Abstract

Microwires and nanowires have been manufactured by using a wide range of bottom-up techniques such as chemical or physical vapor deposition and top-down processes such as fiber drawing. Among these techniques, the manufacture of wires from optical fibers provides the longest, most uniform and robust nanowires. Critically, the small surface roughness and the high-homogeneity associated with optical fiber nanowires (OFNs) provide low optical loss and allow the use of nanowires for a wide range of new applications for communications, sensing, lasers, biology, and chemistry. OFNs offer a number of outstanding optical and mechanical properties, including (1) large evanescent fields, (2) high-nonlinearity, (3) strong confinement, and (4) low-loss interconnection to other optical fibers and fiberized components. OFNs are fabricated by adiabatically stretching optical fibers and thus preserve the original optical fiber dimensions at their input and output, allowing ready splicing to standard fibers. A review of the manufacture of OFNs is presented, with a particular emphasis on their applications. Three different groups of applications have been envisaged: (1) devices based on the strong confinement or nonlinearity, (2) applications exploiting the large evanescent field, and (3) devices involving the taper transition regions. The first group includes supercontinuum generators, a range of nonlinear optical devices, and optical trapping. The second group comprises knot, loop, and coil resonators and their applications, sensing and particle propulsion by optical pressure. Finally, mode filtering and mode conversion represent applications based on the taper transition regions. Among these groups of applications, devices exploiting the OFN-based resonators are possibly the most interesting; because of the large evanescent field, when OFNs are coiled onto themselves the mode propagating in the wire interferes with itself to give a resonator. In contrast with the majority of high-Q resonators manufactured by other means, the OFN microresonator does not have major issues with input–output coupling and presents a completely integrated fiberized solution. OFNs can be used to manufacture loop and coil resonators with Q factors that, although still far from the predicted value of 109, are well in excess of 105. The input–output pigtails play a major role in shaping the resonator response and can be used to maximize the Q factor over a wide range of coupling parameters. Finally, temporal stability and robustness issues are discussed, and a solution to optical degradation issues is presented.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Appell, “Nanotechnology: wired for success,” Nature 419, 553–555 (2002).
    [CrossRef] [PubMed]
  2. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
    [CrossRef]
  3. Y. Wu, P. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000).
    [CrossRef]
  4. P. Yang, F. Wu, R. Fan, “Block-by-block growth of single-crystalline Si∕SiGe superlattice nanowires,” Nano Lett. 2, 83–86 (2002).
    [CrossRef]
  5. M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001).
    [CrossRef]
  6. N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Cambridge)617–618 (2001).
  7. Y. Kondo, K. Takayanagi, “Gold nanobridge stabilized by surface structure,” Phys. Rev. Lett. 79, 3455–3458 (1997).
    [CrossRef]
  8. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Iruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers,” Appl. Phys. Lett. 61, 2051–2054 (1992).
    [CrossRef]
  9. C.-C. Chen, C.-C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater. 12, 738–741 (2000).
    [CrossRef]
  10. J. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
    [CrossRef] [PubMed]
  11. L. Yang, J. Yang, Z.-H. Wang, J.-H. Zeng, L. Yang, Y.-T. Qian, “Fabrication of mesoporous CdS nanorods by a chemical etch,” J. Mater. Res. 18, 396–401 (2003).
    [CrossRef]
  12. Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
    [CrossRef]
  13. Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si∕SiO2 mixture,” J. Cryst. Growth 233, 803–808 (2001).
    [CrossRef]
  14. M. Adachi, T. Harada, M. Harada, “Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system,” Langmuir 15, 7097–7100 (1999).
    [CrossRef]
  15. Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).
  16. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
    [CrossRef] [PubMed]
  17. Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947–1949 (2001).
    [CrossRef] [PubMed]
  18. C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13, 1330–1333 (2001).
    [CrossRef]
  19. K. Akagi, G. Piao, S. Kaneto, K. Sakamaki, H. Shirakawa, M. Kyotani, “Helical polyacetylene synthesized with a chiral nematic reaction field,” Science 282, 1683–1686 (1998).
    [CrossRef] [PubMed]
  20. X. Xing, Y. Wang, B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16, 10815–10822 (2008).
    [CrossRef] [PubMed]
  21. J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550–1552 (1999).
    [CrossRef] [PubMed]
  22. A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998).
    [CrossRef] [PubMed]
  23. B. B. Lakshmi, C. J. Patrissi, C. R. Martin, “Sol-gel template synthesis of semiconductor oxide micro- and nanostructures,” Chem. Mater. 9, 2544–2550 (1997).
    [CrossRef]
  24. J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, “Catalytic growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554–557 (1997).
    [CrossRef]
  25. Y. Zhang, Q. Zhang, Y. Li, N. Wang, J. Zhu, “Coating of carbon nanotubes with tungsten by physical vapor deposition,” Solid State Commun. 115, 51–55 (2000).
    [CrossRef]
  26. Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang, “electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Lett. 2, 717–720 (2002).
    [CrossRef]
  27. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [CrossRef] [PubMed]
  28. G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004).
    [CrossRef] [PubMed]
  29. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
    [CrossRef] [PubMed]
  30. A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41, 27–29 (2005).
    [CrossRef]
  31. G. Brambilla, F. Xu, X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42, 517–518 (2006).
    [CrossRef]
  32. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82–87 (2006).
    [CrossRef] [PubMed]
  33. J. Bures, R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999).
    [CrossRef]
  34. F. Bilodeau, K. O. Hill, D. C. Johnson, S. Faucher, “Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff,” Opt. Lett. 12, 634–636 (1987).
    [CrossRef] [PubMed]
  35. B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, “Oxide nanotubes prepared using carbon nanotubes as templates,” J. Mater. Res. 3, 604–606 (1997).
    [CrossRef]
  36. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
    [CrossRef]
  37. H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998).
    [CrossRef]
  38. M. Harada, M. Adachi, “Surfactant-mediated fabrication of silica nanotubes,” Adv. Mater. 12, 839–841 (2000).
    [CrossRef]
  39. Z. L. Wang, R. P. P. Gao, J. L. Gole, J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
    [CrossRef]
  40. J. F. Qi, T. Matsumoto, Y. Matsumoto, “Characterizations of simultaneously fabricated silicon and silicon monoxide nanowires,” Jpn. J. Appl. Phys., Part 1 40, L134–L136 (2001).
    [CrossRef]
  41. Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
    [CrossRef] [PubMed]
  42. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
    [CrossRef]
  43. D. Marcuse, R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).
    [CrossRef]
  44. F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
    [CrossRef]
  45. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
    [CrossRef] [PubMed]
  46. M. Foster, A. Gaeta, Q. Cao, R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
    [CrossRef] [PubMed]
  47. M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).
    [CrossRef]
  48. D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
    [CrossRef] [PubMed]
  49. V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
    [CrossRef]
  50. F. Le Kien, V. I. Balykin, K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
    [CrossRef]
  51. G. Brambilla, G. S. Murugan, J. S. Wilkinson, D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041–3043 (2007).
    [CrossRef] [PubMed]
  52. G. S. Murugan, G. Brambilla, J. S. Wilkinson, D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys., Part 1 47, 6716–6718 (2008).
    [CrossRef]
  53. J. Villatoro, D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005).
    [CrossRef] [PubMed]
  54. J. Lou, L. Tong, Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13, 2135–2140 (2005).
    [CrossRef] [PubMed]
  55. F. Xu, P. Horak, G. Brambilla “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).F. Xu, P. Horak, G. Brambilla “Erratum,” Opt. Express 15, 9385 (2007).
    [CrossRef] [PubMed]
  56. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express 15, 11952–11958 (2007).
    [CrossRef] [PubMed]
  57. F. Xu, G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
    [CrossRef]
  58. F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
    [CrossRef] [PubMed]
  59. M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004).
    [CrossRef] [PubMed]
  60. M. Sumetsky, Y. Dulashko, A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express 12, 3521–3531 (2004).
    [CrossRef] [PubMed]
  61. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005).
    [CrossRef]
  62. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
    [CrossRef]
  63. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
    [CrossRef]
  64. F. Xu, P. Horak, G. Brambilla, “Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator,” Appl. Opt. 46, 570–573 (2007).
    [CrossRef] [PubMed]
  65. F. Xu, P. Horak, G. Brambilla, “Optimized design of microcoil resonators,” J. Lightwave Technol. 25, 1561–1567 (2007).
    [CrossRef]
  66. F. Xu, G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32, 2164–2166 (2007).
    [CrossRef] [PubMed]
  67. L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
    [CrossRef] [PubMed]
  68. L. Tong, J. Lou, Z. Ye, G. T. Svacha, E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16, 1445–1448 (2005).
    [CrossRef]
  69. G. Brambilla, F. Koizumi, X. Feng, D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41, 400–402 (2005).
    [CrossRef]
  70. M. Sumetsky, “Thinnest optical waveguide: experimental test,” Opt. Lett. 32, 754–756 (2007).
    [CrossRef] [PubMed]
  71. J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–994 (1987).
    [CrossRef]
  72. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science 287, 637–640 (1997).
    [CrossRef]
  73. M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552–5555 (2000).
    [CrossRef] [PubMed]
  74. M. Cheng, W. Chen, T. Weerasooriya, “Mechanical properties of Kevlar® KM2 single fiber,” J. Eng. Mater. Technol. 127, 197–203 (2005).
    [CrossRef]
  75. M. J. Matthewson, C. R. Kurkjian, J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15, 490–497 (1997).
    [CrossRef]
  76. D. A. Barber, N. H. Rizvi, “Characterization of the effects of different lasers on the tensile strength of fibers during laser writing of fiber Bragg gratings,” Proc. SPIE 4876, 321–329 (2003).
    [CrossRef]
  77. C. Caspar, E. J. Bachus, “Fibre-optic microring-resonator with 2 mm diameter,” Electron. Lett. 25, 1506–1508 (1989).
    [CrossRef]
  78. G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19, 1386–1388 (2007).
    [CrossRef]
  79. M. Sumetsky, Y. Dulashko, M. Fishteyn, “Demonstration of a multi-turn microfiber coil resonator,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP46.
  80. F. Xu, G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys., Part 1 47, 6675–6677 (2008).
    [CrossRef]
  81. “Optical coating materials,” http://eng.sscpcorp.com/pages/SO00057_02.asp.
  82. “DuPont Teflon AF fluoropolymer resins: Teflon® AF,”http://www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/
  83. G. Vienne, Y. Li, L. Tong, P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008).
    [CrossRef] [PubMed]
  84. N. G. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16, 16247–16254 (2008).
    [CrossRef] [PubMed]
  85. M. Sumetsky, “Basic elements for microfiber photonics: micro/nanofibers and microfiber coil resonators,” J. Lightwave Technol. 26, 21–27 (2008).
    [CrossRef]
  86. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters—a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004).
    [CrossRef]
  87. F. Xu, G. Brambilla, “Manufacture of 3D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19, 1481–1483 (2007).
    [CrossRef]
  88. P. N. Lebedev, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 6, 433–458 (1901).
    [CrossRef]
  89. S. Kawata, T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–77 (1992).
    [CrossRef]
  90. S. Kawata, T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996).
    [CrossRef] [PubMed]
  91. A. Ashkin, “Acceleration and trapping of particles by radiation pressure.” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  92. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
    [CrossRef]
  93. L. N. Ng, M. N. Zervas, J. S. Wilkinson, B. J. Luff, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 76, 1993–1995 (2000).
    [CrossRef]
  94. T. Tanaka, S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000).
    [CrossRef]
  95. K. Grujic, O. G. Hellesø, J. S. Wilkinson, J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
    [CrossRef]
  96. S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
    [CrossRef] [PubMed]
  97. C. Y. Chao, L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
    [CrossRef]
  98. L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008).
    [CrossRef] [PubMed]
  99. F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008).
    [CrossRef] [PubMed]
  100. P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30, 1273–1275 (2005).
    [CrossRef] [PubMed]
  101. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
    [CrossRef] [PubMed]
  102. M. Adams, G. A. DeRose, M. Loncar, A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B 23, 3168–3173 (2005).
    [CrossRef]
  103. C. Y. Chao, W. Fung, L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
    [CrossRef]
  104. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  105. I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
    [CrossRef]
  106. I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
    [CrossRef]
  107. X. Guo, L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
    [CrossRef] [PubMed]
  108. M. Sumetsky, R. S. Windeler, Y. Dulashko, X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
    [CrossRef] [PubMed]
  109. P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14, 7063–7072 (2006).
    [CrossRef] [PubMed]
  110. D. Marcuse, F. Ladouceur, J. D. Love, “Vector modes of D-shaped fibers,” IEE Proc.-J: Optoelectron. 139, 117–126 (1992).
  111. I. M. White, X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [CrossRef] [PubMed]
  112. G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
    [CrossRef]
  113. J. Lenoble, B. Saint-Guily, “The absorption of ultraviolet light by distilled water,” Compt. Rend. 240, 954–955 (1955).
  114. J. E. Tyler, R. C. Smith, J. W. H. Wilson, “Predicted optical properties for clear natural water,” J. Opt. Soc. Am. 62, 83 (1972).
    [CrossRef]
  115. G. M. Hale, M. R. Querry, “Optical-constants of water in 200-nmto200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  116. R. Altkorn, I. Koev, R. P. VanDuyne, M. Litorja, “Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy,” Appl. Opt. 36, 8992–8998 (1997).
    [CrossRef]
  117. P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, H. Franke, “Physical analysis of Teflon coated capillary waveguides,” Sens. Actuators B 51, 278–284 (1998).
    [CrossRef]
  118. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [CrossRef] [PubMed]
  119. I. Teraoka, S. Arnold, F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
    [CrossRef]
  120. A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
    [CrossRef]
  121. G. R. Quigley, R. D. Harris, J. S. Wilkinson, “Sensitivity enhancement of integrated optical sensors by use of thin high-index films,” Appl. Opt. 38, 6036–6039 (1999).
    [CrossRef]
  122. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
    [CrossRef]
  123. S. Campopiano, R. Bernini, L. Zeni, P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29, 1894–1896 (2004).
    [CrossRef] [PubMed]
  124. M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [CrossRef] [PubMed]
  125. C. B. Kim, C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5  micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
    [CrossRef]
  126. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
    [CrossRef] [PubMed]
  127. R. R. Alfano, S. L. Shapiro, “Emission in the region 4000to7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [CrossRef]
  128. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  129. T. A. Birks, W. J. Wadsworth, P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  130. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. M. Man, P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
    [CrossRef]
  131. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  132. J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippenet, T. Hasegawa, T. Nagashima, N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 mm,” Opt. Express 12, 5697–5703 (2004).
    [CrossRef] [PubMed]
  133. A. V. Husakou, J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
    [CrossRef]
  134. G. Brambilla, J. Mills, V. Finazzi, F. Koizumi, “Long-wavelength supercontinuum generation in bismuth-silicate fibres,” Electron. Lett. 42, 574–575 (2006).
    [CrossRef]
  135. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
    [CrossRef]
  136. G. Brambilla, F. Koizumi, V. Finazzi, D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41, 795–797 (2005).
    [CrossRef]
  137. K. Kikuchi, K. Taira, N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002).
    [CrossRef]
  138. A. W. Snyder, J. D. Love, Optical Waveguide Theory(Kluwer Academic, 2000).
  139. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  140. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef] [PubMed]
  141. L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [CrossRef]
  142. P. C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. Lett. 61, 14119–14127 (2000).
  143. E. R. Lyons, G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
    [CrossRef]
  144. K. Taguchi, K. Atsuta, T. Nakata, M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33, 99–106 (2001).
    [CrossRef]
  145. Z. H. Hu, J. Wang, J. W. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe,” Opt. Express 12, 4123–4128 (2004).
    [CrossRef] [PubMed]
  146. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
    [CrossRef] [PubMed]
  147. Y. Jung, G. Brambilla, D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
    [CrossRef] [PubMed]
  148. L. Tong, J. Lou, E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [CrossRef] [PubMed]
  149. S. Moon, D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005).
    [CrossRef]
  150. D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24, 3532–3539 (2006).
    [CrossRef]
  151. T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  152. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices—Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138, 343–354 (1991).
  153. R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibres and devices—Part 2: Experimental and theoretical quantification,” IEE Proc.-J: Optoelectron. 138, 355–364 (1991).

