Fung, D. Wang, S. Mikroulis, Y. Qian, M. Kuschnerov, A. Poppe, C. Xie, and M. Peev, “A low-complexity heterodyne CV-QKD architecture,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017).
  589. J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
    [Crossref]
  590. P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variable quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
    [Crossref]
  591. S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
    [Crossref]
  592. F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the integration of CV quantum key distribution in deployed optical networks,” IEEE Photon. Technol. Lett. 30, 650–653 (2018).
    [Crossref]
  593. T. A. Eriksson, T. Hirano, M. Ono, M. Fujiwara, R. Namiki, K.-I. Yoshino, A. Tajima, M. Takeoka, and M. Sasaki, “Coexistence of continuous variable quantum key distribution and 7 × 12.5 Gbit/s classical channels,” in IEEE Photonics Society Summer Topical Meeting Series (2018).
  594. Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. Xu, X. Zhang, Z. Wang, M. Li, X. Zhang, Z. Zheng, B. Chu, X. Gao, N. Meng, W. Cai, Z. Wang, G. Wang, S. Yu, and H. Guo, “Continuous-variable QKD over 50 km commercial fiber,” Quantum Sci. Technol. 4, 035006 (2019).
    [Crossref]
  595. Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu, and H. Guo, “Long-distance continuous-variable quantum key distribution over 202.81 km of fiber,” Phys. Rev. Lett. 125, 010502 (2020).
  596. D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).
    [Crossref]
  597. B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).
    [Crossref]
  598. S. Kleis, M. Rückmann, and C. G. Schäffer, “Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals,” Opt. Lett. 42, 1588–1591 (2017).
    [Crossref]
  599. T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distirbution with a real local oscillator,” Opt. Express 26, 2794–2806 (2018).
    [Crossref]
  600. Y. Li, N. Wang, X. Wang, and Z. Bai, “Influence of guided acoustic wave Brillouin scattering on excess noise in fiber-based continuous variable quantum key distribution,” J. Opt. Soc. Am. B 31, 2379–2383 (2014).
    [Crossref]
  601. D. Huang, J. Fang, C. Wang, P. Huang, and G. H. Zeng, “A 300 MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution,” Chin. Phys. Lett. 30, 114209 (2013).
    [Crossref]
  602. R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
    [Crossref]
  603. X.-C. Ma, S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum key distribution systems,” Phys. Rev. A 88, 022339 (2013).
    [Crossref]
  604. C. Zhou, X. Wang, Y. Zhang, Z. Zhang, S. Yu, and H. Guo, “Continuous-variable quantum key distribution with rateless reconciliation protocol,” Phys. Rev. Appl. 12, 054013 (2019).
    [Crossref]
  605. A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
    [Crossref]
  606. D. Lin, D. Huang, P. Huang, J. Peng, and G. Zeng, “High performance reconciliation for continuous variable quantum key distribution with LDPC code,” Int. J. Quantum Inf. 13, 1550010 (2015).
    [Crossref]
  607. M. Milicevic, C. Feng, L. M. Zhang, and P. G. Gulak, “Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography,” npj Quantum Inf. 4, 21 (2017).
    [Crossref]
  608. X. Wang, Y. Zhang, S. Li, B. Xu, S. Yu, and H. Guo, “Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution,” Quant. Inf. Comput. 17, 1123–1134 (2017).
    [Crossref]
  609. X. Wang, Y. Zhang, S. Yu, and H. Guo, “High speed error correction for continuous-variable quantum key distribution with multi-edge type LDPC code,” Sci. Rep. 8, 10543 (2018).
    [Crossref]
  610. T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
    [Crossref]
  611. U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
    [Crossref]
  612. C. S. Scheffman, L. S. Madsen, V. C. Usenko, R. Filip, and U. L. Andersen, “Complete elimination of information leakage in continuous-variable quantum communication channels,” npj Quantum Inf. 4, 32 (2018).
    [Crossref]
  613. N. Wang, S. Du, W. Liu, X. Wang, Y. Li, and K. Peng, “Long-distance continuous-variable quantum key distribution with entangled states,” Phys. Rev. Appl. 10, 064028 (2018).
    [Crossref]
  614. M. Tomamichel, R. Colbeck, and R. Renner, “A fully quantum asymptotic equipartition property,” IEEE Trans. Inf. Theory 55, 5840–5847 (2009).
    [Crossref]
  615. M. Christandl, R. König, and R. Renner, “Postselection technique for quantum channels with applications to quantum cryptography,” Phys. Rev. Lett. 102, 020504 (2009).
    [Crossref]
  616. M. Hayashi and T. Tsurumaru, “Concise and tight security analysis of the Bennett–Brassard 1984 protocol with finite key lengths,” New J. Phys. 14, 093014 (2012).
    [Crossref]
  617. M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, “The uncertainty principle in the presence of quantum memory,” Nat. Phys. 6, 659–662 (2010).
    [Crossref]
  618. M. Tomamichel and R. Renner, “Uncertainty relation for smooth entropies,” Phys. Rev. Lett. 106, 110506 (2011).
    [Crossref]
  619. M. Tomamichel and A. Leverrier, “A largely self-contained and complete security proof for quantum key distribution,” Quantum 1, 14 (2017).
    [Crossref]
  620. R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T. Vidick, “Practical device-independent quantum cryptography via entropy accumulation,” Nat. Commun. 9, 459 (2018).
    [Crossref]
  621. W. Heisenberg, “Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik,” Zeitschrift für Phys. 43, 172 (1927).
    [Crossref]
  622. H. Maassen and J. B. Uffink, “Generalized entropic uncertainty relations,” Phys. Rev. Lett. 60, 1103–1106 (1988).
    [Crossref]
  623. F. Grosshans and N. J. Cerf, “Continuous-variable quantum cryptography is secure against non-Gaussian attacks,” Phys. Rev. Lett. 92, 047905 (2004).
    [Crossref]
  624. M. Koashi, “Simple security proof of quantum key distribution via uncertainty principle,” New J. Phys. 11, 045018 (2009).
  625. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  626. P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
    [Crossref]
  627. F. Furrer, M. Berta, M. Tomamichel, V. B. Scholz, and M. Christandl, “Position-momentum uncertainty relations in the presence of quantum memory,” J. Math. Phys. 55, 122205 (2014).
    [Crossref]
  628. M. Berta, F. Furrer, and V. B. Scholz, “The smooth entropy formalism for von Neumann algebras,” J. Math. Phys. 57, 015213 (2016).
    [Crossref]
  629. H. Everett, “‘Relative State’ formulation of quantum mechanics,” Rev. Mod. Phys. 29, 454 (1957).
    [Crossref]
  630. I. I. Hirschman, “A note on entropy,” Am. J. Math. 79, 152–156 (1957).
    [Crossref]
  631. L. Rudnicki, S. P. Walborn, and F. Toscano, “Optimal uncertainty relations for extremely coarse-grained measurements,” Phys. Rev. A 85, 042115 (2012).
    [Crossref]
  632. M. Christandl, R. König, G. Mitchison, and R. Renner, “One-and-a-half quantum de Finetti theorems,” Commun. Math. Phys. 273, 473–498 (2007).
    [Crossref]
  633. A. Leverrier, “Composable security proof for continuous-variablequantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
    [Crossref]
  634. A. Leverrier, “SU(p, q) coherent states and a Gaussian de Finetti theorem,” J. Math. Phys. 59, 042202 (2018).
    [Crossref]
  635. D. Moody, “Update on the nist post-quantum cryptography project,” Tech. Rep. (National Institute of Standards and Technology, 2018).
  636. F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Quantum cryptography with realistic devices,” Rev. Mod. Phys. 92, 025002 (2020).
  637. M. Lucamarini, A. Shields, R. Allèaume, C. Chunnilall, I. P. Degiovanni, M. Gramegna, A. Hasekioglu, B. Huttner, R. Kumar, and A. Lord, et al., “Implementation security of quantum cryptography: introduction, challenges, solutions,” ETSI White Paper No. 27, 2018, https://bit.ly/2Wi4Z4g .
  638. V. Scarani and C. Kurtsiefer, “The black paper of quantum cryptography: real implementation problems,” Theor. Comput. Sci. 560, 27–32 (2014).
    [Crossref]
  639. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–179 (2014).
    [Crossref]
  640. A. A. Gaidash, V. I. Egorov, and A. V. Gleim, “Revealing of photon-number splitting attack on quantum key distribution system by photon-number resolving devices,” J. Phys. Conf. Ser. 735, 012072 (2016).
    [Crossref]
  641. A. Huang, S.-H. Sun, Z. Liu, and V. Makarov, “Decoy state quantum key distribution with imperfect source,” Phys. Rev. A 98, 012330 (2018).
  642. Y.-Y. Fei, X.-D. Meng, M. Gao, Y. Yang, H. Wang, and Z. Ma, “Strong light illumination on gain-switched semiconductor lasers helps the eavesdropper in practical quantum key distribution systems,” Opt. Commun. 419, 83–89 (2018).
    [Crossref]
  643. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
    [Crossref]
  644. N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-horse attacks on practical quantum key distribution system,” IEEE J. Sel. Top. Quantum Electron. 21, 168–177 (2015).
    [Crossref]
  645. A. Vakhitov, V. Makarov, and D. R. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023 (2001).
    [Crossref]
  646. M. Lucamarini, I. Choi, M. Ward, J. Dynes, Z. Yuan, and A. Shields, “Practical security bounds against the Trojan-horse attack in quantum key distribution,” Phys. Rev. X 5, 031030 (2015).
    [Crossref]
  647. S. Sajeed, C. Minshull, N. Jain, and V. Makarov, “Invisible trojan-horse attack,” Sci. Rep. 7, 8403 (2017).
    [Crossref]
  648. K. Tamaki, M. Curty, and M. Lucamarini, “Decoy-state quantum key distribution with a leaky source,” New J. Phys. 18, 065008 (2016).
    [Crossref]
  649. S. Vinay and P. Kok, “Burning the Trojan horse: defending against side-channel attacks in QKD,” Phys. Rev. A 97, 042335 (2018).
    [Crossref]
  650. C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, “The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?” J. Mod. Opt. 48, 2039–2047 (2001).
    [Crossref]
  651. P. V. P. Pinheiro, P. Chaiwongkhot, S. Sajeed, R. T. Horn, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Eavesdropping and countermeasures for backflash side channel in quantum cryptography,” arXiv:1804.10317 (2018).
  652. A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Backflash light characterization to prevent QKD zero-error hacking,” Light Sci. Appl. 6, e16261 (2017).
    [Crossref]
  653. V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. 52, 691–705 (2005).
    [Crossref]
  654. M. Stipčević, “Preventing detector blinding attack and other random number generator attacks on quantum cryptography by use of an explicit random number generator,” arXiv:1403.0143 (2014).
  655. H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking practical quantum-key-distribution system with wavelength dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
    [Crossref]
  656. V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).
    [Crossref]
  657. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938–27954 (2010).
    [Crossref]
  658. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010).
    [Crossref]
  659. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 98, 231104 (2011).
    [Crossref]
  660. A. Koehler-Sidki, M. Lucamarini, J. F. Dynes, G. L. Roberts, A. W. Sharpe, Z. Yuan, and A. J. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
    [Crossref]
  661. A. Koehler-Sidki, J. F. Dynes, M. Lucamarini, G. L. Roberts, A. W. Sharpe, Z. L. Yuan, and A. J. Shields, “Best-practice criteria for practical security of self-differencing avalanche photodiode detectors in quantum key distribution,” Phys. Rev. Appl. 9, 044027 (2018).
    [Crossref]
  662. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).
  663. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
    [Crossref]
  664. C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, “Security proof of quantum key distribution with detection efficiency mismatch,” Quant. Inf. Comp. 9, 0131–0165 (2009).
  665. S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
    [Crossref]
  666. M. Rau, T. Vogl, G. Corrielli, G. Vest, L. Fuchs, S. Nauerth, and H. Weinfurter, “Spatial mode side channels in free-space QKD implementations,” IEEE J. Sel. Top. Quantum Electron. 21, 6600905 (2015).
    [Crossref]
  667. L. Lydersen and J. Skaar, “Security of quantum key distribution with bit and basis dependent detector flaws,” Quant. Inf. Comp. 10, 0060 (2010).
  668. M. Koashi, “Unconditional security of quantum key distribution and the uncertainty principle,” J. Phys. Conf. Ser. 36, 98 (2006).
    [Crossref]
  669. Y.-Y. Fei, X.-D. Meng, M. Gao, Z. Ma, and H. Wang, “Practical decoy state quantum key distribution with detector efficiency mismatch,” Eur. Phys. J. D 72, 107 (2018).
    [Crossref]
  670. P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
    [Crossref]
  671. H. Häseler, T. Moroder, and N. Lütkenhaus, “Testing quantum devices: practical entanglement verification in bipartite optical systems,” Phys. Rev. A 77, 032303 (2008).
    [Crossref]
  672. J.-Z. Huang, C. Weedbrook, Z.-Q. Yin, S. Wang, H.-W. Li, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
    [Crossref]
  673. X.-C. Ma, S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
    [Crossref]
  674. P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
    [Crossref]
  675. J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
    [Crossref]
  676. C. Xie, Y. Guo, Q. Liao, W. Zhao, D. Huang, L. Zhang, and G. Zeng, “Practical security analysis of continuous-variable quantum key distribution with jitter in clock synchronization,” Phys. Lett. A 382, 811–817 (2018).
    [Crossref]
  677. Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B 52, 015501 (2019).
    [Crossref]
  678. A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
    [Crossref]
  679. S. Ren, R. Kumar, A. Wonfor, X. Tang, R. Penty, and I. White, “Reference pulse attack on continuous-variable quantum key distribution with local oscillator under trusted phase noise,” J. Opt. Soc. Am. B 36, B7–B15 (2019).
    [Crossref]
  680. H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A 94, 012325 (2016).
    [Crossref]
  681. J. Fiurášek and N. J. Cerf, “Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution,” Phys. Rev. A 86, 060302 (2012).
    [Crossref]
  682. N. Walk, T. C. Ralph, T. Symul, and P. K. Lam, “Security of continuous-variable quantum cryptography with Gaussian postselection,” Phys. Rev. A 87, 020303 (2013).
    [Crossref]
  683. H. Qin, R. Kumar, V. Makarov, and R. Alléaume, “Homodyne detector blinding attack in continuous-variable quantum key distribution,” Phys. Rev. A 98, 012312 (2018).
    [Crossref]
  684. B. Stiller, I. Khan, N. Jain, P. Jouguet, S. Kunz-Jacques, E. Diamanti, C. Marquardt, and G. Leuchs, “Quantum hacking of continuous-variable quantum key distribution systems: realtime Trojan-horse attacks,” in Conference on Lasers and Electro-Optics (CLEO) (OSA, 2015).
  685. I. Derkach, V. C. Usenko, and R. Filip, “Preventing side-channel effects in continuous-variable quantum key distribution,” Phys. Rev. A 93, 032309 (2016).
    [Crossref]
  686. I. Derkach, V. C. Usenko, and R. Filip, “Continuous-variable quantum key distribution with a leakage from state preparation,” Phys. Rev. A 96, 062309 (2017).
    [Crossref]
  687. J. Pereira and S. Pirandola, “Hacking Alice’s box in CV-QKD,” Phys. Rev. A 98, 062319 (2018).
    [Crossref]
  688. H.-X. Ma, W.-S. Bao, H.-W. Li, and C. Chou, “Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack,” Chin. Phys. B 25, 080309 (2016).
    [Crossref]
  689. N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
    [Crossref]
  690. Y.-Y. Fei, X.-D. Meng, M. Gao, H. Wang, and Z. Ma, “Quantum man-in-the-middle attack on the calibration process of quantum key distribution,” Sci. Rep. 8, 4283 (2018).
    [Crossref]
  691. A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
    [Crossref]
  692. V. Makarov, J.-P. Bourgoin, P. Chaiwongkhot, M. Gagné, T. Jennewein, S. Kaiser, R. Kashyap, M. Legré, C. Minshull, and S. Sajeed, “Creation of backdoors in quantum communications via laser damage,” Phys. Rev. A 94, 030302 (2016).
    [Crossref]
  693. S.-H. Sun, F. Xu, M.-S. Jiang, X.-C. Ma, H.-K. Lo, and L.-M. Liang, “Effect of source tampering in the security of quantum cryptography,” Phys. Rev. A 92, 022304 (2015).
    [Crossref]
  694. M. Daschner, D. I. Kaiser, and J. A. Formaggio, “Exploiting Faraday rotation to jam quantum key distribution via polarized photons,” arxiv:1905.01359 (2019).
  695. K. Marshall and C. Weedbrook, “Device-independent quantum cryptography for continuous variables,” Phys. Rev. A 90, 042311 (2014).
    [Crossref]
  696. I. Devetak, M. Junge, C. King, and M. B. Ruskai, “Multiplicativity of completely bounded p-norms implies a new additivity result,” Commun. Math. Phys. 266, 37–63 (2006).
    [Crossref]
  697. B. Schumacher and M. A. Nielsen, “Quantum data processing and error correction,” Phys. Rev. A 54, 2629–2635 (1996).
    [Crossref]
  698. S. Lloyd, “Capacity of the noisy quantum channel,” Phys. Rev. A 55, 1613 (1997).
    [Crossref]
  699. M. Christandl, “The structure of bipartite quantum states: insights from group theory and cryptography,” Ph.D. thesis (University of Cambridge, 2006).
  700. V. Vedral, “The role of relative entropy in quantum information theory,” Rev. Mod. Phys. 74, 197 (2002).
    [Crossref]
  701. V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275–2279 (1997).
    [Crossref]
  702. V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Phys. Rev. A 57, 1619–1633 (1998).
    [Crossref]
  703. K. Horodecki, M. Horodecki, P. Horodecki, and J. Oppenheim, “Secure key from bound entanglement,” Phys. Rev. Lett. 94, 160502 (2005).
    [Crossref]
  704. I. Devetak, “The private classical capacity and quantum capacity of a quantum channel,” IEEE Trans. Inf. Theory 51, 44–55 (2005).
    [Crossref]
  705. R. Laurenza, S. L. Braunstein, and S. Pirandola, “Finite-resource teleportation stretching for continuous-variable systems,” Sci. Rep. 8, 15267 (2018).
    [Crossref]
  706. E. Chitambar and G. Gour, “Quantum resource theories,” Rev. Mod. Phys. 91, 025001 (2019).
    [Crossref]
  707. S. Pirandola and C. Lupo, “Ultimate precision of adaptive noise estimation,” Phys. Rev. Lett. 118, 100502 (2017).
    [Crossref]
  708. M. E. Shirokov, “Energy-constrained diamond norms and their use in quantum information theory,” Probl. Inf. Transm. 54, 20–33 (2018).
    [Crossref]
  709. A. Winter, “Energy-constrained diamond norm with applications to the uniform continuity of continuous variable channel capacities,” arXiv:1712.10267 (2017).
  710. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
    [Crossref]
  711. G. Bowen and S. Bose, “Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity,” Phys. Rev. Lett. 87, 267901 (2001).
    [Crossref]
  712. M. Horodecki, P. Horodecki, and R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation,” Phys. Rev. A 60, 1888 (1999).
    [Crossref]
  713. G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
    [Crossref]
  714. J. Niset, J. Fiurasek, and N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
    [Crossref]
  715. A. Muller-Hermes, “Transposition in quantum information theory,” Master’s thesis (Technical University of Munich, 2012).
  716. D. Leung and W. Matthews, “On the power of PPT-preserving and non-signalling codes,” IEEE Trans. Inf. Theory 61, 4486–4499 (2015).
    [Crossref]
  717. S. Ishizaka and T. Hiroshima, “Asymptotic teleportation scheme as a universal programmable quantum processor,” Phys. Rev. Lett. 101, 240501 (2008).
    [Crossref]
  718. S. Ishizaka and T. Hiroshima, “Quantum teleportation scheme by selecting one of multiple output ports,” Phys. Rev. A 79, 042306 (2009).
    [Crossref]
  719. S. Ishizaka, “Some remarks on port-based teleportation,” arXiv:1506.01555 (2015).
  720. M. Studzinski, S. Strelchuk, M. Mozrzymas, and M. Horodecki, “Port-based teleportation in arbitrary dimension,” Sci. Rep. 7, 10871 (2017).
    [Crossref]
  721. S. Pirandola, R. Laurenza, C. Lupo, and J. L. Pereira, “Fundamental limits to quantum channel discrimination,” npj Quantum Inf. 5, 50 (2019).
    [Crossref]
  722. S. Pirandola, R. Laurenza, and L. Banchi, “Conditional channel simulation,” Ann. Phys. 400, 289–302 (2019).
    [Crossref]
  723. F. Leditzky, D. Leung, and G. Smith, “Dephrasure channel and superadditivity of the coherent information,” Phys. Rev. Lett. 121, 160501 (2018).
    [Crossref]
  724. R. Laurenza, C. Lupo, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Channel simulation in quantum metrology,” Quantum Meas. Quantum Metrol. 5, 1–12 (2018).
    [Crossref]
  725. S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
    [Crossref]
  726. S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumination,” Science 321, 1463–1465 (2008).
    [Crossref]
  727. S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian States,” Phys. Rev. Lett. 101, 253601 (2008).
    [Crossref]
  728. S. Pirandola, “Quantum reading of a classical digital memory,” Phys. Rev. Lett. 106, 090504 (2011).
    [Crossref]
  729. M. Tsang, R. Nair, and X.-M. Lu, “Quantum theory of superresolution for two incoherent optical point sources,” Phys. Rev. X 6, 031033 (2016).
    [Crossref]
  730. C. Lupo and S. Pirandola, “Ultimate precision bound of quantum and subwavelength imaging,” Phys. Rev. Lett. 117, 190802 (2016).
    [Crossref]
  731. R. Nair and M. Tsang, “Far-field superresolution of thermal electromagnetic sources at the quantum limit,” Phys. Rev. Lett. 117, 190801 (2016).
    [Crossref]
  732. P. Liuzzo-Scorpo, A. Mari, V. Giovannetti, and G. Adesso, “Optimal continuous variable quantum teleportation with limited resources,” Phys. Rev. Lett. 119, 120503 (2017).
    [Crossref]
  733. P. Liuzzo-Scorpo, A. Mari, V. Giovannetti, and G. Adesso, “Optimal continuous variable quantum teleportation with limited resources,” Phys. Rev. Lett. 120, 029904 (2018).
    [Crossref]
  734. E. Kaur and M. M. Wilde, “Upper bounds on secret-key agreement over lossy thermal bosonic channels,” Phys. Rev. A 96, 062318 (2017).
    [Crossref]
  735. S. Tserkis, J. Dias, and T. C. Ralph, “Simulation of Gaussian channels via teleportation and error correction of Gaussian states,” Phys. Rev. A 98, 052335 (2018).
    [Crossref]
  736. R. Laurenza, S. Tserkis, L. Banchi, S. L. Braunstein, T. C. Ralph, and S. Pirandola, “Tight bounds for private communication over bosonic Gaussian channels based on teleportation simulation with optimal finite resources,” Phys. Rev. A 100, 042301 (2019).
    [Crossref]
  737. L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473–1476 (1994).
    [Crossref]
  738. A. S. Holevo, “Single-mode quantum Gaussian channels: structure and quantum capacity,” Probl. Inf. Transm. 43, 1–14 (2007).
    [Crossref]
  739. F. Caruso and V. Giovannetti, “Degradability of Bosonic Gaussian channels,” Phys. Rev. A 74, 062307 (2006).
    [Crossref]
  740. F. Caruso, V. Giovannetti, and A. S. Holevo, “One-mode Bosonic Gaussian channels: a full weak-degradability classification,” New J. Phys. 8, 310 (2006).
    [Crossref]
  741. M. M. Wilde, M. Tomamichel, and M. Berta, “Converse bounds for private communication over quantum channels,” IEEE Trans. Inf. Theory 63, 1792–1817 (2017).
    [Crossref]
  742. M. Christandl and A. Müller-Hermes, “Relative entropy bounds on quantum, private and repeater capacities,” Commun. Math. Phys. 353, 821–852 (2017).
    [Crossref]
  743. A. S. Holevo and R. F. Werner, “Evaluating capacities of Bosonic Gaussian channels,” Phys. Rev. A 63, 032312 (2001).
    [Crossref]
  744. M. M. Wolf, D. Pérez-García, and G. Giedke, “Quantum capacities of Bosonic channels,” Phys. Rev. Lett. 98, 130501 (2007).
    [Crossref]
  745. I. Devetak and P. W. Shor, “The capacity of a quantum channel for simultaneous transmission of classical and quantum information,” Commun. Math. Phys. 256, 287–303 (2005).
    [Crossref]
  746. C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, “Capacities of quantum erasure channels,” Phys. Rev. Lett. 78, 3217–3220 (1997).
    [Crossref]
  747. K. Goodenough, D. Elkouss, and S. Wehner, “Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels,” New J. Phys. 18, 063005 (2016).
    [Crossref]
  748. L. Banchi, J. Pereira, S. Lloyd, and S. Pirandola, “Convex optimization of programmable quantum computers,” npj Quantum Inf. 6, 42 (2020).
    [Crossref]
  749. L. Banchi, J. Pereira, S. Lloyd, and S. Pirandola, “Optimization and learning of quantum programs,” arXiv:1905.01318 (2019).
  750. K. Noh, S. Pirandola, and L. Jiang, “Enhanced energy-constrained quantum communication over bosonic Gaussian channels,” Nat. Commun. 11, 457 (2020).
    [Crossref]
  751. K. Noh, S. M. Girvin, and L. Jiang, “Encoding an oscillator into many oscillators,” arXiv:1903.12615 (2019).
  752. K. Noh, V. V. Albert, and L. Jiang, “Improved quantum capacity bounds of Gaussian loss channels and achievable rates with Gottesman-Kitaev-Preskill codes,” IEEE Trans. Inf. Theory 65, 2563 (2019).
    [Crossref]
  753. V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M. Girvin, B. M. Terhal, and L. Jiang, “Performance and structure of single-mode bosonic codes,” Phys. Rev. A 97, 032346 (2018).
    [Crossref]
  754. D. Gottesman, A. Y. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A 64, 012310 (2001).
    [Crossref]
  755. B. C. Travaglione and G. J. Milburn, “Preparing encoded states in an oscillator,” Phys. Rev. A 66, 052322 (2002).
    [Crossref]
  756. S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Constructing finite-dimensional codes with optical continuous variables,” Europhys. Lett. 68, 323 (2004).
    [Crossref]
  757. S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous variable encoding by ponderomotive interaction,” Eur. Phys. J. D 37, 283–290 (2006).
    [Crossref]
  758. S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Generating continuous variable quantum codewords in the near-field atomic lithography,” J. Phys. B 39, 997 (2006).
    [Crossref]
  759. H. M. Vasconcelos, L. Sanz, and S. Glancy, “All-optical generation of states for encoding a qubit in an oscillator,” Opt. Lett. 35, 3261–3263 (2010).
    [Crossref]
  760. M. Pollack, “The maximum capacity through a network,” Oper. Res. 8, 733–736 (1960).
    [Crossref]
  761. T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms (MIT, 1990).
  762. A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed. (Pearson, 2010).
  763. J. B. Orlin, “Max flows in O(nm) time, or better,” in STOC’13 Proceedings of the 45th annual ACM symposium on Theory of Computing (2013), pp. 765–774.
  764. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref]
  765. S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001).
    [Crossref]
  766. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [Crossref]
  767. M. Varnava, D. E. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
    [Crossref]
  768. W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012).
    [Crossref]
  769. K. Azuma, K. Tamaki, and H.-K. Lo, “All-photonic quantum repeaters,” Nat. Commun. 6, 6787 (2015).
    [Crossref]
  770. S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).
    [Crossref]
  771. R. Namiki, L. Jiang, J. Kim, and N. Lütkenhaus, “Role of syndrome information on a one-way quantum repeater using teleportation-based error correction,” Phys. Rev. A 94, 052304 (2016).
    [Crossref]
  772. S. Muralidharan, C.-L. Zou, L. Li, J. Wen, and L. Jiang, “Overcoming erasure errors with multilevel systems,” New J. Phys 19, 013026 (2017).
    [Crossref]
  773. M. Razavi, An Introduction to Quantum Communications Networks (Morgan & Claypool Publishers, 2018).
  774. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
    [Crossref]
  775. S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Optimal architectures for long distance quantum communication,” Sci. Rep. 6, 20463 (2016).
    [Crossref]
  776. W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, “Inside quantum repeaters,” IEEE J. Sel. Top. Quantum Electron. 21, 6400813 (2015).
    [Crossref]
  777. C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
    [Crossref]
  778. B. Zhao, Z.-B. Chen, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
    [Crossref]
  779. J. Calsamiglia and N. Lütkenhaus, “Maximum efficiency of a linear-optical Bell-state analyzer,” Appl. Phys. B 72, 67–71 (2001).
    [Crossref]
  780. W. P. Grice, “Arbitrarily complete Bell-state measurement using only linear optical elements,” Phys. Rev. A 84, 042331 (2011).
    [Crossref]
  781. H. A. Zaidi and P. van Loock, “Beating the one-half limit of ancilla-free linear optics Bell measurements,” Phys. Rev. Lett. 110, 260501 (2013).
    [Crossref]
  782. D. E. Bruschi, T. M. Barlow, M. Razavi, and A. Beige, “Repeat-until-success quantum repeaters,” Phys. Rev. A 90, 032306 (2014).
    [Crossref]
  783. F. Ewert and P. van Loock, “3/4-efficient bell measurement with passive linear optics and unentangled ancillae,” Phys. Rev. Lett. 113, 140403 (2014).
    [Crossref]
  784. M. Razavi, M. Piani, and N. Lütkenhaus, “Quantum repeaters with imperfect memories: cost and scalability,” Phys. Rev. A 80, 032301 (2009).
    [Crossref]
  785. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
    [Crossref]
  786. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
    [Crossref]
  787. N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
    [Crossref]
  788. S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89, 012301 (2014).
    [Crossref]
  789. C. Panayi, M. Razavi, X. Ma, and N. Lütkenhaus, “Memory-assisted measurement-device-independent quantum key distribution,” New J. Phys. 16, 043005 (2014).
    [Crossref]
  790. N. Lo Piparo, M. Razavi, and C. Panayi, “Measurement-device-independent quantum key distribution with ensemble-based memories,” IEEE J. Sel. Top. Quantum Electron. 21, 138–147 (2015).
    [Crossref]
  791. N. Lo Piparo, M. Razavi, and W. J. Munro, “Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond,” Phys. Rev. A 95, 022338 (2017).
    [Crossref]
  792. N. Lo Piparo, N. Sinclair, and M. Razavi, “Memory-assisted quantum key distribution resilient against multiple-excitation effects,” Quantum Sci. Technol. 3, 014009 (2018).
    [Crossref]
  793. N. Lo Piparo, M. Razavi, and W. J. Munro, “Memory-assisted quantum key distribution with a single nitrogen-vacancy center,” Phys. Rev. A 96, 052313 (2017).
    [Crossref]
  794. F. Rozpedek, K. Goodenough, J. Ribeiro, N. Kalb, V. C. Vivoli, A. Reiserer, R. Hanson, S. Wehner, and D. Elkouss, “Parameter regimes for a single sequential quantum repeater,” Quantum Sci. Technol. 3, 034002 (2018).
    [Crossref]
  795. F. Rozpedek, R. Yehia, K. Goodenough, M. Ruf, P. C. Humphreys, R. Hanson, S. Wehner, and D. Elkouss, “Near-term quantum-repeater experiments with nitrogen-vacancy centers: overcoming the limitations of direct transmission,” Phys. Rev. A 99, 052330 (2019).
    [Crossref]
  796. J. Amirloo, M. Razavi, and A. H. Majedi, “Quantum key distribution over probabilistic quantum repeaters,” Phys. Rev. A 82, 032304 (2010).
    [Crossref]
  797. N. Lo Piparo and M. Razavi, “Long-distance quantum key distribution with imperfect devices,” Phys. Rev. A 88, 012332 (2013).
    [Crossref]
  798. N. Lo Piparo and M. Razavi, “Long-distance trust-free quantum key distribution,” J. Sel. Top. Quantum Electron. 21, 6600508 (2015).
    [Crossref]
  799. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
    [Crossref]
  800. H. Aschauer, “Quantum communication in noisy environments,” Ph.d. thesis (Ludwig-Maximilians-Universität München, 2005).
  801. L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79, 032325 (2009).
    [Crossref]
  802. W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics 4, 792–796 (2010).
    [Crossref]
  803. F. Ewert, M. Bergmann, and P. van Loock, “Ultrafast long-distance quantum communication with static linear optics,” Phys. Rev. Lett. 117, 210501 (2016).
    [Crossref]
  804. F. Ewert and P. van Loock, “Ultrafast fault-tolerant long-distance quantum communication with static linear optics,” Phys. Rev. A 95, 012327 (2017).
    [Crossref]
  805. F. Schmidt and P. van Loock, “Efficiencies of logical Bell measurements on Calderbank-Shor-Steane codes with static linear optics,” Phys. Rev. A 99, 062308 (2019).
    [Crossref]
  806. S. Pirandola and S. L. Braunstein, “Unite to build the quantum internet,” Nature 532, 169–171 (2016).
    [Crossref]
  807. S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
    [Crossref]
  808. J. Eisert, D. E. Browne, S. Scheel, and M. B. Plenio, “Distillation of continuous-variable entanglement with optical means,” Ann. Phys. 311, 431–458 (2004).
    [Crossref]
  809. A. Datta, L. Zhang, J. Nunn, N. K. Langford, A. Feito, M. B. Plenio, and I. A. Walmsley, “Compact continuous-variable entanglement distillation,” Phys. Rev. Lett. 108, 060502 (2012).
    [Crossref]
  810. A. P. Lund and T. C. Ralph, “Continuous-variable entanglement distillation over a general lossy channel,” Phys. Rev. A 80, 032309 (2009).
    [Crossref]
  811. J. Fiurášek, “Distillation and purification of symmetric entangled Gaussian states,” Phys. Rev. A 82, 042331 (2010).
    [Crossref]
  812. J. Dias and T. C. Ralph, “Quantum error correction of continuous-variable states with realistic resources,” Phys. Rev. A 97, 032335 (2018).
    [Crossref]
  813. K. P. Seshadreesan, H. Krovi, and S. Guha, “Continuous-variable entanglement distillation over a pure loss channel with multiple quantum scissors,” Phys. Rev. A 100, 022315 (2019).
    [Crossref]
  814. T. C. Ralph, “Quantum error correction of continuous-variable states against Gaussian noise,” Phys. Rev. A 84, 022339 (2011).
    [Crossref]
  815. E. T. Campbell, M. G. Genoni, and J. Eisert, “Continuous-variable entanglement distillation and noncommutative central limit theorems,” Phys. Rev. A 87, 042330 (2013).
    [Crossref]
  816. F. Furrer and W. J. Munro, “Repeaters for continuous-variable quantum communication,” Phys. Rev. A 98, 032335 (2018).
    [Crossref]
  817. K. P. Seshadreesan, H. Krovi, and S. Guha, “A continuous-variable quantum repeater with quantum scissors,” arXiv:1811.12393 (2018).
  818. P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
    [Crossref]
  819. T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006).
    [Crossref]
  820. P. van Loock, N. Lütkenhaus, W. J. Munro, and K. Nemoto, “Quantum repeaters using coherent-state communication,” Phys. Rev. A 78, 062319 (2008).
    [Crossref]
  821. N. K. Bernardes, L. Praxmeyer, and P. van Loock, “Rate analysis for a hybrid quantum repeater,” Phys. Rev. A 83, 012323 (2011).
    [Crossref]
  822. D. Gonta and P. van Loock, “Quantum repeater based on cavity-QED evolutions and coherent light,” Appl. Phys. B 122, 118 (2016).
    [Crossref]
  823. D. Gonta and P. van Loock, “Dynamical quantum repeater using cavity QED and optical coherent states,” Phys. Rev. A 88, 052308 (2013).
    [Crossref]
  824. M. Bergmann and P. van Loock, “A hybrid quantum repeater for qudits,” Phys. Rev. A 99, 032349 (2019).
    [Crossref]
  825. I. B. Damgaard, S. Fehr, R. Renner, L. Salvail, and C. Schaffner, “A tight high-order entropic quantum uncertainty relation with applications,” in Advances in Cryptology, CRYPTO, Lecture Notes in Computer Science (Springer, 2007).
  826. C. Schaffner, “Cryptography in the bounded-quantum-storage model,” Ph.D. thesis (University of Aarhus, 2007).
  827. S. Wehner, C. Schaffner, and B. M. Terhal, “Cryptography from noisy storage,” Phys. Rev. Lett. 100, 220502 (2008).
    [Crossref]
  828. S. Wehner and A. Winter, “Entropic uncertainty relations—a survey,” New J. Phys. 12, 025009 (2010).
    [Crossref]
  829. H. Buhrman, M. Christandl, P. Hayden, H.-K. Lo, and S. Wehner, “Possibility, impossibility and cheat-sensitivity of quantum bit string commitment,” Phys. Rev. A 78, 022316 (2008).
    [Crossref]
  830. S. Wehner, M. Curty, C. Schaffner, and H.-K. Lo, “Implementation of two-party protocols in the noisy-storage model,” Phys. Rev. A 81, 052336 (2010).
    [Crossref]
  831. R. König, S. Wehner, and J. Wullschleger, “Unconditional security from noisy quantum storage,” IEEE Trans. Inf. Theory 58, 1962–1984 (2012).
    [Crossref]
  832. C. Lupo, “Quantum data locking for secure communication against an eavesdropper with time-limited storage,” Entropy 17, 3194–3204 (2015).
    [Crossref]
  833. J. Sanchez, “Entropic uncertainty and certainty relations for complementary observables,” Phys. Lett. A 173, 233–239 (1993).
    [Crossref]
  834. P. Hayden, D. Leung, P. W. Shor, and A. Winter, “Randomizing quantum states: constructions and applications,” Commun. Math. Phys. 250, 371–394 (2004).
    [Crossref]
  835. O. Fawzi, P. Hayden, and P. Sen, “From low-distortion norm embeddings to explicit uncertainty relations and efficient information locking,” J. ACM 60, 44 (2013).
    [Crossref]
  836. R. Adamczak, R. Latala, Z. Puchala, and K. Zyczkowski, “Asymptotic entropic uncertainty relations,” J. Math. Phys. 57, 032204 (2016).
    [Crossref]
  837. R. Adamczak, “Metric and classical fidelity uncertainty relations for random unitary matrices,” J. Phys. A 50, 105302 (2017).
    [Crossref]
  838. N. H. Y. Ng, M. Berta, and S. Wehner, “Min-entropy uncertainty relation for finite-size cryptography,” Phys. Rev. A 86, 042315 (2012).
    [Crossref]
  839. F. Dupuis, O. Fawzi, and S. Wehner, “Entanglement sampling and applications,” IEEE Trans. Inf. Theory 61, 1093–1112 (2015).
    [Crossref]
  840. C. Erven, N. Ng, N. Gigov, R. Laflamme, S. Wehner, and G. Weihs, “An experimental implementation of oblivious transfer in the noisy storage model,” Nat. Commun. 5, 3418 (2014).
    [Crossref]
  841. F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9, 1450 (2018).
    [Crossref]
  842. D. P. DiVincenzo, M. Horodecki, D. W. Leung, J. A. Smolin, and B. M. Terhal, “Locking classical correlations in quantum states,” Phys. Rev. Lett. 92, 067902 (2004).
    [Crossref]
  843. C. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28, 656 (1949).
    [Crossref]
  844. M. S. Pinsker, Information and Information Stability of Random Variables and Processes (Holden Day, 1964).
  845. S. Lloyd, “Quantum enigma machines,” arXiv:1307.0380 (2013).
  846. S. Guha, P. Hayden, H. Krovi, S. Lloyd, C. Lupo, J. H. Shapiro, M. Takeoka, and M. M. Wilde, “Quantum enigma machines and the locking capacity of a quantum channel,” Phys. Rev. X 4, 011016 (2014).
    [Crossref]
  847. A. Winter, “Weak locking capacity of quantum channels can be much larger than private capacity,” J. Crypt. 30, 1–21 (2017).
    [Crossref]
  848. C. Lupo and S. Lloyd, “Continuous-variable quantum enigma machines for long-distance key distribution,” Phys. Rev. A 92, 062312 (2015).
    [Crossref]
  849. C. Lupo and S. Lloyd, “Quantum-locked key distribution at nearly the classical capacity rate,” Phys. Rev. Lett. 113, 160502 (2014).
    [Crossref]
  850. C. Lupo, M. M. Wilde, and S. Lloyd, “Robust quantum data locking from phase modulation,” Phys. Rev. A 90, 022326 (2014).
    [Crossref]
  851. C. Lupo and S. Lloyd, “Quantum data locking for high-rate private communication,” New J. Phys.17, 033022 (2015).
    [Crossref]
  852. Z. Huang, P. P. Rohde, D. W. Berry, P. Kok, J. P. Dowling, and C. Lupo, “Boson sampling private-key quantum cryptography,” arXiv:1905.03013 (2019).
  853. S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” in Proceedings of the 43rd annual ACM symposium on Theory of Computing (ACM, 2011), pp. 333–342.
  854. Y. Liu, Z. Cao, C. Wu, D. Fukuda, L. You, J. Zhong, T. Numata, S. Chen, W. Zhang, S.-C. Shi, C.-Y. Lu, Z. Wang, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “Experimental quantum data locking,” Phys. Rev. A 94, 020301 (2016).
    [Crossref]
  855. D. J. Lum, J. C. Howell, M. S. Allman, T. Gerrits, V. B. Verma, S. Woo Nam, C. Lupo, and S. Lloyd, “Quantum enigma machine: experimentally demonstrating quantum data locking,” Phys. Rev. A 94, 022315 (2016).
    [Crossref]
  856. J. Notaros, J. Mower, M. Heuck, C. Lupo, N. C. Harris, G. R. Steinbrecher, D. Bunandar, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Programmable dispersion on a photonic integrated circuit for classical and quantum applications,” Opt. Express 25, 21275–21285 (2017).
    [Crossref]
  857. A. K. Lenstra, J. P. Hughes, M. Augierand, J. W. Bos, T. Kleinjung, and C. Wachter, “Ron was wrong, Whit is right,” IACR Cryptology Report 2012/064 (2012).
  858. N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining your Ps and Qs: detection of widespread weak keys in network devices,” in Proceedings of the 21st USENIX Conference on Security Symposium, Security’12 (2012), pp. 35.
  859. T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
    [Crossref]
  860. R. Colbeck and R. Renner, “No extension of quantum theory can have improved predictive power,” Nat. Commun. 2, 411 (2011).
    [Crossref]
  861. R. Colbeck and R. Renner, “Completeness of quantum theory for predicting measurement outcomes,” in Quantum Theory: Informational Foundations and Foils. Fundamental Theories of Physics, G. Chiribella and R. W. Spekkens, eds. (Springer, 2016), Vol. 181.
  862. R. Colbeck, “Quantum and relativistic protocols for secure multi-party computation,” Ph.D. thesis (University of Cambridge, 2007).Also available at arXiv:0911.3814.
  863. R. Colbeck and A. Kent, “Private randomness expansion with untrusted devices,” J. Phys. A 44, 095305 (2011).
    [Crossref]
  864. S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
    [Crossref]
  865. S. Fehr, R. Gelles, and C. Schaffner, “Security and composability of randomness expansion from Bell inequalities,” Phys. Rev. A 87, 012335 (2013).
    [Crossref]
  866. S. Pironio and S. Massar, “Security of practical private randomness generation,” Phys. Rev. A 87, 012336 (2013).
    [Crossref]
  867. U. Vazirani and T. Vidick, “Certifiable quantum dice or, testable exponential randomness expansion,” in Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC-12) (2012), pp. 61.
  868. C. A. Miller and Y. Shi, “Universal security for randomness expansion from the spot-checking protocol,” SIAM J. Comput. 46, 1304–1335 (2017).
    [Crossref]
  869. Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai, W. Zhang, W.-Z. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “Device independent quantum random number generation,” Nature 562, 548–551 (2018).
    [Crossref]
  870. M. Herrero-Collantes and J. C. Garcia-Escartin, “Quantum random number generators,” Rev. Mod. Phys. 89, 015004 (2017).
    [Crossref]
  871. X. Ma, X. Yuan, Z. Cao, B. Qi, and Z. Zhang, “Quantum random number generation,” npj Quantum Inf. 2, 16021 (2016).
    [Crossref]
  872. A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature 540, 213–219 (2016).
    [Crossref]
  873. M. W. Mitchell, C. Abellan, and W. Amaya, “Strong experimental guarantees in ultrafast quantum random number generation,” Phys. Rev. A 91, 012314 (2015).
    [Crossref]
  874. M. Santha and U. V. Vazirani, “Generating quasi-random sequences from slightly-random sources,” in Proceedings of the 25th IEEE Symposium on Foundations of Computer Science (FOCS-84) (1984), pp. 434.
  875. R. Colbeck and R. Renner, “Free randomness can be amplified,” Nat. Phys. 8, 450–454 (2012).
    [Crossref]
  876. R. Gallego, L. Masanes, G. de la Torre, C. Dhara, L. Aolita, and A. Acin, “Full randomness from arbitrarily deterministic events,” Nat. Commun. 4, 3654 (2013).
    [Crossref]
  877. F. G. S. Brandão, R. Ramanathan, A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, T. Szarek, and H. Wojewódka, “Realistic noise-tolerant randomness amplification using finite number of devices,” Nat. Commun. 7, 11345 (2016).
    [Crossref]
  878. M. Kessler and R. Arnon-Friedman, “Device-independent randomness amplification and privatization,” arXiv:1705.04148 (2017).
  879. K.-M. Chung, Y. Shi, and X. Wu, “Physical randomness extractors: generating random numbers with minimal assumptions,” arXiv:1402.4797 (2014).
  880. E. Hänggi, R. Renner, and S. Wolf, “The impossibility of non-signalling privacy amplification,” arXiv:0906.4760 (2009).
  881. R. Arnon Friedman, E. Hänggi, and A. Ta-Shma, “Towards the impossibility of non-signalling privacy amplification from time-like ordering constraints,” arXiv:1205.3736 (2012).
  882. D. Gottesman and I. Chuang, “Quantum digital signatures,” arXiv:0105032 (2001).
  883. D. Boneh and M. Zhandry, “Secure signatures and chosen ciphertext security in a quantum computing world,” in Advances in Cryptology–CRYPTO, Lecture Notes in Computer Science, R. Canetti and J. A. Garay, eds. (Springer, 2013), Vol. 8043, pp. 361–379.
  884. S. B. David and O. Sattath, “Quantum tokens for digital signatures,” arXiv:1609.09047 (2016).
  885. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Rev. 41, 303–332 (1999).
    [Crossref]
  886. L. Lamport, “Constructing digital signatures from a one-way function,” Technical Report CSL-98 (SRI International, 1979).
  887. R. C. Merkle, “A certified digital signature,” in Advances in Cryptology—CRYPTO’ 89 Proceedings (Springer, 1990), pp. 218–238.
  888. V. Lyubashevsky, “Fiat-Shamir with aborts: applications to lattice and factoring-based signatures,” in 15th International Conference on the Theory and Application of Cryptology and Information Security Advances in Cryptology—ASIACRYPT 2009, Tokyo, Japan (2009), p. 598–616.
  889. N. T. Courtois, M. Finiasz, and N. Sendrier, “How to achieve a McEliece-based digital signature scheme,” in ASIACRYPT ’01 Proceedings of the 7th International Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology (Springer-Verlag, 2001).
  890. Z. Brakerski, E. Kirshanova, D. Stehlé, and W. Wen, “Learning with errors and extrapolated Dihedral Cosets,” in Public-Key Cryptography – PKC 2018. PKC 2018, Lecture Notes in Computer Science, M. Abdalla and R. Dahab, eds. (Springer, 2018), Vol. 10770.
  891. H. Barnum, C. Crépeau, D. Gottesman, A. Smith, and A. Tapp, “Authentication of quantum messages,” in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (IEEE, 2002), pp. 449–458.
  892. E. Andersson, M. Curty, and I. Jex, “Experimentally realizable quantum comparison of coherent states and its applications,” Phys. Rev. A 74, 022304 (2006).
    [Crossref]
  893. V. Dunjko, P. Wallden, and E. Andersson, “Quantum digital signatures without quantum memory,” Phys. Rev. Lett. 112, 040502 (2014).
    [Crossref]
  894. P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
    [Crossref]
  895. A. Peres, “How to differentiate between non-orthogonal states,” Phys. Lett. A 128, 19 (1988).
    [Crossref]
  896. D. Dieks, “Overlap and distinguishability of quantum states,” Phys. Lett. A 126, 303–306 (1988).
    [Crossref]
  897. I. D. Ivanovic, “How to differentiate between non-orthogonal states,” Phys. Lett. A 123, 257–259 (1987).
    [Crossref]
  898. P. Wallden, V. Dunjko, A. Kent, and E. Andersson, “Quantum digital signatures with quantum key distribution components,” Phys. Rev. A 91, 042304 (2015).
    [Crossref]
  899. R. Amiri, P. Wallden, A. Kent, and E. Andersson, “Secure quantum signatures using insecure quantum channels,” Phys. Rev. A 93, 032325 (2016).
    [Crossref]
  900. H.-L. Yin, Y. Fu, and Z.-B. Chen, “Practical quantum digital signature,” Phys. Rev. A 93, 032316 (2016).
    [Crossref]
  901. R. Amiri, A. Abidin, P. Wallden, and E. Andersson, “Efficient unconditionally secure signatures using universal hashing,” in International Conference on Applied Cryptography and Network Security (Springer, 2018), pp. 143–162.
  902. J. M. Arrazola, P. Wallden, and E. Andersson, “Multiparty quantum signature schemes,” Quantum Inf. Comput. 16, 435–464 (2016).
  903. M. şahin and İ. Yilmaz, “Multi-partied quantum digital signature scheme without assumptions on quantum channel security,” J. Phys. Conf. Ser. 766, 012021 (2016).
    [Crossref]
  904. T.-Y. Wang, Z.-Q. Cai, Y.-L. Ren, and R.-L. Zhang, “Security of quantum digital signatures for classical messages,” Sci. Rep. 5, 9231 (2015).
    [Crossref]
  905. A. Huang, S. Barz, E. Andersson, and V. Makarov, “Implementation vulnerabilities in general quantum cryptography,” New J. Phys. 20, 103016 (2018).
    [Crossref]
  906. I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
    [Crossref]
  907. R. J. Collins, R. J. Donaldson, V. Dunjko, P. Wallden, P. J. Clarke, E. Andersson, J. Jeffers, and G. S. Buller, “Realization of quantum digital signatures without the requirement of quantum memory,” Phys. Rev. Lett. 113, 040502 (2014).
    [Crossref]
  908. R. J. Donaldson, R. J. Collins, K. Kleczkowska, R. Amiri, P. Wallden, V. Dunjko, J. Jeffers, E. Andersson, and G. S. Buller, “Experimental demonstration of kilometer-range quantum digital signatures,” Phys. Rev. A 93, 012329 (2016).
    [Crossref]
  909. C. Croal, C. Peuntinger, B. Heim, I. Khan, C. Marquardt, G. Leuchs, P. Wallden, E. Andersson, and N. Korolkova, “Free-space quantum signatures using heterodyne measurements,” Phys. Rev. Lett. 117, 100503 (2016).
    [Crossref]
  910. R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41, 4883–4886 (2016).
    [Crossref]
  911. R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7, 3235 (2017).
    [Crossref]
  912. H.-L. Yin, W.-L. Wang, Y.-L. Tang, Q. Zhao, H. Liu, X.-X. Sun, W.-J. Zhang, H. Li, I. V. Puthoor, L.-X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T.-Y. Chen, and J.-W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
    [Crossref]
  913. G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
    [Crossref]
  914. D. Chaum and S. Roijakkers, “Unconditionally secure digital signatures,” in Proceeding CRYPTO ’90 Proceedings of the 10th Annual International Cryptology Conference on Advances in Cryptology, Lecture Notes in Computer Science (Springer-Verlag, 1991), pp. 206–214.
  915. C. M. Swanson and D. R. Stinson, “Unconditionally secure signature schemes revisited,” in 5th International Conference Information Theoretic Security (ICITS) (2011).
  916. J. Shikata, G. Hanaoka, Y. Zheng, and H. Imai, “Security notions for unconditionally secure signature schemes,” in EUROCRYPT (Springer, 2002), pp. 434–449.
  917. G. Hanaoka, J. Shikata, and Y. Zheng, “Efficient unconditionally secure digital signatures,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87, 120 (2004).
  918. G. Hanaoka, J. Shikata, Y. Zheng, and H. Imai, “Unconditionally secure digital signature schemes admitting transferability,” in Proceeding ASIACRYPT ’00 Proceedings of the 6th International Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology (Springer-Verlag, 2000).
  919. D. J. Bernstein, J. Buchmann, and E. Dahmen, Post-Quantum Cryptography, 1st ed. (Springer, 2008).
  920. V. Rijmen and J. Daemen, “Advanced encryption standard,” in Proceedings of Federal Information Processing Standards Publications (National Institute of Standards and Technology, 2001), pp. 19–22.
  921. M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia, “Breaking symmetric cryptosystems using quantum period finding,” in Advances in Cryptology—CRYPTO, M. Robshaw and J. Katz, eds., Lecture Notes in Computer Science (Springer, 2016), Vol. 9815.
  922. M. Ajtai, “Generating hard instances of lattice problems,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing (ACM, 1996).
  923. O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” J. ACM 56, 34 (2009).
    [Crossref]
  924. R. J. McEliece, “A public-key cryptosystem based on algebraic Coding Theory,” DSN PR 42-44 (1978), pp. 114–116.
  925. E. Berlekamp, “Goppa codes,” IEEE Trans. Inf. Theory 19, 590–592 (1973).
    [Crossref]
  926. M. J. Dworkin, “SHA-3 standard: permutation-based hash and extendable-output functions,” Federal Inf. Process Stds. (NIST FIPS)-202 (2015).
  927. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry, “Random oracles in a quantum world,” in Advances in Cryptology ASI-ACRYPT, D. H. Lee and X. Wang, eds. (Springer, 2011), pp. 41–69.
  928. J. Patarin, “Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms,” in Advances in Cryptology—EUROCRYPT, U. Maurer, ed., Lecture Notes in Computer Science (Springer, 1996), Vol. 1070.
  929. D. Jao and L. De Feo, “Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies,” in Post-Quantum Cryptography (PQCrypto), B. Y. Yang, ed., Lecture Notes in Computer Science (Springer, 2011), Vol. 7071.
  930. I. Damgård, J. Funder, J. B. Nielsen, and L. Salvail, “Superposition attacks on cryptographic protocols,” in Information Theoretic Security, C. Padró, ed. (Springer, 2014), pp. 142–161.
  931. A. Ambainis, A. Rosmanis, and D. Unruh, “Quantum attacks on classical proof systems: the hardness of quantum rewinding,” in Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, FOCS ’14, Washington, DC, USA (IEEE, 2014), pp. 474–483.
  932. P. Wallden and E. Kashefi, “Cyber security in the quantum era,” Commun. ACM 62, 120 (2019).
    [Crossref]
  933. A. Broadbent and C. Schaffner, “Quantum cryptography beyond quantum key distribution,” Des. Codes Cryptogr. 78, 351–382 (2016).
    [Crossref]
  934. D. Mayers, “Unconditionally secure quantum bit commitment is impossible,” Phys. Rev. Lett. 78, 3414 (1997).
    [Crossref]
  935. H.-K. Lo and H. F. Chau, “Why quantum bit commitment and ideal quantum coin tossing are impossible,” Physica D 120, 177–187 (1998).
    [Crossref]
  936. A. Chailloux and I. Kerenidis, “Optimal bounds for quantum bit commitment,” in IEEE 52nd Annual Symposium on Foundations of Computer Science (IEEE, 2011).
  937. A. Kent, “Unconditionally secure bit commitment by transmitting measurement outcomes,” Phys. Rev. Lett. 109, 130501 (2012).
    [Crossref]
  938. I. B. Damgard, S. Fehr, L. Salvail, and C. Schaffner, “Cryptography in the bounded quantum-storage model,” in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’05), Washington, D.C., USA (IEEE, 2005), pp. 449–458.
  939. A. Pappa, P. Jouguet, T. Lawson, A. Chailloux, M. Legré, P. Trinkler, I. Kerenidis, and E. Diamanti, “Experimental plug and play quantum coin flipping,” Nat. Commun. 5, 3717 (2014).
    [Crossref]
  940. H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
    [Crossref]
  941. H. Kobayashi, “General properties of quantum zero-knowledge proofs,” in Theory of Cryptography Conference (Springer, 2008).
  942. D. Unruh, “Quantum proofs of knowledge,” in Annual International Conference on the Theory and Applications of Cryptographic Techniques (Springer, 2012).
  943. R. Colbeck, “Impossibility of secure two-party classical computation,” Phys. Rev. A 76, 062308 (2007).
    [Crossref]
  944. S. Wiesner, “Conjugate coding,” SIGACT News 15, 78–88 (1983).
    [Crossref]
  945. S. Aaronson and P. Christiano, “Quantum money from hidden subspaces,” in Proceedings of the forty-fourth annual ACM symposium on Theory of Computing (ACM, 2012).
  946. M. Bozzio, A. Orieux, L. T. Vidarte, I. Zaquine, I. Kerenidis, and E. Diamanti, “Experimental investigation of practical unforgeable quantum money,” npj Quantum Inf. 4, 5 (2018).
    [Crossref]
  947. M. Ben-Or and A. Hassidim, “Fast quantum byzantine agreement,” in Proceedings of the thirty-seventh annual ACM symposium on Theory of Computing (ACM, 2005).
  948. D. Aggarwal, G. Brennen, T. Lee, M. Santha, and M. Tomamiche, “Quantum attacks on Bitcoin, and how to protect against them,” Ledger3 (2018).
  949. M. Hillery, M. Ziman, V. Bužek, and M. Bieliková, “Towards quantum-based privacy and voting,” Phys. Lett. A. 349, 75–81 (2006).
    [Crossref]
  950. M. Arapinis, E. Kashefi, N. Lamprou, and A. Pappa, “Definition and analysis of quantum E-voting protocols,” arXiv:1810.05083v3.
  951. H. Buhrman, N. Chandran, S. Fehr, R. Gelles, V. Goyal, R. Ostrovsky, and C. Schaffner, “Position-based quantum cryptography: impossibility and constructions,” SIAM J. Comput. 43, 150–178 (2014).
    [Crossref]
  952. I. Kerenidis and R. De Wolf, “Quantum symmetrically-private information retrieval,” Info. Proc. Lett. 90, 109–114 (2004).
    [Crossref]
  953. G. M. Nikolopoulos, “Applications of single-qubit rotations in quantum public-key cryptography,” Phys. Rev. A 77, 032348 (2008).
    [Crossref]
  954. A. Broadbent, G. Gutoski, and D. Stebila, “Quantum one-time programs,” in Advances in Cryptology—CRYPTO, R. Canetti and J. A. Garay, eds., Lecture Notes in Computer Science (Springer, 2013), Vol. 8043.
  955. C. Portmann, “Quantum authentication with key recycling,” in Advances in Cryptology—EUROCRYPT, J. S. Coron and J. Nielsen, eds., Lecture Notes in Computer Science (Springer, 2017), Vol 10212.
  956. G. M. Nikolopoulos and E. Diamanti, “Continuous-variable quantum authentication of physical unclonable keys,” Sci. Rep. 7, 46047 (2017).
    [Crossref]
  957. A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum computation,” in 50th Annual IEEE Symposium on Foundations of Computer Science (IEEE, 2009).
  958. S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
    [Crossref]
  959. J. F. Fitzsimons and E. Kashefi, “Unconditionally verifiable blind quantum computation,” Phys. Rev. A 96, 012303 (2017).
    [Crossref]
  960. A. Broadbent, “How to verify a quantum computation,” Theory Comput. 14, 1–37 (2018).
    [Crossref]
  961. S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, “Experimental verification of quantum computation,” Nat. Phys. 9, 727–731 (2013).
    [Crossref]
  962. Y. Dulek, C. Schaffner, and F. Speelman, “Quantum homomorphic encryption for polynomial-sized circuits,” in Advances in Cryptology—CRYPTO, M. Robshaw and J. Katz, eds., Lecture Notes in Computer Science (Springer, 2016), Vol. 9816.
  963. F. Dupuis, J. B. Nielsen, and L. Salvail, “Actively secure two-party evaluation of any quantum operation,” Vol. 7417 in Advances in Cryptology—CRYPTO, R. Safavi-Naini and R. Canetti, eds., Lecture Notes in Computer Science, (Springer, 2012).
  964. E. Kashefi and A. Pappa, “Multiparty delegated quantum computing,” Cryptography 1, 12 (2017).
    [Crossref]
  965. U. Mahadev, “Classical homomorphic encryption for quantum circuits,” in IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, 2018).
  966. U. Mahadev, “Classical verification of quantum computations,” in IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, 2018).
  967. A. Cojocaru, L. Colisson, E. Kashefi, and P. Wallden, “QFactory: classically-instructed remote secret qubits preparation,” in Advances in Cryptology – ASIACRYPT 2019. Lecture Notes in Computer Science, S. Galbraith and S. Moriai, eds. (2019) 11921, Springer, Cham, pp. 6125–6145.
  968. A. Gheorghiu and T. Vidick, “Computationally-secure and composable remote state preparation,” in Proceeding of 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), Baltimore, MD, USA, 2019, pp. 1024–1033.
  969. A. Ferraro, S. Olivares, and M. G. A. Paris, “Gaussian states in quantum information,” in Napoli Series on physics and Astrophysics, Bibliopolis (2005).
  970. L. Banchi, S. L. Braunstein, and S. Pirandola, “Quantum fidelity for arbitrary Gaussian states,” Phys. Rev. Lett. 115, 260501 (2015).
    [Crossref]
  971. L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, “Quantum source of entropy for black holes,” Phys. Rev. D 34, 373 (1986).
    [Crossref]
  972. A. S. Holevo, “The entropy gain of infinite-dimensional quantum channels,” Dokl. Math. 82, 730–731 (2010).
    [Crossref]
  973. G. Spedalieri, C. Weedbrook, and S. Pirandola, “A limit formula for the quantum fidelity,” J. Phys. A 46, 025304 (2013).
    [Crossref]
  974. R. Simon, S. Chaturvedi, and V. Srinivasan, “Congruences and canonical forms for a positive matrix: application to the Schweinler–Wigner extremum principle,” J. Math. Phys. 40, 3632 (1999).
    [Crossref]
  975. S. Pirandola and S. Lloyd, “Computable bounds for the discrimination of Gaussian states,” Phys. Rev. A 78, 012331 (2008).
    [Crossref]
  976. A. Uhlmann, “The ‘transition probability’ in the state space of a *-algebra,” Rep. Math. Phys. 9, 273–279 (1976).
  977. H. Nha and H. J. Carmichael, “Distinguishing two single-mode Gaussian states by homodyne detection: an information-theoretic approach,” Phys. Rev. A 71, 032336 (2005).
    [Crossref]
  978. S. Olivares, M. G. A. Paris, and U. L. Andersen, “Cloning of Gaussian states by linear optics,” Phys. Rev. A 73, 062330 (2006).
    [Crossref]
  979. H. Scutaru, “Fidelity for displaced squeezed thermal states and the oscillator semigroup,” J. Phys. A 31, 3659 (1998).
    [Crossref]
  980. P. Marian and T. A. Marian, “Uhlmann fidelity between two-mode Gaussian states,” Phys. Rev. A 86, 022340 (2012).
    [Crossref]
  981. G.-S. Părăoanu and H. Scutaru, “Fidelity for multimode thermal squeezed states,” Phys. Rev. A 61, 022306 (2000).
    [Crossref]
  982. C. W. Helstrom, Quantum Detection and Estimation Theory, Mathematics in Science and Engineering (Academic, 1976), Vol. 123.
  983. C. A. Fuchs and J. van de Graaf, “Cryptographic distinguishability measures for quantum mechanical states,” IEEE Trans. Inf. Theory 45, 1216–1227 (1999).
    [Crossref]
  984. C. A. Fuchs and C. M. Caves, “Mathematical techniques for quantum communication,” Open Syst. Inf. Dyn. 3, 345–356 (1995).
    [Crossref]
  985. C. Oh, C. Lee, L. Banchi, S. Lee, C. Rockstuhl, and H. Jeong, “Optimal measurements for quantum fidelity between Gaussian states,” arXiv:1901.02994 (2019).
  986. S. Scheel and D.-G. Welsch, “Entanglement generation and degradation by passive optical devices,” Phys. Rev. A 64, 063811 (2001).
    [Crossref]
  987. X.-Y. Chen, “Gaussian relative entropy of entanglement,” Phys. Rev. A 71, 062320 (2005).
    [Crossref]
  988. M. Tomamichel and M. Hayashi, “A hierarchy of information quantities for finite block length analysis of quantum tasks,” IEEE Trans. Inf. Theory 59, 7693–7710 (2013).
    [Crossref]
  989. K. Li, “Second-order asymptotics for quantum hypothesis testing,” Ann. Stat. 42, 171–189 (2014).
    [Crossref]
  990. M. M. Wilde, M. Tomamichel, S. Lloyd, and M. Berta, “Gaussian hypothesis testing and quantum illumination,” Phys. Rev. Lett. 119, 120501 (2017).
    [Crossref]
  991. A. Monras and F. Illuminati, “Information geometry of Gaussian channels,” Phys. Rev. A 81, 062326 (2010).
    [Crossref]