2008

X. Xing, Y. Wang, B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16, 10815–10822 (2008).
[CrossRef] [PubMed]

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
[CrossRef] [PubMed]

G. S. Murugan, G. Brambilla, J. S. Wilkinson, D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys., Part 1 47, 6716–6718 (2008).
[CrossRef]

F. Xu, G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

F. Xu, G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys., Part 1 47, 6675–6677 (2008).
[CrossRef]

N. G. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16, 16247–16254 (2008).
[CrossRef] [PubMed]

F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008).
[CrossRef] [PubMed]

I. M. White, X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef] [PubMed]

F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
[CrossRef] [PubMed]

M. Sumetsky, “Basic elements for microfiber photonics: micro/nanofibers and microfiber coil resonators,” J. Lightwave Technol. 26, 21–27 (2008).
[CrossRef]

G. Vienne, Y. Li, L. Tong, P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008).
[CrossRef] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008).
[CrossRef] [PubMed]

X. Guo, L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
[CrossRef] [PubMed]

Y. Jung, G. Brambilla, D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
[CrossRef] [PubMed]

2007

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[CrossRef]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

M. Sumetsky, “Thinnest optical waveguide: experimental test,” Opt. Lett. 32, 754–756 (2007).
[CrossRef] [PubMed]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. Xu, P. Horak, G. Brambilla “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).F. Xu, P. Horak, G. Brambilla “Erratum,” Opt. Express 15, 9385 (2007).
[CrossRef] [PubMed]

F. Xu, P. Horak, G. Brambilla, “Optimized design of microcoil resonators,” J. Lightwave Technol. 25, 1561–1567 (2007).
[CrossRef]

F. Xu, G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32, 2164–2166 (2007).
[CrossRef] [PubMed]

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express 15, 11952–11958 (2007).
[CrossRef] [PubMed]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041–3043 (2007).
[CrossRef] [PubMed]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
[CrossRef] [PubMed]

M. Sumetsky, R. S. Windeler, Y. Dulashko, X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef] [PubMed]

G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19, 1386–1388 (2007).
[CrossRef]

F. Xu, G. Brambilla, “Manufacture of 3D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19, 1481–1483 (2007).
[CrossRef]

F. Xu, P. Horak, G. Brambilla, “Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator,” Appl. Opt. 46, 570–573 (2007).
[CrossRef] [PubMed]

2006

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
[CrossRef]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

G. Brambilla, F. Xu, X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42, 517–518 (2006).
[CrossRef]

D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24, 3532–3539 (2006).
[CrossRef]

G. Brambilla, J. Mills, V. Finazzi, F. Koizumi, “Long-wavelength supercontinuum generation in bismuth-silicate fibres,” Electron. Lett. 42, 574–575 (2006).
[CrossRef]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

C. Y. Chao, W. Fung, L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82–87 (2006).
[CrossRef] [PubMed]

C. Y. Chao, L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
[CrossRef]

P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14, 7063–7072 (2006).
[CrossRef] [PubMed]

2005

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

M. Adams, G. A. DeRose, M. Loncar, A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B 23, 3168–3173 (2005).
[CrossRef]

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

S. Moon, D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41, 795–797 (2005).
[CrossRef]

J. Lou, L. Tong, Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13, 2135–2140 (2005).
[CrossRef] [PubMed]

P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30, 1273–1275 (2005).
[CrossRef] [PubMed]

J. Villatoro, D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005).
[CrossRef] [PubMed]

M. Foster, A. Gaeta, Q. Cao, R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
[CrossRef] [PubMed]

A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41, 27–29 (2005).
[CrossRef]

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef] [PubMed]

L. Tong, J. Lou, Z. Ye, G. T. Svacha, E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16, 1445–1448 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41, 400–402 (2005).
[CrossRef]

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[CrossRef] [PubMed]

M. Cheng, W. Chen, T. Weerasooriya, “Mechanical properties of Kevlar® KM2 single fiber,” J. Eng. Mater. Technol. 127, 197–203 (2005).
[CrossRef]

2004

K. Grujic, O. G. Hellesø, J. S. Wilkinson, J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

F. Le Kien, V. I. Balykin, K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

L. Tong, J. Lou, E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef] [PubMed]

G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004).
[CrossRef] [PubMed]

M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004).
[CrossRef] [PubMed]

O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters—a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004).
[CrossRef]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef] [PubMed]

S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express 12, 3521–3531 (2004).
[CrossRef] [PubMed]

S. Campopiano, R. Bernini, L. Zeni, P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29, 1894–1896 (2004).
[CrossRef] [PubMed]

Z. H. Hu, J. Wang, J. W. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe,” Opt. Express 12, 4123–4128 (2004).
[CrossRef] [PubMed]

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippenet, T. Hasegawa, T. Nagashima, N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 mm,” Opt. Express 12, 5697–5703 (2004).
[CrossRef] [PubMed]

C. B. Kim, C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5  micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

2003

A. V. Husakou, J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
[CrossRef]

D. A. Barber, N. H. Rizvi, “Characterization of the effects of different lasers on the tensile strength of fibers during laser writing of fiber Bragg gratings,” Proc. SPIE 4876, 321–329 (2003).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[CrossRef]

L. Yang, J. Yang, Z.-H. Wang, J.-H. Zeng, L. Yang, Y.-T. Qian, “Fabrication of mesoporous CdS nanorods by a chemical etch,” J. Mater. Res. 18, 396–401 (2003).
[CrossRef]

Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).