2020 (13)

S. Bäuml, K. Azuma, G. Kato, and D. Elkouss, “Linear programs for entanglement and key distribution in the quantum internet,” Commun. Phys. 355 (2020).
[Crossref]

S. Pirandola, “General upper bounds for distributing conferencing keys in arbitrary quantum networks,” IET Quantum Commun. 1, 22–25 (2020).
[Crossref]

P. J. Brown, S. Ragy, and R. Colbeck, “A framework for quantum-secure device-independent randomness expansion,” IEEE Trans. Inf. Theory 66, 2964–2987 (2020).
[Crossref]

Y. Zhang, H. Fu, and E. Knill, "Efficient randomness certification by quantum probability estimation," Phys. Rev. Res. 2, 013016 (2020).
[Crossref]

E. Kaur, M. M. Wilde, and A. Winter, “Fundamental limits on key rates in device-independent quantum key distribution,” New J. Phys. 22, 023039 (2020).
[Crossref]

H. Xu, Z.-W. Yu, C. Jiang, X.-L. Hu, and X.-B. Wang, “Improved results for sending-or-not-sending twin-field quantun key distribution: breaking the absolute limit of repeaterless key rate,” Phys. Rev. A 101, 042330 (2020).

M. Ghalaii, C. Ottaviani, R. Kumar, S. Pirandola, and M. Razavi, “Long-distance continuous-variable quantum key distribution with quantum scissors,” IEEE J. Sel. Top. Quantum Electron. 26, 6400212 (2020).
[Crossref]

C. Ottaviani, M. J. Woolley, M. Erementchouk, J. F. Federici, P. Mazumder, S. Pirandola, and C. Weedbrook, “Terahertz quantum cryptography,” IEEE J. Sel. Areas Commun. 38, 483–495 (2020).

M. Ghalaii, C. Ottaviani, R. Kumar, S. Pirandola, and M. Razavi, “Discrete-modulation continuous-variable quantum key distribution enhanced by quantum scissors,” IEEE J. Sel. Areas Commun. 38, 506–516 (2020).

Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu, and H. Guo, “Long-distance continuous-variable quantum key distribution over 202.81 km of fiber,” Phys. Rev. Lett. 125, 010502 (2020).

F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Quantum cryptography with realistic devices,” Rev. Mod. Phys. 92, 025002 (2020).

L. Banchi, J. Pereira, S. Lloyd, and S. Pirandola, “Convex optimization of programmable quantum computers,” npj Quantum Inf. 6, 42 (2020).
[Crossref]

K. Noh, S. Pirandola, and L. Jiang, “Enhanced energy-constrained quantum communication over bosonic Gaussian channels,” Nat. Commun. 11, 457 (2020).
[Crossref]

2019 (62)

K. Noh, V. V. Albert, and L. Jiang, “Improved quantum capacity bounds of Gaussian loss channels and achievable rates with Gottesman-Kitaev-Preskill codes,” IEEE Trans. Inf. Theory 65, 2563 (2019).
[Crossref]

R. Laurenza, S. Tserkis, L. Banchi, S. L. Braunstein, T. C. Ralph, and S. Pirandola, “Tight bounds for private communication over bosonic Gaussian channels based on teleportation simulation with optimal finite resources,” Phys. Rev. A 100, 042301 (2019).
[Crossref]

F. Rozpedek, R. Yehia, K. Goodenough, M. Ruf, P. C. Humphreys, R. Hanson, S. Wehner, and D. Elkouss, “Near-term quantum-repeater experiments with nitrogen-vacancy centers: overcoming the limitations of direct transmission,” Phys. Rev. A 99, 052330 (2019).
[Crossref]

F. Schmidt and P. van Loock, “Efficiencies of logical Bell measurements on Calderbank-Shor-Steane codes with static linear optics,” Phys. Rev. A 99, 062308 (2019).
[Crossref]

Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B 52, 015501 (2019).
[Crossref]

S. Ren, R. Kumar, A. Wonfor, X. Tang, R. Penty, and I. White, “Reference pulse attack on continuous-variable quantum key distribution with local oscillator under trusted phase noise,” J. Opt. Soc. Am. B 36, B7–B15 (2019).
[Crossref]

E. Chitambar and G. Gour, “Quantum resource theories,” Rev. Mod. Phys. 91, 025001 (2019).
[Crossref]

S. Pirandola, R. Laurenza, C. Lupo, and J. L. Pereira, “Fundamental limits to quantum channel discrimination,” npj Quantum Inf. 5, 50 (2019).
[Crossref]

S. Pirandola, R. Laurenza, and L. Banchi, “Conditional channel simulation,” Ann. Phys. 400, 289–302 (2019).
[Crossref]

K. P. Seshadreesan, H. Krovi, and S. Guha, “Continuous-variable entanglement distillation over a pure loss channel with multiple quantum scissors,” Phys. Rev. A 100, 022315 (2019).
[Crossref]

M. Bergmann and P. van Loock, “A hybrid quantum repeater for qudits,” Phys. Rev. A 99, 032349 (2019).
[Crossref]

Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. Xu, X. Zhang, Z. Wang, M. Li, X. Zhang, Z. Zheng, B. Chu, X. Gao, N. Meng, W. Cai, Z. Wang, G. Wang, S. Yu, and H. Guo, “Continuous-variable QKD over 50 km commercial fiber,” Quantum Sci. Technol. 4, 035006 (2019).
[Crossref]

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” Quantum 3, 193 (2019).
[Crossref]

C. Zhou, X. Wang, Y. Zhang, Z. Zhang, S. Yu, and H. Guo, “Continuous-variable quantum key distribution with rateless reconciliation protocol,” Phys. Rev. Appl. 12, 054013 (2019).
[Crossref]

S. Ghorai, P. Grangier, E. Diamanti, and A. Leverrier, “Asymptotic security of continuous-variable quantum key distribution with a discrete modulation,” Phys. Rev. X 9, 021059 (2019).
[Crossref]

P. Wang, X. Wang, and Y. Li, “Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers,” Phys. Rev. A 99, 042309 (2019).
[Crossref]

H.-X. Ma, P. Huang, D.-Y. Bai, T. Wang, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation,” Phys. Rev. A 99, 022322 (2019).
[Crossref]

H.-L. Yin, W. Zhu, and Y. Fu, “Phase self-aligned continuous-variable measurement-device-independent quantum key distribution,” Sci. Rep. 9, 49 (2019).
[Crossref]

H.-X. Ma, P. Huang, T. Wang, D.-Y. Bai, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Security bound of continuous-variable measurement-device-independent quantum key distribution with imperfect phase reference calibration,” Phys. Rev. A 100, 052330 (2019).

D. Bai, P. Huang, Y. Zhu, H. Ma, T. Xiao, T. Wang, and G. Zeng, “Unidimensional continuous-variable measurement-device-independent quantum key distribution,” J. Phys. B: At. Mol. Opt. Phys. 52135502 (2019).

C. Ottaviani, C. Lupo, R. Laurenza, and S. Pirandola, “Modular network for high-rate quantum conferencing,” Commun. Phys. 2, 118 (2019).
[Crossref]

F. Grasselli, H. Kampermann, and D. Bruß, “Conference key agreement with single-photon interference,” New J. Phys. 21, 123002 (2019).

F. Laudenbach and C. Pacher, “Analysis of the trusted-device scenario in continuous-variable quantum key distribution,” Adv. Quantum Technol. 2, 1900055 (2019).
[Crossref]

N. Hosseinidehaj, N. Walk, and T. C. Ralph, “Optimal realistic attacks in continuous-variable quantum key distribution,” Phys. Rev. A 99, 052336 (2019).
[Crossref]

Y. Guo, W. Ye, H. Zhong, and Q. Liao, “Continuous-variable quantum key distribution with non-Gaussian quantum catalysis,” Phys. Rev. A 99, 032327 (2019).
[Crossref]

G. Wang, C. Ottaviani, H. Guo, and S. Pirandola, “Improving the lower bound to the secret-key capacity of the thermal amplifier channel,” Eur. Phys. J. D 73, 17 (2019).
[Crossref]

S. Ghorai, E. Diamanti, and A. Leverrier, “Composable security of two-way continuous-variable quantum key distribution without active symmetrization,” Phys. Rev. A 99, 012311 (2019).
[Crossref]

L. Calderaro, C. Agnesi, D. Dequal, F. Vedovato, M. Schiavon, A. Santamato, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Towards quantum communication from global navigation satellite system,” Quantum Sci. Technol. 4, 015012 (2019).
[Crossref]

N. Hosseinidehaj, Z. Babar, R. Malaney, S. X. Ng, and L. Hanzo, “Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook,” Commun. Surv. Tutorials 21, 881–919 (2019).
[Crossref]

J. Kohlrus, D. E. Bruschi, and I. Fuentes, “Quantum-metrology estimation of spacetime parameters of the Earth outperforming classical precision,” Phys. Rev. A 99, 032350 (2019).
[Crossref]

T. K. Paraïso, I. De Marco, T. Roger, D. G. Marangon, J. F. Dynes, M. Lucamarini, Z. Yuan, and A. J. Shields, “A modulator-free quantum key distribution transmitter chip,” npj Quantum Inf. 5, 42 (2019).
[Crossref]

C. Cui, Z.-Q. Yin, R. Wang, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Twin-field quantum key distribution without phase postselection,” Phys. Rev. Appl. 11, 034053 (2019).
[Crossref]

F.-Y. Lu, Z.-Q. Yin, C.-H. Cui, G.-J. Fan-Yuan, R. Wang, S. Wang, W. Chen, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Improving the performance of twin-field quantum key distribution,” Phys. Rev. A 100, 022306 (2019).