2002

P. Yang, F. Wu, R. Fan, “Block-by-block growth of single-crystalline Si∕SiGe superlattice nanowires,” Nano Lett. 2, 83–86 (2002).
[CrossRef]

D. Appell, “Nanotechnology: wired for success,” Nature 419, 553–555 (2002).
[CrossRef] [PubMed]

Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang, “electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Lett. 2, 717–720 (2002).
[CrossRef]

Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[CrossRef] [PubMed]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. M. Man, P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
[CrossRef]

K. Kikuchi, K. Taira, N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002).
[CrossRef]

2001

K. Taguchi, K. Atsuta, T. Nakata, M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33, 99–106 (2001).
[CrossRef]

J. F. Qi, T. Matsumoto, Y. Matsumoto, “Characterizations of simultaneously fabricated silicon and silicon monoxide nanowires,” Jpn. J. Appl. Phys., Part 1 40, L134–L136 (2001).
[CrossRef]

J. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef] [PubMed]

M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947–1949 (2001).
[CrossRef] [PubMed]

C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13, 1330–1333 (2001).
[CrossRef]

Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si∕SiO2 mixture,” J. Cryst. Growth 233, 803–808 (2001).
[CrossRef]

2000

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Y. Wu, P. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000).
[CrossRef]

C.-C. Chen, C.-C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater. 12, 738–741 (2000).
[CrossRef]

Y. Zhang, Q. Zhang, Y. Li, N. Wang, J. Zhu, “Coating of carbon nanotubes with tungsten by physical vapor deposition,” Solid State Commun. 115, 51–55 (2000).
[CrossRef]

M. Harada, M. Adachi, “Surfactant-mediated fabrication of silica nanotubes,” Adv. Mater. 12, 839–841 (2000).
[CrossRef]

Z. L. Wang, R. P. P. Gao, J. L. Gole, J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[CrossRef]

M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552–5555 (2000).
[CrossRef] [PubMed]

L. N. Ng, M. N. Zervas, J. S. Wilkinson, B. J. Luff, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 76, 1993–1995 (2000).
[CrossRef]

T. Tanaka, S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000).
[CrossRef]

P. C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. Lett. 61, 14119–14127 (2000).

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

1999

G. R. Quigley, R. D. Harris, J. S. Wilkinson, “Sensitivity enhancement of integrated optical sensors by use of thin high-index films,” Appl. Opt. 38, 6036–6039 (1999).
[CrossRef]

J. Bures, R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999).
[CrossRef]

J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550–1552 (1999).
[CrossRef] [PubMed]

M. Adachi, T. Harada, M. Harada, “Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system,” Langmuir 15, 7097–7100 (1999).
[CrossRef]

1998

K. Akagi, G. Piao, S. Kaneto, K. Sakamaki, H. Shirakawa, M. Kyotani, “Helical polyacetylene synthesized with a chiral nematic reaction field,” Science 282, 1683–1686 (1998).
[CrossRef] [PubMed]

A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998).
[CrossRef] [PubMed]

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998).
[CrossRef]

P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, H. Franke, “Physical analysis of Teflon coated capillary waveguides,” Sens. Actuators B 51, 278–284 (1998).
[CrossRef]

1997

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
[CrossRef] [PubMed]

R. Altkorn, I. Koev, R. P. VanDuyne, M. Litorja, “Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy,” Appl. Opt. 36, 8992–8998 (1997).
[CrossRef]

B. B. Lakshmi, C. J. Patrissi, C. R. Martin, “Sol-gel template synthesis of semiconductor oxide micro- and nanostructures,” Chem. Mater. 9, 2544–2550 (1997).
[CrossRef]

J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, “Catalytic growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554–557 (1997).
[CrossRef]

B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, “Oxide nanotubes prepared using carbon nanotubes as templates,” J. Mater. Res. 3, 604–606 (1997).
[CrossRef]

Y. Kondo, K. Takayanagi, “Gold nanobridge stabilized by surface structure,” Phys. Rev. Lett. 79, 3455–3458 (1997).
[CrossRef]

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[CrossRef]

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science 287, 637–640 (1997).
[CrossRef]

M. J. Matthewson, C. R. Kurkjian, J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15, 490–497 (1997).
[CrossRef]

1996

1995

E. R. Lyons, G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[CrossRef]

1992

S. Kawata, T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–77 (1992).
[CrossRef]

D. Marcuse, F. Ladouceur, J. D. Love, “Vector modes of D-shaped fibers,” IEE Proc.-J: Optoelectron. 139, 117–126 (1992).

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Iruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers,” Appl. Phys. Lett. 61, 2051–2054 (1992).
[CrossRef]

1991

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices—Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138, 343–354 (1991).

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibres and devices—Part 2: Experimental and theoretical quantification,” IEE Proc.-J: Optoelectron. 138, 355–364 (1991).

1989

C. Caspar, E. J. Bachus, “Fibre-optic microring-resonator with 2 mm diameter,” Electron. Lett. 25, 1506–1508 (1989).
[CrossRef]

1987

1986

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

1973

G. M. Hale, M. R. Querry, “Optical-constants of water in 200-nmto200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

1972

1970

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000to7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure.” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

1969

D. Marcuse, R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).
[CrossRef]

1955

J. Lenoble, B. Saint-Guily, “The absorption of ultraviolet light by distilled water,” Compt. Rend. 240, 954–955 (1955).

1939

G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
[CrossRef]

1901

P. N. Lebedev, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 6, 433–458 (1901).
[CrossRef]

Adachi, M.

M. Harada, M. Adachi, “Surfactant-mediated fabrication of silica nanotubes,” Adv. Mater. 12, 839–841 (2000).
[CrossRef]

M. Adachi, T. Harada, M. Harada, “Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system,” Langmuir 15, 7097–7100 (1999).
[CrossRef]

Adams, M.

M. Adams, G. A. DeRose, M. Loncar, A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B 23, 3168–3173 (2005).
[CrossRef]

Akagi, K.

K. Akagi, G. Piao, S. Kaneto, K. Sakamaki, H. Shirakawa, M. Kyotani, “Helical polyacetylene synthesized with a chiral nematic reaction field,” Science 282, 1683–1686 (1998).
[CrossRef] [PubMed]

Alfano, R. R.

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000to7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Altkorn, R.

Appell, D.

D. Appell, “Nanotechnology: wired for success,” Nature 419, 553–555 (2002).
[CrossRef] [PubMed]

Arepalli, S.

M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552–5555 (2000).
[CrossRef] [PubMed]

Arnold, S.

I. Teraoka, S. Arnold, F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef] [PubMed]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure.” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Atsuta, K.

K. Taguchi, K. Atsuta, T. Nakata, M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33, 99–106 (2001).
[CrossRef]

Au, F. C. K.

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Bachus, E. J.

C. Caspar, E. J. Bachus, “Fibre-optic microring-resonator with 2 mm diameter,” Electron. Lett. 25, 1506–1508 (1989).
[CrossRef]

Baets, R.

Bai, Z. G.

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

Balykin, V. I.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. Le Kien, V. I. Balykin, K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

Barber, D. A.

D. A. Barber, N. H. Rizvi, “Characterization of the effects of different lasers on the tensile strength of fibers during laser writing of fiber Bragg gratings,” Proc. SPIE 4876, 321–329 (2003).
[CrossRef]

Barrios, C. A.

Basumallick, L.

B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, “Oxide nanotubes prepared using carbon nanotubes as templates,” J. Mater. Res. 3, 604–606 (1997).
[CrossRef]

Belz, M.

P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, H. Franke, “Physical analysis of Teflon coated capillary waveguides,” Sens. Actuators B 51, 278–284 (1998).
[CrossRef]

Bernini, R.

Besselink, G. A. J.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Bienstman, P.

Bilodeau, F.

Birks, T.

Birks, T. A.

Bjorkholm, J. E.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Black, R. J.

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibres and devices—Part 2: Experimental and theoretical quantification,” IEE Proc.-J: Optoelectron. 138, 355–364 (1991).

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices—Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138, 343–354 (1991).

Brambilla, G.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys., Part 1 47, 6716–6718 (2008).
[CrossRef]

F. Xu, G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys., Part 1 47, 6675–6677 (2008).
[CrossRef]

F. Xu, G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
[CrossRef] [PubMed]

Y. Jung, G. Brambilla, D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
[CrossRef] [PubMed]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041–3043 (2007).
[CrossRef] [PubMed]

F. Xu, P. Horak, G. Brambilla, “Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator,” Appl. Opt. 46, 570–573 (2007).
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

F. Xu, P. Horak, G. Brambilla, “Optimized design of microcoil resonators,” J. Lightwave Technol. 25, 1561–1567 (2007).
[CrossRef]

F. Xu, P. Horak, G. Brambilla “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).F. Xu, P. Horak, G. Brambilla “Erratum,” Opt. Express 15, 9385 (2007).
[CrossRef] [PubMed]

F. Xu, G. Brambilla, “Manufacture of 3D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19, 1481–1483 (2007).
[CrossRef]

F. Xu, G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32, 2164–2166 (2007).
[CrossRef] [PubMed]

G. Brambilla, J. Mills, V. Finazzi, F. Koizumi, “Long-wavelength supercontinuum generation in bismuth-silicate fibres,” Electron. Lett. 42, 574–575 (2006).
[CrossRef]

G. Brambilla, F. Xu, X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42, 517–518 (2006).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41, 400–402 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41, 795–797 (2005).
[CrossRef]

G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004).
[CrossRef] [PubMed]

Broderick, N. G.

N. G. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16, 16247–16254 (2008).
[CrossRef] [PubMed]

Bures, J.

J. Bures, R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999).
[CrossRef]

Buschmann, V.

M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001).
[CrossRef]

Cai, M.

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Campopiano, S.

Cao, Q.

M. Foster, A. Gaeta, Q. Cao, R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
[CrossRef] [PubMed]

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).
[CrossRef]

Caspar, C.

C. Caspar, E. J. Bachus, “Fibre-optic microring-resonator with 2 mm diameter,” Electron. Lett. 25, 1506–1508 (1989).
[CrossRef]

Casquel, R.

Chao, C. Y.

C. Y. Chao, W. Fung, L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

C. Y. Chao, L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
[CrossRef]

Chatelain, F.

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[CrossRef] [PubMed]

Chaumet, P. C.

P. C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. Lett. 61, 14119–14127 (2000).

Chen, C.-C.

C.-C. Chen, C.-C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater. 12, 738–741 (2000).
[CrossRef]

Chen, J.

J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550–1552 (1999).
[CrossRef] [PubMed]

Chen, W.

M. Cheng, W. Chen, T. Weerasooriya, “Mechanical properties of Kevlar® KM2 single fiber,” J. Eng. Mater. Technol. 127, 197–203 (2005).
[CrossRef]

Chen, X.

L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef] [PubMed]

Cheng, M.

M. Cheng, W. Chen, T. Weerasooriya, “Mechanical properties of Kevlar® KM2 single fiber,” J. Eng. Mater. Technol. 127, 197–203 (2005).
[CrossRef]

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

Chu, S.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Clarke, G. L.

G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
[CrossRef]

Clohessy, A. M.

A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41, 27–29 (2005).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Colas, G.

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[CrossRef] [PubMed]

Cui, Y.

J. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef] [PubMed]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

Dai, Z. R.

Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[CrossRef] [PubMed]

Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947–1949 (2001).
[CrossRef] [PubMed]

Debackere, P.

DeRose, G. A.

M. Adams, G. A. DeRose, M. Loncar, A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B 23, 3168–3173 (2005).
[CrossRef]

Derosier, R. M.

D. Marcuse, R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).
[CrossRef]

Derouard, J.

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[CrossRef] [PubMed]

DiGiovanni, D. J.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
[CrossRef]

Ding, Y.

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

Dobrev, D.

M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001).
[CrossRef]

Donlagic, D.

D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24, 3532–3539 (2006).
[CrossRef]

Dress, P.

P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, H. Franke, “Physical analysis of Teflon coated capillary waveguides,” Sens. Actuators B 51, 278–284 (1998).
[CrossRef]

Duan, X.

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Duan, X. F.

J. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).
[CrossRef]

Dulashko, Y.

M. Sumetsky, R. S. Windeler, Y. Dulashko, X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express 12, 3521–3531 (2004).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, M. Fishteyn, “Demonstration of a multi-turn microfiber coil resonator,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP46.

Dyer, M. J.

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science 287, 637–640 (1997).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Ebendorff-Heidepriem, H.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Eggleton, B. J.

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
[CrossRef] [PubMed]

Fan, R.

P. Yang, F. Wu, R. Fan, “Block-by-block growth of single-crystalline Si∕SiGe superlattice nanowires,” Nano Lett. 2, 83–86 (2002).
[CrossRef]

Fan, X.

I. M. White, X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef] [PubMed]

M. Sumetsky, R. S. Windeler, Y. Dulashko, X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef] [PubMed]

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Faucher, S.

Fedeli, J. M.

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[CrossRef] [PubMed]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Feng, S. P.

H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998).
[CrossRef]

Feng, S. Q.

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

Feng, X.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

G. Brambilla, F. Xu, X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42, 517–518 (2006).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41, 400–402 (2005).
[CrossRef]

Files, B. S.

M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552–5555 (2000).
[CrossRef] [PubMed]

Finazzi, V.

F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

G. Brambilla, J. Mills, V. Finazzi, F. Koizumi, “Long-wavelength supercontinuum generation in bismuth-silicate fibres,” Electron. Lett. 42, 574–575 (2006).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41, 795–797 (2005).
[CrossRef]

G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004).
[CrossRef] [PubMed]

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

Fishteyn, M.

M. Sumetsky, Y. Dulashko, M. Fishteyn, “Demonstration of a multi-turn microfiber coil resonator,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP46.

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Foster, M.

Foster, M. A.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).
[CrossRef]

Franke, H.

P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, H. Franke, “Physical analysis of Teflon coated capillary waveguides,” Sens. Actuators B 51, 278–284 (1998).
[CrossRef]

Fu, L.

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
[CrossRef] [PubMed]

Fuchs, A.

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[CrossRef] [PubMed]

Fung, W.

C. Y. Chao, W. Fung, L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Gaeta, A.

Gaeta, A. L.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).
[CrossRef]

Gao, R. P. P.

Z. L. Wang, R. P. P. Gao, J. L. Gole, J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[CrossRef]

Gao, X.-Y.

Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).

Gattass, R.

L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef] [PubMed]

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Gaugiran, S.

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[CrossRef] [PubMed]

Gearheart, L.

N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Cambridge)617–618 (2001).

Genty, G.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Gétin, S.

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[CrossRef] [PubMed]

Ghosh, R.

J. Bures, R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999).
[CrossRef]

Gole, J. L.

Z. L. Wang, R. P. P. Gao, J. L. Gole, J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[CrossRef]

Gonthier, F.

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibres and devices—Part 2: Experimental and theoretical quantification,” IEE Proc.-J: Optoelectron. 138, 355–364 (1991).

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices—Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138, 343–354 (1991).

Gopinath, J. T.

Gordon, J. P.

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

Gosain, D. P.

J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, “Catalytic growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554–557 (1997).
[CrossRef]

Govindaraj, A.

B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, “Oxide nanotubes prepared using carbon nanotubes as templates,” J. Mater. Res. 3, 604–606 (1997).
[CrossRef]

Grattan, K. T. V.

P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, H. Franke, “Physical analysis of Teflon coated capillary waveguides,” Sens. Actuators B 51, 278–284 (1998).
[CrossRef]

Grelu, P.

Greve, J.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

Griol, A.

Grujic, K.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

Gu, F.

Gudiksen, M. S.

J. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef] [PubMed]

Guo, G.

Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang, “electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Lett. 2, 717–720 (2002).
[CrossRef]

Guo, L. J.

C. Y. Chao, W. Fung, L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

C. Y. Chao, L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
[CrossRef]

Guo, X.

X. Guo, L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
[CrossRef] [PubMed]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Gylfason, K. B.

Hakuta, K.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

F. Le Kien, V. I. Balykin, K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express 12, 3521–3531 (2004).
[CrossRef] [PubMed]

Hale, G. M.

G. M. Hale, M. R. Querry, “Optical-constants of water in 200-nmto200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

Hamblin, J. R.

M. J. Matthewson, C. R. Kurkjian, J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15, 490–497 (1997).
[CrossRef]

Hang, Q. L.

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

Hanumegowda, N. M.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Harada, M.

M. Harada, M. Adachi, “Surfactant-mediated fabrication of silica nanotubes,” Adv. Mater. 12, 839–841 (2000).
[CrossRef]

M. Adachi, T. Harada, M. Harada, “Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system,” Langmuir 15, 7097–7100 (1999).
[CrossRef]

Harada, T.

M. Adachi, T. Harada, M. Harada, “Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system,” Langmuir 15, 7097–7100 (1999).
[CrossRef]

Harris, R. D.

Hasegawa, T.

He, J.

He, R.

Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si∕SiO2 mixture,” J. Cryst. Growth 233, 803–808 (2001).
[CrossRef]

He, S.

L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef] [PubMed]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Healy, N.

A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41, 27–29 (2005).
[CrossRef]

Heideman, R. G.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Hellesø, O. G.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices—Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138, 343–354 (1991).

Herrmann, J.

A. V. Husakou, J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[CrossRef]

Hill, K. O.

Hole, J. P.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

Holgado, M.

Holler, S.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef] [PubMed]

Horak, P.

F. Xu, P. Horak, G. Brambilla, “Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator,” Appl. Opt. 46, 570–573 (2007).
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

F. Xu, P. Horak, G. Brambilla, “Optimized design of microcoil resonators,” J. Lightwave Technol. 25, 1561–1567 (2007).
[CrossRef]

F. Xu, P. Horak, G. Brambilla “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).F. Xu, P. Horak, G. Brambilla “Erratum,” Opt. Express 15, 9385 (2007).
[CrossRef] [PubMed]

Hu, J. Q.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[CrossRef]

Hu, L.

Hu, Z. H.

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou, J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[CrossRef]

Hussey, C. D.

A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41, 27–29 (2005).
[CrossRef]

Iijima, S.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

Ikeda, M.

K. Taguchi, K. Atsuta, T. Nakata, M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33, 99–106 (2001).
[CrossRef]

Ippenet, E. P.

Iruma, K.

M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Iruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers,” Appl. Phys. Lett. 61, 2051–2054 (1992).
[CrossRef]

James, H. R.

G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
[CrossRef]

Jana, N. R.

N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Cambridge)617–618 (2001).

Jiang, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Jiang, Y.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[CrossRef]

Johnson, D. C.

Jung, Y.

Kaneto, S.

K. Akagi, G. Piao, S. Kaneto, K. Sakamaki, H. Shirakawa, M. Kyotani, “Helical polyacetylene synthesized with a chiral nematic reaction field,” Science 282, 1683–1686 (1998).
[CrossRef] [PubMed]

Kanger, J. S.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Kawata, S.