M. Curty, K. Azuma, and H.-K. Lo, “Simple security proof of twin-field type quantum key distribution protocol,” npj Quantum Inf. 5, 64 (2019).
[Crossref]

F. Grasselli and M. Curty, “Practical decoy-state method for twin-field quantum key distribution,” New J. Phys. 21, 073001 (2019).

X. Zhong, J. Hu, M. Curty, L. Qian, and H.-K. Lo, “Proof-of-principle experimental demonstration of twin-field type quantum key distribution,” Phys. Rev. Lett. 123, 100506 (2019).
[Crossref]

H.-L. Yin and Y. Fu, “Measurement-device-independent twin-field quantum key distribution,” Sci. Rep. 9, 3045 (2019).
[Crossref]

H.-L. Yin and Z.-B. Chen, “Twin-field quantum key distribution over 1000 km fibre,” Sci. Rep. 9, 14918 (2019).

H.-L. Yin and Z.-B. Chen, “Finite-key analysis for twin-field quantum key distribution with composable security,” Sci. Rep. 9, 17113 (2019).

C. H. Zhang, C.-M. Zhang, and Q. Wang, “Twin-field quantum key distribution with modified coherent states,” Opt. Lett. 44, 1468–1471 (2019).
[Crossref]

X. Y. Zhou, C. Zhang, C. Zhang, and Q. Wang, “Asymmetric sending or not sending twin-field quantum key distribution in practice,” Phys. Rev. A 99, 062316 (2019).
[Crossref]

M. Minder, M. Pittaluga, G. L. Roberts, M. Lucamarini, J. F. Dynes, Z. L. Yuan, and A. J. Shields, “Experimental quantum key distribution beyond the repeaterless secret key capacity,” Nat. Photonics 13, 334–338 (2019).
[Crossref]

S. Wang, D.-Y. He, Z.-Q. Yin, F.-Y. Lu, C.-H. Cui, W. Chen, Z. Zhou, G.-C. Guo, and Z.-F. Han, “Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system,” Phys. Rev. X 9, 021046 (2019).
[Crossref]

Y. Liu, Z.-W. Yu, W. Zhang, J.-Y. Guan, J.-P. Chen, C. Zhang, X.-L. Hu, H. Li, C. Jiang, J. Lin, T.-Y. Chen, L. You, Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan, “Experimental twin-field quantum key distribution through sending or not sending,” Phys. Rev. Lett. 123, 100505 (2019).
[Crossref]

X.-B. Wang, X.-L. Hu, and Z.-W. Yu, “Practical long-distance side-channel-free quantum key distribution,” Phys. Rev. Appl. 12, 054034 (2019).
[Crossref]

C. H. Zhang, C.-M. Zhang, and Q. Wang, “Efficient passive measurement-device-independent quantum key distribution,” Phys. Rev. A 99, 052325 (2019).
[Crossref]

Z.-W. Yu, X.-L. Hu, C. Jiang, H. Xu, and X.-B. Wang, “Sending-or-not-sending twin-field quantum key distribution in practice,” Sci. Rep. 9, 3080 (2019).
[Crossref]

C. Jiang, Z.-W. Yu, X.-L. Hu, and X.-B. Wang, “Unconditional security of sending or not sending twin-field quantum key distribution with finite pulses,” Phys. Rev. Appl. 12, 024061 (2019).

R. Arnon-Friedman, R. Renner, and T. Vidick, “Simple and tight device-independent security proofs,” SIAM J. Comput. 48, 181–225 (2019).
[Crossref]

F. Dupuis and O. Fawzi, “Entropy accumulation with improved second-order term,” IEEE Trans. Inf. Theory 65, 7596–7612 (2019).

B. Da Lio, D. Bacco, D. Cozzolino, Y. Ding, K. Dalgaard, K. Rottwitt, and L. Oxenløwe, “Experimental demonstration of the DPTS QKD protocol over a 170 km fiber link,” Appl. Phys. Lett. 114, 011101 (2019).
[Crossref]

C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. C. Wong, J. H. Shapiro, S. A. Hamilton, and D. Englund, “Large-alphabet encoding for higher-rate quantum key distribution,” Opt. Express 27, 17539–17549 (2019).

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11, 064058 (2019).
[Crossref]

J. Wallnöfer, A. Pirker, M. Zwerger, and W. Dür, “Multipartite state generation in quantum networks with optimal scaling,” Sci. Rep. 9, 314 (2019).
[Crossref]

D. Miller, T. Holz, H. Kampermann, and D. Bruß, “Parameter regimes for surpassing the PLOB bound with error-corrected qudit repeaters,” Quantum 3, 216 (2019).
[Crossref]

G. Vardoyan, S. Guha, P. Nain, and D. Towsley, “On the stochastic analysis of a quantum entanglement switch,” SIGMETRICS Perform. Evaluation Review 47, 27–29 (2019).

S. Pirandola, “End-to-end capacities of a quantum communication network,” Commun. Phys. 2, 51 (2019).
[Crossref]

S. Pirandola, “Bounds for multi-end communication over quantum networks,” Quantum Sci. Technol. 4, 045006 (2019).
[Crossref]

M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, “Routing entanglement in the quantum internet,” npj Quantum Inf. 5, 25 (2019).
[Crossref]

A. Pirker, M. Zwerger, V. Dunjko, H. J. Briegel, and W. Dür, “Simple proof of confidentiality for private quantum channels in noisy environments,” Quantum Sci. Technol. 4, 025009 (2019).
[Crossref]

J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, “Quantum low probability of intercept,” J. Opt. Soc. Am. B 36, B41–B50 (2019).
[Crossref]

P. Wallden and E. Kashefi, “Cyber security in the quantum era,” Commun. ACM 62, 120 (2019).
[Crossref]

2018 (77)

T. P. W. Cope, K. Goodenough, and S. Pirandola, “Converse bounds for quantum and private communication over Holevo–Werner channels,” J. Phys. A 51, 494001 (2018).
[Crossref]

L. Rigovacca, G. Kato, S. Bäuml, M. S. Kim, W. J. Munro, and K. Azuma, “Versatile relative entropy bounds for quantum networks,” New J. Phys. 20, 013033 (2018).
[Crossref]

T. Holz, H. Kampermann, and D. Bruß, “Device-independent secret-key-rate analysis for quantum repeaters,” Phys. Rev. A 97, 012337 (2018).
[Crossref]

M. Zwerger, A. Pirker, V. Dunjko, H. J. Briegel, and W. Dür, “Long-range big quantum-data transmission,” Phys. Rev. Lett. 120, 030503 (2018).
[Crossref]

S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. A. Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger, and J.-W. Pan, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett. 120, 030501 (2018).
[Crossref]

C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, “Continuous-variable measurement-device-independent quantum key distribution: composable security against coherent attacks,” Phys. Rev. A 97, 052327 (2018).
[Crossref]

C. Lupo, C. Ottaviani, P. Papanastasiou, and S. Pirandola, “Parameter estimation with almost no public communication for continuous-variable quantum key distribution,” Phys. Rev. Lett. 120, 220505 (2018).
[Crossref]

M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate-distance limit of quantum key distribution without quantum repeaters,” Nature 557, 400–403 (2018).
[Crossref]

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7, 17146 (2018).
[Crossref]

C. H. Park, M. K. Woo, B. K. Park, M. S. Lee, Y. S. Kim, Y. W. Cho, S. Kim, S. W. Han, and S. Moon, “Practical plug-and-play measurement-device-independent quantum key distribution with polarization division multiplexing,” IEEE Access 6, 58587–58593 (2018).
[Crossref]

H. Liu, J. Wang, H. Ma, and S. Sun, “Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration,” Optica 5, 902–909 (2018).
[Crossref]

Z. Yuan, A. Plews, R. Takahashi, K. Doi, W. Tam, A. W. Sharpe, A. R. Dixon, E. Lavelle, J. F. Dynes, A. Murakami, M. Kujiraoka, M. Lucamarini, Y. Tanizawa, H. Sato, and A. J. Shields, “10 Mb/s quantum key distribution,” J. Lightwave Technol. 36, 3427–3433 (2018).
[Crossref]

A. Boaron, G. Boso, D. Rusca, C. Autebert, M. Caloz, M. Perrenoud, and H. Zbinden, “Secure quantum key distribution over 421 km of optical fiber,” Phys. Rev. Lett. 121, 190502 (2018).
[Crossref]

J. S. Shaari and S. Soekardjo, “Indistinguishable encoding for bidirectional quantum key distribution: theory to experiment,” Europhys. Lett. 120, 60001 (2018).
[Crossref]

C. C. Mao, X. Y. Zhou, J. R. Zhu, C. H. Zhang, C. M. Zhang, and Q. Wang, “Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method,” Opt. Express 26, 13289–13300 (2018).
[Crossref]

X. Ma, P. Zeng, and H. Zhou, “Phase-matching quantum key distribution,” Phys. Rev. X 8, 031043 (2018).

J. Lin and N. Lütkenhaus, “Simple security analysis of phase-matching measurement-device-independent quantum key distribution,” Phys. Rev. A 98, 042332 (2018).
[Crossref]

X.-B. Wang, Z.-W. Yu, and X.-L. Hu, “Twin-field quantum key distribution with large misalignment error,” Phys. Rev. A 98, 062323 (2018).
[Crossref]

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, and R. J. Warburton, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8, 021009 (2018).
[Crossref]

D. Bunandar, N. Harris, Z. Zhang, C. Lee, R. Ding, T. Baehr-Jones, M. Hochberg, J. Shapiro, F. Wong, and D. Englund, “Wavelength-division multiplexed quantum key distribution on silicon photonic integrated devices,” Bull. Am. Phys. Soc. 63, A180009 (2018).

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

L. Hanschke, K. A. Fischer, S. Appel, D. Lukin, J. Wierzbowski, S. Sun, R. Trivedi, J. Vuckovic, J. J. Finley, and K. Müller, “Quantum dot single-photon sources with ultra-low multi-photon probability,” npj Quantum Inf. 4, 43 (2018).
[Crossref]

D. Rauch, J. Handsteiner, A. Hochrainer, J. Gallicchio, A. S. Friedman, C. Leung, B. Liu, L. Bulla, S. Ecker, F. Steinlechner, R. Ursin, B. Hu, D. Leon, C. Benn, A. Ghedina, M. Cecconi, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, “Cosmic Bell test using random measurement settings from high-redshift quasars,” Phys. Rev. Lett. 121, 080403 (2018).
[Crossref]

C. Agnesi, F. Vedovato, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Exploring the boundaries of quantum mechanics: advances in satellite quantum communications,” Philos. Trans. R. Soc. London, Ser. A 376, 20170461 (2018).
[Crossref]

Q. Zhuang, Z. Zhang, N. Lütkenhaus, and J. H. Shapiro, “Security-proof framework for two-way Gaussian quantum-key-distribution protocols,” Phys. Rev. A 98, 032332 (2018).
[Crossref]

P. Papanastasiou, C. Weedbrook, and S. Pirandola, “Continuous-variable quantum key distribution in fast fading channels,” Phys. Rev. A 97, 032311 (2018).
[Crossref]

Y. Zhao, Y. Zhang, B. Xu, S. Yu, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction,” Phys. Rev. A 97, 042328 (2018).
[Crossref]

H.-X. Ma, P. Huang, D.-Y. Bai, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-variable quantum key distribution with Gaussian modulation—the theory of practical implementations,” Adv. Quantum Technol. 1, 1800011 (2018).
[Crossref]

J. Ribeiro, G. Murta, and S. Wehner, “Fully device independent conference key agreement,” Phys. Rev. A 97, 022307 (2018).

Q. Liao, Y. Wang, D. Huang, and Y. Guo, “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution,” Opt. Express 26, 19907–19920 (2018).
[Crossref]

Q. Liao, Y. Guo, D. Huang, P. Huang, and G. Zeng, “Long-distance continuous-variable quantum key distribution using non-Gaussian state-discrimination detection,” New J. Phys. 20, 023015 (2018).
[Crossref]

Y. Guo, R. Li, Q. Liao, J. Zhou, and D. Huang, “Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier,” Phys. Lett. A 382, 372–381 (2018).
[Crossref]

Q. Liao, Y. Guo, C. Xie, D. Huang, P. Huang, and G. Zeng, “Composable security of unidimensional continuous-variable quantum key distribution,” Quantum Inf. Process. 17, 113 (2018).
[Crossref]

V. C. Usenko, “Unidimensional continuous-variable quantum key distribution using squeezed states,” Phys. Rev. A 98, 032321 (2018).
[Crossref]

X. Wang, Y. Cao, P. Wang, and Y. Li, “Advantages of the coherent state compared with squeezed state in unidimensional continuous variable quantum key distribution,” Quantum Inf. Process. 17, 344 (2018).
[Crossref]

K. Bradler and C. Weedbrook, “A security proof of continuous-variable QKD using three coherent states,” Phys. Rev. A 97, 022310 (2018).
[Crossref]

P. Papanastasiou, C. Lupo, C. Weedbrook, and S. Pirandola, “Quantum key distribution with phase-encoded coherent states: asymptotic security analysis in thermal-loss channels,” Phys. Rev. A 98, 012340 (2018).
[Crossref]

P. Papanastasiou, C. Ottaviani, and S. Pirandola, “Gaussian one-way thermal quantum cryptography with finite-size effects,” Phys. Rev. A 98, 032314 (2018).
[Crossref]

Q. Zhuang, Z. Zhang, and J. H. Shapiro, “High-order encoding schemes for floodlight quantum key distribution,” Phys. Rev. A 98, 012323 (2018).
[Crossref]

Z. Zhang, C. Chen, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, “Experimental quantum key distribution at 1.3 gigabit-per-second secret-key rate over a 10 dB loss channel,” Quantum Sci. Technol. 3, 025007 (2018).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distirbution with a real local oscillator,” Opt. Express 26, 2794–2806 (2018).
[Crossref]

X. Wang, Y. Zhang, S. Yu, and H. Guo, “High speed error correction for continuous-variable quantum key distribution with multi-edge type LDPC code,” Sci. Rep. 8, 10543 (2018).
[Crossref]

C. S. Scheffman, L. S. Madsen, V. C. Usenko, R. Filip, and U. L. Andersen, “Complete elimination of information leakage in continuous-variable quantum communication channels,” npj Quantum Inf. 4, 32 (2018).
[Crossref]

N. Wang, S. Du, W. Liu, X. Wang, Y. Li, and K. Peng, “Long-distance continuous-variable quantum key distribution with entangled states,” Phys. Rev. Appl. 10, 064028 (2018).
[Crossref]

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the integration of CV quantum key distribution in deployed optical networks,” IEEE Photon. Technol. Lett. 30, 650–653 (2018).
[Crossref]

A. Leverrier, “SU(p, q) coherent states and a Gaussian de Finetti theorem,” J. Math. Phys. 59, 042202 (2018).
[Crossref]

A. Huang, S.-H. Sun, Z. Liu, and V. Makarov, “Decoy state quantum key distribution with imperfect source,” Phys. Rev. A 98, 012330 (2018).

Y.-Y. Fei, X.-D. Meng, M. Gao, Y. Yang, H. Wang, and Z. Ma, “Strong light illumination on gain-switched semiconductor lasers helps the eavesdropper in practical quantum key distribution systems,” Opt. Commun. 419, 83–89 (2018).
[Crossref]

S. Vinay and P. Kok, “Burning the Trojan horse: defending against side-channel attacks in QKD,” Phys. Rev. A 97, 042335 (2018).
[Crossref]

R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T. Vidick, “Practical device-independent quantum cryptography via entropy accumulation,” Nat. Commun. 9, 459 (2018).
[Crossref]

J. Dias and T. C. Ralph, “Quantum error correction of continuous-variable states with realistic resources,” Phys. Rev. A 97, 032335 (2018).
[Crossref]

F. Furrer and W. J. Munro, “Repeaters for continuous-variable quantum communication,” Phys. Rev. A 98, 032335 (2018).
[Crossref]

F. Furrer, T. Gehring, C. Schaffner, C. Pacher, R. Schnabel, and S. Wehner, “Continuous-variable protocol for oblivious transfer in the noisy-storage model,” Nat. Commun. 9, 1450 (2018).
[Crossref]

Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai, W. Zhang, W.-Z. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “Device independent quantum random number generation,” Nature 562, 548–551 (2018).
[Crossref]

A. Huang, S. Barz, E. Andersson, and V. Makarov, “Implementation vulnerabilities in general quantum cryptography,” New J. Phys. 20, 103016 (2018).
[Crossref]

F. Leditzky, D. Leung, and G. Smith, “Dephrasure channel and superadditivity of the coherent information,” Phys. Rev. Lett. 121, 160501 (2018).
[Crossref]

R. Laurenza, C. Lupo, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Channel simulation in quantum metrology,” Quantum Meas. Quantum Metrol. 5, 1–12 (2018).
[Crossref]

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

R. Laurenza, S. L. Braunstein, and S. Pirandola, “Finite-resource teleportation stretching for continuous-variable systems,” Sci. Rep. 8, 15267 (2018).
[Crossref]

P. Liuzzo-Scorpo, A. Mari, V. Giovannetti, and G. Adesso, “Optimal continuous variable quantum teleportation with limited resources,” Phys. Rev. Lett. 120, 029904 (2018).
[Crossref]

M. E. Shirokov, “Energy-constrained diamond norms and their use in quantum information theory,” Probl. Inf. Transm. 54, 20–33 (2018).
[Crossref]

C. Xie, Y. Guo, Q. Liao, W. Zhao, D. Huang, L. Zhang, and G. Zeng, “Practical security analysis of continuous-variable quantum key distribution with jitter in clock synchronization,” Phys. Lett. A 382, 811–817 (2018).
[Crossref]

H. Qin, R. Kumar, V. Makarov, and R. Alléaume, “Homodyne detector blinding attack in continuous-variable quantum key distribution,” Phys. Rev. A 98, 012312 (2018).
[Crossref]

J. Pereira and S. Pirandola, “Hacking Alice’s box in CV-QKD,” Phys. Rev. A 98, 062319 (2018).
[Crossref]

Y.-Y. Fei, X.-D. Meng, M. Gao, H. Wang, and Z. Ma, “Quantum man-in-the-middle attack on the calibration process of quantum key distribution,” Sci. Rep. 8, 4283 (2018).
[Crossref]

A. Koehler-Sidki, M. Lucamarini, J. F. Dynes, G. L. Roberts, A. W. Sharpe, Z. Yuan, and A. J. Shields, “Intensity modulation as a preemptive measure against blinding of single-photon detectors based on self-differencing cancellation,” Phys. Rev. A 98, 022327 (2018).
[Crossref]

A. Koehler-Sidki, J. F. Dynes, M. Lucamarini, G. L. Roberts, A. W. Sharpe, Z. L. Yuan, and A. J. Shields, “Best-practice criteria for practical security of self-differencing avalanche photodiode detectors in quantum key distribution,” Phys. Rev. Appl. 9, 044027 (2018).
[Crossref]

Y.-Y. Fei, X.-D. Meng, M. Gao, Z. Ma, and H. Wang, “Practical decoy state quantum key distribution with detector efficiency mismatch,” Eur. Phys. J. D 72, 107 (2018).
[Crossref]

S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: a vision for the road ahead,” Science 362, eaam9288 (2018).
[Crossref]

N. Lo Piparo, N. Sinclair, and M. Razavi, “Memory-assisted quantum key distribution resilient against multiple-excitation effects,” Quantum Sci. Technol. 3, 014009 (2018).
[Crossref]

F. Rozpedek, K. Goodenough, J. Ribeiro, N. Kalb, V. C. Vivoli, A. Reiserer, R. Hanson, S. Wehner, and D. Elkouss, “Parameter regimes for a single sequential quantum repeater,” Quantum Sci. Technol. 3, 034002 (2018).
[Crossref]

S. Tserkis, J. Dias, and T. C. Ralph, “Simulation of Gaussian channels via teleportation and error correction of Gaussian states,” Phys. Rev. A 98, 052335 (2018).
[Crossref]

V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M. Girvin, B. M. Terhal, and L. Jiang, “Performance and structure of single-mode bosonic codes,” Phys. Rev. A 97, 032346 (2018).
[Crossref]

M. Bozzio, A. Orieux, L. T. Vidarte, I. Zaquine, I. Kerenidis, and E. Diamanti, “Experimental investigation of practical unforgeable quantum money,” npj Quantum Inf. 4, 5 (2018).
[Crossref]

A. Broadbent, “How to verify a quantum computation,” Theory Comput. 14, 1–37 (2018).
[Crossref]

2017 (81)

P. Liuzzo-Scorpo, A. Mari, V. Giovannetti, and G. Adesso, “Optimal continuous variable quantum teleportation with limited resources,” Phys. Rev. Lett. 119, 120503 (2017).
[Crossref]

M. M. Wilde, M. Tomamichel, and M. Berta, “Converse bounds for private communication over quantum channels,” IEEE Trans. Inf. Theory 63, 1792–1817 (2017).
[Crossref]

M. Christandl and A. Müller-Hermes, “Relative entropy bounds on quantum, private and repeater capacities,” Commun. Math. Phys. 353, 821–852 (2017).
[Crossref]

N. Lo Piparo, M. Razavi, and W. J. Munro, “Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond,” Phys. Rev. A 95, 022338 (2017).
[Crossref]

N. Lo Piparo, M. Razavi, and W. J. Munro, “Memory-assisted quantum key distribution with a single nitrogen-vacancy center,” Phys. Rev. A 96, 052313 (2017).
[Crossref]

S. Muralidharan, C.-L. Zou, L. Li, J. Wen, and L. Jiang, “Overcoming erasure errors with multilevel systems,” New J. Phys 19, 013026 (2017).
[Crossref]

F. Ewert and P. van Loock, “Ultrafast fault-tolerant long-distance quantum communication with static linear optics,” Phys. Rev. A 95, 012327 (2017).
[Crossref]

I. Derkach, V. C. Usenko, and R. Filip, “Continuous-variable quantum key distribution with a leakage from state preparation,” Phys. Rev. A 96, 062309 (2017).
[Crossref]

A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
[Crossref]

S. Pirandola and C. Lupo, “Ultimate precision of adaptive noise estimation,” Phys. Rev. Lett. 118, 100502 (2017).
[Crossref]

E. Kaur and M. M. Wilde, “Upper bounds on secret-key agreement over lossy thermal bosonic channels,” Phys. Rev. A 96, 062318 (2017).
[Crossref]

M. Studzinski, S. Strelchuk, M. Mozrzymas, and M. Horodecki, “Port-based teleportation in arbitrary dimension,” Sci. Rep. 7, 10871 (2017).
[Crossref]

M. Herrero-Collantes and J. C. Garcia-Escartin, “Quantum random number generators,” Rev. Mod. Phys. 89, 015004 (2017).
[Crossref]

C. A. Miller and Y. Shi, “Universal security for randomness expansion from the spot-checking protocol,” SIAM J. Comput. 46, 1304–1335 (2017).
[Crossref]

J. Notaros, J. Mower, M. Heuck, C. Lupo, N. C. Harris, G. R. Steinbrecher, D. Bunandar, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Programmable dispersion on a photonic integrated circuit for classical and quantum applications,” Opt. Express 25, 21275–21285 (2017).
[Crossref]

A. Winter, “Weak locking capacity of quantum channels can be much larger than private capacity,” J. Crypt. 30, 1–21 (2017).
[Crossref]

R. Adamczak, “Metric and classical fidelity uncertainty relations for random unitary matrices,” J. Phys. A 50, 105302 (2017).
[Crossref]

M. Tomamichel and A. Leverrier, “A largely self-contained and complete security proof for quantum key distribution,” Quantum 1, 14 (2017).
[Crossref]

P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
[Crossref]

A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Backflash light characterization to prevent QKD zero-error hacking,” Light Sci. Appl. 6, e16261 (2017).
[Crossref]

S. Sajeed, C. Minshull, N. Jain, and V. Makarov, “Invisible trojan-horse attack,” Sci. Rep. 7, 8403 (2017).
[Crossref]

S. Kleis, M. Rückmann, and C. G. Schäffer, “Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals,” Opt. Lett. 42, 1588–1591 (2017).
[Crossref]

Y.-M. Li, X.-Y. Wang, Z.-L. Bai, W.-Y. Liu, S.-S. Yang, and K.-C. Peng, “Continuous variable quantum key distribution,” Chin. Phys. B 26, 040303 (2017).
[Crossref]

T. Hirano, T. Ichikawa, T. Matsubara, M. Ono, Y. Oguri, R. Namiki, K. Kasai, R. Matsumoto, and T. Tsurumaru, “Implementation of continuous variable quantum key distribution with discrete modulation,” Quantum Sci. Technol. 2, 024010 (2017).
[Crossref]

M. Milicevic, C. Feng, L. M. Zhang, and P. G. Gulak, “Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography,” npj Quantum Inf. 4, 21 (2017).
[Crossref]

X. Wang, Y. Zhang, S. Li, B. Xu, S. Yu, and H. Guo, “Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution,” Quant. Inf. Comput. 17, 1123–1134 (2017).
[Crossref]

Z. Zhang, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, “Floodlight quantum key distribution: demonstrating a framework for high-rate secure communication,” Phys. Rev. A 95, 012332 (2017).
[Crossref]

Y. Zhang, Z. Li, Y. Zhao, S. Yu, and H. Guo, “Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation,” J. Phys. B 50, 035501 (2017).
[Crossref]

X. Wang, W. Liu, P. Wang, and Y. Li, “Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution,” Phys. Rev. A 95, 062330 (2017).
[Crossref]

P. Wang, X. Wang, J. Li, and Y. Li, “Finite-size analysis of unidimensional continuous-variable quantum key distribution under realistic conditions,” Opt. Express 25, 27995–28009 (2017).
[Crossref]

Y. Guo, Q. Liao, D. Huang, and G. Zeng, “Quantum relay schemes for continuous-variable quantum key distribution,” Phys. Rev. A 95, 042326 (2017).
[Crossref]

N. Hosseinidehaj and R. Malaney, “CV-MDI quantum key distribution via satellite,” Quant. Inf. Comput. 17, 361–379 (2017).
[Crossref]

P. Papanastasiou, C. Ottaviani, and S. Pirandola, “Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables,” Phys. Rev. A 96, 042332 (2017).
[Crossref]

X. Zhang, Y.-C. Zhang, Y. Zhao, X. Wang, S. Yu, and H. Guo, “Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 96, 042334 (2017).
[Crossref]

M. Lasota, R. Filip, and V. C. Usenko, “Robustness of quantum key distribution with discrete and continuous variables to channel noise,” Phys. Rev. A 95, 062312 (2017).
[Crossref]

Y. Guo, Q. Liao, Y. Wang, D. Huang, P. Huang, and G. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
[Crossref]

K. Günthner, I. Khan, D. Elser, B. Stiller, Ö. Bayraktar, C. R. Müller, K. Saucke, D. Tröndle, F. Heine, S. Seel, P. Greulich, H. Zech, B. Gütlich, S. Philipp-May, C. Marquardt, and G. Leuchs, “Quantum-limited measurements of optical signals from a geostationary satellite,” Optica 4, 611–616 (2017).
[Crossref]

S. K. Liao, H. L. Yong, C. Liu, G. L. Shentu, D. D. Li, J. Lin, H. Dai, S. Q. Zhao, B. Li, J. Y. Guan, W. Chen, Y.-H. Gong, Y. Li, Z.-H. Lin, G.-S. Pan, J. S. Pelc, M. M. Fejer, W.-Z. Zhang, W.-Y. Liu, J. Yin, J.-G. Ren, X.-B. Wang, Q. Zhang, C.-Z. Peng, and J.-W. Pan, “Long-distance free-space quantum key distribution in daylight towards inter-satellite communication,” Nat. Photonics 11, 509–513 (2017).
[Crossref]

H.-L. Yin, Y. Fu, H. Liu, Q.-J. Tang, J. Wang, L.-X. You, W.-J. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, T.-Y. Chen, Z.-B. Chen, and J.-W. Pan, “Experimental quantum digital signature over 102 km,” Phys. Rev. A 95, 032334 (2017).
[Crossref]

J. F. Fitzsimons, “Private quantum computation: an introduction to blind quantum computing and related protocols,” npj Quantum Information 3, 23 (2017).
[Crossref]

J. G. Ren, P. Xu, H. L. Yong, L. Zhang, S. K. Liao, J. Yin, W. Y. Liu, W. Q. Cai, M. Yang, L. Li, K.-X. Yang, X. Han, Y.-Q. Yao, J. Li, H.-Y. Wu, S. Wan, L. Liu, D.-Q. Liu, Y.-W. Kuang, Z.-P. He, P. Shang, C. Guo, R.-H. Zheng, K. Tian, Z.-C. Zhu, N.-L. Liu, C.-Y. Lu, R. Shu, Y.-A. Chen, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Ground-to-satellite quantum teleportation,” Nature 549, 70–73 (2017).
[Crossref]

S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549, 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356, 1140–1144 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, J. G. Ren, S. K. Liao, L. Zhang, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, M. Li, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground entanglement-based quantum key distribution,” Phys. Rev. Lett. 119, 200501 (2017).
[Crossref]

S. K. Liao, J. Lin, J. G. Ren, W. Y. Liu, J. Qiang, J. Yin, Y. Li, Q. Shen, L. Zhang, X.-F. Liang, H.-L. Yong, F.-Z. Li, Y.-Y. Yin, Y. Cao, W.-Q. Cai, W.-Z. Zhang, J.-J. Jia, J.-C. Wu, X.-W. Chen, S.-C. Zhang, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, L. Ma, L. Li, G.-S. Pan, Q. Zhang, Y.-A. Chen, C.-Y. Lu, N.-L. Liu, X. Ma, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Space-to-ground quantum key distribution using a small-sized payload on Tiangong-2 space lab,” Chin. Phys. Lett. 34, 090302 (2017).
[Crossref]

H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki, and M. Toyoshima, “Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite,” Nat. Photonics 11, 502–508 (2017).
[Crossref]

J. Handsteiner, A. S. Friedman, D. Rauch, J. Gallicchio, B. Liu, H. Hosp, J. Kofler, D. Bricher, M. Fink, C. Leung, A. Mark, H. T. Nguyen, I. Sanders, F. Steinlechner, R. Ursin, S. Wengerowsky, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, “Cosmic Bell test: measurement settings from milky way stars,” Phys. Rev. Lett. 118, 060401 (2017).
[Crossref]

F. Vedovato, C. Agnesi, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Extending Wheeler’s delayed-choice experiment to space,” Sci. Adv. 3, e1701180 (2017).
[Crossref]

J. Kohlrus, D. E. Bruschi, J. Louko, and I. Fuentes, “Quantum communications and quantum metrology in the spacetime of a rotating planet,” EPJ Quantum Technol. 4, 7 (2017).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-L. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-chip multiplexed multiple entanglement sources in a single silicon nanowire,” Phys. Rev. Appl. 7, 064005 (2017).
[Crossref]

P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, and M. G. Thompson, “Integrated silicon photonics for high-speed quantum key distribution,” Optica 4, 172–177 (2017).
[Crossref]

D. K. Oi, A. Ling, G. Vallone, P. Villoresi, S. Greenland, E. Kerr, M. Macdonald, H. Weinfurter, H. Kuiper, E. Charbon, and R. Ursin, “CubeSat quantum communications mission,” EPJ Quantum Technol. 4, 6 (2017).
[Crossref]

R. Bedington, J. M. Arrazola, and A. Ling, “Progress in satellite quantum key distribution,” npj Quantum Inf. 3, 30 (2017).
[Crossref]

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

D. Bacco, Y. Ding, K. Dalgaard, K. Rottwit, and L. K. Oxenløwe, “Space division multiplexing chip-to-chip quantum key distribution,” Sci. Rep. 7, 12459 (2017).
[Crossref]

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref]

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev, “Material platforms for integrated quantum photonics,” Opt. Mater. Express 7, 111–132 (2017).
[Crossref]

A. R. Dixon, J. F. Dynes, M. Lucamarini, B. Fröhlich, A. W. Sharpe, A. Plews, W. Tam, Z. L. Yuan, Y. Tanizawa, H. Sato, S. Kawamura, M. Fujiwara, M. Sasaki, and A. J. Shields, “Quantum key distribution with hacking countermeasures and long term field trial,” Sci. Rep. 7, 1978 (2017).
[Crossref]

X.-Y. Zhou, C.-H. Zhang, C.-M. Zhang, and Q. Wang, “Obtaining better performance in the measurement-device-independent quantum key distribution with heralded single-photon sources,” Phys. Rev. A 96, 052337 (2017).
[Crossref]

B. Fröhlich, M. Lucamarini, J. F. Dynes, L. C. Comandar, W. W.-S. Tam, A. Plews, A. W. Sharpe, Z. Yuan, and A. J. Shields, “Long-distance quantum key distribution secure against coherent attacks,” Optica 4, 163–167 (2017).
[Crossref]

G. L. Roberts, M. Lucamarini, J. F. Dynes, S. J. Savory, Z. Yuan, and A. J. Shields, “Manipulating photon coherence to enhance the security of distributed phase reference quantum key distribution,” Appl. Phys. Lett. 111, 261106 (2017).
[Crossref]

R. Valivarthi, Q. Zhou, J. Caleb, F. Marsili, V. B. Verma, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “A cost-effective measurement-device-independent quantum key distribution system for quantum networks,” Quantum Sci. Technol. 2, 04LT01 (2017).
[Crossref]

C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017).
[Crossref]

A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “High-dimensional intracity quantum cryptography with structured photons,” Optica 4, 1006–1010 (2017).
[Crossref]

N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
[Crossref]

A. Shenoy-Hejamadi, A. Pathak, and S. Radhakrishna, “Quantum cryptography: key distribution and beyond,” Quanta 6, 1–147 (2017).
[Crossref]

S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental limits of repeaterless quantum communications,” Nat. Commun. 8, 15043 (2017). See also arXiv:1510.08863 (2015).
[Crossref]

A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118, 200501 (2017).
[Crossref]

M. Pant, H. Krovi, D. Englund, and S. Guha, “Rate-distance tradeoff and resource costs for all-optical quantum repeaters,” Phys. Rev. A 95, 012304 (2017).
[Crossref]

A. Khalique and B. C. Sanders, “Long-distance quantum key distribution using concatenated entanglement swapping with practical resources,” Opt. Eng. 56, 016114 (2017).
[Crossref]

J. Z. Bernád, “Hybrid quantum repeater based on resonant qubit-field interactions,” Phys. Rev. A 96, 052329 (2017).
[Crossref]

K. Azuma and G. Kato, “Aggregating quantum repeaters for the quantum internet,” Phys. Rev. A 96, 032332 (2017).
[Crossref]

A. Pirker, V. Dunjko, W. Dür, and H. J. Briegel, “Entanglement generation secure against general attacks,” New J. Phys. 19, 113012 (2017).
[Crossref]

J. F. Fitzsimons and E. Kashefi, “Unconditionally verifiable blind quantum computation,” Phys. Rev. A 96, 012303 (2017).
[Crossref]

E. Kashefi and A. Pappa, “Multiparty delegated quantum computing,” Cryptography 1, 12 (2017).
[Crossref]

G. M. Nikolopoulos and E. Diamanti, “Continuous-variable quantum authentication of physical unclonable keys,” Sci. Rep. 7, 46047 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7, 3235 (2017).
[Crossref]

H.-L. Yin, W.-L. Wang, Y.-L. Tang, Q. Zhao, H. Liu, X.-X. Sun, W.-J. Zhang, H. Li, I. V. Puthoor, L.-X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T.-Y. Chen, and J.-W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref]

M. M. Wilde, M. Tomamichel, S. Lloyd, and M. Berta, “Gaussian hypothesis testing and quantum illumination,” Phys. Rev. Lett. 119, 120501 (2017).
[Crossref]

2016 (68)

H.-L. Yin, Y. Fu, Y. Mao, and Z.-B. Chen, “Security of quantum key distribution with multiphoton components,” Sci. Rep. 6, 29482 (2016).
[Crossref]

M. Epping, H. Kampermann, and D. Bruß, “Large-scale quantum networks based on graphs,” New J. Phys. 18, 053036 (2016).
[Crossref]

M. Epping, H. Kampermann, and D. Bruß, “Robust entanglement distribution via quantum network coding,” New J. Phys. 18, 103052 (2016).
[Crossref]

K. Azuma, A. Mizutani, and H.-K. Lo, “Fundamental rate-loss trade-off for the quantum internet,” Nat. Commun. 7, 13523 (2016).
[Crossref]

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, “Practical challenges in quantum key distribution,” npj Quantum Inf. 2, 16025 (2016).
[Crossref]

M. Yuezhen Niu, F. Xu, J. H. Shapiro, and F. Furrer, “Finite-key analysis for time-energy high-dimensional quantum key distribution,” Phys. Rev. A 94, 052323 (2016).
[Crossref]

K. Brádler, M. Mirhosseini, R. Fickler, A. Broadbent, and R. Boyd, “Finite-key security analysis for multilevel quantum key distribution,” New J. Phys. 18, 073030 (2016).
[Crossref]

D. Bacco, J. B. Christensen, M. A. Usuga Castaneda, Y. Ding, S. Forchhammer, K. Rottwitt, and L. K. Oxenløwe, “Two-dimensional distributed-phase-reference protocol for quantum key distribution,” Sci. Rep. 6, 36756 (2016).
[Crossref]

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

G. Z. Tang, S. H. Sun, F. Xu, H. Chen, C. Y. Li, and L. M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404 km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

L. C. Comandar, S. W.-B. Tam, J. F. Dynes, M. Lucamarini, B. Fröhlich, Z. L. Yuan, A. W. Sharpe, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

S. Kawakami, T. Sasaki, and M. Koashi, “Security of the differential-quadrature-phase-shift quantum key distribution,” Phys. Rev. A 94, 022322 (2016).
[Crossref]

Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, “Making the decoy-state measurement-device-independent quantum key distribution practically useful,” Phys. Rev. A 93, 042324 (2016).
[Crossref]

J. S. Shaari, R. N. M. Nasir, and S. Mancini, “Mutually unbiased unitary bases,” Phys. Rev. A 94, 052328 (2016).
[Crossref]

C. M. Wilkes, X. Qiang, J. Wang, R. Santagati, S. Paesani, X. Zhou, D. A. B. Miller, G. D. Marshall, M. G. Thompson, and J. L. O’Brien, “60 dB high-extinction auto-configured Mach–Zehnder interferometer,” Opt. Lett. 41, 5318–5321 (2016).
[Crossref]

H. Du, F. S. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines 7, 69 (2016).
[Crossref]

Z. L. Yuan, B. Fröhlich, M. Lucamarini, G. L. Roberts, J. F. Dynes, and A. J. Shields, “Directly phase-modulated light source,” Phys. Rev. X 6, 031044 (2016).
[Crossref]

S. Restuccia, D. Giovannini, G. Gibson, and M. Padgett, “Comparing the information capacity of Laguerre–Gaussian and Hermite–Gaussian modal sets in a finite-aperture system,” Opt. Express 24, 27127–27136 (2016).
[Crossref]

J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Rep. 6, 35149 (2016).
[Crossref]

C. Ma, W. D. Sacher, Z. Tang, J. C. Mikkelsen, Y. Yang, F. Xu, T. Thiessen, H.-K. Lo, and J. K. S. Poon, “Silicon photonic transmitter for polarization-encoded quantum key distribution,” Optica 3, 1274–1278 (2016).
[Crossref]

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

G. Vallone, D. Dequal, M. Tomasin, F. Vedovato, M. Schiavon, V. Luceri, G. Bianco, and P. Villoresi, “Interference at the single photon level along satellite-ground channels,” Phys. Rev. Lett. 116, 253601 (2016).
[Crossref]

J. A. Formaggio, D. I. Kaiser, M. M. Murskyj, and T. E. Weiss, “Violation of the Leggett–Garg inequality in neutrino oscillations,” Phys. Rev. Lett. 117, 050402 (2016).
[Crossref]

X.-S. Ma, J. Kofler, and A. Zeilinger, “Delayed-choice gedanken experiments and their realizations,” Rev. Mod. Phys. 88, 015005 (2016).
[Crossref]

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. K. L. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons aboard a nanosatellite,” Phys. Rev. Appl. 5, 054022 (2016).
[Crossref]

D. Dequal, G. Vallone, D. Bacco, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental single-photon exchange along a space link of 7000 km,” Phys. Rev. A 93, 010301 (2016).
[Crossref]

V. Usenko and R. Filip, “Trusted noise in continuous-variable quantum key distribution: a threat and a defense,” Entropy 18, 20 (2016).
[Crossref]

C. Ottaviani and S. Pirandola, “General immunity and superadditivity of two-way Gaussian quantum cryptography,” Sci. Rep. 6, 22225 (2016).
[Crossref]

C. Ottaviani, R. Laurenza, T. P. W. Cope, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Secret key capacity of the thermal-loss channel: improving the lower bound,” Proc. SPIE 9996, 999609 (2016).
[Crossref]

O. Thearle, S. M. Assad, and T. Symul, “Estimation of output-channel noise for continuous-variable quantum key distribution,” Phys. Rev. A 93, 042343 (2016).
[Crossref]

Y. Wu, J. Zhou, X. Gong, Y. Guo, Z.-M. Zhang, and G. He, “Continuous-variable measurement-device-independent multipartite quantum communication,” Phys. Rev. A 93, 022325 (2016).
[Crossref]

T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Single-quadrature continuous-variable quantum key distribution,” Quantum Inf. Comput. 16, 1081–1095 (2016).