S. Kawata, T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996).
[CrossRef] [PubMed]

S. Kawata, T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–77 (1992).
[CrossRef]

Kelly, T. F.

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science 287, 637–640 (1997).
[CrossRef]

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef] [PubMed]

Kibler, B.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).
[CrossRef]

Kien, F. L.

Kikuchi, K.

K. Kikuchi, K. Taira, N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002).
[CrossRef]

Kim, C. B.

C. B. Kim, C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5  micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

Kim, D. Y.

S. Moon, D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Klein, K. F.

P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, H. Franke, “Physical analysis of Teflon coated capillary waveguides,” Sens. Actuators B 51, 278–284 (1998).
[CrossRef]

Knight, J. C.

Koev, I.

Koguchi, M.

M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Iruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers,” Appl. Phys. Lett. 61, 2051–2054 (1992).
[CrossRef]

Koizumi, F.

G. Brambilla, J. Mills, V. Finazzi, F. Koizumi, “Long-wavelength supercontinuum generation in bismuth-silicate fibres,” Electron. Lett. 42, 574–575 (2006).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41, 400–402 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41, 795–797 (2005).
[CrossRef]

Kondo, Y.

Y. Kondo, K. Takayanagi, “Gold nanobridge stabilized by surface structure,” Phys. Rev. Lett. 79, 3455–3458 (1997).
[CrossRef]

Kurkjian, C. R.

M. J. Matthewson, C. R. Kurkjian, J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15, 490–497 (1997).
[CrossRef]

Kyotani, M.

K. Akagi, G. Piao, S. Kaneto, K. Sakamaki, H. Shirakawa, M. Kyotani, “Helical polyacetylene synthesized with a chiral nematic reaction field,” Science 282, 1683–1686 (1998).
[CrossRef] [PubMed]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices—Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138, 343–354 (1991).

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibres and devices—Part 2: Experimental and theoretical quantification,” IEE Proc.-J: Optoelectron. 138, 355–364 (1991).

Ladouceur, F.

F. Ladouceur, “Roughness, inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[CrossRef]

D. Marcuse, F. Ladouceur, J. D. Love, “Vector modes of D-shaped fibers,” IEE Proc.-J: Optoelectron. 139, 117–126 (1992).

Lai, H.-L.

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Lakshmi, B. B.

B. B. Lakshmi, C. J. Patrissi, C. R. Martin, “Sol-gel template synthesis of semiconductor oxide micro- and nanostructures,” Chem. Mater. 9, 2544–2550 (1997).
[CrossRef]

Lambeck, P. V.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Lamont, M. R. E.

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
[CrossRef] [PubMed]

Le Kien, F.

F. Le Kien, V. I. Balykin, K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

Lebedev, P. N.

P. N. Lebedev, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 6, 433–458 (1901).
[CrossRef]

Lee, C. S.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[CrossRef]

Lee, C.-S.

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Lee, D.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).
[CrossRef]

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

Lee, S. T.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[CrossRef]

Lee, S.-T.

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Lei, Y.

C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13, 1330–1333 (2001).
[CrossRef]

Lenoble, J.

J. Lenoble, B. Saint-Guily, “The absorption of ultraviolet light by distilled water,” Compt. Rend. 240, 954–955 (1955).

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Leon-Saval, S.

Leon-Saval, S. G.

Li, B.

X. Xing, Y. Wang, B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16, 10815–10822 (2008).
[CrossRef] [PubMed]

Li, H. J.

H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998).
[CrossRef]

Li, Y.

G. Vienne, Y. Li, L. Tong, P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008).
[CrossRef] [PubMed]

G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19, 1386–1388 (2007).
[CrossRef]

Y. Zhang, Q. Zhang, Y. Li, N. Wang, J. Zhu, “Coating of carbon nanotubes with tungsten by physical vapor deposition,” Solid State Commun. 115, 51–55 (2000).
[CrossRef]

Li, Y. W.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Liang, C. H.

C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13, 1330–1333 (2001).
[CrossRef]

Liang, J. Q.

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

Liang, J. W.

Lieber, C. M.

J. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef] [PubMed]

A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998).
[CrossRef] [PubMed]

Litorja, M.

Liu, J.

Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si∕SiO2 mixture,” J. Cryst. Growth 233, 803–808 (2001).
[CrossRef]

Liu, L.

L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef] [PubMed]

Loncar, M.

M. Adams, G. A. DeRose, M. Loncar, A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B 23, 3168–3173 (2005).
[CrossRef]

Lou, J.

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Lourie, O.

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science 287, 637–640 (1997).
[CrossRef]

Love, J. D.

D. Marcuse, F. Ladouceur, J. D. Love, “Vector modes of D-shaped fibers,” IEE Proc.-J: Optoelectron. 139, 117–126 (1992).

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices—Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138, 343–354 (1991).

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibres and devices—Part 2: Experimental and theoretical quantification,” IEE Proc.-J: Optoelectron. 138, 355–364 (1991).

J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–994 (1987).
[CrossRef]

A. W. Snyder, J. D. Love, Optical Waveguide Theory(Kluwer Academic, 2000).

Luff, B. J.

L. N. Ng, M. N. Zervas, J. S. Wilkinson, B. J. Luff, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 76, 1993–1995 (2000).
[CrossRef]

Lyons, E. R.

E. R. Lyons, G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[CrossRef]

Ma, C.

Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[CrossRef] [PubMed]

Mägi, E. C.

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
[CrossRef] [PubMed]

Man, T. M.

Mansuripur, M.

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Mao, Y.-Q.

Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).

Marcuse, D.

D. Marcuse, F. Ladouceur, J. D. Love, “Vector modes of D-shaped fibers,” IEE Proc.-J: Optoelectron. 139, 117–126 (1992).

D. Marcuse, R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).
[CrossRef]

Martin, C. R.

B. B. Lakshmi, C. J. Patrissi, C. R. Martin, “Sol-gel template synthesis of semiconductor oxide micro- and nanostructures,” Chem. Mater. 9, 2544–2550 (1997).
[CrossRef]

Mason, M.

Mason, M. W.

Matsumoto, T.

J. F. Qi, T. Matsumoto, Y. Matsumoto, “Characterizations of simultaneously fabricated silicon and silicon monoxide nanowires,” Jpn. J. Appl. Phys., Part 1 40, L134–L136 (2001).
[CrossRef]

Matsumoto, Y.

J. F. Qi, T. Matsumoto, Y. Matsumoto, “Characterizations of simultaneously fabricated silicon and silicon monoxide nanowires,” Jpn. J. Appl. Phys., Part 1 40, L134–L136 (2001).
[CrossRef]

Matthewson, M. J.

M. J. Matthewson, C. R. Kurkjian, J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15, 490–497 (1997).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef] [PubMed]

L. Tong, J. Lou, Z. Ye, G. T. Svacha, E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16, 1445–1448 (2005).
[CrossRef]

L. Tong, J. Lou, E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Melentiev, P. N.

Meng, G. W.

C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13, 1330–1333 (2001).
[CrossRef]

H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998).
[CrossRef]

Meng, G.-W.

Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).

Meng, X. M.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[CrossRef]

Meschede, D.

Miao, Z.

Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang, “electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Lett. 2, 717–720 (2002).
[CrossRef]

Mills, J.

G. Brambilla, J. Mills, V. Finazzi, F. Koizumi, “Long-wavelength supercontinuum generation in bismuth-silicate fibres,” Electron. Lett. 42, 574–575 (2006).
[CrossRef]

Mo, C. M.

H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998).
[CrossRef]

Molares, M. E. T.

M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001).
[CrossRef]

Moloni, K.

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science 287, 637–640 (1997).
[CrossRef]

Monro, T. M.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Monzón-Hernández, D.

Moon, S.

S. Moon, D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

Morales, A. M.

A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998).
[CrossRef] [PubMed]

Morinaga, M.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

Murphy, C. J.

N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Cambridge)617–618 (2001).

Murphy, D. F.

A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41, 27–29 (2005).
[CrossRef]

Murugan, G. S.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys., Part 1 47, 6716–6718 (2008).
[CrossRef]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041–3043 (2007).
[CrossRef] [PubMed]

Muto, A.

M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Iruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers,” Appl. Phys. Lett. 61, 2051–2054 (1992).
[CrossRef]

Nagashima, T.

Nakata, T.

K. Taguchi, K. Atsuta, T. Nakata, M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33, 99–106 (2001).
[CrossRef]

Nayak, K. P.

Neumann, R.

M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001).
[CrossRef]

Ng, L. N.

L. N. Ng, M. N. Zervas, J. S. Wilkinson, B. J. Luff, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 76, 1993–1995 (2000).
[CrossRef]

Nieto-Vesperinas, M.

P. C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. Lett. 61, 14119–14127 (2000).

Novotny, L.

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Ortigosa-Blanch, A.

Ouyang, J.

Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang, “electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Lett. 2, 717–720 (2002).
[CrossRef]

Oveys, H.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Ozawa, M.

M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Iruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers,” Appl. Phys. Lett. 61, 2051–2054 (1992).
[CrossRef]

Painter, O.

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Pan, Z.

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Pan, Z. W.

Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[CrossRef] [PubMed]

Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947–1949 (2001).
[CrossRef] [PubMed]

Pang, Y.-T.

Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Patrissi, C. J.

B. B. Lakshmi, C. J. Patrissi, C. R. Martin, “Sol-gel template synthesis of semiconductor oxide micro- and nanostructures,” Chem. Mater. 9, 2544–2550 (1997).
[CrossRef]

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Peyghambarian, N.

Phillipp, F.

C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13, 1330–1333 (2001).
[CrossRef]

Piao, G.

K. Akagi, G. Piao, S. Kaneto, K. Sakamaki, H. Shirakawa, M. Kyotani, “Helical polyacetylene synthesized with a chiral nematic reaction field,” Science 282, 1683–1686 (1998).
[CrossRef] [PubMed]

Poletti, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Polynkin, A.

Polynkin, P.

Price, J. H. V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

Pruneri, V.

Qi, J. F.

J. F. Qi, T. Matsumoto, Y. Matsumoto, “Characterizations of simultaneously fabricated silicon and silicon monoxide nanowires,” Jpn. J. Appl. Phys., Part 1 40, L134–L136 (2001).
[CrossRef]

Qian, W.

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

Qian, Y.-T.

L. Yang, J. Yang, Z.-H. Wang, J.-H. Zeng, L. Yang, Y.-T. Qian, “Fabrication of mesoporous CdS nanorods by a chemical etch,” J. Mater. Res. 18, 396–401 (2003).
[CrossRef]

Qin, Y.

H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998).
[CrossRef]

Qiu, J.

Querry, M. R.

G. M. Hale, M. R. Querry, “Optical-constants of water in 200-nmto200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

Quigley, G. R.

Rahmani, A.

P. C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. Lett. 61, 14119–14127 (2000).

Ranka, J. K.

Rao, C. N. R.

B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, “Oxide nanotubes prepared using carbon nanotubes as templates,” J. Mater. Res. 3, 604–606 (1997).
[CrossRef]

Rauschenbeutel, A.

Rawlett, A. M.

J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550–1552 (1999).
[CrossRef] [PubMed]

Reed, M. A.

J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550–1552 (1999).
[CrossRef] [PubMed]

Richardson, D. J.

Y. Jung, G. Brambilla, D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
[CrossRef] [PubMed]

G. S. Murugan, G. Brambilla, J. S. Wilkinson, D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys., Part 1 47, 6716–6718 (2008).
[CrossRef]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041–3043 (2007).
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41, 795–797 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41, 400–402 (2005).
[CrossRef]

G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004).
[CrossRef] [PubMed]

Rizvi, N. H.

D. A. Barber, N. H. Rizvi, “Characterization of the effects of different lasers on the tensile strength of fibers during laser writing of fiber Bragg gratings,” Proc. SPIE 4876, 321–329 (2003).
[CrossRef]

Roelens, M. A. F.

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
[CrossRef] [PubMed]

Ruda, H.

J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, “Catalytic growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554–557 (1997).
[CrossRef]

Ruoff, R. S.

M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552–5555 (2000).
[CrossRef] [PubMed]

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science 287, 637–640 (1997).
[CrossRef]

Russell, P. S. J.

Russell, P. St. J.

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

Saint-Guily, B.

J. Lenoble, B. Saint-Guily, “The absorption of ultraviolet light by distilled water,” Compt. Rend. 240, 954–955 (1955).

Sakamaki, K.

K. Akagi, G. Piao, S. Kaneto, K. Sakamaki, H. Shirakawa, M. Kyotani, “Helical polyacetylene synthesized with a chiral nematic reaction field,” Science 282, 1683–1686 (1998).
[CrossRef] [PubMed]

Sánchez, B.

Sarro, P. M.

Satishkumar, B. C.

B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, “Oxide nanotubes prepared using carbon nanotubes as templates,” J. Mater. Res. 3, 604–606 (1997).
[CrossRef]

Scheerlinck, S.

Scherer, A.

M. Adams, G. A. DeRose, M. Loncar, A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B 23, 3168–3173 (2005).
[CrossRef]

Scholz, R.

M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001).
[CrossRef]

Schuchert, I. U.

M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001).
[CrossRef]

Schwelb, O.

Shan, W.-J.

Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).

Shapiro, S. L.

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000to7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Shen, H. M.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Shen, Y.

Shi, W.

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Shirakawa, H.

K. Akagi, G. Piao, S. Kaneto, K. Sakamaki, H. Shirakawa, M. Kyotani, “Helical polyacetylene synthesized with a chiral nematic reaction field,” Science 282, 1683–1686 (1998).
[CrossRef] [PubMed]

Smith, R. C.

Smith, T. L.

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory(Kluwer Academic, 2000).

Sohlström, H.

Sokolowski, M.

Sonek, G. J.

E. R. Lyons, G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[CrossRef]

Sotobayashi, H.

Stentz, A. J.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices—Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138, 343–354 (1991).

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Stout, J. D.

Z. L. Wang, R. P. P. Gao, J. L. Gole, J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[CrossRef]

Su, C. B.

C. B. Kim, C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5  micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

Sugimoto, N.

Sugiura, T.

S. Kawata, T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–77 (1992).
[CrossRef]

Sumetsky, M.

M. Sumetsky, “Basic elements for microfiber photonics: micro/nanofibers and microfiber coil resonators,” J. Lightwave Technol. 26, 21–27 (2008).
[CrossRef]

M. Sumetsky, “Thinnest optical waveguide: experimental test,” Opt. Lett. 32, 754–756 (2007).
[CrossRef] [PubMed]

M. Sumetsky, R. S. Windeler, Y. Dulashko, X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express 12, 3521–3531 (2004).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, M. Fishteyn, “Demonstration of a multi-turn microfiber coil resonator,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP46.

Suter, J. D.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[CrossRef]

Svacha, G. T.

L. Tong, J. Lou, Z. Ye, G. T. Svacha, E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16, 1445–1448 (2005).
[CrossRef]

Taguchi, K.

K. Taguchi, K. Atsuta, T. Nakata, M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33, 99–106 (2001).
[CrossRef]

Taira, K.

K. Kikuchi, K. Taira, N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002).
[CrossRef]

Takayanagi, K.

Y. Kondo, K. Takayanagi, “Gold nanobridge stabilized by surface structure,” Phys. Rev. Lett. 79, 3455–3458 (1997).
[CrossRef]

Tanaka, T.

T. Tanaka, S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000).
[CrossRef]

Tang, Y.

Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang, “electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Lett. 2, 717–720 (2002).
[CrossRef]

Tani, T.

Teraoka, I.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
[CrossRef]

Tomiya, S.

J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, “Catalytic growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554–557 (1997).
[CrossRef]

Tong, L.

G. Vienne, Y. Li, L. Tong, P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008).
[CrossRef] [PubMed]

X. Guo, L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
[CrossRef] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008).
[CrossRef] [PubMed]

F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008).
[CrossRef] [PubMed]

G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19, 1386–1388 (2007).
[CrossRef]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82–87 (2006).
[CrossRef] [PubMed]

L. Tong, J. Lou, Z. Ye, G. T. Svacha, E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16, 1445–1448 (2005).
[CrossRef]

J. Lou, L. Tong, Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13, 2135–2140 (2005).
[CrossRef] [PubMed]

L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef] [PubMed]

L. Tong, J. Lou, E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef] [PubMed]

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Tour, J. M.

J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550–1552 (1999).
[CrossRef] [PubMed]

Trebino, R.

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).
[CrossRef]

M. Foster, A. Gaeta, Q. Cao, R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
[CrossRef] [PubMed]

Tsao, A.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Tyler, J. E.

Usui, S.

J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, “Catalytic growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554–557 (1997).
[CrossRef]

Vahala, K. J.

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

VanDuyne, R. P.

Vetsch, E.

Vetter, J.

M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001).
[CrossRef]

Vienne, G.

G. Vienne, Y. Li, L. Tong, P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008).
[CrossRef] [PubMed]

G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19, 1386–1388 (2007).
[CrossRef]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Villatoro, J.

Vogl, E. M.

B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, “Oxide nanotubes prepared using carbon nanotubes as templates,” J. Mater. Res. 3, 604–606 (1997).
[CrossRef]

Vollmer, F.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef] [PubMed]

I. Teraoka, S. Arnold, F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
[CrossRef]

Wadsworth, W.

Wadsworth, W. J.

Wang, J.

Z. H. Hu, J. Wang, J. W. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe,” Opt. Express 12, 4123–4128 (2004).
[CrossRef] [PubMed]

J. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef] [PubMed]

Wang, J. J.

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

Wang, N.

Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si∕SiO2 mixture,” J. Cryst. Growth 233, 803–808 (2001).
[CrossRef]

Y. Zhang, Q. Zhang, Y. Li, N. Wang, J. Zhu, “Coating of carbon nanotubes with tungsten by physical vapor deposition,” Solid State Commun. 115, 51–55 (2000).
[CrossRef]

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Wang, Y.

X. Xing, Y. Wang, B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16, 10815–10822 (2008).
[CrossRef] [PubMed]

Wang, Z. L.

Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[CrossRef] [PubMed]

Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947–1949 (2001).
[CrossRef] [PubMed]

Z. L. Wang, R. P. P. Gao, J. L. Gole, J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[CrossRef]

Wang, Z.-H.

L. Yang, J. Yang, Z.-H. Wang, J.-H. Zeng, L. Yang, Y.-T. Qian, “Fabrication of mesoporous CdS nanorods by a chemical etch,” J. Mater. Res. 18, 396–401 (2003).
[CrossRef]

Warken, F.

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Weerasooriya, T.

M. Cheng, W. Chen, T. Weerasooriya, “Mechanical properties of Kevlar® KM2 single fiber,” J. Eng. Mater. Technol. 127, 197–203 (2005).
[CrossRef]

Westwater, J.

J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, “Catalytic growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554–557 (1997).
[CrossRef]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

White, I. M.

I. M. White, X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef] [PubMed]

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Wijn, R.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Wilkinson, J. S.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys., Part 1 47, 6716–6718 (2008).
[CrossRef]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041–3043 (2007).
[CrossRef] [PubMed]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

L. N. Ng, M. N. Zervas, J. S. Wilkinson, B. J. Luff, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 76, 1993–1995 (2000).
[CrossRef]

G. R. Quigley, R. D. Harris, J. S. Wilkinson, “Sensitivity enhancement of integrated optical sensors by use of thin high-index films,” Appl. Opt. 38, 6036–6039 (1999).
[CrossRef]

Wilson, J. W. H.

Windeler, R. S.

Wong, N.-B.

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Wu, F.

P. Yang, F. Wu, R. Fan, “Block-by-block growth of single-crystalline Si∕SiGe superlattice nanowires,” Nano Lett. 2, 83–86 (2002).
[CrossRef]

Wu, Y.

Y. Wu, P. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000).
[CrossRef]

Wu, Y. Y.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Xie, S.

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Xing, X.

X. Xing, Y. Wang, B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16, 10815–10822 (2008).
[CrossRef] [PubMed]

Xiong, G. C.

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

Xu, D.

Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang, “electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Lett. 2, 717–720 (2002).
[CrossRef]

Xu, F.