Q. Zhuang, Z. Zhang, J. Dove, F. N. C. Wong, and J. H. Shapiro, “Floodlight quantum key distribution: a practical route to gigabit-per-second secret-key rates,” Phys. Rev. A 94, 012322 (2016).
[Crossref]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6, 19201 (2016).
[Crossref]

K. Tamaki, M. Curty, and M. Lucamarini, “Decoy-state quantum key distribution with a leaky source,” New J. Phys. 18, 065008 (2016).
[Crossref]

A. A. Gaidash, V. I. Egorov, and A. V. Gleim, “Revealing of photon-number splitting attack on quantum key distribution system by photon-number resolving devices,” J. Phys. Conf. Ser. 735, 012072 (2016).
[Crossref]

M. Berta, F. Furrer, and V. B. Scholz, “The smooth entropy formalism for von Neumann algebras,” J. Math. Phys. 57, 015213 (2016).
[Crossref]

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

R. Adamczak, R. Latala, Z. Puchala, and K. Zyczkowski, “Asymptotic entropic uncertainty relations,” J. Math. Phys. 57, 032204 (2016).
[Crossref]

D. Gonta and P. van Loock, “Quantum repeater based on cavity-QED evolutions and coherent light,” Appl. Phys. B 122, 118 (2016).
[Crossref]

Y. Liu, Z. Cao, C. Wu, D. Fukuda, L. You, J. Zhong, T. Numata, S. Chen, W. Zhang, S.-C. Shi, C.-Y. Lu, Z. Wang, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “Experimental quantum data locking,” Phys. Rev. A 94, 020301 (2016).
[Crossref]

D. J. Lum, J. C. Howell, M. S. Allman, T. Gerrits, V. B. Verma, S. Woo Nam, C. Lupo, and S. Lloyd, “Quantum enigma machine: experimentally demonstrating quantum data locking,” Phys. Rev. A 94, 022315 (2016).
[Crossref]

F. G. S. Brandão, R. Ramanathan, A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, T. Szarek, and H. Wojewódka, “Realistic noise-tolerant randomness amplification using finite number of devices,” Nat. Commun. 7, 11345 (2016).
[Crossref]

X. Ma, X. Yuan, Z. Cao, B. Qi, and Z. Zhang, “Quantum random number generation,” npj Quantum Inf. 2, 16021 (2016).
[Crossref]

A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature 540, 213–219 (2016).
[Crossref]

R. Amiri, P. Wallden, A. Kent, and E. Andersson, “Secure quantum signatures using insecure quantum channels,” Phys. Rev. A 93, 032325 (2016).
[Crossref]

H.-L. Yin, Y. Fu, and Z.-B. Chen, “Practical quantum digital signature,” Phys. Rev. A 93, 032316 (2016).
[Crossref]

J. M. Arrazola, P. Wallden, and E. Andersson, “Multiparty quantum signature schemes,” Quantum Inf. Comput. 16, 435–464 (2016).

M. şahin and İ. Yilmaz, “Multi-partied quantum digital signature scheme without assumptions on quantum channel security,” J. Phys. Conf. Ser. 766, 012021 (2016).
[Crossref]

M. Tsang, R. Nair, and X.-M. Lu, “Quantum theory of superresolution for two incoherent optical point sources,” Phys. Rev. X 6, 031033 (2016).
[Crossref]

C. Lupo and S. Pirandola, “Ultimate precision bound of quantum and subwavelength imaging,” Phys. Rev. Lett. 117, 190802 (2016).
[Crossref]

R. Nair and M. Tsang, “Far-field superresolution of thermal electromagnetic sources at the quantum limit,” Phys. Rev. Lett. 117, 190801 (2016).
[Crossref]

V. Makarov, J.-P. Bourgoin, P. Chaiwongkhot, M. Gagné, T. Jennewein, S. Kaiser, R. Kashyap, M. Legré, C. Minshull, and S. Sajeed, “Creation of backdoors in quantum communications via laser damage,” Phys. Rev. A 94, 030302 (2016).
[Crossref]

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A 94, 012325 (2016).
[Crossref]

I. Derkach, V. C. Usenko, and R. Filip, “Preventing side-channel effects in continuous-variable quantum key distribution,” Phys. Rev. A 93, 032309 (2016).
[Crossref]

H.-X. Ma, W.-S. Bao, H.-W. Li, and C. Chou, “Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack,” Chin. Phys. B 25, 080309 (2016).
[Crossref]

S. Pirandola and S. L. Braunstein, “Unite to build the quantum internet,” Nature 532, 169–171 (2016).
[Crossref]

F. Ewert, M. Bergmann, and P. van Loock, “Ultrafast long-distance quantum communication with static linear optics,” Phys. Rev. Lett. 117, 210501 (2016).
[Crossref]

R. Namiki, L. Jiang, J. Kim, and N. Lütkenhaus, “Role of syndrome information on a one-way quantum repeater using teleportation-based error correction,” Phys. Rev. A 94, 052304 (2016).
[Crossref]

K. Goodenough, D. Elkouss, and S. Wehner, “Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels,” New J. Phys. 18, 063005 (2016).
[Crossref]

S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Optimal architectures for long distance quantum communication,” Sci. Rep. 6, 20463 (2016).
[Crossref]

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

R. J. Donaldson, R. J. Collins, K. Kleczkowska, R. Amiri, P. Wallden, V. Dunjko, J. Jeffers, E. Andersson, and G. S. Buller, “Experimental demonstration of kilometer-range quantum digital signatures,” Phys. Rev. A 93, 012329 (2016).
[Crossref]

C. Croal, C. Peuntinger, B. Heim, I. Khan, C. Marquardt, G. Leuchs, P. Wallden, E. Andersson, and N. Korolkova, “Free-space quantum signatures using heterodyne measurements,” Phys. Rev. Lett. 117, 100503 (2016).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41, 4883–4886 (2016).
[Crossref]

A. Broadbent and C. Schaffner, “Quantum cryptography beyond quantum key distribution,” Des. Codes Cryptogr. 78, 351–382 (2016).
[Crossref]

2015 (56)

W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, “Inside quantum repeaters,” IEEE J. Sel. Top. Quantum Electron. 21, 6400813 (2015).
[Crossref]

K. Azuma, K. Tamaki, and H.-K. Lo, “All-photonic quantum repeaters,” Nat. Commun. 6, 6787 (2015).
[Crossref]

N. Lo Piparo, M. Razavi, and C. Panayi, “Measurement-device-independent quantum key distribution with ensemble-based memories,” IEEE J. Sel. Top. Quantum Electron. 21, 138–147 (2015).
[Crossref]

N. Lo Piparo and M. Razavi, “Long-distance trust-free quantum key distribution,” J. Sel. Top. Quantum Electron. 21, 6600508 (2015).
[Crossref]

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

M. Rau, T. Vogl, G. Corrielli, G. Vest, L. Fuchs, S. Nauerth, and H. Weinfurter, “Spatial mode side channels in free-space QKD implementations,” IEEE J. Sel. Top. Quantum Electron. 21, 6600905 (2015).
[Crossref]

M. Lucamarini, I. Choi, M. Ward, J. Dynes, Z. Yuan, and A. Shields, “Practical security bounds against the Trojan-horse attack in quantum key distribution,” Phys. Rev. X 5, 031030 (2015).
[Crossref]

S.-H. Sun, F. Xu, M.-S. Jiang, X.-C. Ma, H.-K. Lo, and L.-M. Liang, “Effect of source tampering in the security of quantum cryptography,” Phys. Rev. A 92, 022304 (2015).
[Crossref]

D. Leung and W. Matthews, “On the power of PPT-preserving and non-signalling codes,” IEEE Trans. Inf. Theory 61, 4486–4499 (2015).
[Crossref]

T.-Y. Wang, Z.-Q. Cai, Y.-L. Ren, and R.-L. Zhang, “Security of quantum digital signatures for classical messages,” Sci. Rep. 5, 9231 (2015).
[Crossref]

P. Wallden, V. Dunjko, A. Kent, and E. Andersson, “Quantum digital signatures with quantum key distribution components,” Phys. Rev. A 91, 042304 (2015).
[Crossref]

M. W. Mitchell, C. Abellan, and W. Amaya, “Strong experimental guarantees in ultrafast quantum random number generation,” Phys. Rev. A 91, 012314 (2015).
[Crossref]

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

C. Lupo and S. Lloyd, “Continuous-variable quantum enigma machines for long-distance key distribution,” Phys. Rev. A 92, 062312 (2015).
[Crossref]

F. Dupuis, O. Fawzi, and S. Wehner, “Entanglement sampling and applications,” IEEE Trans. Inf. Theory 61, 1093–1112 (2015).
[Crossref]

C. Lupo, “Quantum data locking for secure communication against an eavesdropper with time-limited storage,” Entropy 17, 3194–3204 (2015).
[Crossref]

A. Leverrier, “Composable security proof for continuous-variablequantum key distribution with coherent states,” Phys. Rev. Lett. 114, 070501 (2015).
[Crossref]

N. Jain, B. Stiller, I. Khan, V. Makarov, C. Marquardt, and G. Leuchs, “Risk analysis of Trojan-horse attacks on practical quantum key distribution system,” IEEE J. Sel. Top. Quantum Electron. 21, 168–177 (2015).
[Crossref]

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).
[Crossref]

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).
[Crossref]

T. Gehring, V. Handchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner, and R. Schnabel, “Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks,” Nat. Commun. 6, 8795 (2015).
[Crossref]

D. Lin, D. Huang, P. Huang, J. Peng, and G. Zeng, “High performance reconciliation for continuous variable quantum key distribution with LDPC code,” Int. J. Quantum Inf. 13, 1550010 (2015).
[Crossref]

V. C. Usenko and F. Grosshans, “Unidimensional continuous-variable quantum key distribution,” Phys. Rev. A 92, 062337 (2015).
[Crossref]

Y. Zhang, Z. Li, C. Weedbrook, K. Marshall, S. Pirandola, S. Yu, and H. Guo, “Noiseless linear amplifiers in entanglement-based continuous-variable quantum key distribution,” Entropy 17, 4547–4562 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40, 3695–3698 (2015).
[Crossref]

C. Ottaviani, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Continuous-variable quantum cryptography with an untrusted relay: detailed security analysis of the symmetric configuration,” Phys. Rev. A 91, 022320 (2015).
[Crossref]

G. Spedalieri, C. Ottaviani, S. L. Braunstein, T. Gehring, C. S. Jacobsen, U. L. Andersen, and S. Pirandola, “Quantum cryptography with an ideal local relay,” Proc. SPIE 9648, 96480Z (2015).
[Crossref]

C. Ottaviani, S. Mancini, and S. Pirandola, “Gaussian two-mode attacks in one-way quantum cryptography,” Phys. Rev. A 92, 062323 (2015).
[Crossref]

N. Hosseinidehaj and R. Malaney, “Gaussian entanglement distribution via satellite,” Phys. Rev. A 91, 022304 (2015).
[Crossref]

N. Hosseinidehaj and R. Malaney, “Entanglement generation via non-Gaussian transfer over atmospheric fading channels,” Phys. Rev. A 92, 062336 (2015).
[Crossref]

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2015).
[Crossref]

S. Fathpour, “Emerging heterogeneous integrated photonic platforms on silicon," Nanophotonics 4, 143–164 (2015).

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref]

K. Inoue, “Differential phase-shift quantum key distribution systems,” IEEE J. Sel. Top. Quantum Electron. 21, 6600207 (2015).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

K. Wörhoff, R. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
[Crossref]

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate quantum cryptography in untrusted networks,” Nat. Photonics 9, 397–402 (2015).
[Crossref]

M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, “Significant-loophole-free test of Bell’s theorem with entangled photons,” Phys. Rev. Lett. 115, 250401 (2015).
[Crossref]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,” Phys. Rev. Lett. 115, 250402 (2015).
[Crossref]

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4, e338 (2015).
[Crossref]

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9, 163 (2015).
[Crossref]

F. Xu, K. Wei, S. Sajeed, S. Kaiser, S. Sun, Z. Tang, L. Qian, V. Makarov, and H.-K. Lo, “Experimental quantum key distribution with source flaws,” Phys. Rev. A 92, 032305 (2015).
[Crossref]

M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015).
[Crossref]

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. Woo Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

C. Lee, J. Mower, Z. Zhang, J. H. Shapiro, and D. Englund, “Finite-key analysis of high-dimensional time–energy entanglement-based quantum key distribution,” Quantum Inf. Process. 14, 1005–1015 (2015).
[Crossref]

D. Bunandar, Z. Zhang, J. H. Shapiro, and D. R. Englund, “Practical high-dimensional quantum key distribution with decoy states,” Phys. Rev. A 91, 022336 (2015).
[Crossref]

E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: principle, security and implementations,” Entropy 17, 6072–6092 (2015).
[Crossref]

U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and continuous-variable quantum information processing,” Nat. Phys. 11, 713–719 (2015).
[Crossref]

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. USA 112, 3866–3873 (2015).
[Crossref]

S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nat. Photonics 9, 641–652 (2015).
[Crossref]

S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92, 022357 (2015).
[Crossref]

L. Banchi, S. L. Braunstein, and S. Pirandola, “Quantum fidelity for arbitrary Gaussian states,” Phys. Rev. Lett. 115, 260501 (2015).
[Crossref]

2014 (58)

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Erratum: continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 112, 019902 (2014).
[Crossref]

G. Adesso, S. Ragy, and A. R. Lee, “Continuous variable quantum information: Gaussian states and beyond,” Open Syst. Inf. Dyn. 21, 1440001 (2014).
[Crossref]

J. S. Shaari, M. Lucamarini, and S. Mancini, “Checking noise correlations for safer two-way quantum key distribution,” Quantum Inf. Process. 13, 1139–1153 (2014).
[Crossref]

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

S. Pirandola, “Quantum discord as a resource for quantum cryptography,” Sci. Rep. 4, 6956 (2014).
[Crossref]

Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, “Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry,” Phys. Rev. Lett. 112, 120506 (2014).
[Crossref]

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).
[Crossref]

C. Lee, Z. Zhang, G. R. Steinbrecher, H. Zhou, J. Mower, T. Zhong, L. Wang, X. Hu, R. D. Horansky, V. B. Verma, A. E. Lita, R. P. Mirin, F. Marsili, M. D. Shaw, S. W. Nam, G. W. Wornell, F. N. C. Wong, J. H. Shapiro, and D. Englund, “Entanglement-based quantum communication secured by nonlocal dispersion cancellation,” Phys. Rev. A 90, 062331 (2014).
[Crossref]

K. Shimizu, T. Honjo, M. Fujiwara, T. Ito, K. Tamaki, S. Miki, T. Yamashita, H. Terai, Z. Wang, and M. Sasaki, “Performance of long-distance quantum key distribution over 90 km optical links installed in a field environment of Tokyo metropolitan area,” J. Lightwave Technol. 32, 141–151 (2014).
[Crossref]

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16, 013047 (2014).
[Crossref]

M. Takeoka, S. Guha, and M. M. Wilde, “Fundamental rate-loss tradeoff for optical quantum key distribution,” Nat. Commun. 5, 5235 (2014).
[Crossref]

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

Q. Wang and X. B. Wang, “Simulating of the measurement-device independent quantum key distribution with phase randomized general sources,” Sci. Rep. 4, 4612 (2014).
[Crossref]

J. S. Shaari, “Nonorthogonal unitaries in two-way quantum key distribution,” Phys. Lett. 378, 863–868 (2014).
[Crossref]

M. Lucamarini and S. Mancini, “Quantum key distribution using a two-way quantum channel,” Theor. Comput. Sci. 560, 46–61 (2014).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[Crossref]

L. Masanes, R. Renner, M. Christandl, A. Winter, and J. Barrett, “Full security of quantum key distribution from no-signaling constraints,” IEEE Trans. Inf. Theory 60, 4973–4986 (2014).
[Crossref]

U. Vazirani and T. Vidick, “Fully device-independent quantum key distribution,” Phys. Rev. Lett. 113, 140501 (2014).
[Crossref]

N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22, 10487–10493 (2014).
[Crossref]

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

I. Choi, Y. R. Zhou, J. F. Dynes, Z. Yuan, A. Klar, A. Sharpe, A. Plews, M. Lucamarini, C. Radig, J. Neubert, H. Griesser, M. Eiselt, C. Chunnilall, G. Lepert, A. Sinclair, J.-P. Elbers, A. Lord, and A. Shields, “Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber,” Opt. Express 22, 23121–23128 (2014).
[Crossref]

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. A. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link,” Optica 1, 376–382 (2014).
[Crossref]

J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Generating and identifying optical orbital angular momentum with silicon photonic circuits,” Opt. Lett. 39, 5977–5980 (2014).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

D. E. Bruschi, T. C. Ralph, I. Fuentes, T. Jennewein, and M. Razavi, “Spacetime effects on satellite-based quantum communications,” Phys. Rev. D 90, 045041 (2014).
[Crossref]

D. E. Bruschi, A. Datta, R. Ursin, T. C. Ralph, and I. Fuentes, “Quantum estimation of the Schwarzschild spacetime parameters of the Earth,” Phys. Rev. D 90, 124001 (2014).
[Crossref]

J. Gallicchio, A. S. Friedman, and D. I. Kaiser, “Testing Bell’s inequality with cosmic photons: closing the setting-independence loophole,” Phys. Rev. Lett. 112, 110405 (2014).
[Crossref]

L. Ruppert, V. C. Usenko, and R. Filip, “Long-distance continuous-variable quantum key distribution with efficient channel estimation,” Phys. Rev. A 90, 062310 (2014).
[Crossref]

F. Furrer, “Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle,” Phys. Rev. A 90, 042325 (2014).
[Crossref]

Z. Li, Y.-C. Zhang, F. Xu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution,” Phys. Rev. A 89, 052301 (2014).
[Crossref]

Y.-C. Zhang, Z. Li, S. Yu, W. Gu, X. Peng, and H. Guo, “Continuous-variable measurement-device-independent quantum key distribution using squeezed states,” Phys. Rev. A 90, 052325 (2014).
[Crossref]

C. Weedbrook, C. Ottaviani, and S. Pirandola, “Two-way quantum cryptography at different wavelengths,” Phys. Rev. A 89, 012309 (2014).
[Crossref]

Y. C. Zhang, Z. Li, C. Weedbrook, S. Yu, W. Gu, M. Sun, X. Peng, and H. Guo, “Improvement of two-way continuous-variable quantum key distribution using optical amplifiers,” J. Phys. B 47, 035501 (2014).
[Crossref]

Y. Li, N. Wang, X. Wang, and Z. Bai, “Influence of guided acoustic wave Brillouin scattering on excess noise in fiber-based continuous variable quantum key distribution,” J. Opt. Soc. Am. B 31, 2379–2383 (2014).
[Crossref]

Y. Shen, Y. Chen, H. Zou, and J. Yuan, “A fiber-based quasi-continuous-wave quantum key distribution system,” Sci. Rep. 4, 4563 (2014).
[Crossref]

V. Scarani and C. Kurtsiefer, “The black paper of quantum cryptography: real implementation problems,” Theor. Comput. Sci. 560, 27–32 (2014).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–179 (2014).
[Crossref]

F. Furrer, M. Berta, M. Tomamichel, V. B. Scholz, and M. Christandl, “Position-momentum uncertainty relations in the presence of quantum memory,” J. Math. Phys. 55, 122205 (2014).
[Crossref]

C. Erven, N. Ng, N. Gigov, R. Laflamme, S. Wehner, and G. Weihs, “An experimental implementation of oblivious transfer in the noisy storage model,” Nat. Commun. 5, 3418 (2014).
[Crossref]

C. Lupo and S. Lloyd, “Quantum-locked key distribution at nearly the classical capacity rate,” Phys. Rev. Lett. 113, 160502 (2014).
[Crossref]

C. Lupo, M. M. Wilde, and S. Lloyd, “Robust quantum data locking from phase modulation,” Phys. Rev. A 90, 022326 (2014).
[Crossref]

S. Guha, P. Hayden, H. Krovi, S. Lloyd, C. Lupo, J. H. Shapiro, M. Takeoka, and M. M. Wilde, “Quantum enigma machines and the locking capacity of a quantum channel,” Phys. Rev. X 4, 011016 (2014).
[Crossref]

V. Dunjko, P. Wallden, and E. Andersson, “Quantum digital signatures without quantum memory,” Phys. Rev. Lett. 112, 040502 (2014).
[Crossref]

K. Marshall and C. Weedbrook, “Device-independent quantum cryptography for continuous variables,” Phys. Rev. A 90, 042311 (2014).
[Crossref]

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
[Crossref]

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89, 012301 (2014).
[Crossref]

C. Panayi, M. Razavi, X. Ma, and N. Lütkenhaus, “Memory-assisted measurement-device-independent quantum key distribution,” New J. Phys. 16, 043005 (2014).
[Crossref]

D. E. Bruschi, T. M. Barlow, M. Razavi, and A. Beige, “Repeat-until-success quantum repeaters,” Phys. Rev. A 90, 032306 (2014).
[Crossref]

F. Ewert and P. van Loock, “3/4-efficient bell measurement with passive linear optics and unentangled ancillae,” Phys. Rev. Lett. 113, 140403 (2014).
[Crossref]

S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, “Ultrafast and fault-tolerant quantum communication across long distances,” Phys. Rev. Lett. 112, 250501 (2014).
[Crossref]

H. Buhrman, N. Chandran, S. Fehr, R. Gelles, V. Goyal, R. Ostrovsky, and C. Schaffner, “Position-based quantum cryptography: impossibility and constructions,” SIAM J. Comput. 43, 150–178 (2014).
[Crossref]

A. Pappa, P. Jouguet, T. Lawson, A. Chailloux, M. Legré, P. Trinkler, I. Kerenidis, and E. Diamanti, “Experimental plug and play quantum coin flipping,” Nat. Commun. 5, 3717 (2014).
[Crossref]

R. J. Collins, R. J. Donaldson, V. Dunjko, P. Wallden, P. J. Clarke, E. Andersson, J. Jeffers, and G. S. Buller, “Realization of quantum digital signatures without the requirement of quantum memory,” Phys. Rev. Lett. 113, 040502 (2014).
[Crossref]

K. Li, “Second-order asymptotics for quantum hypothesis testing,” Ann. Stat. 42, 171–189 (2014).
[Crossref]

2013 (41)

H. A. Zaidi and P. van Loock, “Beating the one-half limit of ancilla-free linear optics Bell measurements,” Phys. Rev. Lett. 110, 260501 (2013).
[Crossref]

N. Lo Piparo and M. Razavi, “Long-distance quantum key distribution with imperfect devices,” Phys. Rev. A 88, 012332 (2013).
[Crossref]

J.-Z. Huang, C. Weedbrook, Z.-Q. Yin, S. Wang, H.-W. Li, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

X.-C. Ma, S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol,” Phys. Rev. A 87, 052309 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

N. Walk, T. C. Ralph, T. Symul, and P. K. Lam, “Security of continuous-variable quantum cryptography with Gaussian postselection,” Phys. Rev. A 87, 020303 (2013).
[Crossref]

S. Fehr, R. Gelles, and C. Schaffner, “Security and composability of randomness expansion from Bell inequalities,” Phys. Rev. A 87, 012335 (2013).
[Crossref]

S. Pironio and S. Massar, “Security of practical private randomness generation,” Phys. Rev. A 87, 012336 (2013).
[Crossref]

R. Gallego, L. Masanes, G. de la Torre, C. Dhara, L. Aolita, and A. Acin, “Full randomness from arbitrarily deterministic events,” Nat. Commun. 4, 3654 (2013).
[Crossref]

O. Fawzi, P. Hayden, and P. Sen, “From low-distortion norm embeddings to explicit uncertainty relations and efficient information locking,” J. ACM 60, 44 (2013).
[Crossref]

D. Gonta and P. van Loock, “Dynamical quantum repeater using cavity QED and optical coherent states,” Phys. Rev. A 88, 052308 (2013).
[Crossref]

E. T. Campbell, M. G. Genoni, and J. Eisert, “Continuous-variable entanglement distillation and noncommutative central limit theorems,” Phys. Rev. A 87, 042330 (2013).
[Crossref]

X. Y. Wang, Z.-L. Bai, S.-F. Wang, Y.-M. Li, and K.-C. Peng, “Four-state modulation continuous variable quantum key distribution over a 30 km fiber and analysis of excess noise,” Chin. Phys. Lett. 30, 010305 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

D. Huang, J. Fang, C. Wang, P. Huang, and G. H. Zeng, “A 300 MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution,” Chin. Phys. Lett. 30, 114209 (2013).
[Crossref]

X.-C. Ma, S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum key distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Z. Zhang, M. Tengner, T. Zhong, F. N. Wong, and J. H. Shapiro, “Entanglement’s benefit survives an entanglementbreaking channel,” Phys. Rev. Lett. 111, 010501 (2013).
[Crossref]

G. Spedalieri, C. Ottaviani, and S. Pirandola, “Covariance matrices under Bell-like detections,” Open Syst. Inf. Dyn. 20, 1350011 (2013).
[Crossref]

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110, 030502 (2013).
[Crossref]

S. Pirandola, “Entanglement reactivation in separable environments,” New J. Phys. 15, 113046 (2013).
[Crossref]

T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21, 23241–23249 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

D. Bacco, M. Canale, N. Laurenti, G. Vallone, and P. Villoresi, “Experimental quantum key distribution with finite-key security analysis for noisy channels,” Nat. Commun. 4, 2363 (2013).
[Crossref]

T. Scheidl, E. Wille, and R. Ursin, “Quantum optics experiments using the International Space Station: a proposal,” New J. Phys. 15, 043008 (2013).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

B. W. Richardt, F. Unger, and U. Vazirani, “Classical command of quantum systems,” Nature 496, 456–460 (2013).
[Crossref]

J. Barrett, R. Colbeck, and A. Kent, “Memory attacks on device-independent quantum cryptography,” Phys. Rev. Lett. 110, 010503 (2013).
[Crossref]

N. J. Beaudry, M. Lucamarini, S. Mancini, and R. Renner, “Security of two-way quantum key distribution,” Phys. Rev. A 88, 062302 (2013).
[Crossref]

X.-B. Wang, “Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors,” Phys. Rev. A 87, 012320 (2013).
[Crossref]

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

T. Ferreira Da Silva, D. Vitoreti, G. B. Xavier, G. C. D. Amaral, G. P. Temporao, and J. P. Von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550–24565 (2013).
[Crossref]

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith, “Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion,” Opt. Express 21, 15959–15973 (2013).
[Crossref]

M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” Phys. Rev. A 88, 032305 (2013).
[Crossref]

P.-A. J. Blanche, D. N. Carothers, J. Wissinger, and N. Peyghambarian, “Digital micromirror device as a diffractive reconfigurable optical switch for telecommunication,” J. Micro/Nanolithography MEMS MOEMS 13, 011104 (2013).
[Crossref]

J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, “High-dimensional quantum key distribution using dispersive optics,” Phys. Rev. A 87, 062322 (2013).
[Crossref]

M. Tomamichel and M. Hayashi, “A hierarchy of information quantities for finite block length analysis of quantum tasks,” IEEE Trans. Inf. Theory 59, 7693–7710 (2013).
[Crossref]

G. Spedalieri, C. Weedbrook, and S. Pirandola, “A limit formula for the quantum fidelity,” J. Phys. A 46, 025304 (2013).
[Crossref]

S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, “Experimental verification of quantum computation,” Nat. Phys. 9, 727–731 (2013).
[Crossref]

2012 (34)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
[Crossref]

M. Lucamarini, G. Vallone, I. Gianani, P. Mataloni, and G. Di Giuseppe, “Device-independent entanglement-based Bennett 1992 protocol,” Phys. Rev. A 86, 032325 (2012).
[Crossref]

J. Barrett, R. Colbeck, and A. Kent, “Unconditionally secure device-independent quantum key distribution with only two devices,” Phys. Rev. A 86, 062326 (2012).
[Crossref]

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

T. Heindel, C. A. Kessler, M. Rau, C. Schneider, M. Fürst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Rossbach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Höfling, P. Michler, H. Weinfurter, and A. Forchel, “Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,” New J. Phys. 14, 083001 (2012).
[Crossref]

M. F. Abdul Khir, M. N. Mohd Zain, S. Soekardjo, S. Saharudin, and S. Shaari, “Implementation of two-way free space quantum key distribution,” Opt. Eng. 51, 045006 (2012).
[Crossref]

M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Experimental two way quantum key distribution with decoy state,” Opt. Commun. 285, 842–845 (2012).
[Crossref]

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

D. Rideout, T. Jennewein, G. Amelino-Camelia, T. F. Demarie, B. L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R. B. Mann, E. Martín-Martínez, N. C. Menicucci, J. Moffat, C. Simon, R. Sorkin, L. Smolin, and D. R. Terno, “Fundamental quantum optics experiments conceivable with satellites reaching relativistic distances and velocities,” Classical Quantum Gravity 29, 224011 (2012).
[Crossref]

M. Sun, X. Peng, Y. Shen, and H. Guo, “Security of new two-way continuous-variable quantum key distribution protocol,” Int. J. Quantum Inform. 10, 1250059 (2012).
[Crossref]

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3, 1083 (2012).
[Crossref]

C. Weedbrook, S. Pirandola, and T. C. Ralph, “Continuous-variable quantum key distribution using thermal states,” Phys. Rev. A 86, 022318 (2012).
[Crossref]

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variable quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref]

L. Rudnicki, S. P. Walborn, and F. Toscano, “Optimal uncertainty relations for extremely coarse-grained measurements,” Phys. Rev. A 85, 042115 (2012).
[Crossref]

M. Hayashi and T. Tsurumaru, “Concise and tight security analysis of the Bennett–Brassard 1984 protocol with finite key lengths,” New J. Phys. 14, 093014 (2012).
[Crossref]

R. König, S. Wehner, and J. Wullschleger, “Unconditional security from noisy quantum storage,” IEEE Trans. Inf. Theory 58, 1962–1984 (2012).
[Crossref]

N. H. Y. Ng, M. Berta, and S. Wehner, “Min-entropy uncertainty relation for finite-size cryptography,” Phys. Rev. A 86, 042315 (2012).
[Crossref]

R. Colbeck and R. Renner, “Free randomness can be amplified,” Nat. Phys. 8, 450–454 (2012).
[Crossref]

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref]

J. Fiurášek and N. J. Cerf, “Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution,” Phys. Rev. A 86, 060302 (2012).
[Crossref]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfections in practical continuous-variable quantum key distribution,” Phys. Rev. A 86, 032309 (2012).
[Crossref]

A. Datta, L. Zhang, J. Nunn, N. K. Langford, A. Feito, M. B. Plenio, and I. A. Walmsley, “Compact continuous-variable entanglement distillation,” Phys. Rev. Lett. 108, 060502 (2012).
[Crossref]

W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012).
[Crossref]

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref]

A. Kent, “Unconditionally secure bit commitment by transmitting measurement outcomes,” Phys. Rev. Lett. 109, 130501 (2012).
[Crossref]

P. Marian and T. A. Marian, “Uhlmann fidelity between two-mode Gaussian states,” Phys. Rev. A 86, 022340 (2012).
[Crossref]

2011 (30)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

W. P. Grice, “Arbitrarily complete Bell-state measurement using only linear optical elements,” Phys. Rev. A 84, 042331 (2011).
[Crossref]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 98, 231104 (2011).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking practical quantum-key-distribution system with wavelength dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett. 107, 110501 (2011).
[Crossref]

S. Pirandola, “Quantum reading of a classical digital memory,” Phys. Rev. Lett. 106, 090504 (2011).
[Crossref]

R. Colbeck and R. Renner, “No extension of quantum theory can have improved predictive power,” Nat. Commun. 2, 411 (2011).
[Crossref]

R. Colbeck and A. Kent, “Private randomness expansion with untrusted devices,” J. Phys. A 44, 095305 (2011).
[Crossref]

T. C. Ralph, “Quantum error correction of continuous-variable states against Gaussian noise,” Phys. Rev. A 84, 022339 (2011).
[Crossref]

N. K. Bernardes, L. Praxmeyer, and P. van Loock, “Rate analysis for a hybrid quantum repeater,” Phys. Rev. A 83, 012323 (2011).
[Crossref]

M. Tomamichel and R. Renner, “Uncertainty relation for smooth entropies,” Phys. Rev. Lett. 106, 110506 (2011).
[Crossref]

A. Leverrier and P. Grangier, “Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation,” Phys. Rev. A 83, 042312 (2011).
[Crossref]

M. Tomamichel, C. Schaffner, A. Smith, and R. Renner, “Leftover hashing against quantum side information,” IEEE Trans. Inf. Theory 57, 5524–5535 (2011).
[Crossref]

D. Markham and B. C. Sanders, “Erratum: graph states for quantum secret sharing,” Phys. Rev. A 83, 019901 (2011).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 84, 062317 (2011).
[Crossref]

N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express 19, 10632–10639 (2011).
[Crossref]

B. B. Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli, “Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers,” Opt. Express 19, 10317–10325 (2011).
[Crossref]

A. Tomaello, C. Bonato, V. Da Deppo, G. Naletto, and P. Villoresi, “Link budget and background noise for satellite quantum key distribution,” Adv. Space Res. 47, 802–810 (2011).
[Crossref]

J. H. Shapiro, “Scintillation has minimal impact on far-field Bennett-Brassard 1984 protocol quantum key distribution,” Phys. Rev. A 84, 032340 (2011).
[Crossref]

H. Xin, “Chinese academy takes space under its wing,” Science 332, 904 (2011).
[Crossref]

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Langer, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19, 10387–10409 (2011).
[Crossref]

H. Lu, C.-H. F. Fung, X. Ma, and Q.-Y. Cai, “Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel,” Phys. Rev. A 84, 042344 (2011).
[Crossref]

L. Masanes, S. Pironio, and A. Acin, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun. 2, 238 (2011).
[Crossref]

T. Honjo, T. Inoue, and K. Inoue, “Influence of light source linewidth in differential-phase-shift quantum key distribution systems,” Opt. Commun. 284, 5856–5859 (2011).
[Crossref]

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
[Crossref]

A. You, M. A. Y. Be, and I. In, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 092504 (2011).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011).
[Crossref]

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys. 13, 073024 (2011).
[Crossref]

2010 (33)

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010).
[Crossref]

J. S. Shaari and I. Bahari, “Independent attacks in imperfect settings: a case for a two-way quantum key distribution scheme,” Phys. Lett. A 374, 4205–4211 (2010).
[Crossref]

A. Bisio, G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Information-disturbance tradeoff in estimating a unitary transformation,” Phys. Rev. A 82, 062305 (2010).
[Crossref]

M. Lucamarini, R. Kumar, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Compensating the noise of a communication channel via asymmetric encoding of quantum information,” Phys. Rev. Lett. 105, 140504 (2010).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwona, T. Braun, S. Reitzensteinb, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
[Crossref]

L. Sheridan, T. P. Le, and V. Scarani, “Finite-key security against coherent attacks in quantum key distribution,” New J. Phys. 12, 123019 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on chip and intra chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key distribution through dense wavelength division multiplexing network,” New J. Phys. 12, 103042 (2010).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81, 062343 (2010).
[Crossref]

A. Keet, B. Fortescue, D. Markham, and B. C. Sanders, “Quantum secret sharing with qudit graph states,” Phys. Rev. A 82, 062315 (2010).
[Crossref]

D. Sych and G. Leuchs, “Coherent state quantum key distribution with multi letter phase-shift keying,” New J. Phys. 12, 053019 (2010).
[Crossref]

V. C. Usenko and R. Filip, “Feasibility of continuous-variable quantum key distribution with noisy coherent states,” Phys. Rev. A 81, 022318 (2010).
[Crossref]

C. Weedbrook, S. Pirandola, S. Lloyd, and T. C. Ralph, “Quantum cryptography approaching the classical limit,” Phys. Rev. Lett. 105, 110501 (2010).
[Crossref]

M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, “The uncertainty principle in the presence of quantum memory,” Nat. Phys. 6, 659–662 (2010).
[Crossref]

S. Wehner, M. Curty, C. Schaffner, and H.-K. Lo, “Implementation of two-party protocols in the noisy-storage model,” Phys. Rev. A 81, 052336 (2010).
[Crossref]

S. Wehner and A. Winter, “Entropic uncertainty relations—a survey,” New J. Phys. 12, 025009 (2010).
[Crossref]

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938–27954 (2010).
[Crossref]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010).
[Crossref]

L. Lydersen and J. Skaar, “Security of quantum key distribution with bit and basis dependent detector flaws,” Quant. Inf. Comp. 10, 0060 (2010).

J. Fiurášek, “Distillation and purification of symmetric entangled Gaussian states,” Phys. Rev. A 82, 042331 (2010).
[Crossref]

W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics 4, 792–796 (2010).
[Crossref]

J. Amirloo, M. Razavi, and A. H. Majedi, “Quantum key distribution over probabilistic quantum repeaters,” Phys. Rev. A 82, 032304 (2010).
[Crossref]

H. M. Vasconcelos, L. Sanz, and S. Glancy, “All-optical generation of states for encoding a qubit in an oscillator,” Opt. Lett. 35, 3261–3263 (2010).
[Crossref]

A. S. Holevo, “The entropy gain of infinite-dimensional quantum channels,” Dokl. Math. 82, 730–731 (2010).
[Crossref]

A. Monras and F. Illuminati, “Information geometry of Gaussian channels,” Phys. Rev. A 81, 062326 (2010).
[Crossref]

2009 (39)

L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A 79, 032325 (2009).
[Crossref]

A. P. Lund and T. C. Ralph, “Continuous-variable entanglement distillation over a general lossy channel,” Phys. Rev. A 80, 032309 (2009).
[Crossref]

M. Razavi, M. Piani, and N. Lütkenhaus, “Quantum repeaters with imperfect memories: cost and scalability,” Phys. Rev. A 80, 032301 (2009).
[Crossref]

C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, “Security proof of quantum key distribution with detection efficiency mismatch,” Quant. Inf. Comp. 9, 0131–0165 (2009).

J. Niset, J. Fiurasek, and N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref]

S. Ishizaka and T. Hiroshima, “Quantum teleportation scheme by selecting one of multiple output ports,” Phys. Rev. A 79, 042306 (2009).
[Crossref]

M. Koashi, “Simple security proof of quantum key distribution via uncertainty principle,” New J. Phys. 11, 045018 (2009).

S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009).
[Crossref]

Q.-D. Xuan, Z. Zhang, and P.-L. Voss, “A 24 km fiber-based discretely signaled continuous variable quantum key distribution system,” Opt. Express 17, 24244–24249 (2009).
[Crossref]

M. Tomamichel, R. Colbeck, and R. Renner, “A fully quantum asymptotic equipartition property,” IEEE Trans. Inf. Theory 55, 5840–5847 (2009).
[Crossref]

M. Christandl, R. König, and R. Renner, “Postselection technique for quantum channels with applications to quantum cryptography,” Phys. Rev. Lett. 102, 020504 (2009).
[Crossref]

S. Pirandola, A. Serafini, and S. Lloyd, “Correlation matrices of two-mode Bosonic systems,” Phys. Rev. A 79, 052327 (2009).
[Crossref]

A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102, 180504 (2009).
[Crossref]

Y.-B. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, “Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks,” Phys. Rev. A 79, 012307 (2009).
[Crossref]

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102, 130501 (2009).
[Crossref]

R. García-Patrón, S. Pirandola, S. Lloyd, and J. H. Shapiro, “Reverse coherent information,” Phys. Rev. Lett. 102, 210501 (2009).
[Crossref]

C. Bonato, A. Tomaello, V. Da Deppo, G. Naletto, and P. Villoresi, “Feasibility of satellite quantum key distribution,” New J. Phys. 11, 45017 (2009).
[Crossref]

R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, R. Laflamme, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. H. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. A. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest, experiments with quantum entanglement in space,” Europhys. News 40(3), 26–29 (2009).
[Crossref]

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref]

S. Pirandola, R. García-Patrón, S. L. Braunstein, and S. Lloyd, “Direct and reverse secret-key capacities of a quantum channel,” Phys. Rev. Lett. 102, 050503 (2009).
[Crossref]

M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11, 075001 (2009).
[Crossref]

F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, Y. Zaho, H. Li, D. Liu, Z. Han, and G. Cuo, “Field experiment on a robust hierarchical metropolitan quantum cryptography network,” Chin. Sci. Bull. 54, 2991–2997 (2009).
[Crossref]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

X.-B. Wang, L. Yang, C.-Z. Peng, and J.-W. Pan, “Decoy-state quantum key distribution with both source errors and statistical fluctuations,” New J. Phys. 11, 075006 (2009).
[Crossref]

T.-G. Noh, “Counterfactual quantum cryptography,” Phys. Rev. Lett. 103, 230501 (2009).
[Crossref]

K. Tamaki, N. Lütkenhaus, M. Koashi, and J. Batuwantudawe, “Unconditional security of the Bennett 1992 quantum-key-distribution scheme with a strong reference pulse,” Phys. Rev. A 80, 032302 (2009).
[Crossref]

M. Lucamarini, G. Di Giuseppe, and K. Tamaki, “Robust unconditionally secure quantum key distribution with two nonorthogonal and uninformative states,” Phys. Rev. A 80, 032327 (2009).
[Crossref]

S. M. Barnett and S. Croke, “Quantum state discrimination,” Adv. Opt. Photon. 1, 238–278 (2009).
[Crossref]

S. Pirandola, S. L. Braunstein, S. Lloyd, and S. Mancini, “Confidential direct communications: a quantum approach using continuous variables,” IEEE J. Sel. Top. Quantum Electron. 15, 1570–1580 (2009).
[Crossref]

A. Laing, T. Rudolph, and J. L. O’Brien, “Experimental quantum process discrimination,” Phys. Rev. Lett. 102, 160502 (2009).
[Crossref]

S. Pironio, A. Acin, N. Brunner, N. Gisin, S. Massar, and V. Scarani, “Device-independent quantum key distribution secure against collective attacks,” New J. Phys. 11, 045021 (2009).
[Crossref]

M. McKague, “Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices,” New J. Phys. 11, 103037 (2009).
[Crossref]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
[Crossref]

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, “Megabits secure key rate quantum key distribution,” New J. Phys. 11, 045010 (2009).
[Crossref]

K. Inoue and Y. Iwai, “Differential-quadrature-phase-shift quantum key distribution,” Phys. Rev. A 79, 022319 (2009).
[Crossref]

D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express 17, 13326–13334 (2009).
[Crossref]

D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009).
[Crossref]

O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” J. ACM 56, 34 (2009).
[Crossref]

2008 (32)

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16, 18790–18797 (2008).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

L. Zhang, C. Silberhorn, and I. Walmsley, “Secure quantum key distribution using continuous variables of single photons,” Phys. Rev. Lett. 100, 110504 (2008).
[Crossref]

J. S. Shaari, M. R. B. Wahiddin, and S. Mancini, “Blind encoding into qudits,” Phys. Lett. A 372, 1963–1967 (2008).
[Crossref]

M. Navascués, S. Pironio, and A. Acín, “A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations,” New J. Phys. 10, 073013 (2008).
[Crossref]

G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Optimal cloning of unitary transformation,” Phys. Rev. Lett. 101, 180504 (2008).
[Crossref]

T. Heinosaari and M. Ziman, “Guide to mathematical concepts of quantum theory,” Acta Phys. Slovaca 58, 487–674 (2008).
[Crossref]

S. Pirandola, “Symmetric collective attacks for the eavesdropping of symmetric quantum key distribution,” Int. J. Quant. Inf. 6, 765–771 (2008).
[Crossref]

K. Tamaki, “Unconditionally secure quantum key distribution with relatively strong signal pulse,” Phys. Rev. A 77, 032341 (2008).
[Crossref]

X.-B. Wang, C.-Z. Peng, J. Zhang, L. Yang, and J.-W. Pan, “General theory of decoy-state quantum cryptography with source errors,” Phys. Rev. A 77, 042311 (2008).
[Crossref]

S. Pirandola, S. L. Braunstein, S. Mancini, and S. Lloyd, “Quantum direct communication with continuous variables,” Europhys. Lett. 84, 20013 (2008).
[Crossref]

R. Kumar, M. Lucamarini, G. Di Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008).
[Crossref]

R. J. Schoelkopf and S. M. Girvin, “Wiring up quantum systems,” Nature 451, 664–669 (2008).
[Crossref]

V. Scarani and R. Renner, “Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
[Crossref]

R. Renner, “Security of quantum key distribution,” Int. J. Quant. Inf. 6, 1–127 (2008).
[Crossref]

P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri, “Experimental verification of the feasibility of a quantum channel between space and Earth,” New J. Phys. 10, 33038 (2008).
[Crossref]

S. Pirandola, S. Lloyd, and S. L. Braunstein, “Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography,” Phys. Rev. Lett. 101, 200504 (2008).
[Crossref]

S. Pirandola, S. Mancini, S. Lloyd, and S. L. Braunstein, “Continuous variable quantum cryptography using two-way quantum communication,” Nat. Phys. 4, 726–730 (2008).
[Crossref]

R. Filip, “Continuous-variable quantum key distribution with noisy coherent states,” Phys. Rev. A 77, 022310 (2008).
[Crossref]

D. Markham and B. C. Sanders, “Graph states for quantum secret sharing,” Phys. Rev. A 78, 042309 (2008).
[Crossref]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

S. Ishizaka and T. Hiroshima, “Asymptotic teleportation scheme as a universal programmable quantum processor,” Phys. Rev. Lett. 101, 240501 (2008).
[Crossref]

S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumination,” Science 321, 1463–1465 (2008).
[Crossref]

S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, “Quantum illumination with Gaussian States,” Phys. Rev. Lett. 101, 253601 (2008).
[Crossref]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

H. Häseler, T. Moroder, and N. Lütkenhaus, “Testing quantum devices: practical entanglement verification in bipartite optical systems,” Phys. Rev. A 77, 032303 (2008).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

H. Buhrman, M. Christandl, P. Hayden, H.-K. Lo, and S. Wehner, “Possibility, impossibility and cheat-sensitivity of quantum bit string commitment,” Phys. Rev. A 78, 022316 (2008).
[Crossref]

S. Wehner, C. Schaffner, and B. M. Terhal, “Cryptography from noisy storage,” Phys. Rev. Lett. 100, 220502 (2008).
[Crossref]

P. van Loock, N. Lütkenhaus, W. J. Munro, and K. Nemoto, “Quantum repeaters using coherent-state communication,” Phys. Rev. A 78, 062319 (2008).
[Crossref]

G. M. Nikolopoulos, “Applications of single-qubit rotations in quantum public-key cryptography,” Phys. Rev. A 77, 032348 (2008).
[Crossref]

S. Pirandola and S. Lloyd, “Computable bounds for the discrimination of Gaussian states,” Phys. Rev. A 78, 012331 (2008).
[Crossref]

2007 (26)

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

B. Zhao, Z.-B. Chen, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
[Crossref]

M. M. Wolf, D. Pérez-García, and G. Giedke, “Quantum capacities of Bosonic channels,” Phys. Rev. Lett. 98, 130501 (2007).
[Crossref]

A. S. Holevo, “Single-mode quantum Gaussian channels: structure and quantum capacity,” Probl. Inf. Transm. 43, 1–14 (2007).
[Crossref]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

B. Qi, L. L. Huang, L. Qian, and H.-K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

M. Christandl, R. König, G. Mitchison, and R. Renner, “One-and-a-half quantum de Finetti theorems,” Commun. Math. Phys. 273, 473–498 (2007).
[Crossref]

M. Heid and N. Lütkenhaus, “Security of coherent state quantum cryptography in the presence of Gaussian noise,” Phys. Rev. A 76, 022313 (2007).
[Crossref]

T. Symul, D. J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303 (2007).
[Crossref]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[Crossref]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

R. Renner, “Symmetry of large physical systems implies independence of subsystems, ” Nat. Phys. 3, 645–649 (2007).
[Crossref]

X.-B. Wang, T. Hiroshima, A. Tomita, and M. Hayashi, “Quantum information with Gaussian states,” Phys. Rep. 448, 1–111 (2007).
[Crossref]

R. König, R. Renner, A. Bariska, and U. Maurer, “Small accessible quantum information does not imply security,” Phys. Rev. Lett. 98, 140502 (2007).
[Crossref]

H. Inamori, N. Lütkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,” Eur. Phys. J. D 41, 599 (2007).
[Crossref]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91, 041114 (2007).
[Crossref]

M. Lucamarini, A. Cerè, G. Di Giuseppe, S. Mancini, D. Vitali, and P. Tombesi, “Two-way protocol with imperfect devices,” Open Syst. Inf. Dyn. 14, 169–178 (2007).
[Crossref]

A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

M. Navascués, S. Pironio, and A. Acín, “Bounding the set of quantum correlations,” Phys. Rev. Lett. 98, 010401 (2007).
[Crossref]

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).
[Crossref]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, “Long-distance decoy-state quantum key distribution in optical fiber,” Phys. Rev. Lett. 98, 010503 (2007).
[Crossref]

T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007).
[Crossref]

J. Z. C.-Z. Peng, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[Crossref]

R. Colbeck, “Impossibility of secure two-party classical computation,” Phys. Rev. A 76, 062308 (2007).
[Crossref]

2006 (27)

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73, 012344 (2006).
[Crossref]

B. Qi, “Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation,” Opt. Lett. 31, 2795–2797 (2006).
[Crossref]

G. M. Nikolopoulos, K. S. Ranade, and G. Alber, “Error tolerance of two-basis quantum-key-distribution protocols using qudits and two-way classical communication,” Phys. Rev. A 73, 032325 (2006).
[Crossref]

Q.-Y. Cai, “Eavesdropping on the two-way quantum communication protocols with invisible photons,” Phys. Lett. A 351, 23–25 (2006).
[Crossref]

J. S. Shaari, M. Lucamarini, and M. R. B. Wahiddin, “Deterministic six states protocol for quantum communication,” Phys. Lett. A 358, 85–90 (2006).
[Crossref]

Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96, 070502 (2006).
[Crossref]

A. Acín, N. Gisin, and L. Masanes, “From Bell’s theorem to secure quantum key distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

A. Cerè, M. Lucamarini, G. Di Giuseppe, and P. Tombesi, “Experimental test of two-way quantum key distribution in presence of controlled noise,” Phys. Rev. Lett. 96, 200501 (2006).
[Crossref]

K. Tamaki and H.-K. Lo, “Unconditionally secure key distillation from multiphotons,” Phys. Rev. A 73, 010302 (2006).
[Crossref]

Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31, 341–343 (2006).
[Crossref]

M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of Gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006).
[Crossref]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73, 022320 (2006).
[Crossref]

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).
[Crossref]

M. Koashi, “Unconditional security of quantum key distribution and the uncertainty principle,” J. Phys. Conf. Ser. 36, 98 (2006).
[Crossref]

I. Devetak, M. Junge, C. King, and M. B. Ruskai, “Multiplicativity of completely bounded p-norms implies a new additivity result,” Commun. Math. Phys. 266, 37–63 (2006).
[Crossref]

F. Caruso and V. Giovannetti, “Degradability of Bosonic Gaussian channels,” Phys. Rev. A 74, 062307 (2006).
[Crossref]

F. Caruso, V. Giovannetti, and A. S. Holevo, “One-mode Bosonic Gaussian channels: a full weak-degradability classification,” New J. Phys. 8, 310 (2006).
[Crossref]

M. Varnava, D. E. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[Crossref]

S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous variable encoding by ponderomotive interaction,” Eur. Phys. J. D 37, 283–290 (2006).
[Crossref]

S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Generating continuous variable quantum codewords in the near-field atomic lithography,” J. Phys. B 39, 997 (2006).
[Crossref]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006).
[Crossref]

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006).
[Crossref]

E. Andersson, M. Curty, and I. Jex, “Experimentally realizable quantum comparison of coherent states and its applications,” Phys. Rev. A 74, 022304 (2006).
[Crossref]

M. Hillery, M. Ziman, V. Bužek, and M. Bieliková, “Towards quantum-based privacy and voting,” Phys. Lett. A. 349, 75–81 (2006).
[Crossref]

S. Olivares, M. G. A. Paris, and U. L. Andersen, “Cloning of Gaussian states by linear optics,” Phys. Rev. A 73, 062330 (2006).
[Crossref]

2005 (23)

I. Devetak and P. W. Shor, “The capacity of a quantum channel for simultaneous transmission of classical and quantum information,” Commun. Math. Phys. 256, 287–303 (2005).
[Crossref]

K. Horodecki, M. Horodecki, P. Horodecki, and J. Oppenheim, “Secure key from bound entanglement,” Phys. Rev. Lett. 94, 160502 (2005).
[Crossref]

I. Devetak, “The private classical capacity and quantum capacity of a quantum channel,” IEEE Trans. Inf. Theory 51, 44–55 (2005).
[Crossref]

V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. 52, 691–705 (2005).
[Crossref]

F. Grosshans, “Collective attacks and unconditional security in continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020504 (2005).
[Crossref]

A. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
[Crossref]

J. Lodewyck, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Controlling excess noise in fiber-optics continuous-variable quantum key distribution,” Phys. Rev. A 72, 050303 (2005).
[Crossref]

M. Pfennigbauer, M. Aspelmeyer, W. R. Leeb, G. Baister, T. Dreischer, T. Jennewein, G. Neckamm, J. M. Perdigues, H. Weinfurter, and A. Zeilinger, “Satellite-based quantum communication terminal employing state-of-the-art technology,” J. Opt. Netw. 4, 549–560 (2005).
[Crossref]

M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett. 94, 140501 (2005).
[Crossref]

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref]

X.-B. Wang, “Decoy-state protocol for quantum cryptography with four different intensities of coherent light,” Phys. Rev. A 72, 012322 (2005).
[Crossref]

X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).
[Crossref]

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Crypt. 18, 133–165 (2005).
[Crossref]

V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, “Quantum cloning,” Rev. Mod. Phys. 77, 1225–1256 (2005).
[Crossref]

I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum states,” Proc. R. Soc. A 461, 207–235 (2005).
[Crossref]

S. L. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

J. Barrett, L. Hardy, and A. Kent, “No signaling and quantum key distribution,” Phys. Rev. Lett. 95, 010503 (2005).
[Crossref]

E. Chip, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA quantum network,” Proc. SPIE 5815, 138–149 (2005).
[Crossref]

G. M. Nikolopoulos and G. Alber, “Security bound of two-basis quantum-key-distribution protocols using qudits,” Phys. Rev. A 72, 032320 (2005).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

X.-Y. Chen, “Gaussian relative entropy of entanglement,” Phys. Rev. A 71, 062320 (2005).
[Crossref]

H. Nha and H. J. Carmichael, “Distinguishing two single-mode Gaussian states by homodyne detection: an information-theoretic approach,” Phys. Rev. A 71, 032336 (2005).
[Crossref]

2004 (20)

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer,” Opt. Lett. 29, 2797–2799 (2004).
[Crossref]

R. T. Thew, A. Acín, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004).
[Crossref]

M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Ann. Math. 160,781–793 (2004).
[Crossref]

K. Tamaki and N. Lütkenhaus, “Unconditional security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel,” Phys. Rev. A 69, 032316 (2004).
[Crossref]

M. Koashi, “Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse,” Phys. Rev. Lett. 93, 120501 (2004).
[Crossref]

V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[Crossref]

D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 5, 325–360 (2004).

Q.-Y. Cai and B.-W. Li, “Deterministic secure communication without using entanglement,” Chin. Phys. Lett. 21, 601 (2004).
[Crossref]

F.-G. Deng and G. L. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A 69, 052319 (2004).
[Crossref]

F.-G. Deng and G. L. Long, “Bidirectional quantum key distribution protocol with practical faint laser pulses,” Phys. Rev. A 70, 012311 (2004).
[Crossref]

C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
[Crossref]

G. Van Assche, J. Cardinal, and N. Cerf, “Reconciliation of a quantum-distributed Gaussian key,” IEEE Trans. Inf. Theory 50, 394–400 (2004).
[Crossref]

S. Lorenz, N. Korolkova, and G. Leuchs, “Continuous-variable quantum key distribution using polarization encoding and post selection,” Appl. Phys. B 79, 273–277 (2004).
[Crossref]

F. Grosshans and N. J. Cerf, “Continuous-variable quantum cryptography is secure against non-Gaussian attacks,” Phys. Rev. Lett. 92, 047905 (2004).
[Crossref]

S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Constructing finite-dimensional codes with optical continuous variables,” Europhys. Lett. 68, 323 (2004).
[Crossref]

J. Eisert, D. E. Browne, S. Scheel, and M. B. Plenio, “Distillation of continuous-variable entanglement with optical means,” Ann. Phys. 311, 431–458 (2004).
[Crossref]

P. Hayden, D. Leung, P. W. Shor, and A. Winter, “Randomizing quantum states: constructions and applications,” Commun. Math. Phys. 250, 371–394 (2004).
[Crossref]

D. P. DiVincenzo, M. Horodecki, D. W. Leung, J. A. Smolin, and B. M. Terhal, “Locking classical correlations in quantum states,” Phys. Rev. Lett. 92, 067902 (2004).
[Crossref]

I. Kerenidis and R. De Wolf, “Quantum symmetrically-private information retrieval,” Info. Proc. Lett. 90, 109–114 (2004).
[Crossref]

G. Hanaoka, J. Shikata, and Y. Zheng, “Efficient unconditionally secure digital signatures,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87, 120 (2004).

2003 (7)

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref]

M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. Leeb, and A. Zeilinger, “Long-distance quantum communication with entangled photons using satellites,” IEEE J. Sel. Top. Quantum Electron. 9, 1541–1551 (2003).
[Crossref]

J. H. Shapiro, “Near-field turbulence effects on quantum-key distribution,” Phys. Rev. A 67, 022309 (2003).
[Crossref]

Q.-Y. Cai, “The “ping-pong” protocol can be attacked without eavesdropping,” Phys. Rev. Lett. 91, 109801 (2003).
[Crossref]

W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref]

K. Tamaki, M. Koashi, and N. Imoto, “Unconditionally secure key distribution based on two nonorthogonal states,” Phys. Rev. Lett. 90, 167904 (2003).
[Crossref]

A. Wócjik, “Eavesdropping on the ping-pong quantum communication protocol,” Phys. Rev. Lett. 90, 157901 (2003).
[Crossref]

2002 (14)

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

K. Boström and T. Felbinger, “Deterministic secure direct communication using entanglement,” Phys. Rev. Lett. 89, 187902 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

E. Chip, “Building the quantum network,” New J. Phys. 4, 46 (2002).
[Crossref]

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, “A step towards global key distribution,” Nature 419, 450 (2002).
[Crossref]

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43 (2002).
[Crossref]

J. G. Rarity, P. R. Tapster, and P. M. Gorman, and P. Knight, “Ground to satellite secure key exchange using quantum cryptography,” New J. Phys. 4, 82 (2002).
[Crossref]

J. G. Rarity, P. R. Tapster, and P. M. Gorman, and P. Knight, “Ground to satellite secure key exchange using quantum cryptography,” New J. Phys. 4, 82 (2002).
[Crossref]

Y.-J. Chiu, H.-F. Chou, V. Kaman, P. Abraham, and J. E. Bowers, “High extinction ratio and saturation power traveling-wave electro-absorption modulator,” IEEE Photon. Technol. Lett. 14, 792–794 (2002).
[Crossref]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref]

C. Silberhorn, T. C. Ralph, N. Lütkenhaus, and G. Leuchs, “Continuous variable quantum cryptography: beating the 3 dB loss limit,” Phys. Rev. Lett. 89, 167901 (2002).
[Crossref]

J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).
[Crossref]

B. C. Travaglione and G. J. Milburn, “Preparing encoded states in an oscillator,” Phys. Rev. A 66, 052322 (2002).
[Crossref]

V. Vedral, “The role of relative entropy in quantum information theory,” Rev. Mod. Phys. 74, 197 (2002).
[Crossref]

G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
[Crossref]

2001 (16)

G. Bowen and S. Bose, “Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity,” Phys. Rev. Lett. 87, 267901 (2001).
[Crossref]

D. Gottesman, A. Y. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator,” Phys. Rev. A 64, 012310 (2001).
[Crossref]

A. S. Holevo and R. F. Werner, “Evaluating capacities of Bosonic Gaussian channels,” Phys. Rev. A 63, 032312 (2001).
[Crossref]

J. Calsamiglia and N. Lütkenhaus, “Maximum efficiency of a linear-optical Bell-state analyzer,” Appl. Phys. B 72, 67–71 (2001).
[Crossref]

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001).
[Crossref]

C. Kurtsiefer, P. Zarda, S. Mayer, and H. Weinfurter, “The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks?” J. Mod. Opt. 48, 2039–2047 (2001).
[Crossref]

A. Vakhitov, V. Makarov, and D. R. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48, 2023 (2001).
[Crossref]

N. J. Cerf, M. Lévy, and G. V. Assche, “Quantum distribution of Gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
[Crossref]

F. Grosshans and P. Grangier, “Quantum cloning and teleportation criteria for continuous quantum variables,” Phys. Rev. A 64, 010301 (2001).
[Crossref]

D. Gottesman and J. Preskill, “Secure quantum key distribution using squeezed states,” Phys. Rev. A 63, 022309 (2001).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

D. Mayers, “Unconditional security in quantum cryptography,” J. ACM 48, 351–406 (2001).
[Crossref]

H.-K. Lo, “Proof of unconditional security of six-state quantum key distribution scheme,” Quantum Inf. Comput. 1, 81–94 (2001).

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
[Crossref]

S. Scheel and D.-G. Welsch, “Entanglement generation and degradation by passive optical devices,” Phys. Rev. A 64, 063811 (2001).
[Crossref]

2000 (13)

R. Canetti, “Security and composition of multiparty cryptographic protocols,” J. Crypt. 13, 143–202 (2000).
[Crossref]

D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[Crossref]

A. Chefles, “Quantum state discrimination,” Contemp. Phys. 41, 401–424 (2000).
[Crossref]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref]

N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000).
[Crossref]

P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85, 441–444 (2000).
[Crossref]

S. L. Braunstein, G. M. D’Ariano, G. J. Milburn, and M. F. Sacchi, “Universal teleportation with a twist,” Phys. Rev. Lett. 84, 3486–3489 (2000).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref]

T. C. Ralph, “Security of continuous-variable quantum cryptography,” Phys. Rev. A 62, 062306 (2000).
[Crossref]

M. Hillery, “Quantum cryptography with squeezed states,” Phys. Rev. A 61, 022309 (2000).
[Crossref]

M. D. Reid, “Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations,” Phys. Rev. A 62, 062308 (2000).
[Crossref]

P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482 (2000).
[Crossref]

G.-S. Părăoanu and H. Scutaru, “Fidelity for multimode thermal squeezed states,” Phys. Rev. A 61, 022306 (2000).
[Crossref]

1999 (10)

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[Crossref]

T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999).
[Crossref]

W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A 59, 169–181 (1999).
[Crossref]

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref]

C. S. Niu and R. B. Griffiths, “Two-qubit copying machine for economical quantum eavesdropping,” Phys. Rev. A 60, 2764–2776 (1999).
[Crossref]

M. Horodecki, P. Horodecki, and R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation,” Phys. Rev. A 60, 1888 (1999).
[Crossref]

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Rev. 41, 303–332 (1999).
[Crossref]

C. A. Fuchs and J. van de Graaf, “Cryptographic distinguishability measures for quantum mechanical states,” IEEE Trans. Inf. Theory 45, 1216–1227 (1999).
[Crossref]

R. Simon, S. Chaturvedi, and V. Srinivasan, “Congruences and canonical forms for a positive matrix: application to the Schweinler–Wigner extremum principle,” J. Math. Phys. 40, 3632 (1999).
[Crossref]

1998 (7)

V. Vedral and M. B. Plenio, “Entanglement measures and purification procedures,” Phys. Rev. A 57, 1619–1633 (1998).
[Crossref]

T. Mor, “No cloning of orthogonal states in composite systems,” Phys. Rev. Lett. 80, 3137–3140 (1998).
[Crossref]

D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,” Phys. Rev. Lett. 81, 3018–3021 (1998).
[Crossref]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872 (1998).
[Crossref]

H.-K. Lo and H. F. Chau, “Why quantum bit commitment and ideal quantum coin tossing are impossible,” Physica D 120, 177–187 (1998).
[Crossref]

H. Scutaru, “Fidelity for displaced squeezed thermal states and the oscillator semigroup,” J. Phys. A 31, 3659 (1998).
[Crossref]

1997 (8)

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484–1509 (1997).
[Crossref]

C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy,” Phys. Rev. A 56, 1163–1172 (1997).
[Crossref]

M. Koashi and N. Imoto, “Quantum cryptography based on split transmission of one-bit information in two steps,” Phys. Rev. Lett. 79, 2383–2386 (1997).
[Crossref]

C. Cachin and U. M. Maurer, “Linking information reconciliation and privacy amplification,” J. Crypt. 10, 97–110 (1997).
[Crossref]

S. Lloyd, “Capacity of the noisy quantum channel,” Phys. Rev. A 55, 1613 (1997).
[Crossref]

V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, “Quantifying entanglement,” Phys. Rev. Lett. 78, 2275–2279 (1997).
[Crossref]

C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, “Capacities of quantum erasure channels,” Phys. Rev. Lett. 78, 3217–3220 (1997).
[Crossref]

D. Mayers, “Unconditionally secure quantum bit commitment is impossible,” Phys. Rev. Lett. 78, 3414 (1997).
[Crossref]

1996 (7)

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

B. Schumacher and M. A. Nielsen, “Quantum data processing and error correction,” Phys. Rev. A 54, 2629–2635 (1996).
[Crossref]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref]

A. M. Steane, “Error correcting codes in quantum theory,” Phys. Rev. Lett. 77, 793–797 (1996).
[Crossref]

A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996).
[Crossref]

A. M. Steane, “Multiple-particle interference and quantum error correction,” Proc. R. Soc. Lond. A 452, 2551–2577 (1996).
[Crossref]

1995 (3)

L. Goldenberg and L. Vaidman, “Quantum cryptography based on orthogonal states,” Phys. Rev. Lett. 75, 1239–1243 (1995).
[Crossref]

B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995).
[Crossref]

C. A. Fuchs and C. M. Caves, “Mathematical techniques for quantum communication,” Open Syst. Inf. Dyn. 3, 345–356 (1995).
[Crossref]

1994 (2)

S. Popescu and D. Rohrlich, “Quantum nonlocality as an axiom,” Found. Phys. 24, 379–385 (1994).
[Crossref]

L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473–1476 (1994).
[Crossref]

1993 (5)

J. Sanchez, “Entropic uncertainty and certainty relations for complementary observables,” Phys. Lett. A 173, 233–239 (1993).
[Crossref]

B. S. Tsirelson, “Some results and problems on quantum Bell-type inequalities,” Hadronic J. Suppl. 8, 329–345 (1993).

P. H. Eberhard, “Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment,” Phys. Rev. A 47, R747–R750 (1993).
[Crossref]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39, 733–742 (1993).
[Crossref]

1992 (3)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[Crossref]

C.-H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Crypt. 5, 3–28 (1992).
[Crossref]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[Crossref]

1990 (1)

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: a tutorial,” Proc. IEEE 78, 826–855 (1990).
[Crossref]

1988 (3)

H. Maassen and J. B. Uffink, “Generalized entropic uncertainty relations,” Phys. Rev. Lett. 60, 1103–1106 (1988).
[Crossref]

A. Peres, “How to differentiate between non-orthogonal states,” Phys. Lett. A 128, 19 (1988).
[Crossref]

D. Dieks, “Overlap and distinguishability of quantum states,” Phys. Lett. A 126, 303–306 (1988).
[Crossref]

1987 (2)

I. D. Ivanovic, “How to differentiate between non-orthogonal states,” Phys. Lett. A 123, 257–259 (1987).
[Crossref]

R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

1986 (1)

L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, “Quantum source of entropy for black holes,” Phys. Rev. D 34, 373 (1986).
[Crossref]

1984 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

1983 (1)

S. Wiesner, “Conjugate coding,” SIGACT News 15, 78–88 (1983).
[Crossref]

1982 (1)

W. Wootters and W. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[Crossref]

1980 (1)

B. S. Cirelson, “Quantum generalizations of Bell’s inequality,” Lett. Math. Phys. 4, 93–100 (1980).
[Crossref]

1978 (1)

R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 21, 120–126 (1978).
[Crossref]

1976 (1)

A. Uhlmann, “The ‘transition probability’ in the state space of a *-algebra,” Rep. Math. Phys. 9, 273–279 (1976).

1975 (1)

R. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975).
[Crossref]

1974 (1)

J. F. Clauser and M. A. Horne, “Experimental consequences of objective local theories,” Phys. Rev. D 10, 526–535 (1974).
[Crossref]

1973 (2)

A. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel,” Probl. Inf. Transm. 9, 177–183 (1973).

E. Berlekamp, “Goppa codes,” IEEE Trans. Inf. Theory 19, 590–592 (1973).
[Crossref]

1970 (2)

J. Park, “The concept of transition in quantum mechanics,” Found. Phys. 1, 23–33 (1970).
[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1970).
[Crossref]

1964 (1)

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).
[Crossref]

1960 (1)

M. Pollack, “The maximum capacity through a network,” Oper. Res. 8, 733–736 (1960).
[Crossref]

1957 (2)

H. Everett, “‘Relative State’ formulation of quantum mechanics,” Rev. Mod. Phys. 29, 454 (1957).
[Crossref]

I. I. Hirschman, “A note on entropy,” Am. J. Math. 79, 152–156 (1957).
[Crossref]

1949 (1)

C. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28, 656 (1949).
[Crossref]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

1927 (1)

W. Heisenberg, “Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik,” Zeitschrift für Phys. 43, 172 (1927).
[Crossref]

Aaronson, S.

S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” in Proceedings of the 43rd annual ACM symposium on Theory of Computing (ACM, 2011), pp. 333–342.

S. Aaronson and P. Christiano, “Quantum money from hidden subspaces,” in Proceedings of the forty-fourth annual ACM symposium on Theory of Computing (ACM, 2012).

Abdul Khir, M. F.

M. F. Abdul Khir, M. N. Mohd Zain, S. Soekardjo, S. Saharudin, and S. Shaari, “Implementation of two-way free space quantum key distribution,” Opt. Eng. 51, 045006 (2012).
[Crossref]

M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Experimental two way quantum key distribution with decoy state,” Opt. Commun. 285, 842–845 (2012).
[Crossref]

Abellan, C.

M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, “Significant-loophole-free test of Bell’s theorem with entangled photons,” Phys. Rev. Lett. 115, 250401 (2015).
[Crossref]

M. W. Mitchell, C. Abellan, and W. Amaya, “Strong experimental guarantees in ultrafast quantum random number generation,” Phys. Rev. A 91, 012314 (2015).
[Crossref]

Abellán, C.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,” Phys. Rev. Lett. 115, 250402 (2015).
[Crossref]

Abidin, A.

R. Amiri, A. Abidin, P. Wallden, and E. Andersson, “Efficient unconditionally secure signatures using universal hashing,” in International Conference on Applied Cryptography and Network Security (Springer, 2018), pp. 143–162.

Abraham, P.

Y.-J. Chiu, H.-F. Chou, V. Kaman, P. Abraham, and J. E. Bowers, “High extinction ratio and saturation power traveling-wave electro-absorption modulator,” IEEE Photon. Technol. Lett. 14, 792–794 (2002).
[Crossref]

Abruzzo, S.

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89, 012301 (2014).
[Crossref]

Achouche, M.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Acin, A.

R. Gallego, L. Masanes, G. de la Torre, C. Dhara, L. Aolita, and A. Acin, “Full randomness from arbitrarily deterministic events,” Nat. Commun. 4, 3654 (2013).
[Crossref]

L. Masanes, S. Pironio, and A. Acin, “Secure device-independent quantum key distribution with causally independent measurement devices,” Nat. Commun. 2, 238 (2011).
[Crossref]

S. Pironio, A. Acin, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010).
[Crossref]

S. Pironio, A. Acin, N. Brunner, N. Gisin, S. Massar, and V. Scarani, “Device-independent quantum key distribution secure against collective attacks,” New J. Phys. 11, 045021 (2009).
[Crossref]

R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, R. Laflamme, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. H. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. A. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest, experiments with quantum entanglement in space,” Europhys. News 40(3), 26–29 (2009).
[Crossref]

A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[Crossref]

Acín, A.

A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature 540, 213–219 (2016).
[Crossref]

M. Navascués, S. Pironio, and A. Acín, “A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations,” New J. Phys. 10, 073013 (2008).
[Crossref]

M. Navascués, S. Pironio, and A. Acín, “Bounding the set of quantum correlations,” Phys. Rev. Lett. 98, 010401 (2007).
[Crossref]

A. Acín, N. Gisin, and L. Masanes, “From Bell’s theorem to secure quantum key distribution,” Phys. Rev. Lett. 97, 120405 (2006).
[Crossref]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref]

V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, “Quantum cloning,” Rev. Mod. Phys. 77, 1225–1256 (2005).
[Crossref]

R. T. Thew, A. Acín, H. Zbinden, and N. Gisin, “Bell-type test of energy-time entangled qutrits,” Phys. Rev. Lett. 93, 010503 (2004).
[Crossref]

Adamczak, R.

R. Adamczak, “Metric and classical fidelity uncertainty relations for random unitary matrices,” J. Phys. A 50, 105302 (2017).
[Crossref]

R. Adamczak, R. Latala, Z. Puchala, and K. Zyczkowski, “Asymptotic entropic uncertainty relations,” J. Math. Phys. 57, 032204 (2016).
[Crossref]

Adcock, M. R.

Z. Pan, K. P. Seshadreesan, W. Clark, M. R. Adcock, I. B. Djordjevic, J. H. Shapiro, and S. Guha, “Secret key distillation across a quantum wiretap channel under restricted eavesdropping,” in Proceedings of IEEE International Symposium on Information Theory (ISIT) (IEEE, 2019), pp. 3032–3036.

Adesso, G.

P. Liuzzo-Scorpo, A. Mari, V. Giovannetti, and G. Adesso, “Optimal continuous variable quantum teleportation with limited resources,” Phys. Rev. Lett. 120, 029904 (2018).
[Crossref]

P. Liuzzo-Scorpo, A. Mari, V. Giovannetti, and G. Adesso, “Optimal continuous variable quantum teleportation with limited resources,” Phys. Rev. Lett. 119, 120503 (2017).
[Crossref]

G. Adesso, S. Ragy, and A. R. Lee, “Continuous variable quantum information: Gaussian states and beyond,” Open Syst. Inf. Dyn. 21, 1440001 (2014).
[Crossref]

Adleman, L.

R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems,” Commun. ACM 21, 120–126 (1978).
[Crossref]

Afzelius, M.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

Aggarwal, D.

D. Aggarwal, G. Brennen, T. Lee, M. Santha, and M. Tomamiche, “Quantum attacks on Bitcoin, and how to protect against them,” Ledger3 (2018).

Agnesi, C.

L. Calderaro, C. Agnesi, D. Dequal, F. Vedovato, M. Schiavon, A. Santamato, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Towards quantum communication from global navigation satellite system,” Quantum Sci. Technol. 4, 015012 (2019).
[Crossref]

C. Agnesi, F. Vedovato, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Exploring the boundaries of quantum mechanics: advances in satellite quantum communications,” Philos. Trans. R. Soc. London, Ser. A 376, 20170461 (2018).
[Crossref]

F. Vedovato, C. Agnesi, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Extending Wheeler’s delayed-choice experiment to space,” Sci. Adv. 3, e1701180 (2017).
[Crossref]

Agrawal, M.

M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Ann. Math. 160,781–793 (2004).
[Crossref]

Ahmed, N.

Ajtai, M.

M. Ajtai, “Generating hard instances of lattice problems,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing (ACM, 1996).

Alber, G.

G. M. Nikolopoulos, K. S. Ranade, and G. Alber, “Error tolerance of two-basis quantum-key-distribution protocols using qudits and two-way classical communication,” Phys. Rev. A 73, 032325 (2006).
[Crossref]

G. M. Nikolopoulos and G. Alber, “Security bound of two-basis quantum-key-distribution protocols using qudits,” Phys. Rev. A 72, 032320 (2005).
[Crossref]

Albert, V. V.

K. Noh, V. V. Albert, and L. Jiang, “Improved quantum capacity bounds of Gaussian loss channels and achievable rates with Gottesman-Kitaev-Preskill codes,” IEEE Trans. Inf. Theory 65, 2563 (2019).
[Crossref]

V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M. Girvin, B. M. Terhal, and L. Jiang, “Performance and structure of single-mode bosonic codes,” Phys. Rev. A 97, 032346 (2018).
[Crossref]

Ali-Khan, I.

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).
[Crossref]

Allacher, A.

Alléaume, R.

H. Qin, R. Kumar, V. Makarov, and R. Alléaume, “Homodyne detector blinding attack in continuous-variable quantum key distribution,” Phys. Rev. A 98, 012312 (2018).
[Crossref]

A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
[Crossref]

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A 94, 012325 (2016).
[Crossref]

P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variable quantum key distribution,” Opt. Express 20, 14030–14041 (2012).
[Crossref]

M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11, 075001 (2009).
[Crossref]

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

Allman, M. S.

D. J. Lum, J. C. Howell, M. S. Allman, T. Gerrits, V. B. Verma, S. Woo Nam, C. Lupo, and S. Lloyd, “Quantum enigma machine: experimentally demonstrating quantum data locking,” Phys. Rev. A 94, 022315 (2016).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,” Phys. Rev. Lett. 115, 250402 (2015).
[Crossref]

Almeida, M. P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Alsing, P. M.

S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, “On-chip quantum interference from a single silicon ring-resonator source,” Phys. Rev. Appl. 4, 021001 (2015).
[Crossref]

Alton, D. J.

T. Symul, D. J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303 (2007).
[Crossref]

Amaral, G. C. D.

T. Ferreira Da Silva, D. Vitoreti, G. B. Xavier, G. C. D. Amaral, G. P. Temporao, and J. P. Von der Weid, “Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits,” Phys. Rev. A 88, 052303 (2013).
[Crossref]

Amaya, W.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,” Phys. Rev. Lett. 115, 250402 (2015).
[Crossref]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, “Significant-loophole-free test of Bell’s theorem with entangled photons,” Phys. Rev. Lett. 115, 250401 (2015).
[Crossref]

M. W. Mitchell, C. Abellan, and W. Amaya, “Strong experimental guarantees in ultrafast quantum random number generation,” Phys. Rev. A 91, 012314 (2015).
[Crossref]

Ambainis, A.

A. Ambainis, A. Rosmanis, and D. Unruh, “Quantum attacks on classical proof systems: the hardness of quantum rewinding,” in Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, FOCS ’14, Washington, DC, USA (IEEE, 2014), pp. 474–483.

Ambrosius, H.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Amelino-Camelia, G.

D. Rideout, T. Jennewein, G. Amelino-Camelia, T. F. Demarie, B. L. Higgins, A. Kempf, A. Kent, R. Laflamme, X. Ma, R. B. Mann, E. Martín-Martínez, N. C. Menicucci, J. Moffat, C. Simon, R. Sorkin, L. Smolin, and D. R. Terno, “Fundamental quantum optics experiments conceivable with satellites reaching relativistic distances and velocities,” Classical Quantum Gravity 29, 224011 (2012).
[Crossref]

Amiri, R.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7, 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41, 4883–4886 (2016).
[Crossref]

R. J. Donaldson, R. J. Collins, K. Kleczkowska, R. Amiri, P. Wallden, V. Dunjko, J. Jeffers, E. Andersson, and G. S. Buller, “Experimental demonstration of kilometer-range quantum digital signatures,” Phys. Rev. A 93, 012329 (2016).
[Crossref]

R. Amiri, P. Wallden, A. Kent, and E. Andersson, “Secure quantum signatures using insecure quantum channels,” Phys. Rev. A 93, 032325 (2016).
[Crossref]

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

R. Amiri, A. Abidin, P. Wallden, and E. Andersson, “Efficient unconditionally secure signatures using universal hashing,” in International Conference on Applied Cryptography and Network Security (Springer, 2018), pp. 143–162.

Amirloo, J.

J. Amirloo, M. Razavi, and A. H. Majedi, “Quantum key distribution over probabilistic quantum repeaters,” Phys. Rev. A 82, 032304 (2010).
[Crossref]

Andersen, U. L.

C. S. Scheffman, L. S. Madsen, V. C. Usenko, R. Filip, and U. L. Andersen, “Complete elimination of information leakage in continuous-variable quantum communication channels,” npj Quantum Inf. 4, 32 (2018).
[Crossref]

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

T. Gehring, C. S. Jacobsen, and U. L. Andersen, “Single-quadrature continuous-variable quantum key distribution,” Quantum Inf. Comput. 16, 1081–1095 (2016).

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate quantum cryptography in untrusted networks,” Nat. Photonics 9, 397–402 (2015).
[Crossref]

U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and continuous-variable quantum information processing,” Nat. Phys. 11, 713–719 (2015).
[Crossref]

G. Spedalieri, C. Ottaviani, S. L. Braunstein, T. Gehring, C. S. Jacobsen, U. L. Andersen, and S. Pirandola, “Quantum cryptography with an ideal local relay,” Proc. SPIE 9648, 96480Z (2015).
[Crossref]

L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip, and U. L. Andersen, “Continuous variable quantum key distribution with modulated entangled states,” Nat. Commun. 3, 1083 (2012).
[Crossref]

S. Olivares, M. G. A. Paris, and U. L. Andersen, “Cloning of Gaussian states by linear optics,” Phys. Rev. A 73, 062330 (2006).
[Crossref]

Andersson, E.

A. Huang, S. Barz, E. Andersson, and V. Makarov, “Implementation vulnerabilities in general quantum cryptography,” New J. Phys. 20, 103016 (2018).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7, 3235 (2017).
[Crossref]

H.-L. Yin, W.-L. Wang, Y.-L. Tang, Q. Zhao, H. Liu, X.-X. Sun, W.-J. Zhang, H. Li, I. V. Puthoor, L.-X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T.-Y. Chen, and J.-W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref]

R. J. Donaldson, R. J. Collins, K. Kleczkowska, R. Amiri, P. Wallden, V. Dunjko, J. Jeffers, E. Andersson, and G. S. Buller, “Experimental demonstration of kilometer-range quantum digital signatures,” Phys. Rev. A 93, 012329 (2016).
[Crossref]

C. Croal, C. Peuntinger, B. Heim, I. Khan, C. Marquardt, G. Leuchs, P. Wallden, E. Andersson, and N. Korolkova, “Free-space quantum signatures using heterodyne measurements,” Phys. Rev. Lett. 117, 100503 (2016).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41, 4883–4886 (2016).
[Crossref]

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

J. M. Arrazola, P. Wallden, and E. Andersson, “Multiparty quantum signature schemes,” Quantum Inf. Comput. 16, 435–464 (2016).

R. Amiri, P. Wallden, A. Kent, and E. Andersson, “Secure quantum signatures using insecure quantum channels,” Phys. Rev. A 93, 032325 (2016).
[Crossref]

P. Wallden, V. Dunjko, A. Kent, and E. Andersson, “Quantum digital signatures with quantum key distribution components,” Phys. Rev. A 91, 042304 (2015).
[Crossref]

R. J. Collins, R. J. Donaldson, V. Dunjko, P. Wallden, P. J. Clarke, E. Andersson, J. Jeffers, and G. S. Buller, “Realization of quantum digital signatures without the requirement of quantum memory,” Phys. Rev. Lett. 113, 040502 (2014).
[Crossref]

V. Dunjko, P. Wallden, and E. Andersson, “Quantum digital signatures without quantum memory,” Phys. Rev. Lett. 112, 040502 (2014).
[Crossref]

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref]

E. Andersson, M. Curty, and I. Jex, “Experimentally realizable quantum comparison of coherent states and its applications,” Phys. Rev. A 74, 022304 (2006).
[Crossref]

R. Amiri, A. Abidin, P. Wallden, and E. Andersson, “Efficient unconditionally secure signatures using universal hashing,” in International Conference on Applied Cryptography and Network Security (Springer, 2018), pp. 143–162.

Andrews, L. C.

L. C. Andrews and R. L. Phillips, “Laser Beam Propagation through Random Media,” 2nd ed. (SPIE, 2005).

Anisimov, A.

V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74, 022313 (2006).
[Crossref]

Anton, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Aolita, L.

R. Gallego, L. Masanes, G. de la Torre, C. Dhara, L. Aolita, and A. Acin, “Full randomness from arbitrarily deterministic events,” Nat. Commun. 4, 3654 (2013).
[Crossref]

Appel, S.

L. Hanschke, K. A. Fischer, S. Appel, D. Lukin, J. Wierzbowski, S. Sun, R. Trivedi, J. Vuckovic, J. J. Finley, and K. Müller, “Quantum dot single-photon sources with ultra-low multi-photon probability,” npj Quantum Inf. 4, 43 (2018).
[Crossref]

Arapinis, M.

M. Arapinis, E. Kashefi, N. Lamprou, and A. Pappa, “Definition and analysis of quantum E-voting protocols,” arXiv:1810.05083v3.

Ardehali, M.

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Crypt. 18, 133–165 (2005).
[Crossref]

Arkhipov, A.

S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” in Proceedings of the 43rd annual ACM symposium on Theory of Computing (ACM, 2011), pp. 333–342.

Arnon Friedman, R.

R. Arnon Friedman, E. Hänggi, and A. Ta-Shma, “Towards the impossibility of non-signalling privacy amplification from time-like ordering constraints,” arXiv:1205.3736 (2012).

Arnon-Friedman, R.

R. Arnon-Friedman, R. Renner, and T. Vidick, “Simple and tight device-independent security proofs,” SIAM J. Comput. 48, 181–225 (2019).
[Crossref]

R. Arnon-Friedman, F. Dupuis, O. Fawzi, R. Renner, and T. Vidick, “Practical device-independent quantum cryptography via entropy accumulation,” Nat. Commun. 9, 459 (2018).
[Crossref]

M. Kessler and R. Arnon-Friedman, “Device-independent randomness amplification and privatization,” arXiv:1705.04148 (2017).

Arrazola, J. M.

R. Bedington, J. M. Arrazola, and A. Ling, “Progress in satellite quantum key distribution,” npj Quantum Inf. 3, 30 (2017).
[Crossref]

J. M. Arrazola, P. Wallden, and E. Andersson, “Multiparty quantum signature schemes,” Quantum Inf. Comput. 16, 435–464 (2016).

Asai, T.

Aschauer, H.

H. Aschauer, “Quantum communication in noisy environments,” Ph.d. thesis (Ludwig-Maximilians-Universität München, 2005).

Asobe, M.

T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, “Entanglement distribution over 300 km of fiber,” Opt. Express 21, 23241–23249 (2013).
[Crossref]

Q. Zhang, H. Takesue, T. Honjo, K. Wen, T. Hirohata, M. Suyama, Y. Takiguchi, H. Kamada, Y. Tokura, O. Tadanaga, Y. Nishida, M. Asobe, and Y. Yamamoto, “Megabits secure key rate quantum key distribution,” New J. Phys. 11, 045010 (2009).
[Crossref]

Aspect, A.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch, “Experimental realization of Wheeler’s delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[Crossref]

Aspelmeyer, M.

R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, R. Laflamme, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. H. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. A. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest, experiments with quantum entanglement in space,” Europhys. News 40(3), 26–29 (2009).
[Crossref]

P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri, “Experimental verification of the feasibility of a quantum channel between space and Earth,” New J. Phys. 10, 33038 (2008).
[Crossref]

M. Pfennigbauer, M. Aspelmeyer, W. R. Leeb, G. Baister, T. Dreischer, T. Jennewein, G. Neckamm, J. M. Perdigues, H. Weinfurter, and A. Zeilinger, “Satellite-based quantum communication terminal employing state-of-the-art technology,” J. Opt. Netw. 4, 549–560 (2005).
[Crossref]

M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. Leeb, and A. Zeilinger, “Long-distance quantum communication with entangled photons using satellites,” IEEE J. Sel. Top. Quantum Electron. 9, 1541–1551 (2003).
[Crossref]

Assad, S. M.

O. Thearle, S. M. Assad, and T. Symul, “Estimation of output-channel noise for continuous-variable quantum key distribution,” Phys. Rev. A 93, 042343 (2016).
[Crossref]

T. Symul, D. J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303 (2007).
[Crossref]

Assche, G. V.

N. J. Cerf, M. Lévy, and G. V. Assche, “Quantum distribution of Gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
[Crossref]

Assefa, S.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Athale, R. A.

J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: a tutorial,” Proc. IEEE 78, 826–855 (1990).
[Crossref]

Auffeves, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. Lanzillotti Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Augendre, E.

Augierand, M.

A. K. Lenstra, J. P. Hughes, M. Augierand, J. W. Bos, T. Kleinjung, and C. Wachter, “Ron was wrong, Whit is right,” IACR Cryptology Report 2012/064 (2012).

Augustin, L. L.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Autebert, C.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, and R. J. Warburton, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

A. Boaron, G. Boso, D. Rusca, C. Autebert, M. Caloz, M. Perrenoud, and H. Zbinden, “Secure quantum key distribution over 421 km of optical fiber,” Phys. Rev. Lett. 121, 190502 (2018).
[Crossref]

Azuma, K.

S. Bäuml, K. Azuma, G. Kato, and D. Elkouss, “Linear programs for entanglement and key distribution in the quantum internet,” Commun. Phys. 355 (2020).
[Crossref]

M. Curty, K. Azuma, and H.-K. Lo, “Simple security proof of twin-field type quantum key distribution protocol,” npj Quantum Inf. 5, 64 (2019).
[Crossref]

L. Rigovacca, G. Kato, S. Bäuml, M. S. Kim, W. J. Munro, and K. Azuma, “Versatile relative entropy bounds for quantum networks,” New J. Phys. 20, 013033 (2018).
[Crossref]

K. Azuma and G. Kato, “Aggregating quantum repeaters for the quantum internet,” Phys. Rev. A 96, 032332 (2017).
[Crossref]

K. Azuma, A. Mizutani, and H.-K. Lo, “Fundamental rate-loss trade-off for the quantum internet,” Nat. Commun. 7, 13523 (2016).
[Crossref]

W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, “Inside quantum repeaters,” IEEE J. Sel. Top. Quantum Electron. 21, 6400813 (2015).
[Crossref]

K. Azuma, K. Tamaki, and H.-K. Lo, “All-photonic quantum repeaters,” Nat. Commun. 6, 6787 (2015).
[Crossref]

Babar, Z.

N. Hosseinidehaj, Z. Babar, R. Malaney, S. X. Ng, and L. Hanzo, “Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook,” Commun. Surv. Tutorials 21, 881–919 (2019).
[Crossref]

Bacco, D.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11, 064058 (2019).
[Crossref]

B. Da Lio, D. Bacco, D. Cozzolino, Y. Ding, K. Dalgaard, K. Rottwitt, and L. Oxenløwe, “Experimental demonstration of the DPTS QKD protocol over a 170 km fiber link,” Appl. Phys. Lett. 114, 011101 (2019).
[Crossref]

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

D. Bacco, Y. Ding, K. Dalgaard, K. Rottwit, and L. K. Oxenløwe, “Space division multiplexing chip-to-chip quantum key distribution,” Sci. Rep. 7, 12459 (2017).
[Crossref]

D. Bacco, J. B. Christensen, M. A. Usuga Castaneda, Y. Ding, S. Forchhammer, K. Rottwitt, and L. K. Oxenløwe, “Two-dimensional distributed-phase-reference protocol for quantum key distribution,” Sci. Rep. 6, 36756 (2016).
[Crossref]

D. Dequal, G. Vallone, D. Bacco, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental single-photon exchange along a space link of 7000 km,” Phys. Rev. A 93, 010301 (2016).
[Crossref]

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref]

D. Bacco, M. Canale, N. Laurenti, G. Vallone, and P. Villoresi, “Experimental quantum key distribution with finite-key security analysis for noisy channels,” Nat. Commun. 4, 2363 (2013).
[Crossref]

Baehr-Jones, T.

D. Bunandar, N. Harris, Z. Zhang, C. Lee, R. Ding, T. Baehr-Jones, M. Hochberg, J. Shapiro, F. Wong, and D. Englund, “Wavelength-division multiplexed quantum key distribution on silicon photonic integrated devices,” Bull. Am. Phys. Soc. 63, A180009 (2018).

J. Notaros, J. Mower, M. Heuck, C. Lupo, N. C. Harris, G. R. Steinbrecher, D. Bunandar, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Programmable dispersion on a photonic integrated circuit for classical and quantum applications,” Opt. Express 25, 21275–21285 (2017).
[Crossref]

N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Opt. Express 22, 10487–10493 (2014).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Baets, R.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

Bahari, I.

M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Experimental two way quantum key distribution with decoy state,” Opt. Commun. 285, 842–845 (2012).
[Crossref]

J. S. Shaari and I. Bahari, “Independent attacks in imperfect settings: a case for a two-way quantum key distribution scheme,” Phys. Lett. A 374, 4205–4211 (2010).
[Crossref]

Bai, B.

Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai, W. Zhang, W.-Z. Liu, C. Wu, X. Yuan, H. Li, W. J. Munro, Z. Wang, L. You, J. Zhang, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “Device independent quantum random number generation,” Nature 562, 548–551 (2018).
[Crossref]

Bai, D.

D. Bai, P. Huang, Y. Zhu, H. Ma, T. Xiao, T. Wang, and G. Zeng, “Unidimensional continuous-variable measurement-device-independent quantum key distribution,” J. Phys. B: At. Mol. Opt. Phys. 52135502 (2019).

Bai, D.-Y.

H.-X. Ma, P. Huang, D.-Y. Bai, T. Wang, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation,” Phys. Rev. A 99, 022322 (2019).
[Crossref]

H.-X. Ma, P. Huang, T. Wang, D.-Y. Bai, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Security bound of continuous-variable measurement-device-independent quantum key distribution with imperfect phase reference calibration,” Phys. Rev. A 100, 052330 (2019).

H.-X. Ma, P. Huang, D.-Y. Bai, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

Bai, Z.

Bai, Z.-L.

Y.-M. Li, X.-Y. Wang, Z.-L. Bai, W.-Y. Liu, S.-S. Yang, and K.-C. Peng, “Continuous variable quantum key distribution,” Chin. Phys. B 26, 040303 (2017).
[Crossref]

X. Y. Wang, Z.-L. Bai, S.-F. Wang, Y.-M. Li, and K.-C. Peng, “Four-state modulation continuous variable quantum key distribution over a 30 km fiber and analysis of excess noise,” Chin. Phys. Lett. 30, 010305 (2013).
[Crossref]

Baister, G.

Bajoni, D.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems,” Phys. Rev. X 4, 041047 (2014).
[Crossref]

Bakir, B. B.

Bakker, A.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Banchi, L.

L. Banchi, J. Pereira, S. Lloyd, and S. Pirandola, “Convex optimization of programmable quantum computers,” npj Quantum Inf. 6, 42 (2020).
[Crossref]

R. Laurenza, S. Tserkis, L. Banchi, S. L. Braunstein, T. C. Ralph, and S. Pirandola, “Tight bounds for private communication over bosonic Gaussian channels based on teleportation simulation with optimal finite resources,” Phys. Rev. A 100, 042301 (2019).
[Crossref]

S. Pirandola, R. Laurenza, and L. Banchi, “Conditional channel simulation,” Ann. Phys. 400, 289–302 (2019).
[Crossref]

S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental limits of repeaterless quantum communications,” Nat. Commun. 8, 15043 (2017). See also arXiv:1510.08863 (2015).
[Crossref]

L. Banchi, S. L. Braunstein, and S. Pirandola, “Quantum fidelity for arbitrary Gaussian states,” Phys. Rev. Lett. 115, 260501 (2015).
[Crossref]

C. Oh, C. Lee, L. Banchi, S. Lee, C. Rockstuhl, and H. Jeong, “Optimal measurements for quantum fidelity between Gaussian states,” arXiv:1901.02994 (2019).

L. Banchi, J. Pereira, S. Lloyd, and S. Pirandola, “Optimization and learning of quantum programs,” arXiv:1905.01318 (2019).

S. Pirandola, S. L. Braunstein, R. Laurenza, C. Ottaviani, T. P. W. Cope, G. Spedalieri, and L. Banchi, “Theory of channel simulation and bounds for private communication,” Quantum Sci. Technol.3, 035009 (2018).

Bao, C.

Bao, W.-S.

H.-X. Ma, P. Huang, T. Wang, D.-Y. Bai, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Security bound of continuous-variable measurement-device-independent quantum key distribution with imperfect phase reference calibration,” Phys. Rev. A 100, 052330 (2019).

H.-X. Ma, P. Huang, D.-Y. Bai, T. Wang, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation,” Phys. Rev. A 99, 022322 (2019).
[Crossref]

H.-X. Ma, P. Huang, D.-Y. Bai, S.-Y. Wang, W.-S. Bao, and G.-H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

H.-X. Ma, W.-S. Bao, H.-W. Li, and C. Chou, “Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack,” Chin. Phys. B 25, 080309 (2016).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking practical quantum-key-distribution system with wavelength dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Barbieri, C.

R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, R. Laflamme, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. H. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. A. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest, experiments with quantum entanglement in space,” Europhys. News 40(3), 26–29 (2009).
[Crossref]

P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri, “Experimental verification of the feasibility of a quantum channel between space and Earth,” New J. Phys. 10, 33038 (2008).
[Crossref]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Bardhan, B. R.

S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724–733 (2018).
[Crossref]

Bariska, A.

R. König, R. Renner, A. Bariska, and U. Maurer, “Small accessible quantum information does not imply security,” Phys. Rev. Lett. 98, 140502 (2007).
[Crossref]

Barlow, T. M.

D. E. Bruschi, T. M. Barlow, M. Razavi, and A. Beige, “Repeat-until-success quantum repeaters,” Phys. Rev. A 90, 032306 (2014).
[Crossref]

Barnett, S.

S. Barnett, Quantum Information (Oxford University Press, 2009).

Barnett, S. M.

Barnum, H.

H. Barnum, C. Crépeau, D. Gottesman, A. Smith, and A. Tapp, “Authentication of quantum messages,” in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (IEEE, 2002), pp. 449–458.

Barreiro, C.

M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11, 075001 (2009).
[Crossref]

D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express 17, 13326–13334 (2009).
[Crossref]

Barrett, J.

L. Masanes, R. Renner, M. Christandl, A. Winter, and J. Barrett, “Full security of quantum key distribution from no-signaling constraints,” IEEE Trans. Inf. Theory 60, 4973–4986 (2014).
[Crossref]

J. Barrett, R. Colbeck, and A. Kent, “Memory attacks on device-independent quantum cryptography,” Phys. Rev. Lett. 110, 010503 (2013).
[Crossref]

J. Barrett, R. Colbeck, and A. Kent, “Unconditionally secure device-independent quantum key distribution with only two devices,” Phys. Rev. A 86, 062326 (2012).
[Crossref]

J. Barrett, L. Hardy, and A. Kent, “No signaling and quantum key distribution,” Phys. Rev. Lett. 95, 010503 (2005).
[Crossref]

Barrios, E.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

Barz, S.

A. Huang, S. Barz, E. Andersson, and V. Makarov, “Implementation vulnerabilities in general quantum cryptography,” New J. Phys. 20, 103016 (2018).
[Crossref]

S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, “Experimental verification of quantum computation,” Nat. Phys. 9, 727–731 (2013).
[Crossref]

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref]

Basu, P.

M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, “Routing entanglement in the quantum internet,” npj Quantum Inf. 5, 25 (2019).
[Crossref]

Batuwantudawe, J.

K. Tamaki, N. Lütkenhaus, M. Koashi, and J. Batuwantudawe, “Unconditional security of the Bennett 1992 quantum-key-distribution scheme with a strong reference pulse,” Phys. Rev. A 80, 032302 (2009).
[Crossref]

Bäuml, S.

S. Bäuml, K. Azuma, G. Kato, and D. Elkouss, “Linear programs for entanglement and key distribution in the quantum internet,” Commun. Phys. 355 (2020).
[Crossref]

L. Rigovacca, G. Kato, S. Bäuml, M. S. Kim, W. J. Munro, and K. Azuma, “Versatile relative entropy bounds for quantum networks,” New J. Phys. 20, 013033 (2018).
[Crossref]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Bayraktar, Ö.

Be, M. A. Y.

A. You, M. A. Y. Be, and I. In, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 092504 (2011).
[Crossref]

Beaudry, N. J.

N. J. Beaudry, M. Lucamarini, S. Mancini, and R. Renner, “Security of two-way quantum key distribution,” Phys. Rev. A 88, 062302 (2013).
[Crossref]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

Bedington, R.

R. Bedington, J. M. Arrazola, and A. Ling, “Progress in satellite quantum key distribution,” npj Quantum Inf. 3, 30 (2017).
[Crossref]

Beige, A.

D. E. Bruschi, T. M. Barlow, M. Razavi, and A. Beige, “Repeat-until-success quantum repeaters,” Phys. Rev. A 90, 032306 (2014).
[Crossref]

Bell, J. S.

J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).
[Crossref]

Bellei, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Benenti, G.

G. Benenti, G. Casati, and D. Rossini, Principles of Quantum Computation and Information: A Comprehensive Textbook (World Scientific, 2019).

Bengtsson, I.

I. Bengtsson and K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University, 2006).

Benn, C.

D. Rauch, J. Handsteiner, A. Hochrainer, J. Gallicchio, A. S. Friedman, C. Leung, B. Liu, L. Bulla, S. Ecker, F. Steinlechner, R. Ursin, B. Hu, D. Leon, C. Benn, A. Ghedina, M. Cecconi, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, “Cosmic Bell test using random measurement settings from high-redshift quasars,” Phys. Rev. Lett. 121, 080403 (2018).
[Crossref]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electro-optical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–179 (2014).
[Crossref]

C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, “Capacities of quantum erasure channels,” Phys. Rev. Lett. 78, 3217–3220 (1997).
[Crossref]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the International Conference on Computers, Systems & Signal Processing, Bangalore, India, December 1984, pp. 175–179.

C. H. Bennett, G. Brassard, S. Breidbart, and S. Wiesner, “Quantum cryptography, or unforgeable subway tokens,” in Advances in Cryptology: Proceedings of Crypto’ 82, California, USA (Plenum, 1982), pp. 267–275.

Bennett, C.-H.

C.-H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Crypt. 5, 3–28 (1992).
[Crossref]

Ben-Or, M.

M. Ben-Or and D. Mayers, “General security definition and composability for quantum and classical protocols,” arXiv:quant-ph/0409062 (2004).

M. Ben-Or, M. Horodecki, D. W. Leung, D. Mayers, and J. Oppenheim, “The Universal composable security of quantum key distribution,” in Second Theory of Cryptography Conference (TCC), Lecture Notes in Computer Science (Springer, 2005), Vol. 3378, pp. 386–406.

M. Ben-Or and A. Hassidim, “Fast quantum byzantine agreement,” in Proceedings of the thirty-seventh annual ACM symposium on Theory of Computing (ACM, 2005).

Bente, E.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Berggren, K. K.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6, 5873 (2015).
[Crossref]

Bergmann, M.

M. Bergmann and P. van Loock, “A hybrid quantum repeater for qudits,” Phys. Rev. A 99, 032349 (2019).
[Crossref]

F. Ewert, M. Bergmann, and P. van Loock, “Ultrafast long-distance quantum communication with static linear optics,” Phys. Rev. Lett. 117, 210501 (2016).
[Crossref]

Berlekamp, E.

E. Berlekamp, “Goppa codes,” IEEE Trans. Inf. Theory 19, 590–592 (1973).
[Crossref]

Bernád, J. Z.

J. Z. Bernád, “Hybrid quantum repeater based on resonant qubit-field interactions,” Phys. Rev. A 96, 052329 (2017).
[Crossref]

Bernardes, N. K.

N. K. Bernardes, L. Praxmeyer, and P. van Loock, “Rate analysis for a hybrid quantum repeater,” Phys. Rev. A 83, 012323 (2011).
[Crossref]

Bernien, H.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Bernstein, D. J.

D. J. Bernstein, J. Buchmann, and E. Dahmen, Post-Quantum Cryptography, 1st ed. (Springer, 2008).

Berry, D. W.

Z. Huang, P. P. Rohde, D. W. Berry, P. Kok, J. P. Dowling, and C. Lupo, “Boson sampling private-key quantum cryptography,” arXiv:1905.03013 (2019).

Berta, M.

M. M. Wilde, M. Tomamichel, S. Lloyd, and M. Berta, “Gaussian hypothesis testing and quantum illumination,” Phys. Rev. Lett. 119, 120501 (2017).
[Crossref]

M. M. Wilde, M. Tomamichel, and M. Berta, “Converse bounds for private communication over quantum channels,” IEEE Trans. Inf. Theory 63, 1792–1817 (2017).
[Crossref]

P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
[Crossref]

M. Berta, F. Furrer, and V. B. Scholz, “The smooth entropy formalism for von Neumann algebras,” J. Math. Phys. 57, 015213 (2016).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, and R. Werner, “Erratum: continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 112, 019902 (2014).
[Crossref]

F. Furrer, M. Berta, M. Tomamichel, V. B. Scholz, and M. Christandl, “Position-momentum uncertainty relations in the presence of quantum memory,” J. Math. Phys. 55, 122205 (2014).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109, 100502 (2012).
[Crossref]

N. H. Y. Ng, M. Berta, and S. Wehner, “Min-entropy uncertainty relation for finite-size cryptography,” Phys. Rev. A 86, 042315 (2012).
[Crossref]

M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, “The uncertainty principle in the presence of quantum memory,” Nat. Phys. 6, 659–662 (2010).
[Crossref]

Bertet, P.

G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems,” Proc. Natl. Acad. Sci. USA 112, 3866–3873 (2015).
[Crossref]

Berthiaume, A.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

Bessette, F.

C.-H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Crypt. 5, 3–28 (1992).
[Crossref]

Bettelli, S.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the integration of CV quantum key distribution in deployed optical networks,” IEEE Photon. Technol. Lett. 30, 650–653 (2018).
[Crossref]

H. H. Brunner, L. C. Comandar, F. Karinou, S. Bettelli, D. Hillerkuss, F. Fung, D. Wang, S. Mikroulis, Y. Qian, M. Kuschnerov, A. Poppe, C. Xie, and M. Peev, “A low-complexity heterodyne CV-QKD architecture,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017).

Beyer, J.

M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellan, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, “Significant-loophole-free test of Bell’s theorem with entangled photons,” Phys. Rev. Lett. 115, 250401 (2015).
[Crossref]

Bhat, S. S.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Bianco, G.

L. Calderaro, C. Agnesi, D. Dequal, F. Vedovato, M. Schiavon, A. Santamato, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Towards quantum communication from global navigation satellite system,” Quantum Sci. Technol. 4, 015012 (2019).
[Crossref]

C. Agnesi, F. Vedovato, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Exploring the boundaries of quantum mechanics: advances in satellite quantum communications,” Philos. Trans. R. Soc. London, Ser. A 376, 20170461 (2018).
[Crossref]

F. Vedovato, C. Agnesi, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Extending Wheeler’s delayed-choice experiment to space,” Sci. Adv. 3, e1701180 (2017).
[Crossref]

D. Dequal, G. Vallone, D. Bacco, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental single-photon exchange along a space link of 7000 km,” Phys. Rev. A 93, 010301 (2016).
[Crossref]

G. Vallone, D. Dequal, M. Tomasin, F. Vedovato, M. Schiavon, V. Luceri, G. Bianco, and P. Villoresi, “Interference at the single photon level along satellite-ground channels,” Phys. Rev. Lett. 116, 253601 (2016).
[Crossref]

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115, 040502 (2015).
[Crossref]

R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, R. Laflamme, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. H. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. A. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest, experiments with quantum entanglement in space,” Europhys. News 40(3), 26–29 (2009).
[Crossref]

P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri, “Experimental verification of the feasibility of a quantum channel between space and Earth,” New J. Phys. 10, 33038 (2008).
[Crossref]

Bieliková, M.

M. Hillery, M. Ziman, V. Bužek, and M. Bieliková, “Towards quantum-based privacy and voting,” Phys. Lett. A. 349, 75–81 (2006).
[Crossref]

Bienfang, J. C.

T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. Woo Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, “Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding,” New J. Phys. 17, 022002 (2015).
[Crossref]

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,” Phys. Rev. Lett. 115, 250402 (2015).
[Crossref]

Bierhorst, P.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,” Phys. Rev. Lett. 115, 250402 (2015).
[Crossref]

Bisio, A.

A. Bisio, G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Information-disturbance tradeoff in estimating a unitary transformation,” Phys. Rev. A 82, 062305 (2010).
[Crossref]

Bitincka, E. E.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Blanche, P.-A. J.

P.-A. J. Blanche, D. N. Carothers, J. Wissinger, and N. Peyghambarian, “Digital micromirror device as a diffractive reconfigurable optical switch for telecommunication,” J. Micro/Nanolithography MEMS MOEMS 13, 011104 (2013).
[Crossref]

Blauensteiner, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007).
[Crossref]

Bloch, M.

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

Blok, M. S.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref]

Boaron, A.

A. Boaron, G. Boso, D. Rusca, C. Autebert, M. Caloz, M. Perrenoud, and H. Zbinden, “Secure quantum key distribution over 421 km of optical fiber,” Phys. Rev. Lett. 121, 190502 (2018).
[Crossref]

Bobrek, M.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).
[Crossref]

Bogdanov, S.

Bolk, J.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Boltasseva, A.

Bombelli, L.

L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, “Quantum source of entropy for black holes,” Phys. Rev. D 34, 373 (1986).
[Crossref]

Bonato, C.

A. Tomaello, C. Bonato, V. Da Deppo, G. Naletto, and P. Villoresi, “Link budget and background noise for satellite quantum key distribution,” Adv. Space Res. 47, 802–810 (2011).
[Crossref]

C. Bonato, A. Tomaello, V. Da Deppo, G. Naletto, and P. Villoresi, “Feasibility of satellite quantum key distribution,” New J. Phys. 11, 45017 (2009).
[Crossref]

P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri, “Experimental verification of the feasibility of a quantum channel between space and Earth,” New J. Phys. 10, 33038 (2008).
[Crossref]

C. Bonato, A. Tomaello, V. Da Deppo, G. Naletto, and P. Villoresi, Feasibility Analysis for Quantum Key Distribution between a LEO Satellite and Earth, in Quantum Communication and Quantum Networking, A. Sergienko, S. Pascazio, and P. Villoresi, eds., Vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Springer, 2010), pp. 96–99.

Boneh, D.

D. Boneh and M. Zhandry, “Secure signatures and chosen ciphertext security in a quantum computing world,” in Advances in Cryptology–CRYPTO, Lecture Notes in Computer Science, R. Canetti and J. A. Garay, eds. (Springer, 2013), Vol. 8043, pp. 361–379.

D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and M. Zhandry, “Random oracles in a quantum world,” in Advances in Cryptology ASI-ACRYPT, D. H. Lee and X. Wang, eds. (Springer, 2011), pp. 41–69.

Bonneau, D.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Bordel, D.

Boroson, D. M.

Bos, J. W.

A. K. Lenstra, J. P. Hughes, M. Augierand, J. W. Bos, T. Kleinjung, and C. Wachter, “Ron was wrong, Whit is right,” IACR Cryptology Report 2012/064 (2012).

Bose, S.

G. Bowen and S. Bose, “Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity,” Phys. Rev. Lett. 87, 267901 (2001).
[Crossref]

Boso, G.

A. Boaron, G. Boso, D. Rusca, C. Autebert, M. Caloz, M. Perrenoud, and H. Zbinden, “Secure quantum key distribution over 421 km of optical fiber,” Phys. Rev. Lett. 121, 190502 (2018).
[Crossref]

Boström, K.

K. Boström and T. Felbinger, “Deterministic secure direct communication using entanglement,” Phys. Rev. Lett. 89, 187902 (2002).
[Crossref]

K. Boström, “Secure direct communication using entanglement,” arXiv:0203064 v1 [quant-ph]) (2002).

Bouchard, F.

Bouda, J.

M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11, 075001 (2009).
[Crossref]

Bourennane, M.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

Bourgoin, J.-P.

V. Makarov, J.-P. Bourgoin, P. Chaiwongkhot, M. Gagné, T. Jennewein, S. Kaiser, R. Kashyap, M. Legré, C. Minshull, and S. Sajeed, “Creation of backdoors in quantum communications via laser damage,” Phys. Rev. A 94, 030302 (2016).
[Crossref]

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

P. V. P. Pinheiro, P. Chaiwongkhot, S. Sajeed, R. T. Horn, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Eavesdropping and countermeasures for backflash side channel in quantum cryptography,” arXiv:1804.10317 (2018).

Boutros, J.

A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for a continuous-variable quantum key distribution,” Phys. Rev. A 77, 042325 (2008).
[Crossref]

Bouwmeester, D.

D. Bouwmeester, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer-Verlag, 2000).

Bowen, G.

G. Bowen and S. Bose, “Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity,” Phys. Rev. Lett. 87, 267901 (2001).
[Crossref]

Bowen, W. P.

C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam, “Quantum cryptography without switching,” Phys. Rev. Lett. 93, 170504 (2004).
[Crossref]

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on chip and intra chip optical interconnects,” Laser Photon. Rev. 4, 751–779 (2010).
[Crossref]

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials 3, 1782–1802 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010).
[Crossref]

Y.-J. Chiu, H.-F. Chou, V. Kaman, P. Abraham, and J. E. Bowers, “High extinction ratio and saturation power traveling-wave electro-absorption modulator,” IEEE Photon. Technol. Lett. 14, 792–794 (2002).
[Crossref]

Bowles, J.

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

Boxleitner, W.

M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11, 075001 (2009).
[Crossref]

Boyd, R.

K. Brádler, M. Mirhosseini, R. Fickler, A. Broadbent, and R. Boyd, “Finite-key security analysis for multilevel quantum key distribution,” New J. Phys. 18, 073030 (2016).
[Crossref]

Boyd, R. W.

Boynton, N.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8, 021009 (2018).
[Crossref]

Bozzio, M.

M. Bozzio, A. Orieux, L. T. Vidarte, I. Zaquine, I. Kerenidis, and E. Diamanti, “Experimental investigation of practical unforgeable quantum money,” npj Quantum Inf. 4, 5 (2018).
[Crossref]

Bradler, K.

K. Bradler and C. Weedbrook, “A security proof of continuous-variable QKD using three coherent states,” Phys. Rev. A 97, 022310 (2018).
[Crossref]

Brádler, K.

K. Brádler, M. Mirhosseini, R. Fickler, A. Broadbent, and R. Boyd, “Finite-key security analysis for multilevel quantum key distribution,” New J. Phys. 18, 073030 (2016).
[Crossref]

Brakerski, Z.

Z. Brakerski, E. Kirshanova, D. Stehlé, and W. Wen, “Learning with errors and extrapolated Dihedral Cosets,” in Public-Key Cryptography – PKC 2018. PKC 2018, Lecture Notes in Computer Science, M. Abdalla and R. Dahab, eds. (Springer, 2018), Vol. 10770.

Brandão, F. G. S.

F. G. S. Brandão, R. Ramanathan, A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, T. Szarek, and H. Wojewódka, “Realistic noise-tolerant randomness amplification using finite number of devices,” Nat. Commun. 7, 11345 (2016).
[Crossref]

Brask, J. B.

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–179 (2014).
[Crossref]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
[Crossref]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68, 557–559 (1992).
[Crossref]

C.-H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Crypt. 5, 3–28 (1992).
[Crossref]

C. H. Bennett, G. Brassard, S. Breidbart, and S. Wiesner, “Quantum cryptography, or unforgeable subway tokens,” in Advances in Cryptology: Proceedings of Crypto’ 82, California, USA (Plenum, 1982), pp. 267–275.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the International Conference on Computers, Systems & Signal Processing, Bangalore, India, December 1984, pp. 175–179.

G. Brassard, “Brief history of quantum cryptography: a personal perspective,” in Proceedings of IEEE Information Theory Workshop on Theory and Practice in Information Theoretic Security, Awaji Island, Japan (2005), pp. 19–23.

Braun, T.

M. Rau, T. Heindel, S. Unsleber, T. Braun, J. Fischer, S. Frick, S. Nauerth, C. Schneider, G. Vest, S. Reitzenstein, M. Kamp, A. Forchel, S. Höfling, and H. Weinfurter, “Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—a proof of principle experiment,” New J. Phys. 16, 043003 (2014).
[Crossref]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwona, T. Braun, S. Reitzensteinb, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]

Braunstein, S. L.

R. Laurenza, S. Tserkis, L. Banchi, S. L. Braunstein, T. C. Ralph, and S. Pirandola, “Tight bounds for private communication over bosonic Gaussian channels based on teleportation simulation with optimal finite resources,” Phys. Rev. A 100, 042301 (2019).
[Crossref]

R. Laurenza, S. L. Braunstein, and S. Pirandola, “Finite-resource teleportation stretching for continuous-variable systems,” Sci. Rep. 8, 15267 (2018).
[Crossref]

R. Laurenza, C. Lupo, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Channel simulation in quantum metrology,” Quantum Meas. Quantum Metrol. 5, 1–12 (2018).
[Crossref]

S. Pirandola and S. L. Braunstein, “Unite to build the quantum internet,” Nature 532, 169–171 (2016).
[Crossref]

C. Ottaviani, R. Laurenza, T. P. W. Cope, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Secret key capacity of the thermal-loss channel: improving the lower bound,” Proc. SPIE 9996, 999609 (2016).
[Crossref]

S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nat. Photonics 9, 641–652 (2015).
[Crossref]

S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, “High-rate quantum cryptography in untrusted networks,” Nat. Photonics 9, 397–402 (2015).
[Crossref]

C. Ottaviani, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Continuous-variable quantum cryptography with an untrusted relay: detailed security analysis of the symmetric configuration,” Phys. Rev. A 91, 022320 (2015).
[Crossref]

G. Spedalieri, C. Ottaviani, S. L. Braunstein, T. Gehring, C. S. Jacobsen, U. L. Andersen, and S. Pirandola, “Quantum cryptography with an ideal local relay,” Proc. SPIE 9648, 96480Z (2015).
[Crossref]

L. Banchi, S. L. Braunstein, and S. Pirandola, “Quantum fidelity for arbitrary Gaussian states,” Phys. Rev. Lett. 115, 260501 (2015).
[Crossref]

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref]

S. Pirandola, R. García-Patrón, S. L. Braunstein, and S. Lloyd, “Direct and reverse secret-key capacities of a quantum channel,” Phys. Rev. Lett. 102, 050503 (2009).
[Crossref]

S. Pirandola, S. L. Braunstein, S. Lloyd, and S. Mancini, “Confidential direct communications: a quantum approach using continuous variables,” IEEE J. Sel. Top. Quantum Electron. 15, 1570–1580 (2009).
[Crossref]

S. Pirandola, S. L. Braunstein, S. Mancini, and S. Lloyd, “Quantum direct communication with continuous variables,” Europhys. Lett. 84, 20013 (2008).
[Crossref]

S. Pirandola, S. Mancini, S. Lloyd, and S. L. Braunstein, “Continuous variable quantum cryptography using two-way quantum communication,” Nat. Phys. 4, 726–730 (2008).
[Crossref]

S. Pirandola, S. Lloyd, and S. L. Braunstein, “Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography,” Phys. Rev. Lett. 101, 200504 (2008).
[Crossref]

S. L. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

S. L. Braunstein, G. M. D’Ariano, G. J. Milburn, and M. F. Sacchi, “Universal teleportation with a twist,” Phys. Rev. Lett. 84, 3486–3489 (2000).
[Crossref]

P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482 (2000).
[Crossref]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872 (1998).
[Crossref]

S. Pirandola, S. L. Braunstein, R. Laurenza, C. Ottaviani, T. P. W. Cope, G. Spedalieri, and L. Banchi, “Theory of channel simulation and bounds for private communication,” Quantum Sci. Technol.3, 035009 (2018).

Breidbart, S.

C. H. Bennett, G. Brassard, S. Breidbart, and S. Wiesner, “Quantum cryptography, or unforgeable subway tokens,” in Advances in Cryptology: Proceedings of Crypto’ 82, California, USA (Plenum, 1982), pp. 267–275.

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–4740 (2000).
[Crossref]

Brennen, G.

D. Aggarwal, G. Brennen, T. Lee, M. Santha, and M. Tomamiche, “Quantum attacks on Bitcoin, and how to protect against them,” Ledger3 (2018).

Bricher, D.

J. Handsteiner, A. S. Friedman, D. Rauch, J. Gallicchio, B. Liu, H. Hosp, J. Kofler, D. Bricher, M. Fink, C. Leung, A. Mark, H. T. Nguyen, I. Sanders, F. Steinlechner, R. Ursin, S. Wengerowsky, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, “Cosmic Bell test: measurement settings from milky way stars,” Phys. Rev. Lett. 118, 060401 (2017).
[Crossref]

Brida, G.

A. Meda, I. P. Degiovanni, A. Tosi, Z. L. Yuan, G. Brida, and M. Genovese, “Backflash light characterization to prevent QKD zero-error hacking,” Light Sci. Appl. 6, e16261 (2017).
[Crossref]

Briegel, H. J.

A. Pirker, M. Zwerger, V. Dunjko, H. J. Briegel, and W. Dür, “Simple proof of confidentiality for private quantum channels in noisy environments,” Quantum Sci. Technol. 4, 025009 (2019).
[Crossref]

M. Zwerger, A. Pirker, V. Dunjko, H. J. Briegel, and W. Dür, “Long-range big quantum-data transmission,” Phys. Rev. Lett. 120, 030503 (2018).
[Crossref]

A. Pirker, V. Dunjko, W. Dür, and H. J. Briegel, “Entanglement generation secure against general attacks,” New J. Phys. 19, 113012 (2017).
[Crossref]

Briegel, H.-J.

W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A 59, 169–181 (1999).
[Crossref]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Brierley, R. T.

V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M. Girvin, B. M. Terhal, and L. Jiang, “Performance and structure of single-mode bosonic codes,” Phys. Rev. A 97, 032346 (2018).
[Crossref]

Brif, C.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).
[Crossref]

Brink, D.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4, e338 (2015).
[Crossref]

Broadbent, A.

A. Broadbent, “How to verify a quantum computation,” Theory Comput. 14, 1–37 (2018).
[Crossref]

K. Brádler, M. Mirhosseini, R. Fickler, A. Broadbent, and R. Boyd, “Finite-key security analysis for multilevel quantum key distribution,” New J. Phys. 18, 073030 (2016).
[Crossref]

A. Broadbent and C. Schaffner, “Quantum cryptography beyond quantum key distribution,” Des. Codes Cryptogr. 78, 351–382 (2016).
[Crossref]

S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012).
[Crossref]

A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal blind quantum computation,” in 50th Annual IEEE Symposium on Foundations of Computer Science (IEEE, 2009).

A. Broadbent, G. Gutoski, and D. Stebila, “Quantum one-time programs,” in Advances in Cryptology—CRYPTO, R. Canetti and J. A. Garay, eds., Lecture Notes in Computer Science (Springer, 2013), Vol. 8043.

Broadbent, C. J.

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett. 98, 060503 (2007).
[Crossref]

Brodutch, A.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

Broeke, R. G.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Brouri, R.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref]

Brown, P. J.

P. J. Brown, S. Ragy, and R. Colbeck, “A framework for quantum-secure device-independent randomness expansion,” IEEE Trans. Inf. Theory 66, 2964–2987 (2020).
[Crossref]

Browne, D. E.

M. Varnava, D. E. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[Crossref]

J. Eisert, D. E. Browne, S. Scheel, and M. B. Plenio, “Distillation of continuous-variable entanglement with optical means,” Ann. Phys. 311, 431–458 (2004).
[Crossref]

Brukner, C.

R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, R. Laflamme, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. H. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. A. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest, experiments with quantum entanglement in space,” Europhys. News 40(3), 26–29 (2009).
[Crossref]

Brunner, H. H.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the integration of CV quantum key distribution in deployed optical networks,” IEEE Photon. Technol. Lett. 30, 650–653 (2018).
[Crossref]

H. H. Brunner, L. C. Comandar, F. Karinou, S. Bettelli, D. Hillerkuss, F. Fung, D. Wang, S. Mikroulis, Y. Qian, M. Kuschnerov, A. Poppe, C. Xie, and M. Peev, “A low-complexity heterodyne CV-QKD architecture,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017).

Brunner, N.

T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, “Self-testing quantum random number generator,” Phys. Rev. Lett. 114, 150501 (2015).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[Crossref]

S. Pironio, A. Acin, N. Brunner, N. Gisin, S. Massar, and V. Scarani, “Device-independent quantum key distribution secure against collective attacks,” New J. Phys. 11, 045021 (2009).
[Crossref]

A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

Bruschi, D. E.

J. Kohlrus, D. E. Bruschi, and I. Fuentes, “Quantum-metrology estimation of spacetime parameters of the Earth outperforming classical precision,” Phys. Rev. A 99, 032350 (2019).
[Crossref]

J. Kohlrus, D. E. Bruschi, J. Louko, and I. Fuentes, “Quantum communications and quantum metrology in the spacetime of a rotating planet,” EPJ Quantum Technol. 4, 7 (2017).
[Crossref]

D. E. Bruschi, T. C. Ralph, I. Fuentes, T. Jennewein, and M. Razavi, “Spacetime effects on satellite-based quantum communications,” Phys. Rev. D 90, 045041 (2014).
[Crossref]

D. E. Bruschi, A. Datta, R. Ursin, T. C. Ralph, and I. Fuentes, “Quantum estimation of the Schwarzschild spacetime parameters of the Earth,” Phys. Rev. D 90, 124001 (2014).
[Crossref]

D. E. Bruschi, T. M. Barlow, M. Razavi, and A. Beige, “Repeat-until-success quantum repeaters,” Phys. Rev. A 90, 032306 (2014).
[Crossref]

Bruß, D.

D. Miller, T. Holz, H. Kampermann, and D. Bruß, “Parameter regimes for surpassing the PLOB bound with error-corrected qudit repeaters,” Quantum 3, 216 (2019).
[Crossref]

F. Grasselli, H. Kampermann, and D. Bruß, “Conference key agreement with single-photon interference,” New J. Phys. 21, 123002 (2019).

T. Holz, H. Kampermann, and D. Bruß, “Device-independent secret-key-rate analysis for quantum repeaters,” Phys. Rev. A 97, 012337 (2018).
[Crossref]

M. Epping, H. Kampermann, and D. Bruß, “Large-scale quantum networks based on graphs,” New J. Phys. 18, 053036 (2016).
[Crossref]

M. Epping, H. Kampermann, and D. Bruß, “Robust entanglement distribution via quantum network coding,” New J. Phys. 18, 103052 (2016).
[Crossref]

S. Abruzzo, H. Kampermann, and D. Bruß, “Measurement-device-independent quantum key distribution with quantum memories,” Phys. Rev. A 89, 012301 (2014).
[Crossref]

D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[Crossref]

D. Bruß, “Optimal eavesdropping in quantum cryptography with six states,” Phys. Rev. Lett. 81, 3018–3021 (1998).
[Crossref]

Buchmann, J.

D. J. Bernstein, J. Buchmann, and E. Dahmen, Post-Quantum Cryptography, 1st ed. (Springer, 2008).

Bugge, A. N.

A. N. Bugge, S. Sauge, A. M. M. Ghazali, J. Skaar, L. Lydersen, and V. Makarov, “Laser damage helps the eavesdropper in quantum cryptography,” Phys. Rev. Lett. 112, 070503 (2014).
[Crossref]

Buhrman, H.

H. Buhrman, N. Chandran, S. Fehr, R. Gelles, V. Goyal, R. Ostrovsky, and C. Schaffner, “Position-based quantum cryptography: impossibility and constructions,” SIAM J. Comput. 43, 150–178 (2014).
[Crossref]

H. Buhrman, M. Christandl, P. Hayden, H.-K. Lo, and S. Wehner, “Possibility, impossibility and cheat-sensitivity of quantum bit string commitment,” Phys. Rev. A 78, 022316 (2008).
[Crossref]

H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
[Crossref]

Bulla, L.

D. Rauch, J. Handsteiner, A. Hochrainer, J. Gallicchio, A. S. Friedman, C. Leung, B. Liu, L. Bulla, S. Ecker, F. Steinlechner, R. Ursin, B. Hu, D. Leon, C. Benn, A. Ghedina, M. Cecconi, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, “Cosmic Bell test using random measurement settings from high-redshift quasars,” Phys. Rev. Lett. 121, 080403 (2018).
[Crossref]

Buller, G. S.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7, 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41, 4883–4886 (2016).
[Crossref]

R. J. Donaldson, R. J. Collins, K. Kleczkowska, R. Amiri, P. Wallden, V. Dunjko, J. Jeffers, E. Andersson, and G. S. Buller, “Experimental demonstration of kilometer-range quantum digital signatures,” Phys. Rev. A 93, 012329 (2016).
[Crossref]

R. J. Collins, R. J. Donaldson, V. Dunjko, P. Wallden, P. J. Clarke, E. Andersson, J. Jeffers, and G. S. Buller, “Realization of quantum digital signatures without the requirement of quantum memory,” Phys. Rev. Lett. 113, 040502 (2014).
[Crossref]

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref]

Bunandar, D.

C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. C. Wong, J. H. Shapiro, S. A. Hamilton, and D. Englund, “Large-alphabet encoding for higher-rate quantum key distribution,” Opt. Express 27, 17539–17549 (2019).

D. Bunandar, N. Harris, Z. Zhang, C. Lee, R. Ding, T. Baehr-Jones, M. Hochberg, J. Shapiro, F. Wong, and D. Englund, “Wavelength-division multiplexed quantum key distribution on silicon photonic integrated devices,” Bull. Am. Phys. Soc. 63, A180009 (2018).

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8, 021009 (2018).
[Crossref]

J. Notaros, J. Mower, M. Heuck, C. Lupo, N. C. Harris, G. R. Steinbrecher, D. Bunandar, T. Baehr-Jones, M. Hochberg, S. Lloyd, and D. Englund, “Programmable dispersion on a photonic integrated circuit for classical and quantum applications,” Opt. Express 25, 21275–21285 (2017).
[Crossref]

D. Bunandar, Z. Zhang, J. H. Shapiro, and D. R. Englund, “Practical high-dimensional quantum key distribution with decoy states,” Phys. Rev. A 91, 022336 (2015).
[Crossref]

Burg, A.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16, 013047 (2014).
[Crossref]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Bussières, F.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

Bužek, V.

M. Hillery, M. Ziman, V. Bužek, and M. Bieliková, “Towards quantum-based privacy and voting,” Phys. Lett. A. 349, 75–81 (2006).
[Crossref]

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

C.-Z. Peng, J. Z.

J. Z. C.-Z. Peng, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).
[Crossref]

Cable, H.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

Cacciapuoti, L.

R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, R. Laflamme, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. H. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. A. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest, experiments with quantum entanglement in space,” Europhys. News 40(3), 26–29 (2009).
[Crossref]

Cachin, C.

C. Cachin and U. M. Maurer, “Linking information reconciliation and privacy amplification,” J. Crypt. 10, 97–110 (1997).
[Crossref]

Cahall, C.

N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, “Provably secure and high-rate quantum key distribution with time-bin qudits,” Sci. Adv. 3, e1701491 (2017).
[Crossref]

Cai, H.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8, 021009 (2018).
[Crossref]

Cai, Q.-Y.

H. Lu, C.-H. F. Fung, X. Ma, and Q.-Y. Cai, “Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel,” Phys. Rev. A 84, 042344 (2011).
[Crossref]

Q.-Y. Cai, “Eavesdropping on the two-way quantum communication protocols with invisible photons,” Phys. Lett. A 351, 23–25 (2006).
[Crossref]

Q.-Y. Cai and B.-W. Li, “Deterministic secure communication without using entanglement,” Chin. Phys. Lett. 21, 601 (2004).
[Crossref]

Q.-Y. Cai, “The “ping-pong” protocol can be attacked without eavesdropping,” Phys. Rev. Lett. 91, 109801 (2003).
[Crossref]

Cai, W.

Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. Xu, X. Zhang, Z. Wang, M. Li, X. Zhang, Z. Zheng, B. Chu, X. Gao, N. Meng, W. Cai, Z. Wang, G. Wang, S. Yu, and H. Guo, “Continuous-variable QKD over 50 km commercial fiber,” Quantum Sci. Technol. 4, 035006 (2019).
[Crossref]

Cai, W. Q.

J. G. Ren, P. Xu, H. L. Yong, L. Zhang, S. K. Liao, J. Yin, W. Y. Liu, W. Q. Cai, M. Yang, L. Li, K.-X. Yang, X. Han, Y.-Q. Yao, J. Li, H.-Y. Wu, S. Wan, L. Liu, D.-Q. Liu, Y.-W. Kuang, Z.-P. He, P. Shang, C. Guo, R.-H. Zheng, K. Tian, Z.-C. Zhu, N.-L. Liu, C.-Y. Lu, R. Shu, Y.-A. Chen, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Ground-to-satellite quantum teleportation,” Nature 549, 70–73 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, J. G. Ren, S. K. Liao, L. Zhang, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, M. Li, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground entanglement-based quantum key distribution,” Phys. Rev. Lett. 119, 200501 (2017).
[Crossref]

Cai, W.-Q.

S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. A. Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger, and J.-W. Pan, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett. 120, 030501 (2018).
[Crossref]

S. K. Liao, J. Lin, J. G. Ren, W. Y. Liu, J. Qiang, J. Yin, Y. Li, Q. Shen, L. Zhang, X.-F. Liang, H.-L. Yong, F.-Z. Li, Y.-Y. Yin, Y. Cao, W.-Q. Cai, W.-Z. Zhang, J.-J. Jia, J.-C. Wu, X.-W. Chen, S.-C. Zhang, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, L. Ma, L. Li, G.-S. Pan, Q. Zhang, Y.-A. Chen, C.-Y. Lu, N.-L. Liu, X. Ma, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Space-to-ground quantum key distribution using a small-sized payload on Tiangong-2 space lab,” Chin. Phys. Lett. 34, 090302 (2017).
[Crossref]

S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549, 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356, 1140–1144 (2017).
[Crossref]

Cai, X.

Y. Ding, D. Bacco, K. Dalgaard, X. Cai, X. Zhou, K. Rottwitt, and L. K. Oxenløwe, “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” npj Quantum Inf. 3, 25 (2017).
[Crossref]

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref]

X. Cai, J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, “Integrated compact optical vortex beam emitters,” Science 338, 363–366 (2012).
[Crossref]

Cai, Z.-Q.

T.-Y. Wang, Z.-Q. Cai, Y.-L. Ren, and R.-L. Zhang, “Security of quantum digital signatures for classical messages,” Sci. Rep. 5, 9231 (2015).
[Crossref]

Cairns, E.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

Calderaro, L.

L. Calderaro, C. Agnesi, D. Dequal, F. Vedovato, M. Schiavon, A. Santamato, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Towards quantum communication from global navigation satellite system,” Quantum Sci. Technol. 4, 015012 (2019).
[Crossref]

C. Agnesi, F. Vedovato, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Exploring the boundaries of quantum mechanics: advances in satellite quantum communications,” Philos. Trans. R. Soc. London, Ser. A 376, 20170461 (2018).
[Crossref]

F. Vedovato, C. Agnesi, M. Schiavon, D. Dequal, L. Calderaro, M. Tomasin, D. G. Marangon, A. Stanco, V. Luceri, G. Bianco, G. Vallone, and P. Villoresi, “Extending Wheeler’s delayed-choice experiment to space,” Sci. Adv. 3, e1701180 (2017).
[Crossref]

Calderbank, A. R.

A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996).
[Crossref]

Caleb, J.

R. Valivarthi, Q. Zhou, J. Caleb, F. Marsili, V. B. Verma, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, “A cost-effective measurement-device-independent quantum key distribution system for quantum networks,” Quantum Sci. Technol. 2, 04LT01 (2017).
[Crossref]

Caloz, M.

A. Boaron, G. Boso, D. Rusca, C. Autebert, M. Caloz, M. Perrenoud, and H. Zbinden, “Secure quantum key distribution over 421 km of optical fiber,” Phys. Rev. Lett. 121, 190502 (2018).
[Crossref]

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, and R. J. Warburton, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

Calsamiglia, J.

J. Calsamiglia and N. Lütkenhaus, “Maximum efficiency of a linear-optical Bell-state analyzer,” Appl. Phys. B 72, 67–71 (2001).
[Crossref]

Camacho, R.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8, 021009 (2018).
[Crossref]

Camacho, R. M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).
[Crossref]

Campbell, E. T.

E. T. Campbell, M. G. Genoni, and J. Eisert, “Continuous-variable entanglement distillation and noncommutative central limit theorems,” Phys. Rev. A 87, 042330 (2013).
[Crossref]

Canale, M.

D. Bacco, M. Canale, N. Laurenti, G. Vallone, and P. Villoresi, “Experimental quantum key distribution with finite-key security analysis for noisy channels,” Nat. Commun. 4, 2363 (2013).
[Crossref]

Cañas, G.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Canetti, R.

R. Canetti, “Security and composition of multiparty cryptographic protocols,” J. Crypt. 13, 143–202 (2000).
[Crossref]

R. Canetti, “Universally composable security: a new paradigm for cryptographic protocols,” in Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS-01) (2001), pp. 136–145.

Cao, Y.

S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. A. Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger, and J.-W. Pan, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett. 120, 030501 (2018).
[Crossref]

X. Wang, Y. Cao, P. Wang, and Y. Li, “Advantages of the coherent state compared with squeezed state in unidimensional continuous variable quantum key distribution,” Quantum Inf. Process. 17, 344 (2018).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, J. G. Ren, S. K. Liao, L. Zhang, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, M. Li, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground entanglement-based quantum key distribution,” Phys. Rev. Lett. 119, 200501 (2017).
[Crossref]

S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549, 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356, 1140–1144 (2017).
[Crossref]

S. K. Liao, J. Lin, J. G. Ren, W. Y. Liu, J. Qiang, J. Yin, Y. Li, Q. Shen, L. Zhang, X.-F. Liang, H.-L. Yong, F.-Z. Li, Y.-Y. Yin, Y. Cao, W.-Q. Cai, W.-Z. Zhang, J.-J. Jia, J.-C. Wu, X.-W. Chen, S.-C. Zhang, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, L. Ma, L. Li, G.-S. Pan, Q. Zhang, Y.-A. Chen, C.-Y. Lu, N.-L. Liu, X. Ma, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Space-to-ground quantum key distribution using a small-sized payload on Tiangong-2 space lab,” Chin. Phys. Lett. 34, 090302 (2017).
[Crossref]

Cao, Z.

Y. Liu, Z. Cao, C. Wu, D. Fukuda, L. You, J. Zhong, T. Numata, S. Chen, W. Zhang, S.-C. Shi, C.-Y. Lu, Z. Wang, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “Experimental quantum data locking,” Phys. Rev. A 94, 020301 (2016).
[Crossref]

X. Ma, X. Yuan, Z. Cao, B. Qi, and Z. Zhang, “Quantum random number generation,” npj Quantum Inf. 2, 16021 (2016).
[Crossref]

Capmany, J.

R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, R. Laflamme, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. H. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. A. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest, experiments with quantum entanglement in space,” Europhys. News 40(3), 26–29 (2009).
[Crossref]

Cardenas, J.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Cardinal, J.

G. Van Assche, J. Cardinal, and N. Cerf, “Reconciliation of a quantum-distributed Gaussian key,” IEEE Trans. Inf. Theory 50, 394–400 (2004).
[Crossref]

Cariñe, J.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Carmichael, H. J.

H. Nha and H. J. Carmichael, “Distinguishing two single-mode Gaussian states by homodyne detection: an information-theoretic approach,” Phys. Rev. A 71, 032336 (2005).
[Crossref]

Carothers, D. N.

P.-A. J. Blanche, D. N. Carothers, J. Wissinger, and N. Peyghambarian, “Digital micromirror device as a diffractive reconfigurable optical switch for telecommunication,” J. Micro/Nanolithography MEMS MOEMS 13, 011104 (2013).
[Crossref]

Carrasco-Casado, A.

H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki, and M. Toyoshima, “Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite,” Nat. Photonics 11, 502–508 (2017).
[Crossref]

Caruso, F.

F. Caruso, V. Giovannetti, and A. S. Holevo, “One-mode Bosonic Gaussian channels: a full weak-degradability classification,” New J. Phys. 8, 310 (2006).
[Crossref]

F. Caruso and V. Giovannetti, “Degradability of Bosonic Gaussian channels,” Phys. Rev. A 74, 062307 (2006).
[Crossref]

Casati, G.

G. Benenti, G. Casati, and D. Rossini, Principles of Quantum Computation and Information: A Comprehensive Textbook (World Scientific, 2019).

Caselunghe, D.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16, 013047 (2014).
[Crossref]

Cavalcanti, D.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[Crossref]

Caves, C. M.

C. A. Fuchs and C. M. Caves, “Mathematical techniques for quantum communication,” Open Syst. Inf. Dyn. 3, 345–356 (1995).
[Crossref]

Cecconi, M.

D. Rauch, J. Handsteiner, A. Hochrainer, J. Gallicchio, A. S. Friedman, C. Leung, B. Liu, L. Bulla, S. Ecker, F. Steinlechner, R. Ursin, B. Hu, D. Leon, C. Benn, A. Ghedina, M. Cecconi, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, “Cosmic Bell test using random measurement settings from high-redshift quasars,” Phys. Rev. Lett. 121, 080403 (2018).
[Crossref]

Cerè, A.

M. Lucamarini, A. Cerè, G. Di Giuseppe, S. Mancini, D. Vitali, and P. Tombesi, “Two-way protocol with imperfect devices,” Open Syst. Inf. Dyn. 14, 169–178 (2007).
[Crossref]

A. Cerè, M. Lucamarini, G. Di Giuseppe, and P. Tombesi, “Experimental test of two-way quantum key distribution in presence of controlled noise,” Phys. Rev. Lett. 96, 200501 (2006).
[Crossref]

Cerf, N.

G. Van Assche, J. Cardinal, and N. Cerf, “Reconciliation of a quantum-distributed Gaussian key,” IEEE Trans. Inf. Theory 50, 394–400 (2004).
[Crossref]

Cerf, N. J.

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110, 030502 (2013).
[Crossref]

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

J. Fiurášek and N. J. Cerf, “Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution,” Phys. Rev. A 86, 060302 (2012).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

J. Niset, J. Fiurasek, and N. J. Cerf, “No-Go theorem for Gaussian quantum error correction,” Phys. Rev. Lett. 102, 120501 (2009).
[Crossref]

R. García-Patrón and N. J. Cerf, “Continuous-variable quantum key distribution protocols over noisy channels,” Phys. Rev. Lett. 102, 130501 (2009).
[Crossref]

J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[Crossref]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref]

F. Grosshans and N. J. Cerf, “Continuous-variable quantum cryptography is secure against non-Gaussian attacks,” Phys. Rev. Lett. 92, 047905 (2004).
[Crossref]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref]

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002).
[Crossref]

N. J. Cerf, M. Lévy, and G. V. Assche, “Quantum distribution of Gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
[Crossref]

Chailloux, A.

A. Pappa, P. Jouguet, T. Lawson, A. Chailloux, M. Legré, P. Trinkler, I. Kerenidis, and E. Diamanti, “Experimental plug and play quantum coin flipping,” Nat. Commun. 5, 3717 (2014).
[Crossref]

A. Chailloux and I. Kerenidis, “Optimal bounds for quantum bit commitment,” in IEEE 52nd Annual Symposium on Foundations of Computer Science (IEEE, 2011).

Chaiwongkhot, P.

V. Makarov, J.-P. Bourgoin, P. Chaiwongkhot, M. Gagné, T. Jennewein, S. Kaiser, R. Kashyap, M. Legré, C. Minshull, and S. Sajeed, “Creation of backdoors in quantum communications via laser damage,” Phys. Rev. A 94, 030302 (2016).
[Crossref]

S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch,” Phys. Rev. A 91, 062301 (2015).
[Crossref]

P. V. P. Pinheiro, P. Chaiwongkhot, S. Sajeed, R. T. Horn, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, “Eavesdropping and countermeasures for backflash side channel in quantum cryptography,” arXiv:1804.10317 (2018).

Chan, P.

A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, “Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks,” Phys. Rev. Lett. 111, 130501 (2013).
[Crossref]

Chandran, N.

H. Buhrman, N. Chandran, S. Fehr, R. Gelles, V. Goyal, R. Ostrovsky, and C. Schaffner, “Position-based quantum cryptography: impossibility and constructions,” SIAM J. Comput. 43, 150–178 (2014).
[Crossref]

Chandrasekara, R.

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. K. L. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons aboard a nanosatellite,” Phys. Rev. Appl. 5, 054022 (2016).
[Crossref]

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2015).
[Crossref]

Chang, X.

J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356, 1140–1144 (2017).
[Crossref]

Charbon, E.

D. K. Oi, A. Ling, G. Vallone, P. Villoresi, S. Greenland, E. Kerr, M. Macdonald, H. Weinfurter, H. Kuiper, E. Charbon, and R. Ursin, “CubeSat quantum communications mission,” EPJ Quantum Technol. 4, 6 (2017).
[Crossref]

Chaturvedi, S.

R. Simon, S. Chaturvedi, and V. Srinivasan, “Congruences and canonical forms for a positive matrix: application to the Schweinler–Wigner extremum principle,” J. Math. Phys. 40, 3632 (1999).
[Crossref]

Chau, F. S.

H. Du, F. S. Chau, and G. Zhou, “Mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators,” Micromachines 7, 69 (2016).
[Crossref]

Chau, H. F.

H.-K. Lo, H. F. Chau, and M. Ardehali, “Efficient quantum key distribution scheme and a proof of its unconditional security,” J. Crypt. 18, 133–165 (2005).
[Crossref]

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref]

H.-K. Lo and H. F. Chau, “Why quantum bit commitment and ideal quantum coin tossing are impossible,” Physica D 120, 177–187 (1998).
[Crossref]

Chaum, D.

D. Chaum and S. Roijakkers, “Unconditionally secure digital signatures,” in Proceeding CRYPTO ’90 Proceedings of the 10th Annual International Cryptology Conference on Advances in Cryptology, Lecture Notes in Computer Science (Springer-Verlag, 1991), pp. 206–214.

Chefles, A.

A. Chefles, “Quantum state discrimination,” Contemp. Phys. 41, 401–424 (2000).
[Crossref]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect,” Phys. Rev. Lett. 53, 2173–2176 (1984).
[Crossref]

Chen, C.

D. Bunandar, A. Lentine, C. Lee, H. Cai, C. M. Long, N. Boynton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter, A. Starbuck, A. Pomerene, S. Hamilton, F. N. C. Wong, R. Camacho, P. Davids, J. Urayama, and D. Englund, “Metropolitan quantum key distribution with silicon photonics,” Phys. Rev. X 8, 021009 (2018).
[Crossref]

Z. Zhang, C. Chen, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, “Experimental quantum key distribution at 1.3 gigabit-per-second secret-key rate over a 10 dB loss channel,” Quantum Sci. Technol. 3, 025007 (2018).
[Crossref]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

Chen, H.

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404 km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

G. Z. Tang, S. H. Sun, F. Xu, H. Chen, C. Y. Li, and L. M. Liang, “Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 94, 032326 (2016).
[Crossref]

Chen, J.-P.

Y. Liu, Z.-W. Yu, W. Zhang, J.-Y. Guan, J.-P. Chen, C. Zhang, X.-L. Hu, H. Li, C. Jiang, J. Lin, T.-Y. Chen, L. You, Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan, “Experimental twin-field quantum key distribution through sending or not sending,” Phys. Rev. Lett. 123, 100505 (2019).
[Crossref]

Chen, K.

H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref]

Chen, L.

M. J. Strain, X. Cai, J. Wang, J. Zhu, D. B. Phillips, L. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5, 4856 (2014).
[Crossref]

Chen, M.-C.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Chen, S.

H. Wang, Z.-C. Duan, Y.-H. Li, S. Chen, J.-P. Li, Y.-M. He, M.-C. Chen, Y. He, X. Ding, C.-Z. Peng, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Near-transform-limited single photons from an efficient solid-state quantum emitter,” Phys. Rev. Lett. 116, 213601 (2016).
[Crossref]

Y. Liu, Z. Cao, C. Wu, D. Fukuda, L. You, J. Zhong, T. Numata, S. Chen, W. Zhang, S.-C. Shi, C.-Y. Lu, Z. Wang, X. Ma, J. Fan, Q. Zhang, and J.-W. Pan, “Experimental quantum data locking,” Phys. Rev. A 94, 020301 (2016).
[Crossref]

Chen, S.-J.

H.-L. Yin, Y. Fu, H. Liu, Q.-J. Tang, J. Wang, L.-X. You, W.-J. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, T.-Y. Chen, Z.-B. Chen, and J.-W. Pan, “Experimental quantum digital signature over 102 km,” Phys. Rev. A 95, 032334 (2017).
[Crossref]

H.-L. Yin, Y. Fu, H. Liu, Q.-J. Tang, J. Wang, L.-X. You, W.-J. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, T.-Y. Chen, Z.-B. Chen, and J.-W. Pan, “Experimental quantum digital signature over 102 km,” Phys. Rev. A 95, 032334 (2017).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404 km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Chen, T.-Y.

Y. Liu, Z.-W. Yu, W. Zhang, J.-Y. Guan, J.-P. Chen, C. Zhang, X.-L. Hu, H. Li, C. Jiang, J. Lin, T.-Y. Chen, L. You, Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan, “Experimental twin-field quantum key distribution through sending or not sending,” Phys. Rev. Lett. 123, 100505 (2019).
[Crossref]

H.-L. Yin, Y. Fu, H. Liu, Q.-J. Tang, J. Wang, L.-X. You, W.-J. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, T.-Y. Chen, Z.-B. Chen, and J.-W. Pan, “Experimental quantum digital signature over 102 km,” Phys. Rev. A 95, 032334 (2017).
[Crossref]

H.-L. Yin, W.-L. Wang, Y.-L. Tang, Q. Zhao, H. Liu, X.-X. Sun, W.-J. Zhang, H. Li, I. V. Puthoor, L.-X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T.-Y. Chen, and J.-W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404 km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
[Crossref]

Y.-L. Tang, H.-L. Yin, S.-J. Chen, Y. Liu, W.-J. Zhang, X. Jiang, L. Zhang, J. Wang, L.-X. You, J.-Y. Guan, D.-X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T.-Y. Chen, Q. Zhang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over 200 km,” Phys. Rev. Lett. 113, 190501 (2014).
[Crossref]

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Chen, W.

S. Wang, D.-Y. He, Z.-Q. Yin, F.-Y. Lu, C.-H. Cui, W. Chen, Z. Zhou, G.-C. Guo, and Z.-F. Han, “Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system,” Phys. Rev. X 9, 021046 (2019).
[Crossref]

F.-Y. Lu, Z.-Q. Yin, C.-H. Cui, G.-J. Fan-Yuan, R. Wang, S. Wang, W. Chen, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Improving the performance of twin-field quantum key distribution,” Phys. Rev. A 100, 022306 (2019).

C. Cui, Z.-Q. Yin, R. Wang, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Twin-field quantum key distribution without phase postselection,” Phys. Rev. Appl. 11, 034053 (2019).
[Crossref]

C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Measurement-device-independent quantum key distribution robust against environmental disturbances,” Optica 4, 1016–1023 (2017).
[Crossref]

S. K. Liao, H. L. Yong, C. Liu, G. L. Shentu, D. D. Li, J. Lin, H. Dai, S. Q. Zhao, B. Li, J. Y. Guan, W. Chen, Y.-H. Gong, Y. Li, Z.-H. Lin, G.-S. Pan, J. S. Pelc, M. M. Fejer, W.-Z. Zhang, W.-Y. Liu, J. Yin, J.-G. Ren, X.-B. Wang, Q. Zhang, C.-Z. Peng, and J.-W. Pan, “Long-distance free-space quantum key distribution in daylight towards inter-satellite communication,” Nat. Photonics 11, 509–513 (2017).
[Crossref]

J.-Z. Huang, S. Kunz-Jacques, P. Jouguet, C. Weedbrook, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking on quantum key distribution using homodyne detection,” Phys. Rev. A 89, 032304 (2014).
[Crossref]

J.-Z. Huang, C. Weedbrook, Z.-Q. Yin, S. Wang, H.-W. Li, W. Chen, G.-C. Guo, and Z.-F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87, 062329 (2013).
[Crossref]

S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012).
[Crossref]

H.-W. Li, S. Wang, J.-Z. Huang, W. Chen, Z.-Q. Yin, F.-Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.-C. Guo, W.-S. Bao, and Z.-F. Han, “Attacking practical quantum-key-distribution system with wavelength dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, Y. Zaho, H. Li, D. Liu, Z. Han, and G. Cuo, “Field experiment on a robust hierarchical metropolitan quantum cryptography network,” Chin. Sci. Bull. 54, 2991–2997 (2009).
[Crossref]

F.-Y. Lu, Z.-Q. Yin, C.-H. Cui, G.-J. Fan-Yuan, S. Wang, D.-Y. He, W. Chen, G.-C. Guo, and Z.-F. Han, “Practical issues of twin-field quantum key distribution,” arXiv:1901.04264v3 (2019).

Chen, X.-W.

S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549, 43–47 (2017).
[Crossref]

S. K. Liao, J. Lin, J. G. Ren, W. Y. Liu, J. Qiang, J. Yin, Y. Li, Q. Shen, L. Zhang, X.-F. Liang, H.-L. Yong, F.-Z. Li, Y.-Y. Yin, Y. Cao, W.-Q. Cai, W.-Z. Zhang, J.-J. Jia, J.-C. Wu, X.-W. Chen, S.-C. Zhang, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, L. Ma, L. Li, G.-S. Pan, Q. Zhang, Y.-A. Chen, C.-Y. Lu, N.-L. Liu, X. Ma, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Space-to-ground quantum key distribution using a small-sized payload on Tiangong-2 space lab,” Chin. Phys. Lett. 34, 090302 (2017).
[Crossref]

Chen, X.-Y.

X.-Y. Chen, “Gaussian relative entropy of entanglement,” Phys. Rev. A 71, 062320 (2005).
[Crossref]

Chen, Y.

Y. Shen, Y. Chen, H. Zou, and J. Yuan, “A fiber-based quasi-continuous-wave quantum key distribution system,” Sci. Rep. 4, 4563 (2014).
[Crossref]

Chen, Y.-A.

S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. A. Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger, and J.-W. Pan, “Satellite-relayed intercontinental quantum network,” Phys. Rev. Lett. 120, 030501 (2018).
[Crossref]

S. K. Liao, J. Lin, J. G. Ren, W. Y. Liu, J. Qiang, J. Yin, Y. Li, Q. Shen, L. Zhang, X.-F. Liang, H.-L. Yong, F.-Z. Li, Y.-Y. Yin, Y. Cao, W.-Q. Cai, W.-Z. Zhang, J.-J. Jia, J.-C. Wu, X.-W. Chen, S.-C. Zhang, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, L. Ma, L. Li, G.-S. Pan, Q. Zhang, Y.-A. Chen, C.-Y. Lu, N.-L. Liu, X. Ma, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Space-to-ground quantum key distribution using a small-sized payload on Tiangong-2 space lab,” Chin. Phys. Lett. 34, 090302 (2017).
[Crossref]

J. Yin, Y. Cao, Y. H. Li, J. G. Ren, S. K. Liao, L. Zhang, W. Q. Cai, W. Y. Liu, B. Li, H. Dai, M. Li, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground entanglement-based quantum key distribution,” Phys. Rev. Lett. 119, 200501 (2017).
[Crossref]

S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-to-ground quantum key distribution,” Nature 549, 43–47 (2017).
[Crossref]

J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y. Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang, N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Satellite-based entanglement distribution over 1200 kilometers,” Science 356, 1140–1144 (2017).
[Crossref]

J. G. Ren, P. Xu, H. L. Yong, L. Zhang, S. K. Liao, J. Yin, W. Y. Liu, W. Q. Cai, M. Yang, L. Li, K.-X. Yang, X. Han, Y.-Q. Yao, J. Li, H.-Y. Wu, S. Wan, L. Liu, D.-Q. Liu, Y.-W. Kuang, Z.-P. He, P. Shang, C. Guo, R.-H. Zheng, K. Tian, Z.-C. Zhu, N.-L. Liu, C.-Y. Lu, R. Shu, Y.-A. Chen, C.-Z. Peng, J.-Y. Wang, and J.-W. Pan, “Ground-to-satellite quantum teleportation,” Nature 549, 70–73 (2017).
[Crossref]

B. Zhao, Z.-B. Chen, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
[Crossref]

Chen, Z.

Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu, and H. Guo, “Long-distance continuous-variable quantum key distribution over 202.81 km of fiber,” Phys. Rev. Lett. 125, 010502 (2020).

Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. Xu, X. Zhang, Z. Wang, M. Li, X. Zhang, Z. Zheng, B. Chu, X. Gao, N. Meng, W. Cai, Z. Wang, G. Wang, S. Yu, and H. Guo, “Continuous-variable QKD over 50 km commercial fiber,” Quantum Sci. Technol. 4, 035006 (2019).
[Crossref]

Chen, Z.-B.

H.-L. Yin and Z.-B. Chen, “Twin-field quantum key distribution over 1000 km fibre,” Sci. Rep. 9, 14918 (2019).

H.-L. Yin and Z.-B. Chen, “Finite-key analysis for twin-field quantum key distribution with composable security,” Sci. Rep. 9, 17113 (2019).

H.-L. Yin, Y. Fu, H. Liu, Q.-J. Tang, J. Wang, L.-X. You, W.-J. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, S.-J. Chen, Z. Wang, Q. Zhang, T.-Y. Chen, Z.-B. Chen, and J.-W. Pan, “Experimental quantum digital signature over 102 km,” Phys. Rev. A 95, 032334 (2017).
[Crossref]

H.-L. Yin, Y. Fu, Y. Mao, and Z.-B. Chen, “Security of quantum key distribution with multiphoton components,” Sci. Rep. 6, 29482 (2016).
[Crossref]

H.-L. Yin, Y. Fu, and Z.-B. Chen, “Practical quantum digital signature,” Phys. Rev. A 93, 032316 (2016).
[Crossref]

B. Zhao, Z.-B. Chen, Y.-A. Chen, J. Schmiedmayer, and J.-W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007).
[Crossref]

Cheng, C.

Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, L. Sha, G. C. Hiang, D. K. L. Oi, and A. Ling, “Generation and analysis of correlated pairs of photons aboard a nanosatellite,” Phys. Rev. Appl. 5, 054022 (2016).
[Crossref]

Z. Tang, R. Chandrasekara, Y. Y. Sean, C. Cheng, C. Wildfeuer, and A. Ling, “Near-space flight of a correlated photon system,” Sci. Rep. 4, 6366 (2015).
[Crossref]

Chigrinov, V.

Chip, E.

E. Chip, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA quantum network,” Proc. SPIE 5815, 138–149 (2005).
[Crossref]

E. Chip, “Building the quantum network,” New J. Phys. 4, 46 (2002).
[Crossref]

Chiribella, G.

A. Bisio, G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Information-disturbance tradeoff in estimating a unitary transformation,” Phys. Rev. A 82, 062305 (2010).
[Crossref]

G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Optimal cloning of unitary transformation,” Phys. Rev. Lett. 101, 180504 (2008).
[Crossref]

Chitambar, E.

E. Chitambar and G. Gour, “Quantum resource theories,” Rev. Mod. Phys. 91, 025001 (2019).
[Crossref]

Chiu, Y.-J.

Y.-J. Chiu, H.-F. Chou, V. Kaman, P. Abraham, and J. E. Bowers, “High extinction ratio and saturation power traveling-wave electro-absorption modulator,” IEEE Photon. Technol. Lett. 14, 792–794 (2002).
[Crossref]

Cho, Y. W.

C. H. Park, M. K. Woo, B. K. Park, M. S. Lee, Y. S. Kim, Y. W. Cho, S. Kim, S. W. Han, and S. Moon, “Practical plug-and-play measurement-device-independent quantum key distribution with polarization division multiplexing,” IEEE Access 6, 58587–58593 (2018).
[Crossref]

Choi, I.

Choi, K. S.

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

Choi, Y.

Y. Choi, O. Kwon, M. Woo, K. Oh, S.-W. Han, Y.-S. Kim, and S. Moon, “Plug-and-play measurement-device-independent quantum key distribution,” Phys. Rev. A 93, 032319 (2016).
[Crossref]

Chou, C.

H.-X. Ma, W.-S. Bao, H.-W. Li, and C. Chou, “Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack,” Chin. Phys. B 25, 080309 (2016).
[Crossref]

Chou, C.-W.

C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007).
[Crossref]

Chou, H.-F.

Y.-J. Chiu, H.-F. Chou, V. Kaman, P. Abraham, and J. E. Bowers, “High extinction ratio and saturation power traveling-wave electro-absorption modulator,” IEEE Photon. Technol. Lett. 14, 792–794 (2002).
[Crossref]

Christandl, M.

M. Christandl and A. Müller-Hermes, “Relative entropy bounds on quantum, private and repeater capacities,” Commun. Math. Phys. 353, 821–852 (2017).
[Crossref]

L. Masanes, R. Renner, M. Christandl, A. Winter, and J. Barrett, “Full security of quantum key distribution from no-signaling constraints,” IEEE Trans. Inf. Theory 60, 4973–4986 (2014).
[Crossref]

F. Furrer, M. Berta, M. Tomamichel, V. B. Scholz, and M. Christandl, “Position-momentum uncertainty relations in the presence of quantum memory,” J. Math. Phys. 55, 122205 (2014).
[Crossref]

M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, “The uncertainty principle in the presence of quantum memory,” Nat. Phys. 6, 659–662 (2010).
[Crossref]

M. Christandl, R. König, and R. Renner, “Postselection technique for quantum channels with applications to quantum cryptography,” Phys. Rev. Lett. 102, 020504 (2009).
[Crossref]

H. Buhrman, M. Christandl, P. Hayden, H.-K. Lo, and S. Wehner, “Possibility, impossibility and cheat-sensitivity of quantum bit string commitment,” Phys. Rev. A 78, 022316 (2008).
[Crossref]

M. Christandl, R. König, G. Mitchison, and R. Renner, “One-and-a-half quantum de Finetti theorems,” Commun. Math. Phys. 273, 473–498 (2007).
[Crossref]

M. Christandl, “The structure of bipartite quantum states: insights from group theory and cryptography,” Ph.D. thesis (University of Cambridge, 2006).

Christensen, B. G.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,” Phys. Rev. Lett. 115, 250402 (2015).
[Crossref]

Christensen, J. B.

D. Bacco, J. B. Christensen, M. A. Usuga Castaneda, Y. Ding, S. Forchhammer, K. Rottwitt, and L. K. Oxenløwe, “Two-dimensional distributed-phase-reference protocol for quantum key distribution,” Sci. Rep. 6, 36756 (2016).
[Crossref]

Christiano, P.

S. Aaronson and P. Christiano, “Quantum money from hidden subspaces,” in Proceedings of the forty-fourth annual ACM symposium on Theory of Computing (ACM, 2012).

Chu, B.

Y. Zhang, Z. Chen, S. Pirandola, X. Wang, C. Zhou, B. Chu, Y. Zhao, B. Xu, S. Yu, and H. Guo, “Long-distance continuous-variable quantum key distribution over 202.81 km of fiber,” Phys. Rev. Lett. 125, 010502 (2020).

Y. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, Y. Huang, C. Xu, X. Zhang, Z. Wang, M. Li, X. Zhang, Z. Zheng, B. Chu, X. Gao, N. Meng, W. Cai, Z. Wang, G. Wang, S. Yu, and H. Guo, “Continuous-variable QKD over 50 km commercial fiber,” Quantum Sci. Technol. 4, 035006 (2019).
[Crossref]

Chu, D.

Z. Zhang, Z. You, and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light Sci. Appl. 3, e213 (2014).
[Crossref]

Chuang, I.

D. Gottesman and I. Chuang, “Quantum digital signatures,” arXiv:0105032 (2001).

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Chung, K.-M.

K.-M. Chung, Y. Shi, and X. Wu, “Physical randomness extractors: generating random numbers with minimal assumptions,” arXiv:1402.4797 (2014).

Chunnilall, C.

Cinchetti, M.

D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[Crossref]

Cirac, J. I.

R. Renner and J. I. Cirac, “de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102, 110504 (2009).
[Crossref]

M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of Gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006).
[Crossref]

G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A 59, 169–181 (1999).
[Crossref]

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Cirelson, B. S.

B. S. Cirelson, “Quantum generalizations of Bell’s inequality,” Lett. Math. Phys. 4, 93–100 (1980).
[Crossref]

Clark, W.

Z. Pan, K. P. Seshadreesan, W. Clark, M. R. Adcock, I. B. Djordjevic, J. H. Shapiro, and S. Guha, “Secret key distillation across a quantum wiretap channel under restricted eavesdropping,” in Proceedings of IEEE International Symposium on Information Theory (ISIT) (IEEE, 2019), pp. 3032–3036.

Clarke, P. J.

R. J. Collins, R. J. Donaldson, V. Dunjko, P. Wallden, P. J. Clarke, E. Andersson, J. Jeffers, and G. S. Buller, “Realization of quantum digital signatures without the requirement of quantum memory,” Phys. Rev. Lett. 113, 040502 (2014).
[Crossref]

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref]

Clausen, C.

C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

Clauser, J. F.

J. F. Clauser and M. A. Horne, “Experimental consequences of objective local theories,” Phys. Rev. D 10, 526–535 (1974).
[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1970).
[Crossref]

Cleve, R.

H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum fingerprinting,” Phys. Rev. Lett. 87, 167902 (2001).
[Crossref]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[Crossref]

Coakley, K. J.

L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, “Strong loophole-free test of local realism,” Phys. Rev. Lett. 115, 250402 (2015).
[Crossref]

Cojocaru, A.

A. Cojocaru, L. Colisson, E. Kashefi, and P. Wallden, “QFactory: classically-instructed remote secret qubits preparation,” in Advances in Cryptology – ASIACRYPT 2019. Lecture Notes in Computer Science, S. Galbraith and S. Moriai, eds. (2019) 11921, Springer, Cham, pp. 6125–6145.

Colbeck, R.

P. J. Brown, S. Ragy, and R. Colbeck, “A framework for quantum-secure device-independent randomness expansion,” IEEE Trans. Inf. Theory 66, 2964–2987 (2020).
[Crossref]

J. Barrett, R. Colbeck, and A. Kent, “Memory attacks on device-independent quantum cryptography,” Phys. Rev. Lett. 110, 010503 (2013).
[Crossref]

J. Barrett, R. Colbeck, and A. Kent, “Unconditionally secure device-independent quantum key distribution with only two devices,” Phys. Rev. A 86, 062326 (2012).
[Crossref]

R. Colbeck and R. Renner, “Free randomness can be amplified,” Nat. Phys. 8, 450–454 (2012).
[Crossref]

R. Colbeck and R. Renner, “No extension of quantum theory can have improved predictive power,” Nat. Commun. 2, 411 (2011).
[Crossref]

R. Colbeck and A. Kent, “Private randomness expansion with untrusted devices,” J. Phys. A 44, 095305 (2011).
[Crossref]

M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, “The uncertainty principle in the presence of quantum memory,” Nat. Phys. 6, 659–662 (2010).
[Crossref]

M. Tomamichel, R. Colbeck, and R. Renner, “A fully quantum asymptotic equipartition property,” IEEE Trans. Inf. Theory 55, 5840–5847 (2009).
[Crossref]

R. Colbeck, “Impossibility of secure two-party classical computation,” Phys. Rev. A 76, 062308 (2007).
[Crossref]

R. Colbeck and R. Renner, “Completeness of quantum theory for predicting measurement outcomes,” in Quantum Theory: Informational Foundations and Foils. Fundamental Theories of Physics, G. Chiribella and R. W. Spekkens, eds. (Springer, 2016), Vol. 181.

R. Colbeck, “Quantum and relativistic protocols for secure multi-party computation,” Ph.D. thesis (University of Cambridge, 2007).Also available at arXiv:0911.3814.

Coles, P. J.

P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, “Entropic uncertainty relations and their applications,” Rev. Mod. Phys. 89, 015002 (2017).
[Crossref]

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).
[Crossref]

Colisson, L.

A. Cojocaru, L. Colisson, E. Kashefi, and P. Wallden, “QFactory: classically-instructed remote secret qubits preparation,” in Advances in Cryptology – ASIACRYPT 2019. Lecture Notes in Computer Science, S. Galbraith and S. Moriai, eds. (2019) 11921, Springer, Cham, pp. 6125–6145.

Collins, R. J.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7, 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41, 4883–4886 (2016).
[Crossref]

R. J. Donaldson, R. J. Collins, K. Kleczkowska, R. Amiri, P. Wallden, V. Dunjko, J. Jeffers, E. Andersson, and G. S. Buller, “Experimental demonstration of kilometer-range quantum digital signatures,” Phys. Rev. A 93, 012329 (2016).
[Crossref]

R. J. Collins, R. J. Donaldson, V. Dunjko, P. Wallden, P. J. Clarke, E. Andersson, J. Jeffers, and G. S. Buller, “Realization of quantum digital signatures without the requirement of quantum memory,” Phys. Rev. Lett. 113, 040502 (2014).
[Crossref]

P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nat. Commun. 3, 1174 (2012).
[Crossref]

Colvin, A.

E. Chip, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA quantum network,” Proc. SPIE 5815, 138–149 (2005).
[Crossref]

Comandar, L. C.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the integration of CV quantum key distribution in deployed optical networks,” IEEE Photon. Technol. Lett. 30, 650–653 (2018).
[Crossref]

B. Fröhlich, M. Lucamarini, J. F. Dynes, L. C. Comandar, W. W.-S. Tam, A. Plews, A. W. Sharpe, Z. Yuan, and A. J. Shields, “Long-distance quantum key distribution secure against coherent attacks,” Optica 4, 163–167 (2017).
[Crossref]

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref]

L. C. Comandar, S. W.-B. Tam, J. F. Dynes, M. Lucamarini, B. Fröhlich, Z. L. Yuan, A. W. Sharpe, R. V. Penty, and A. J. Shields, “Quantum key distribution without detector vulnerabilities using optically seeded lasers,” Nat. Photonics 10, 312–315 (2016).
[Crossref]

H. H. Brunner, L. C. Comandar, F. Karinou, S. Bettelli, D. Hillerkuss, F. Fung, D. Wang, S. Mikroulis, Y. Qian, M. Kuschnerov, A. Poppe, C. Xie, and M. Peev, “A low-complexity heterodyne CV-QKD architecture,” in 19th International Conference on Transparent Optical Networks (ICTON) (2017).

Connolly, P. W. R.

G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gómez, M. Figueroa, G. Vallone, T. Ferreira da Silva, G. B. Xavier, and G. Lima, “High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers,” Phys. Rev. A 96, 022317 (2017).
[Crossref]

Constantin, J.

N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, M. Legré, C. C. W. Lim, T. Lunghi, L. Monat, C. Portmann, M. Soucarros, P. Trinkler, G. Trolliet, F. Vannel, and H. Zbinden, “A fast and versatile quantum key distribution system with hardware key distillation and wavelength multiplexing,” New J. Phys. 16, 013047 (2014).
[Crossref]

Coolbaugh, D.

Cope, T. P. W.

T. P. W. Cope, K. Goodenough, and S. Pirandola, “Converse bounds for quantum and private communication over Holevo–Werner channels,” J. Phys. A 51, 494001 (2018).
[Crossref]

C. Ottaviani, R. Laurenza, T. P. W. Cope, G. Spedalieri, S. L. Braunstein, and S. Pirandola, “Secret key capacity of the thermal-loss channel: improving the lower bound,” Proc. SPIE 9996, 999609 (2016).
[Crossref]

S. Pirandola, S. L. Braunstein, R. Laurenza, C. Ottaviani, T. P. W. Cope, G. Spedalieri, and L. Banchi, “Theory of channel simulation and bounds for private communication,” Quantum Sci. Technol.3, 035009 (2018).

Cormen, T.

T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms (MIT, 1990).

Corradi, A.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

Corrielli, G.

M. Rau, T. Vogl, G. Corrielli, G. Vest, L. Fuchs, S. Nauerth, and H. Weinfurter, “Spatial mode side channels in free-space QKD implementations,” IEEE J. Sel. Top. Quantum Electron. 21, 6600905 (2015).
[Crossref]

Courtois, N. T.

N. T. Courtois, M. Finiasz, and N. Sendrier, “How to achieve a McEliece-based digital signature scheme,” in ASIACRYPT ’01 Proceedings of the 7th International Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology (Springer-Verlag, 2001).

Cova, S.

R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, R. Laflamme, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. H. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. A. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest, experiments with quantum entanglement in space,” Europhys. News 40(3), 26–29 (2009).
[Crossref]

Cover, T. M.

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley Series in Telecommunications and Signal Processing (Wiley, 1996).

Cozzolino, D.

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S. Ramachandran, and L. K. Oxenløwe, “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” Phys. Rev. Appl. 11, 064058 (2019).
[Crossref]

B. Da Lio, D. Bacco, D. Cozzolino, Y. Ding, K. Dalgaard, K. Rottwitt, and L. Oxenløwe, “Experimental demonstration of the DPTS QKD protocol over a 170 km fiber link,” Appl. Phys. Lett. 114, 011101 (2019).
[Crossref]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[Crossref]

Crépeau, C.

H. Barnum, C. Crépeau, D. Gottesman, A. Smith, and A. Tapp, “Authentication of quantum messages,” in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (IEEE, 2002), pp. 449–458.

Croal, C.

C. Croal, C. Peuntinger, B. Heim, I. Khan, C. Marquardt, G. Leuchs, P. Wallden, E. Andersson, and N. Korolkova, “Free-space quantum signatures using heterodyne measurements,” Phys. Rev. Lett. 117, 100503 (2016).
[Crossref]

Croke, S.

Csiszar, I.

I. Csiszar and J. Korner, Information Theory: Coding Theorems for Discrete Memoryless Systems, 2nd ed. (Akademiai Kiado, 1997).

Cui, C.

C. Cui, Z.-Q. Yin, R. Wang, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, “Twin-field quantum key distribution without phase postselection,” Phys. Rev. Appl. 11, 034053 (2019).
[Crossref]

Cui, C.-H.

F.-Y. Lu, Z.-Q. Yin, C.-H. Cui, G.-J. Fan-Yuan, R. Wang, S. Wang, W. Chen, D.-Y. He, G.-C. Guo, and Z.-F. Han, “Improving the performance of twin-field quantum key distribution,” Phys. Rev. A 100, 022306 (2019).

S. Wang, D.-Y. He, Z.-Q. Yin, F.-Y. Lu, C.-H. Cui, W. Chen, Z. Zhou, G.-C. Guo, and Z.-F. Han, “Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system,” Phys. Rev. X 9, 021046 (2019).
[Crossref]

F.-Y. Lu, Z.-Q. Yin, C.-H. Cui, G.-J. Fan-Yuan, S. Wang, D.-Y. He, W. Chen, G.-C. Guo, and Z.-F. Han, “Practical issues of twin-field quantum key distribution,” arXiv:1901.04264v3 (2019).

Cui, K.

Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Experimental measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 111, 130502 (2013).
[Crossref]

Cui, W.

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

Cuo, G.

F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, Y. Zaho, H. Li, D. Liu, Z. Han, and G. Cuo, “Field experiment on a robust hierarchical metropolitan quantum cryptography network,” Chin. Sci. Bull. 54, 2991–2997 (2009).
[Crossref]

Curty, M.

M. Curty, K. Azuma, and H.-K. Lo, “Simple security proof of twin-field type quantum key distribution protocol,” npj Quantum Inf. 5, 64 (2019).
[Crossref]

F. Grasselli and M. Curty, “Practical decoy-state method for twin-field quantum key distribution,” New J. Phys. 21, 073001 (2019).

X. Zhong, J. Hu, M. Curty, L. Qian, and H.-K. Lo, “Proof-of-principle experimental demonstration of twin-field type quantum key distribution,” Phys. Rev. Lett. 123, 100506 (2019).
[Crossref]

H.-L. Yin, W.-L. Wang, Y.-L. Tang, Q. Zhao, H. Liu, X.-X. Sun, W.-J. Zhang, H. Li, I. V. Puthoor, L.-X. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T.-Y. Chen, and J.-W. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Phys. Rev. A 95, 042338 (2017).
[Crossref]

G. L. Roberts, M. Lucamarini, Z. L. Yuan, J. F. Dynes, L. C. Comandar, A. W. Sharpe, A. J. Shields, M. Curty, I. V. Puthoor, and E. Andersson, “Experimental measurement-device-independent quantum digital signatures,” Nat. Commun. 8, 1098 (2017).
[Crossref]

I. V. Puthoor, R. Amiri, P. Wallden, M. Curty, and E. Andersson, “Measurement-device-independent quantum digital signatures,” Phys. Rev. A 94, 022328 (2016).
[Crossref]

K. Tamaki, M. Curty, and M. Lucamarini, “Decoy-state quantum key distribution with a leaky source,” New J. Phys. 18, 065008 (2016).
[Crossref]

M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

T. Moroder, M. Curty, C. C. W. Lim, L. P. Thinh, H. Zbinden, and N. Gisin, “Security of distributed-phase-reference quantum key distribution,” Phys. Rev. Lett. 109, 260501 (2012).
[Crossref]

S. Wehner, M. Curty, C. Schaffner, and H.-K. Lo, “Implementation of two-party protocols in the noisy-storage model,” Phys. Rev. A 81, 052336 (2010).
[Crossref]

E. Andersson, M. Curty, and I. Jex, “Experimentally realizable quantum comparison of coherent states and its applications,” Phys. Rev. A 74, 022304 (2006).
[Crossref]

D’Agostino, D.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. L. Augustin, P. J. A. Thijs, D. D’Agostino, H. Rabbani, K. K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. E. Kleijn, D. D. Dzibrou, M. Felicetti, E. E. Bitincka, V. V. Moskalenko, J. Zhao, R. R. Santos, G. Gilardi, W. W. Yao, K. A. Williams, P. Stabile, P. I. Kuindersma, J. Pello, S. S. Bhat, Y.-M. Jiao, D. Heiss, G. Roelkens, M. M. Wale, P. Firth, F. M. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D. F. G. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. V. Penty, R. G. Broeke, B. Musk, and D. J. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 083001 (2014).
[Crossref]

D’Ariano, G. M.

A. Bisio, G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Information-disturbance tradeoff in estimating a unitary transformation,” Phys. Rev. A 82, 062305 (2010).
[Crossref]

G. Chiribella, G. M. D’Ariano, and P. Perinotti, “Optimal cloning of unitary transformation,” Phys. Rev. Lett. 101, 180504 (2008).
[Crossref]

S. L. Braunstein, G. M. D’Ariano, G. J. Milburn, and M. F. Sacchi, “Universal teleportation with a twist,” Phys. Rev. Lett. 84, 3486–3489 (2000).
[Crossref]

D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[Crossref]

Da Deppo, V.

A. Tomaello, C. Bonato, V. Da Deppo, G. Naletto, and P. Villoresi, “Link budget and background noise for satellite quantum key distribution,” Adv. Space Res. 47, 802–810 (2011).
[Crossref]

C. Bonato, A. Tomaello, V. Da Deppo, G. Naletto, and P. Villoresi, “Feasibility of satellite quantum key distribution,” New J. Phys. 11, 45017 (2009).
[Crossref]

C. Bonato, A. Tomaello, V. Da Deppo, G. Naletto, and P. Villoresi, Feasibility Analysis for Quantum Key Distribution between a LEO Satellite and Earth, in Quantum Communication and Quantum Networking, A. Sergienko, S. Pascazio, and P. Villoresi, eds., Vol. 36 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Springer, 2010), pp. 96–99.

Da Lio, B.

B. Da Lio, D. Bacco, D. Cozzolino, Y. Ding, K. Dalgaard, K. Rottwitt, and L. Oxenløwe, “Experimental demonstration of the DPTS QKD protocol over a 170 km fiber link,” Appl. Phys. Lett. 114, 011101 (2019).
[Crossref]

D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y. Ding, K. Dalgaard, P. Kristen