F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
[CrossRef] [PubMed]

F. Xu, G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

F. Xu, G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys., Part 1 47, 6675–6677 (2008).
[CrossRef]

F. Xu, P. Horak, G. Brambilla, “Optimized design of microcoil resonators,” J. Lightwave Technol. 25, 1561–1567 (2007).
[CrossRef]

F. Xu, G. Brambilla, “Manufacture of 3D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19, 1481–1483 (2007).
[CrossRef]

F. Xu, P. Horak, G. Brambilla “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).F. Xu, P. Horak, G. Brambilla “Erratum,” Opt. Express 15, 9385 (2007).
[CrossRef] [PubMed]

F. Xu, G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32, 2164–2166 (2007).
[CrossRef] [PubMed]

F. Xu, P. Horak, G. Brambilla, “Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator,” Appl. Opt. 46, 570–573 (2007).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42, 517–518 (2006).
[CrossRef]

Yamamoto, S.

T. Tanaka, S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000).
[CrossRef]

Yan, H. Q.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, D.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

Yang, J.

L. Yang, J. Yang, Z.-H. Wang, J.-H. Zeng, L. Yang, Y.-T. Qian, “Fabrication of mesoporous CdS nanorods by a chemical etch,” J. Mater. Res. 18, 396–401 (2003).
[CrossRef]

Yang, L.

L. Yang, J. Yang, Z.-H. Wang, J.-H. Zeng, L. Yang, Y.-T. Qian, “Fabrication of mesoporous CdS nanorods by a chemical etch,” J. Mater. Res. 18, 396–401 (2003).
[CrossRef]

L. Yang, J. Yang, Z.-H. Wang, J.-H. Zeng, L. Yang, Y.-T. Qian, “Fabrication of mesoporous CdS nanorods by a chemical etch,” J. Mater. Res. 18, 396–401 (2003).
[CrossRef]

Yang, P.

P. Yang, F. Wu, R. Fan, “Block-by-block growth of single-crystalline Si∕SiGe superlattice nanowires,” Nano Lett. 2, 83–86 (2002).
[CrossRef]

Y. Wu, P. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000).
[CrossRef]

Yang, P. D.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, Q.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82–87 (2006).
[CrossRef] [PubMed]

Yazawa, M.

M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Iruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers,” Appl. Phys. Lett. 61, 2051–2054 (1992).
[CrossRef]

Ye, Z.

Yeh, C.-C.

C.-C. Chen, C.-C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater. 12, 738–741 (2000).
[CrossRef]

Yeom, D.

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
[CrossRef] [PubMed]

Yin, X.

Ymeti, A.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Yu, D. P.

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

Yu, M. F.

M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552–5555 (2000).
[CrossRef] [PubMed]

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science 287, 637–640 (1997).
[CrossRef]

Zeng, J.-H.

L. Yang, J. Yang, Z.-H. Wang, J.-H. Zeng, L. Yang, Y.-T. Qian, “Fabrication of mesoporous CdS nanorods by a chemical etch,” J. Mater. Res. 18, 396–401 (2003).
[CrossRef]

Zeni, L.

Zervas, M. N.

L. N. Ng, M. N. Zervas, J. S. Wilkinson, B. J. Luff, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 76, 1993–1995 (2000).
[CrossRef]

Zhang, C.

Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).

Zhang, H. Z.

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

Zhang, J.

Zhang, J. Y.

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Zhang, L.

Zhang, L. D.

C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13, 1330–1333 (2001).
[CrossRef]

H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998).
[CrossRef]

Zhang, L.-D.

Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).

Zhang, Q.

Y. Zhang, Q. Zhang, Y. Li, N. Wang, J. Zhu, “Coating of carbon nanotubes with tungsten by physical vapor deposition,” Solid State Commun. 115, 51–55 (2000).
[CrossRef]

Zhang, S. Y.

H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998).
[CrossRef]

Zhang, X.

Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si∕SiO2 mixture,” J. Cryst. Growth 233, 803–808 (2001).
[CrossRef]

Zhang, Y.

Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si∕SiO2 mixture,” J. Cryst. Growth 233, 803–808 (2001).
[CrossRef]

Y. Zhang, Q. Zhang, Y. Li, N. Wang, J. Zhu, “Coating of carbon nanotubes with tungsten by physical vapor deposition,” Solid State Commun. 115, 51–55 (2000).
[CrossRef]

Zhao, A.-W.

Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).

Zhao, Z.

Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang, “electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Lett. 2, 717–720 (2002).
[CrossRef]

Zhou, W.

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

Zhu, H. Y.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[CrossRef]

Zhu, J.

Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si∕SiO2 mixture,” J. Cryst. Growth 233, 803–808 (2001).
[CrossRef]

Y. Zhang, Q. Zhang, Y. Li, N. Wang, J. Zhu, “Coating of carbon nanotubes with tungsten by physical vapor deposition,” Solid State Commun. 115, 51–55 (2000).
[CrossRef]

Zou, Y. H.

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

Zourob, M.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[CrossRef]

Adv. Mater.

C.-C. Chen, C.-C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater. 12, 738–741 (2000).
[CrossRef]

Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties,” Adv. Mater. 12, 1186–1190 (2000).
[CrossRef]

C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp, L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13, 1330–1333 (2001).
[CrossRef]

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, S. T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[CrossRef]

Adv. Mater.

M. Harada, M. Adachi, “Surfactant-mediated fabrication of silica nanotubes,” Adv. Mater. 12, 839–841 (2000).
[CrossRef]

Z. L. Wang, R. P. P. Gao, J. L. Gole, J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[CrossRef]

M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, J. Vetter, “Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes,” Adv. Mater. 13, 62–65 (2001).
[CrossRef]

Ann. Phys.

P. N. Lebedev, “Untersuchungen über die Druckkräfte des Lichtes,” Ann. Phys. 6, 433–458 (1901).
[CrossRef]

Appl. Opt.

F. Xu, P. Horak, G. Brambilla, “Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator,” Appl. Opt. 46, 570–573 (2007).
[CrossRef] [PubMed]

G. M. Hale, M. R. Querry, “Optical-constants of water in 200-nmto200-μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

Appl. Phys. Lett.

E. R. Lyons, G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical-fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[CrossRef]

F. Xu, G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. V. Husakou, J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[CrossRef]

M. A. Foster, J. M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, A. L. Gaeta, “Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation,” Appl. Phys. B 81, 363–367 (2005).
[CrossRef]

Appl. Phys. Lett.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

L. N. Ng, M. N. Zervas, J. S. Wilkinson, B. J. Luff, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 76, 1993–1995 (2000).
[CrossRef]

T. Tanaka, S. Yamamoto, “Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000).
[CrossRef]

M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Iruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers,” Appl. Phys. Lett. 61, 2051–2054 (1992).
[CrossRef]

D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, S. Q. Feng, “Amorphous silica nanowires: intensive blue light emitters,” Appl. Phys. Lett. 73, 3076–3078 (1998).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

I. M. White, H. Oveys, X. Fan, T. L. Smith, J. Y. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett. 89, 191106 (2006).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).
[CrossRef]

Biosens. Bioelectron.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417–1421 (2005).
[CrossRef]

Chem. Mater.

B. B. Lakshmi, C. J. Patrissi, C. R. Martin, “Sol-gel template synthesis of semiconductor oxide micro- and nanostructures,” Chem. Mater. 9, 2544–2550 (1997).
[CrossRef]

Chem. Mater.

Y. Wu, P. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605–607 (2000).
[CrossRef]

Compt. Rend.

J. Lenoble, B. Saint-Guily, “The absorption of ultraviolet light by distilled water,” Compt. Rend. 240, 954–955 (1955).

Electron. Lett.

C. Caspar, E. J. Bachus, “Fibre-optic microring-resonator with 2 mm diameter,” Electron. Lett. 25, 1506–1508 (1989).
[CrossRef]

Electron. Lett.

G. Brambilla, F. Koizumi, X. Feng, D. J. Richardson, “Compound-glass optical nanowires,” Electron. Lett. 41, 400–402 (2005).
[CrossRef]

J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23, 993–994 (1987).
[CrossRef]

A. M. Clohessy, N. Healy, D. F. Murphy, C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41, 27–29 (2005).
[CrossRef]

G. Brambilla, F. Xu, X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterization,” Electron. Lett. 42, 517–518 (2006).
[CrossRef]

G. Brambilla, J. Mills, V. Finazzi, F. Koizumi, “Long-wavelength supercontinuum generation in bismuth-silicate fibres,” Electron. Lett. 42, 574–575 (2006).
[CrossRef]

G. Brambilla, F. Koizumi, V. Finazzi, D. J. Richardson, “Supercontinuum generation in tapered bismuth silicate fibres,” Electron. Lett. 41, 795–797 (2005).
[CrossRef]

K. Kikuchi, K. Taira, N. Sugimoto, “Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing,” Electron. Lett. 38, 166–167 (2002).
[CrossRef]

IEE Proc.-J: Optoelectron.

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibres and devices—Part 2: Experimental and theoretical quantification,” IEE Proc.-J: Optoelectron. 138, 355–364 (1991).

IEE Proc.-J: Optoelectron.

D. Marcuse, F. Ladouceur, J. D. Love, “Vector modes of D-shaped fibers,” IEE Proc.-J: Optoelectron. 139, 117–126 (1992).

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibres and devices—Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138, 343–354 (1991).

IEEE J. Sel. Top. Quantum Electron.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Y. Chao, W. Fung, L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Moon, D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19, 1386–1388 (2007).
[CrossRef]

F. Xu, G. Brambilla, “Manufacture of 3D microfiber coil resonators,” IEEE Photon. Technol. Lett. 19, 1481–1483 (2007).
[CrossRef]

IEEE Sens. J.

I. M. White, H. Y. Zhu, J. D. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, “Refractometric sensors for lab-on-a-chip based on optical ring resonators,” IEEE Sens. J. 7, 28–35 (2007).
[CrossRef]

J. Am. Chem. Soc.

Z. W. Pan, Z. R. Dai, C. Ma, Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[CrossRef] [PubMed]

J. Cryst. Growth

Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, J. Zhu, “A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si∕SiO2 mixture,” J. Cryst. Growth 233, 803–808 (2001).
[CrossRef]

J. Eng. Mater. Technol.

M. Cheng, W. Chen, T. Weerasooriya, “Mechanical properties of Kevlar® KM2 single fiber,” J. Eng. Mater. Technol. 127, 197–203 (2005).
[CrossRef]

J. Lightwave Technol.

M. J. Matthewson, C. R. Kurkjian, J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15, 490–497 (1997).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250 (2006).
[CrossRef]

D. Donlagic, “In-line higher order mode filters based on long highly uniform fiber tapers,” J. Lightwave Technol. 24, 3532–3539 (2006).
[CrossRef]

J. Lightwave Technol.

J. Mater. Res.

L. Yang, J. Yang, Z.-H. Wang, J.-H. Zeng, L. Yang, Y.-T. Qian, “Fabrication of mesoporous CdS nanorods by a chemical etch,” J. Mater. Res. 18, 396–401 (2003).
[CrossRef]

B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, “Oxide nanotubes prepared using carbon nanotubes as templates,” J. Mater. Res. 3, 604–606 (1997).
[CrossRef]

J. Opt. Soc. Am.

G. L. Clarke, H. R. James, “Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43–55 (1939).
[CrossRef]

J. Opt. Soc. Am. A

J. Bures, R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Solid State Electrochem.

Y.-T. Pang, G.-W. Meng, L.-D. Zhang, W.-J. Shan, C. Zhang, X.-Y. Gao, A.-W. Zhao, Y.-Q. Mao, “Electrochemical synthesis of ordered alumina nanowire arrays,” J. Solid State Electrochem. 7, 344–347 (2003).

J. Vac. Sci. Technol. B

J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, “Catalytic growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554–557 (1997).
[CrossRef]

J. Vac. Sci. Technol. B

M. Adams, G. A. DeRose, M. Loncar, A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B 23, 3168–3173 (2005).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

F. Xu, G. Brambilla, “Preservation of micro-optical fibers by embedding,” Jpn. J. Appl. Phys., Part 1 47, 6675–6677 (2008).
[CrossRef]

G. S. Murugan, G. Brambilla, J. S. Wilkinson, D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys., Part 1 47, 6716–6718 (2008).
[CrossRef]

J. F. Qi, T. Matsumoto, Y. Matsumoto, “Characterizations of simultaneously fabricated silicon and silicon monoxide nanowires,” Jpn. J. Appl. Phys., Part 1 40, L134–L136 (2001).
[CrossRef]

Langmuir

M. Adachi, T. Harada, M. Harada, “Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system,” Langmuir 15, 7097–7100 (1999).
[CrossRef]

Meas. Sci. Technol.

C. B. Kim, C. B. Su, “Measurement of the refractive index of liquids at 1.3 and 1.5  micron using a fibre optic Fresnel ratio meter,” Meas. Sci. Technol. 15, 1683–1686 (2004).
[CrossRef]

Nano Lett.

P. Yang, F. Wu, R. Fan, “Block-by-block growth of single-crystalline Si∕SiGe superlattice nanowires,” Nano Lett. 2, 83–86 (2002).
[CrossRef]

L. Tong, J. Lou, R. Gattass, S. He, X. Chen, L. Liu, E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259–262 (2005).
[CrossRef] [PubMed]

Nano Lett.

F. Gu, L. Zhang, X. Yin, L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008).
[CrossRef] [PubMed]

Z. Miao, D. Xu, J. Ouyang, G. Guo, Z. Zhao, Y. Tang, “electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires,” Nano Lett. 2, 717–720 (2002).
[CrossRef]

Nanotechnology

L. Tong, J. Lou, Z. Ye, G. T. Svacha, E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16, 1445–1448 (2005).
[CrossRef]

Nature

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

D. Appell, “Nanotechnology: wired for success,” Nature 419, 553–555 (2002).
[CrossRef] [PubMed]

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, J. P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

Opt. Express

S. Gaugiran, S. Gétin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[CrossRef] [PubMed]

N. G. Broderick, “Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators,” Opt. Express 16, 16247–16254 (2008).
[CrossRef] [PubMed]

X. Xing, Y. Wang, B. Li, “Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate),” Opt. Express 16, 10815–10822 (2008).
[CrossRef] [PubMed]

I. M. White, X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef] [PubMed]

Opt. Lett.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

S. Kawata, T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–77 (1992).
[CrossRef]

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
[CrossRef] [PubMed]

Opt. Express

L. Tong, J. Lou, E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[CrossRef] [PubMed]

G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258–2263 (2004).
[CrossRef] [PubMed]

M. Sumetsky, “Optical fiber microcoil resonator,” Opt. Express 12, 2303–2316 (2004).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef] [PubMed]

S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, A. Hale, “Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer,” Opt. Express 12, 3521–3531 (2004).
[CrossRef] [PubMed]

P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Opt. Express 14, 7063–7072 (2006).
[CrossRef] [PubMed]

J. Villatoro, D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005).
[CrossRef] [PubMed]

M. Foster, A. Gaeta, Q. Cao, R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
[CrossRef] [PubMed]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82–87 (2006).
[CrossRef] [PubMed]

Z. H. Hu, J. Wang, J. W. Liang, “Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe,” Opt. Express 12, 4123–4128 (2004).
[CrossRef] [PubMed]

J. T. Gopinath, H. M. Shen, H. Sotobayashi, E. P. Ippenet, T. Hasegawa, T. Nagashima, N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 mm,” Opt. Express 12, 5697–5703 (2004).
[CrossRef] [PubMed]

J. Lou, L. Tong, Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13, 2135–2140 (2005).
[CrossRef] [PubMed]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. Xu, P. Horak, G. Brambilla “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15, 7888–7893 (2007).F. Xu, P. Horak, G. Brambilla “Erratum,” Opt. Express 15, 9385 (2007).
[CrossRef] [PubMed]

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express 15, 11952–11958 (2007).
[CrossRef] [PubMed]

M. Sumetsky, R. S. Windeler, Y. Dulashko, X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007).
[CrossRef] [PubMed]

F. Xu, V. Pruneri, V. Finazzi, G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
[CrossRef] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008).
[CrossRef] [PubMed]

X. Guo, L. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
[CrossRef] [PubMed]

Y. Jung, G. Brambilla, D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express 16, 14661–14667 (2008).
[CrossRef] [PubMed]

Opt. Lett.

G. Vienne, Y. Li, L. Tong, P. Grelu, “Observation of a nonlinear microfiber resonator,” Opt. Lett. 33, 1500–1502 (2008).
[CrossRef] [PubMed]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041–3043 (2007).
[CrossRef] [PubMed]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007).
[CrossRef] [PubMed]

F. Xu, G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32, 2164–2166 (2007).
[CrossRef] [PubMed]

P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30, 1273–1275 (2005).
[CrossRef] [PubMed]

M. Sumetsky, “Thinnest optical waveguide: experimental test,” Opt. Lett. 32, 754–756 (2007).
[CrossRef] [PubMed]

S. Campopiano, R. Bernini, L. Zeni, P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29, 1894–1896 (2004).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[CrossRef]

S. Kawata, T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

F. Bilodeau, K. O. Hill, D. C. Johnson, S. Faucher, “Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff,” Opt. Lett. 12, 634–636 (1987).
[CrossRef] [PubMed]

Opt. Quantum Electron.

K. Taguchi, K. Atsuta, T. Nakata, M. Ikeda, “Single laser beam fiber optic trap,” Opt. Quantum Electron. 33, 99–106 (2001).
[CrossRef]

Phys. Rev. A

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 011401 (2004).
[CrossRef]

Phys. Rev. A

F. Le Kien, V. I. Balykin, K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[CrossRef]

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[CrossRef]

Phys. Rev. Lett.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure.” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

M. F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552–5555 (2000).
[CrossRef] [PubMed]

Y. Kondo, K. Takayanagi, “Gold nanobridge stabilized by surface structure,” Phys. Rev. Lett. 79, 3455–3458 (1997).
[CrossRef]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

P. C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. Lett. 61, 14119–14127 (2000).

M. Cai, O. Painter, K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000to7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997).
[CrossRef] [PubMed]

Proc. SPIE

D. A. Barber, N. H. Rizvi, “Characterization of the effects of different lasers on the tensile strength of fibers during laser writing of fiber Bragg gratings,” Proc. SPIE 4876, 321–329 (2003).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Science

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science 287, 637–640 (1997).
[CrossRef]

J. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455–1457 (2001).
[CrossRef] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897–1899 (2001).
[CrossRef] [PubMed]

Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947–1949 (2001).
[CrossRef] [PubMed]

K. Akagi, G. Piao, S. Kaneto, K. Sakamaki, H. Shirakawa, M. Kyotani, “Helical polyacetylene synthesized with a chiral nematic reaction field,” Science 282, 1683–1686 (1998).
[CrossRef] [PubMed]

J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550–1552 (1999).
[CrossRef] [PubMed]

A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208–211 (1998).
[CrossRef] [PubMed]

Sens. Actuators B

P. Dress, M. Belz, K. F. Klein, K. T. V. Grattan, H. Franke, “Physical analysis of Teflon coated capillary waveguides,” Sens. Actuators B 51, 278–284 (1998).
[CrossRef]

Solid State Commun.

Y. Zhang, Q. Zhang, Y. Li, N. Wang, J. Zhu, “Coating of carbon nanotubes with tungsten by physical vapor deposition,” Solid State Commun. 115, 51–55 (2000).
[CrossRef]

Solid State Commun.

H. J. Li, S. Y. Zhang, C. M. Mo, G. W. Meng, L. D. Zhang, Y. Qin, S. P. Feng, “Synthesis o of ‘a β-SiC nanorod within a SiO2 nanorod’ one dimensional composite nanostructures,” Solid State Commun. 106, 215–219 (1998).
[CrossRef]

Other

N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Commun. (Cambridge)617–618 (2001).

“Optical coating materials,” http://eng.sscpcorp.com/pages/SO00057_02.asp.

“DuPont Teflon AF fluoropolymer resins: Teflon® AF,”http://www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/

M. Sumetsky, Y. Dulashko, M. Fishteyn, “Demonstration of a multi-turn microfiber coil resonator,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP46.

A. W. Snyder, J. D. Love, Optical Waveguide Theory(Kluwer Academic, 2000).

Supplementary Material (2)

» Media 1: AVI (2817 KB)     
» Media 2: AVI (3997 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics