Abstract

Raman spectroscopy is an increasingly popular technique in many areas, including biology and medicine. It is based on Raman scattering, a phenomenon in which incident photons lose or gain energy via interactions with vibrating molecules in a sample. These energy shifts can be used to obtain information regarding molecular composition of the sample with very high accuracy. Applications of Raman spectroscopy in the life sciences have included quantification of biomolecules, hyperspectral molecular imaging of cells and tissue, medical diagnosis, and others. This review briefly presents the physical origin of Raman scattering, explaining the key classical and quantum mechanical concepts. Variations of the Raman effect will also be considered, including resonance, coherent, and enhanced Raman scattering. We discuss the molecular origins of prominent bands often found in the Raman spectra of biological samples. Finally, we examine several variations of Raman spectroscopy techniques in practice, looking at their applications, strengths, and challenges. This review is intended to be a starting resource for scientists new to Raman spectroscopy, providing theoretical background and practical examples as the foundation for further study and exploration.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis

Duo Lin, Shangyuan Feng, Jianji Pan, Yanping Chen, Juqiang Lin, Guannan Chen, Shusen Xie, Haishan Zeng, and Rong Chen
Opt. Express 19(14) 13565-13577 (2011)

Optical Spectroscopy of Biological Cells

Adam Wax, Michael G. Giacomelli, Thomas E. Matthews, Matthew T. Rinehart, Francisco E. Robles, and Yizheng Zhu
Adv. Opt. Photon. 4(3) 322-378 (2012)

Quantitative chemical imaging with background-free multiplex coherent anti-Stokes Raman scattering by dual-soliton Stokes pulses

Kun Chen, Tao Wu, Haoyun Wei, Tian Zhou, and Yan Li
Biomed. Opt. Express 7(10) 3927-3939 (2016)

References

  • View by:
  • |
  • |
  • |

  1. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501–502 (1928).
    [Crossref]
  2. J. H. Hibben and E. Teller, The Raman Effect and Its Chemical Applications (Reinhold, 1939).
  3. G. Herzberg, Molecular Spectra and Molecular Structure, Vol II: Infrared and Raman Spectra (D. Van Nostrand, 1945).
  4. T. Burke, D. Smith, and A. Nielsen, “The molecular structure of MoF6, WF6, and UF6 from infrared and Raman spectra,” J. Chem. Phys. 20, 447–454 (1952).
    [Crossref]
  5. S. Porto and D. Wood, “Ruby optical maser as a Raman source,” J. Opt. Soc. Am. 52, 251–252 (1962).
    [Crossref]
  6. H. Kogelnik and S. Porto, “Continuous helium-neon red laser as a Raman source,” J. Opt. Soc. Am. 53, 1446–1447 (1963).
    [Crossref]
  7. H. Susi and J. S. Ard, “Laser-Raman spectra of lactose,” Carbohydr. Res. 37, 351–354 (1974).
    [Crossref]
  8. D. Rousseau, “Raman difference spectroscopy as a probe of biological molecules,” J. Raman Spectrosc. 10, 94–99 (1981).
    [Crossref]
  9. M. Delhaye and P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman Spectrosc. 3, 33–43 (1975).
    [Crossref]
  10. G. Puppels, A. Huizinga, H. Krabbe, H. De Boer, G. Gijsbers, and F. De Mul, “A high-throughput Raman notch filter set,” Rev. Sci. Instrum. 61, 3709–3712 (1990).
    [Crossref]
  11. G. Puppels, F. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. Arndt-Jovin, and T. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).
  12. G. Puppels, H. Garritsen, G. Segers-Nolten, F. De Mul, and J. Greve, “Raman microspectroscopic approach to the study of human granulocytes,” Biophys. J. 60, 1046–1056 (1991).
    [Crossref]
  13. G. Puppels, T. B. Schut, N. Sijtsema, M. Grond, F. Maraboeuf, C. De Grauw, C. Figdor, and J. Greve, “Development and application of Raman microspectroscopic and Raman imaging techniques for cell biological studies,” J. Mol. Struct. 347, 477–483 (1995).
    [Crossref]
  14. B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010).
    [Crossref]
  15. A. Walter, W. Schumacher, T. Bocklitz, M. Reinicke, P. Rösch, E. Kothe, and J. Popp, “From bulk to single-cell classification of the filamentous growing Streptomyces bacteria by means of Raman spectroscopy,” Appl. Spectrosc. 65, 1116–1125 (2011).
    [Crossref]
  16. O. Samek, S. Bernatová, J. Ježek, M. Šiler, M. Šerý, V. Krzyžánek, K. Hrubanová, P. Zemánek, V. Holá, and F. Řužička, “Identification of individual biofilm-forming bacterial cells using Raman tweezers,” J. Biomed. Opt. 20, 051038 (2015).
    [Crossref]
  17. K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics-from in vivo biofluid assays to in vivo cancer detection,” Adv. Drug Delivery Rev. 89, 121–134 (2015).
    [Crossref]
  18. M. Diem, A. Mazur, K. Lenau, J. Schubert, B. Bird, M. Miljković, C. Krafft, and J. Popp, “Molecular pathology via IR and Raman spectral imaging,” J. Biophoton. 6, 855–886 (2013).
    [Crossref]
  19. C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17, 040801 (2012).
    [Crossref]
  20. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
    [Crossref]
  21. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
    [Crossref]
  22. C. Zhang, D. Zhang, and J.-X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17, 415–445 (2015).
    [Crossref]
  23. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62, 507–530 (2011).
    [Crossref]
  24. W. Xie and S. Schlücker, “Medical applications of surface-enhanced Raman scattering,” Phys. Chem. Chem. Phys. 15, 5329–5344 (2013).
    [Crossref]
  25. S. McAughtrie, K. Faulds, and D. Graham, “Surface enhanced Raman spectroscopy (SERS): potential applications for disease detection and treatment,” J. Photochem. Photobiol. C 21, 40–53 (2014).
    [Crossref]
  26. G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic, 1996).
  27. R. Mulliken, “Report on notation for the spectra of polyatomic molecules,” J. Chem. Phys 23, 1997–2011 (1955).
    [Crossref]
  28. D. A. Long, The Raman Effect (Wiley, 2002).
  29. M. Diem, Introduction to Modern Vibrational Spectroscopy (Wiley, 1993), Vol. 543.
  30. G. Placzek, Rayleigh-Streuung und Raman-Effekt (Akademische Verlagsgesellschaft, 1934), Vol. 2.
  31. D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999).
  32. R. C. Prince, R. R. Frontiera, and E. O. Potma, “Stimulated Raman scattering: from bulk to nano,” Chem. Rev. 17, 5070–5094 (2017).
  33. B. R. Masters and P. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University, 2008).
  34. D. J. Griffiths, Introduction to Quantum Mechanics (Pearson Education, 2005).
  35. T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
    [Crossref]
  36. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-stokes Raman scattering measurement of gas temperatures from frequency spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006).
    [Crossref]
  37. B. Welz, M. Sperling, G. Schlemmer, N. Wenzel, and G. Marowsky, “Spatially and temporally resolved gas phase temperature measurements in a Massmann-type graphite tube furnace using coherent anti-stokes Raman scattering,” Spectrochim. Acta B 43, 1187–1207 (1988).
    [Crossref]
  38. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  39. M. Levenson and S. Kano, Introduction to Nonlinear Optical Spectroscopy (Academic, 1988).
  40. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1999), Vol. 6.
  41. P. Maker and R. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801–A818 (1965).
    [Crossref]
  42. J.-X. Cheng and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004).
    [Crossref]
  43. E. Woodbury and W. Ng, “Ruby laser operation in near IR,” Proc. IRE 50, 2367 (1962).
  44. N. Bloembergen, “The stimulated Raman effect,” Am. J. Phys. 35, 989–1023 (1967).
    [Crossref]
  45. G. Eckhardt, R. Hellwarth, F. McClung, S. Schwarz, D. Weiner, and E. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
    [Crossref]
  46. R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
    [Crossref]
  47. D. Zhang, P. Wang, M. N. Slipchenko, and J.-X. Cheng, “Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy,” Acc. Chem. Res. 47, 2282–2290 (2014).
    [Crossref]
  48. D. Zhang, M. N. Slipchenko, D. E. Leaird, A. M. Weiner, and J.-X. Cheng, “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21, 13864–13874 (2013).
    [Crossref]
  49. M. Andreana, M.-A. Houle, D. J. Moffatt, A. Ridsdale, E. Buettner, F. Légaré, and A. Stolow, “Amplitude and polarization modulated hyperspectral stimulated Raman scattering microscopy,” Opt. Express 23, 28119–28131 (2015).
    [Crossref]
  50. A. Owyoung and E. D. Jones, “Stimulated Raman spectroscopy using low-power CW lasers,” Opt. Lett. 1, 152–154 (1977).
    [Crossref]
  51. M. Fleischmann, P. J. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [Crossref]
  52. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
    [Crossref]
  53. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  54. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  55. S. Babar and J. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54, 477–481 (2015).
    [Crossref]
  56. K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
    [Crossref]
  57. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  58. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  59. E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2008).
  60. M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).
    [Crossref]
  61. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
    [Crossref]
  62. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  63. Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. Int. Ed. 48, 60–103 (2009).
    [Crossref]
  64. R. A. Sperling and W. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. R. Soc. London A 368, 1333–1383 (2010).
    [Crossref]
  65. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
    [Crossref]
  66. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [Crossref]
  67. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [Crossref]
  68. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
    [Crossref]
  69. I. Notingher, S. Verrier, S. Haque, J. Polak, and L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
    [Crossref]
  70. J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “Reference database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38, 1133–1147 (2007).
    [Crossref]
  71. C. A. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined Raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16, 011007 (2011).
    [Crossref]
  72. N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1–9 (2003).
    [Crossref]
  73. A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
    [Crossref]
  74. I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay, and L. L. Hench, “Discrimination between ricin and sulphur mustard toxicity in vivo using Raman spectroscopy,” J. R. Soc. Interface 1, 79–90 (2004).
    [Crossref]
  75. G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
    [Crossref]
  76. S. Farquharson, C. Shende, F. E. Inscore, P. Maksymiuk, and A. Gift, “Analysis of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 36, 208–212 (2005).
    [Crossref]
  77. R. A. Bitar, H. da Silva Martinho, C. J. Tierra-Criollo, L. N. Z. Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11, 054001 (2006).
    [Crossref]
  78. N. Stone, C. Kendall, N. Shepherd, P. Crow, and H. Barr, “Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers,” J. Raman Spectrosc. 33, 564–573 (2002).
    [Crossref]
  79. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
    [Crossref]
  80. S. C. Erfurth, E. J. Kiser, and W. L. Peticolas, “Determination of the backbone structure of nucleic acids and nucleic acid oligomers by laser Raman scattering,” Proc. Natl. Acad. Sci. USA 69, 938–941 (1972).
    [Crossref]
  81. J. M. Benevides, S. A. Overman, and G. J. Thomas, “Raman, polarized Raman and ultraviolet resonance Raman spectroscopy of nucleic acids and their complexes,” J. Raman Spectrosc. 36, 279–299 (2005).
    [Crossref]
  82. X. Zhang, M. B. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” Chem. Phys. Chem. 13, 1054–1059 (2012).
    [Crossref]
  83. R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. Kartha, and C. M. Krishna, “Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study,” Biopolymers 81, 179–193 (2006).
    [Crossref]
  84. A. Ruiz-Chica, M. Medina, F. Sanchez-Jimenez, and F. Ramirez, “Characterization by Raman spectroscopy of conformational changes on guanine-cytosine and adenine-thymine oligonucleotides induced by aminooxy analogues of spermidine,” J. Raman Spectrosc. 35, 93–100 (2004).
    [Crossref]
  85. N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
    [Crossref]
  86. H. Schulz and M. Baranska, “Identification and quantification of valuable plant substances by IR and Raman spectroscopy,” Vib. Spectrosc. 43, 13–25 (2007).
    [Crossref]
  87. A. Robichaux Viehoever, D. Anderson, D. Jansen, and A. Mahadevan-Jansen, “Organotypic raft cultures as an effective in vivo tool for understanding Raman spectral analysis of tissue,” Photochem. Photobiol. 78, 517–524 (2003).
    [Crossref]
  88. D. P. Lau, Z. Huang, H. Lui, D. W. Anderson, K. Berean, M. D. Morrison, L. Shen, and H. Zeng, “Raman spectroscopy for optical diagnosis in the larynx: preliminary findings,” Lasers Surg. Med. 37, 192–200 (2005).
    [Crossref]
  89. Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23, 649–655 (2003).
  90. H. G. Edwards, D. W. Farwell, A. C. Williams, B. W. Barry, and F. Rull, “Novel spectroscopic deconvolution procedure for complex biological systems: vibrational components in the FT-Raman spectra of ice-man and contemporary skin,” J. Chem. Soc. Faraday Trans. 91, 3883–3887 (1995).
    [Crossref]
  91. R. J. Lakshmi, V. Kartha, C. Murali Krishna, J. R. Solomon, G. Ullas, and P. Uma Devi, “Tissue Raman spectroscopy for the study of radiation damage: brain irradiation of mice,” Radiat. Res. 157, 175–182 (2002).
    [Crossref]
  92. E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
    [Crossref]
  93. R. K. Dukor, “Vibrational spectroscopy in the detection of cancer,” in Handbook of Vibrational Spectroscopy (Wiley, 2002), pp. 3335–3361.
  94. C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta A 61, 1529–1535 (2005).
    [Crossref]
  95. L. Silveira, S. Sathaiah, R. A. Zângaro, M. T. Pacheco, M. C. Chavantes, and C. A. Pasqualucci, “Correlation between near-infrared Raman spectroscopy and the histopathological analysis of atherosclerosis in human coronary arteries,” Lasers Surg. Med. 30, 290–297 (2002).
    [Crossref]
  96. D. Naumann, “Infrared and NIR Raman spectroscopy in medical microbiology,” Proc. SPIE 3257, 245–257 (1998).
    [Crossref]
  97. C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777–783 (1995).
    [Crossref]
  98. A. T. Tu and A. Tu, Raman Spectroscopy in Biology: Principles and Applications (Wiley, 1982).
  99. I. Ashikawa and K. Itoh, “Raman spectra of polypeptides containing L-histidine residues and tautomerism of imidazole side chain,” Biopolymers 18, 1859–1876 (1979).
    [Crossref]
  100. S. Krimm and J. Bandekar, “Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins,” Adv. Protein Chem. 38, 181–364 (1986).
    [Crossref]
  101. E. Carter, H. Edwards, H. Gremlich, and B. Yan, Infrared and Raman Spectroscopy of Biological Materials (Marcel Dekker, 2000).
  102. G. Zhu, X. Zhu, Q. Fan, and X. Wan, “Raman spectra of amino acids and their aqueous solutions,” Spectrochim. Acta A 78, 1187–1195 (2011).
    [Crossref]
  103. S. A. Overman, K. L. Aubrey, K. E. Reilly, O. Osman, S. J. Hayes, P. Serwer, and G. J. Thomas, “Conformation and interactions of the packaged double-stranded DNA genome of bacteriophage T7,” Biospectroscopy 4, S47–S56 (1998).
    [Crossref]
  104. B. G. Frushour and J. L. Koenig, “Raman scattering of collagen, gelatin, and elastin,” Biopolymers 14, 379–391 (1975).
    [Crossref]
  105. I. Notingher and L. L. Hench, “Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vivo,” Expert Rev. Med. Dev. 3, 215–234 (2006).
    [Crossref]
  106. W.-T. Cheng, M.-T. Liu, H.-N. Liu, and S.-Y. Lin, “Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma,” Microsc. Res. Tech. 68, 75–79 (2005).
    [Crossref]
  107. D. P. Lau, Z. Huang, H. Lui, C. S. Man, K. Berean, M. D. Morrison, and H. Zeng, “Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx: preliminary findings,” Lasers Surg. Med. 32, 210–214 (2003).
    [Crossref]
  108. E. Katainen, M. Elomaa, U.-M. Laakkonen, E. Sippola, P. Niemelä, J. Suhonen, and K. Järvinen, “Quantification of the amphetamine content in seized street samples by Raman spectroscopy,” J. Forensic Sci. 52, 88–92 (2007).
    [Crossref]
  109. R. A. Shaw and H. H. Mantsch, “Vibrational biospectroscopy: from plants to animals to humans. A historical perspective,” J. Mol. Struct. 480, 1–13 (1999).
    [Crossref]
  110. S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958–7965 (2005).
    [Crossref]
  111. A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5, 259–268 (2000).
    [Crossref]
  112. H. W. Siesler, Infrared and Raman Spectroscopic Imaging (Wiley, 2009).
  113. M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. USA 109, 28–32 (2012).
    [Crossref]
  114. B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387, 1691–1703 (2007).
    [Crossref]
  115. U. P. Agarwal, “Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana),” Planta 224, 1141–1153 (2006).
    [Crossref]
  116. M. Harz, P. Rösch, K.-D. Peschke, O. Ronneberger, H. Burkhardt, and J. Popp, “Micro-Raman spectroscopic identification of bacterial cells of the genus staphylococcus and dependence on their cultivation conditions,” Analyst 130, 1543–1550 (2005).
    [Crossref]
  117. A. Williams and H. Edwards, “Fourier transform Raman spectroscopy of bacterial cell walls,” J. Raman Spectrosc. 25, 673–677 (1994).
    [Crossref]
  118. P. C. Cross, J. Burnham, and P. A. Leighton, “The Raman spectrum and the structure of water,” J. Am. Chem. Soc. 59, 1134–1147 (1937).
    [Crossref]
  119. M. Moskovits and K. Michaelian, “A reinvestigation of the Raman spectrum of water,” J. Chem. Phys. 69, 2306–2311 (1978).
    [Crossref]
  120. P. Caspers, G. Lucassen, and G. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003).
    [Crossref]
  121. J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
    [Crossref]
  122. D. Borchman, D. Tang, and M. C. Yappert, “Lipid composition, membrane structure relationships in lens and muscle sarcoplasmic reticulum membranes,” Biospectroscopy 5, 151–167 (1999).
    [Crossref]
  123. J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81, 8908–8915 (2009).
    [Crossref]
  124. L. F. Santos, R. Wolthuis, S. Koljenovic, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
    [Crossref]
  125. A. García-Flores, L. Raniero, R. Canevari, K. J. Jalkanen, R. Bitar, H. Martinho, and A. Martin, “High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer,” Theor. Chem. Acc. 130, 1231–1238 (2011).
    [Crossref]
  126. M. Gniadecka, O. F. Nielsen, S. Wessel, M. Heidenheim, D. H. Christensen, and H. C. Wulf, “Water and protein structure in photoaged and chronically aged skin,” J. Invest. Dermatol. 111, 1129–1133 (1998).
    [Crossref]
  127. S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran, and Z. Huang, “Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo,” Anal. Chem. 84, 5913–5919 (2012).
    [Crossref]
  128. N. S. Eikje, Y. Ozaki, K. Aizawa, and S. Arase, “Fiber optic near-infrared Raman spectroscopy for clinical noninvasive determination of water content in diseased skin and assessment of cutaneous edema,” J. Biomed. Opt. 10, 014013 (2005).
    [Crossref]
  129. S. Koljenovic, T. Bakker Schut, R. Wolthuis, A. Vincent, G. Hendriks-Hagevi, L. Santos, J. Kros, and G. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557–564 (2007).
    [Crossref]
  130. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
    [Crossref]
  131. A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. B. Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12, 034004 (2007).
    [Crossref]
  132. C. Matthäus, T. Chernenko, J. A. Newmark, C. M. Warner, and M. Diem, “Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy,” Biophys. J. 93, 668–673 (2007).
    [Crossref]
  133. A. B. Zoladek, R. K. Johal, S. Garcia-Nieto, F. Pascut, K. M. Shakesheff, A. M. Ghaemmaghami, and I. Notingher, “Label-free molecular imaging of immunological synapses between dendritic and T cells by Raman micro-spectroscopy,” Analyst 135, 3205–3212 (2010).
    [Crossref]
  134. A. Zoladek, F. C. Pascut, P. Patel, and I. Notingher, “Non-invasive time-course imaging of apoptotic cells by confocal Raman micro-spectroscopy,” J. Raman Spectrosc. 42, 251–258 (2011).
    [Crossref]
  135. R. J. Swain, G. Jell, and M. M. Stevens, “Non-invasive analysis of cell cycle dynamics in single living cells with Raman micro-spectroscopy,” J. Cell. Biochem. 104, 1427–1438 (2008).
    [Crossref]
  136. F. C. Pascut, S. Kalra, V. George, N. Welch, C. Denning, and I. Notingher, “Non-invasive label-free monitoring the cardiac differentiation of human embryonic stem cells in vivo by Raman spectroscopy,” Biochim. Biophys. Acta 1830, 3517–3524 (2013).
    [Crossref]
  137. K. Watanabe, A. F. Palonpon, N. I. Smith, L. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).
  138. B. Lekprasert, V. Sedman, C. J. Roberts, S. J. Tedler, and I. Notingher, “Nondestructive Raman and atomic force microscopy measurement of molecular structure for individual diphenylalanine nanotubes,” Opt. Lett. 35, 4193–4195 (2010).
    [Crossref]
  139. B. Lekprasert, V. Korolkov, A. Falamas, V. Chis, C. J. Roberts, S. J. Tendler, and I. Notingher, “Investigations of the supramolecular structure of individual diphenylalanine nano-and microtubes by polarized Raman microspectroscopy,” Biomacromolecules 13, 2181–2187 (2012).
    [Crossref]
  140. F. Sinjab, G. Bondakov, and I. Notingher, “Co-localised Raman and force spectroscopy reveal the roles of hydrogen bonds and π-π interactions in defining the mechanical properties of diphenylalanine nano-and micro-tubes,” Appl. Phys. Lett. 104, 251905 (2014).
    [Crossref]
  141. I. Notingher, I. Bisson, A. E. Bishop, W. L. Randle, J. M. Polak, and L. L. Hench, “In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro,” Anal. Chem. 76, 3185–3193 (2004).
    [Crossref]
  142. H. G. Schulze, S. O. Konorov, N. J. Caron, J. M. Piret, M. W. Blades, and R. F. Turner, “Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy,” Anal. Chem. 82, 5020–5027 (2010).
    [Crossref]
  143. A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: prospective analysis,” J. Biomed. Opt. 14, 054023 (2009).
    [Crossref]
  144. K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 110, 15189–15194 (2013).
    [Crossref]
  145. A. Naemat, H. M. Elsheikha, R. A. Boitor, and I. Notingher, “Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging,” Sci. Rep. 6, 20811 (2016).
    [Crossref]
  146. H.-J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Intracellular chemical imaging of heme-containing enzymes involved in innate immunity using resonance Raman microscopy,” J. Phys. Chem. B 108, 18762–18771 (2004).
    [Crossref]
  147. M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14, 054031 (2009).
    [Crossref]
  148. M.-E. Rousseau, T. Lefevre, L. Beaulieu, T. Asakura, and M. Pézolet, “Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy,” Biomacromolecules 5, 2247–2257 (2004).
    [Crossref]
  149. E. Ly, A. Durlach, F. Antonicelli, P. Bernard, M. Manfait, and O. Piot, “Probing tumor and peritumoral tissues in superficial and nodular basal cell carcinoma using polarized Raman microspectroscopy,” Exp. Dermatol. 19, 68–73 (2010).
    [Crossref]
  150. R. Thurn and W. Kiefer, “Raman-microsampling technique applying optical levitation by radiation pressure,” Appl. Spectrosc. 38, 78–83 (1984).
    [Crossref]
  151. J. W. Chan, A. Esposito, C. Talley, C. Hollars, S. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76, 599–603 (2004).
    [Crossref]
  152. R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2015).
  153. J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2, 2484–2492 (2011).
    [Crossref]
  154. Z. J. Smith and A. J. Berger, “Integrated Raman-and angular-scattering microscopy,” Opt. Lett. 33, 714–716 (2008).
    [Crossref]
  155. Z. J. Smith, J.-C. E. Wang, S. A. Quataert, and A. J. Berger, “Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes,” J. Biomed. Opt. 15, 036021 (2010).
    [Crossref]
  156. P. C. Ashok, B. B. Praveen, N. Bellini, A. Riches, K. Dholakia, and C. S. Herrington, “Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon,” Biomed. Opt. Express 4, 2179–2186 (2013).
    [Crossref]
  157. M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
    [Crossref]
  158. S. Stewart, R. J. Priore, M. P. Nelson, and P. J. Treado, “Raman imaging,” Annu. Rev. Anal. Chem. 5, 337–360 (2012).
    [Crossref]
  159. S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75, 4312–4318 (2003).
    [Crossref]
  160. A. Z. Samuel, S. Yabumoto, K. Kawamura, and K. Iwata, “Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy,” Analyst 140, 1847–1851 (2015).
    [Crossref]
  161. M. Okuno and H.-O. Hamaguchi, “Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells,” Opt. Lett. 35, 4096–4098 (2010).
    [Crossref]
  162. L. Kong, P. Zhang, P. Setlow, and Y.-Q. Li, “Multifocus confocal Raman microspectroscopy for rapid single-particle analysis,” J. Biomed. Opt. 16, 120503 (2011).
    [Crossref]
  163. L. Kong and J. Chan, “A rapidly modulated multifocal detection scheme for parallel acquisition of Raman spectra from a 2-D focal array,” Anal. Chem. 86, 6604–6609 (2014).
    [Crossref]
  164. F. Sinjab, K. Kong, G. Gibson, S. Varma, H. Williams, M. Padgett, and I. Notingher, “Tissue diagnosis using power-sharing multifocal Raman microspectroscopy and auto-fluorescence imaging,” Biomed. Opt. Express 7, 2993–3006 (2016).
    [Crossref]
  165. S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
    [Crossref]
  166. Y. Oshima, H. Sato, H. Kajiura-Kobayashi, T. Kimura, K. Naruse, and S. Nonaka, “Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope,” Opt. Express 20, 16195–16204 (2012).
    [Crossref]
  167. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363–1367 (2003).
    [Crossref]
  168. B. D. Beier and A. J. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst 134, 1198–1202 (2009).
    [Crossref]
  169. C. A. Patil, I. J. Pence, C. A. Lieber, and A. Mahadevan-Jansen, “1064  nm dispersive Raman spectroscopy of tissues with strong near-infrared autofluorescence,” Opt. Lett. 39, 303–306 (2014).
    [Crossref]
  170. A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
    [Crossref]
  171. M. Mazilu, A. C. De Luca, A. Riches, C. S. Herrington, and K. Dholakia, “Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy,” Opt. Express 18, 11382–11395 (2010).
    [Crossref]
  172. S. Dochow, N. Bergner, C. Krafft, J. Clement, M. Mazilu, B. B. Praveen, P. C. Ashok, R. Marchington, K. Dholakia, and J. Popp, “Classification of Raman spectra of single cells with autofluorescence suppression by wavelength modulated excitation,” Anal. Methods 5, 4608–4614 (2013).
    [Crossref]
  173. E. Canetta, M. Mazilu, A. C. De Luca, A. E. Carruthers, K. Dholakia, S. Neilson, H. Sargeant, T. Briscoe, C. S. Herrington, and A. C. Riches, “Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples,” J. Biomed. Opt. 16, 037002 (2011).
    [Crossref]
  174. P. Matousek, M. Towrie, A. Stanley, and A. Parker, “Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating,” Appl. Spectrosc. 53, 1485–1489 (1999).
    [Crossref]
  175. J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21, 31632–31645 (2013).
    [Crossref]
  176. M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
    [Crossref]
  177. R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” Analyst 132, 48–53 (2007).
    [Crossref]
  178. T. Hirschfeld and B. Chase, “FT-Raman spectroscopy: development and justification,” Appl. Spectrosc. 40, 133–137 (1986).
    [Crossref]
  179. B. R. Wood, S. J. Langford, B. M. Cooke, F. K. Glenister, J. Lim, and D. McNaughton, “Raman imaging of hemozoin within the food vacuole of plasmodium falciparum trophozoites,” FEBS Lett. 554, 247–252 (2003).
    [Crossref]
  180. B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10, 014005 (2005).
    [Crossref]
  181. G. Puppels, J. Olminkhof, G. Segers-Nolten, C. Otto, F. De Mul, and J. Greve, “Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5  nm but not with 660  nm laser light,” Exp. Cell Res. 195, 361–367 (1991).
    [Crossref]
  182. I. Notingher, S. Verrier, H. Romanska, A. Bishop, J. Polak, and L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectrosc. 16, 43–51 (2002).
    [Crossref]
  183. P. P. Calmettes and M. W. Berns, “Laser-induced multiphoton processes in living cells,” Proc. Natl. Acad. Sci. USA 80, 7197–7199 (1983).
    [Crossref]
  184. H. Friedmann and R. Lubart, “Towards an explanation of visible and infrared laser induced stimulation and damage of cell cultures,” Laser Therapy 4, 39–42 (1992).
    [Crossref]
  185. K. König, Y. Tadir, P. Patrizio, M. W. Berns, and B. J. Tromberg, “Andrology: effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa,” Human Reprod. 11, 2162–2164 (1996).
    [Crossref]
  186. H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70, 1529–1533 (1996).
    [Crossref]
  187. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
    [Crossref]
  188. M. D. Manson, P. Tedesco, and H. C. Berg, “Energetics of flagellar rotation in bacteria,” J. Mol. Biol. 138, 541–561 (1980).
    [Crossref]
  189. G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
    [Crossref]
  190. F. Draux, P. Jeannesson, A. Beljebbar, A. Tfayli, N. Fourre, M. Manfait, J. Sulé-Suso, and G. D. Sockalingum, “Raman spectral imaging of single living cancer cells: a preliminary study,” Analyst 134, 542–548 (2009).
    [Crossref]
  191. A. Ghita, F. C. Pascut, M. Mather, V. Sottile, and I. Notingher, “Cytoplasmic RNA in undifferentiated neural stem cells: a potential label-free Raman spectral marker for assessing the undifferentiated status,” Anal. Chem. 84, 3155–3162 (2012).
    [Crossref]
  192. F. C. Pascut, H. T. Goh, N. Welch, L. D. Buttery, C. Denning, and I. Notingher, “Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells,” Biophys. J. 100, 251–259 (2011).
    [Crossref]
  193. A. Mitchell, L. Ashton, X. B. Yang, R. Goodacre, A. Smith, and J. Kirkham, “Detection of early stage changes associated with adipogenesis using Raman spectroscopy under aseptic conditions,” Cytometry Part A 87, 1012–1019 (2015).
    [Crossref]
  194. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
    [Crossref]
  195. V. Yakovlev, “Advanced instrumentation for non-linear Raman microscopy,” J. Raman Spectrosc. 34, 957–964 (2003).
    [Crossref]
  196. Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14, 3942–3951 (2006).
    [Crossref]
  197. B. Salmaso, G. Puppels, P. Caspers, R. Floris, R. Wever, and J. Greve, “Resonance Raman microspectroscopic characterization of eosinophil peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
    [Crossref]
  198. N. Sijtsema, C. Otto, G. Segers-Nolten, A. Verhoeven, and J. Greve, “Resonance Raman microspectroscopy of myeloperoxidase and cytochrome b558 in human neutrophilic granulocytes,” Biophys. J. 74, 3250–3255 (1998).
    [Crossref]
  199. G. Puppels, H. Garritsen, J. Kummer, and J. Greve, “Carotenoids located in human lymphocyte subpopulations and natural killer cells by Raman microspectroscopy,” Cytometry 14, 251–256 (1993).
    [Crossref]
  200. K. Ramser, E. Malinina, and S. Candefjord, “Resonance micro-Raman investigations of the rat medial preoptic nucleus: effects of a low-iron diet on the neuroglobin content,” Appl. Spectrosc. 66, 1454–1460 (2012).
    [Crossref]
  201. B. R. Wood, A. Hermelink, P. Lasch, K. R. Bambery, G. T. Webster, M. A. Khiavi, B. M. Cooke, S. Deed, D. Naumann, and D. McNaughton, “Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics,” Analyst 134, 1119–1125 (2009).
    [Crossref]
  202. S. D. Bergeson, J. B. Peatross, N. J. Eyring, J. F. Fralick, D. N. Stevenson, and S. B. Ferguson, “Resonance Raman measurements of carotenoids using light-emitting diodes,” J. Biomed. Opt. 13, 044026 (2008).
    [Crossref]
  203. A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19, 071407 (2014).
    [Crossref]
  204. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
    [Crossref]
  205. T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 51, 3091–3102 (2010).
    [Crossref]
  206. M. D. Duncan, J. Reintjes, and T. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352 (1982).
    [Crossref]
  207. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [Crossref]
  208. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20, 4484–4493 (2012).
    [Crossref]
  209. M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
    [Crossref]
  210. G. W. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
    [Crossref]
  211. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
    [Crossref]
  212. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872–1874 (2006).
    [Crossref]
  213. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17, 2984–2996 (2009).
    [Crossref]
  214. C. Di Napoli, I. Pope, F. Masia, P. Watson, W. Langbein, and P. Borri, “Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes,” Biomed. Opt. Express 5, 1378–1390 (2014).
    [Crossref]
  215. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
    [Crossref]
  216. I. S. Ryu, C. H. Camp, Y. Jin, M. T. Cicerone, and Y. J. Lee, “Beam scanning for rapid coherent Raman hyperspectral imaging,” Opt. Lett. 40, 5826–5829 (2015).
    [Crossref]
  217. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
    [Crossref]
  218. E. O. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. USA 98, 1577–1582 (2001).
  219. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
    [Crossref]
  220. E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
    [Crossref]
  221. C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
    [Crossref]
  222. A. Fast, J. P. Kenison, C. D. Syme, and E. O. Potma, “Surface-enhanced coherent anti-Stokes Raman imaging of lipids,” Appl. Opt. 55, 5994–6000 (2016).
    [Crossref]
  223. X. Nan, J.-X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208 (2003).
    [Crossref]
  224. S. F. El-Mashtoly, D. Niedieker, D. Petersen, S. D. Krauss, E. Freier, A. Maghnouj, A. Mosig, S. Hahn, C. Kötting, and K. Gerwert, “Automated identification of subcellular organelles by coherent anti-Stokes Raman scattering,” Biophys. J. 106, 1910–1920 (2014).
    [Crossref]
  225. A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
    [Crossref]
  226. C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophoton. 7, 906–913 (2014).
    [Crossref]
  227. T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 104, 14658–14663 (2007).
    [Crossref]
  228. X. Nan, A. M. Tonary, A. Stolow, X. S. Xie, and J. P. Pezacki, “Intracellular imaging of HCV RNA and cellular lipids by using simultaneous two-photon fluorescence and coherent anti-Stokes Raman scattering microscopies,” ChemBioChem 7, 1895–1897 (2006).
    [Crossref]
  229. T. T. Le and J.-X. Cheng, “Single-cell profiling reveals the origin of phenotypic variability in adipogenesis,” PLoS One 4, e5189 (2009).
    [Crossref]
  230. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076–12087 (2007).
    [Crossref]
  231. Y. Fu, H. Wang, T. B. Huff, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neorosci. Res. 85, 2870–2881 (2007).
    [Crossref]
  232. N. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. Uchegbu, A. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-Stokes Raman scattering microscopy,” J. Raman Spectrosc. 43, 681–688 (2012).
    [Crossref]
  233. J. Moger, B. D. Johnston, and C. R. Tyler, “Imaging metal oxide nanoparticles in biological structures with CARS microscopy,” Opt. Express 16, 3408–3419 (2008).
    [Crossref]
  234. J. Zhu, B. Lee, K. K. Buhman, and J.-X. Cheng, “A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging,” J. Lipid Res. 50, 1080–1089 (2009).
    [Crossref]
  235. H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscler. Thromb. Vasc. Biol. 29, 1342–1348 (2009).
    [Crossref]
  236. S.-H. Kim, E.-S. Lee, J. Y. Lee, E. S. Lee, B.-S. Lee, J. E. Park, and D. W. Moon, “Multiplex coherent anti-Stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids,” Circ. Res. 106, 1332–1341 (2010).
    [Crossref]
  237. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
    [Crossref]
  238. T. Meyer, N. Bergner, A. Medyukhina, B. Dietzek, C. Krafft, B. F. Romeike, R. Reichart, R. Kalff, and J. Popp, “Interpreting CARS images of tissue within the C–H-stretching region,” J. Biophoton. 5, 729–733 (2012).
    [Crossref]
  239. C. Krafft, A. A. Ramoji, C. Bielecki, N. Vogler, T. Meyer, D. Akimov, P. Rösch, M. Schmitt, B. Dietzek, I. Petersen, A. Stallmach, and J. Popp, “A comparative Raman and CARS imaging study of colon tissue,” J. Biophoton. 2, 303–312 (2009).
    [Crossref]
  240. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18, 2380–2388 (2010).
    [Crossref]
  241. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
    [Crossref]
  242. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [Crossref]
  243. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
    [Crossref]
  244. C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
    [Crossref]
  245. L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
    [Crossref]
  246. H. T. Beier, G. D. Noojin, and B. A. Rockwell, “Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications,” Opt. Express 19, 18885–18892 (2011).
    [Crossref]
  247. M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J. Biophoton. 5, 801–807 (2012).
    [Crossref]
  248. C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
    [Crossref]
  249. C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
    [Crossref]
  250. T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy,” Light Sci. Appl. 5, e16149 (2016).
  251. L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 110, 11226–11231 (2013).
    [Crossref]
  252. L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11, 410–412 (2014).
    [Crossref]
  253. F.-K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. R. Holtom, V. A. Neel, C. W. Freudiger, D. E. Fisher, and X. S. Xie, “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).
    [Crossref]
  254. D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134, 3623–3626 (2012).
    [Crossref]
  255. C. W. Freudiger, R. Pfannl, D. A. Orringer, B. G. Saar, M. Ji, Q. Zeng, L. Ottoboni, W. Ying, C. Waeber, J. R. Sims, P. L. De Jager, O. Sagher, M. A. Philbert, X. Xu, S. Kesari, X. S. Xie, and G. S. Young, “Multicolored stain-free histopathology with coherent Raman imaging,” Lab. Invest. 92, 1492–1502 (2012).
    [Crossref]
  256. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
    [Crossref]
  257. M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).
    [Crossref]
  258. F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
    [Crossref]
  259. H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).
  260. B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8, 969–975 (2011).
    [Crossref]
  261. D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6, 614–622 (2014).
    [Crossref]
  262. W. S. Chiu, N. A. Belsey, N. L. Garrett, J. Moger, M. B. Delgado-Charro, and R. H. Guy, “Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 7725–7730 (2015).
    [Crossref]
  263. J. C. Mansfield, G. R. Littlejohn, M. P. Seymour, R. J. Lind, S. Perfect, and J. Moger, “Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy,” Anal. Chem. 85, 5055–5063 (2013).
    [Crossref]
  264. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87, 031101 (2016).
    [Crossref]
  265. M. N. Slipchenko, T. T. Le, H. Chen, and J.-X. Cheng, “High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy,” J. Phys. Chem. B 113, 7681–7686 (2009).
    [Crossref]
  266. P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J.-X. Cheng, “Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations,” Angew. Chem. Int. Ed. 53, 11787–11792 (2014).
    [Crossref]
  267. W. Smith, “Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis,” Chem. Soc. Rev. 37, 955–964 (2008).
    [Crossref]
  268. S. Schlücker, “SERS microscopy: nanoparticle probes and biomedical applications,” ChemPhysChem 10, 1344–1354 (2009).
    [Crossref]
  269. G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, “Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications,” Appl. Spectrosc. 65, 825–837 (2011).
    [Crossref]
  270. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112, 2739–2779 (2012).
    [Crossref]
  271. M. M. Harper, K. S. McKeating, and K. Faulds, “Recent developments and future directions in SERS for bioanalysis,” Phys. Chem. Chem. Phys. 15, 5312–5328 (2013).
    [Crossref]
  272. J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine 6, 214–226 (2010).
    [Crossref]
  273. E. A. Vitol, Z. Orynbayeva, G. Friedman, and Y. Gogotsi, “Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS),” J. Raman Spectrosc. 43, 817–827 (2012).
    [Crossref]
  274. B. Kann, H. L. Offerhaus, M. Windbergs, and C. Otto, “Raman microscopy for cellular investigations-from single cell imaging to drug carrier uptake visualization,” Adv. Drug Delivery Rev. 89, 71–90 (2015).
    [Crossref]
  275. D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17, 21072–21093 (2015).
    [Crossref]
  276. X.-M. Qian and S. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37, 912–920 (2008).
    [Crossref]
  277. L. A. Austin, M. A. Mackey, E. C. Dreaden, and M. A. El-Sayed, “The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery,” Arch. Toxicol. 88, 1391–1417 (2014).
    [Crossref]
  278. D. Drescher and J. Kneipp, “Nanomaterials in complex biological systems: insights from Raman spectroscopy,” Chem. Soc. Rev. 41, 5780–5799 (2012).
    [Crossref]
  279. B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. De La Fuente, X.-J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions,” Small 9, 1573–1584 (2013).
    [Crossref]
  280. J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
    [Crossref]
  281. P. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
    [Crossref]
  282. K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56, 150–154 (2002).
    [Crossref]
  283. J. Kneipp, H. Kneipp, A. Rajadurai, R. W. Redmond, and K. Kneipp, “Optical probing and imaging of live cells using SERS labels,” J. Raman Spectrosc. 40, 1–5 (2009).
    [Crossref]
  284. J. Kneipp, H. Kneipp, W. L. Rice, and K. Kneipp, “Optical probes for biological applications based on surface-enhanced Raman scattering from Indocyanine Green on gold nanoparticles,” Anal. Chem. 77, 2381–2385 (2005).
    [Crossref]
  285. C. Eliasson, A. Lorén, J. Engelbrektsson, M. Josefson, J. Abrahamsson, and K. Abrahamsson, “Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation,” Spectrochim. Acta A 61, 755–760 (2005).
    [Crossref]
  286. D. Drescher, T. Büchner, D. McNaughton, and J. Kneipp, “SERS reveals the specific interaction of silver and gold nanoparticles with hemoglobin and red blood cell components,” Phys. Chem. Chem. Phys. 15, 5364–5373 (2013).
    [Crossref]
  287. J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, and K. Kneipp, “In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates,” Nano Lett. 6, 2225–2231 (2006).
    [Crossref]
  288. Ö. F. Karata, E. Sezgin, Ö. Aydın, and M. Çulha, “Interaction of gold nanoparticles with mitochondria,” Colloids Surf. B 71, 315–318 (2009).
    [Crossref]
  289. R. R. Sathuluri, H. Yoshikawa, E. Shimizu, M. Saito, and E. Tamiya, “Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation,” PloS One 6, e22802 (2011).
    [Crossref]
  290. A. Huefner, W.-L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13, 2463–2470 (2013).
    [Crossref]
  291. A. Sujith, T. Itoh, H. Abe, A. A. Anas, K. Yoshida, V. Biju, and M. Ishikawa, “Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall,” Appl. Phys. Lett. 92, 103901 (2008).
    [Crossref]
  292. M. D. Hodges, J. G. Kelly, A. J. Bentley, S. Fogarty, I. I. Patel, F. L. Martin, and N. J. Fullwood, “Combining immunolabeling and surface-enhanced Raman spectroscopy on cell membranes,” ACS Nano 5, 9535–9541 (2011).
    [Crossref]
  293. M. K. Gregas, J. P. Scaffidi, B. Lauly, and T. Vo-Dinh, “Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells,” Appl. Spectrosc. 64, 858–866 (2010).
    [Crossref]
  294. M. K. Gregas, F. Yan, J. Scaffidi, H.-N. Wang, and T. Vo-Dinh, “Characterization of nanoprobe uptake in single cells: spatial and temporal tracking via SERS labeling and modulation of surface charge,” Nanomedicine 7, 115–122 (2011).
    [Crossref]
  295. A. Matschulat, D. Drescher, and J. Kneipp, “Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems,” ACS Nano 4, 3259–3269 (2010).
    [Crossref]
  296. J. W. Kang, P. T. So, R. R. Dasari, and D.-K. Lim, “High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap,” Nano Lett. 15, 1766–1772 (2015).
    [Crossref]
  297. B. Kang, L. A. Austin, and M. A. El-Sayed, “Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy,” Nano Lett. 12, 5369–5375 (2012).
    [Crossref]
  298. C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76, 7064–7068 (2004).
    [Crossref]
  299. S. Jung, J. Nam, S. Hwang, J. Park, J. Hur, K. Im, N. Park, and S. Kim, “Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy,” Anal. Chem. 85, 7674–7681 (2013).
    [Crossref]
  300. C. A. Auchinvole, P. Richardson, C. McGuinnes, V. Mallikarjun, K. Donaldson, H. McNab, and C. J. Campbell, “Monitoring intracellular redox potential changes using SERS nanosensors,” ACS Nano 6, 888–896 (2012).
    [Crossref]
  301. A. Jaworska, L. E. Jamieson, K. Malek, C. J. Campbell, J. Choo, S. Chlopicki, and M. Baranska, “SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α,” Analyst 140, 2321–2329 (2015).
    [Crossref]
  302. J. Jiang, C. Auchinvole, K. Fisher, and C. J. Campbell, “Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors,” Nanoscale 6, 12104–12110 (2014).
    [Crossref]
  303. H.-W. Tang, X. B. Yang, J. Kirkham, and D. A. Smith, “Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering,” Anal. Chem. 79, 3646–3653 (2007).
    [Crossref]
  304. S. Mert and M. Çulha, “Surface-enhanced Raman scattering-based detection of cancerous renal cells,” Appl. Spectrosc. 68, 617–624 (2014).
    [Crossref]
  305. S. Lee, S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh, “Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy,” Anal. Chem. 79, 916–922 (2007).
    [Crossref]
  306. X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71, 1526–1532 (2011).
    [Crossref]
  307. D. Craig, S. McAughtrie, J. Simpson, C. McCraw, K. Faulds, and D. Graham, “Confocal SERS mapping of glycan expression for the identification of cancerous cells,” Anal. Chem. 86, 4775–4782 (2014).
    [Crossref]
  308. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7, 1591–1597 (2007).
    [Crossref]
  309. A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
    [Crossref]
  310. K. K. Maiti, A. Samanta, M. Vendrell, K.-S. Soh, M. Olivo, and Y.-T. Chang, “Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters,” Chem. Commun. 47, 3514–3516 (2011).
    [Crossref]
  311. S. Lee, H. Chon, J. Lee, J. Ko, B. H. Chung, D. W. Lim, and J. Choo, “Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging,” Biosens. Bioelectron. 51, 238–243 (2014).
    [Crossref]
  312. S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4, 124–129 (2012).
    [Crossref]
  313. S. McAughtrie, K. Lau, K. Faulds, and D. Graham, “3D optical imaging of multiple SERS nanotags in cells,” Chem. Sci. 4, 3566–3572 (2013).
    [Crossref]
  314. A. Huefner, D. Septiadi, B. D. Wilts, I. I. Patel, W.-L. Kuan, A. Fragniere, R. A. Barker, and S. Mahajan, “Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes,” Methods 68, 354–363 (2014).
    [Crossref]
  315. K.-C. Huang, K. Bando, J. Ando, N. I. Smith, K. Fujita, and S. Kawata, “3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways,” Methods 68, 348–353 (2014).
    [Crossref]
  316. K. Bando, N. I. Smith, J. Ando, K. Fujita, and S. Kawata, “Analysis of dynamic SERS spectra measured with a nanoparticle during intracellular transportation in 3D,” J. Opt. 17, 114023 (2015).
    [Crossref]
  317. Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).
  318. N. Pavillon, K. Bando, K. Fujita, and N. I. Smith, “Feature-based recognition of surface-enhanced Raman spectra for biological targets,” J. Biophoton. 6, 587–597 (2013).
    [Crossref]
  319. R. M. Jarvis and R. Goodacre, “Discrimination of bacteria using surface-enhanced Raman spectroscopy,” Anal. Chem. 76, 40–47 (2004).
    [Crossref]
  320. W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
    [Crossref]
  321. I. Patel, W. Premasiri, D. Moir, and L. Ziegler, “Barcoding bacterial cells: a SERS-based methodology for pathogen identification,” J. Raman Spectrosc. 39, 1660–1672 (2008).
    [Crossref]
  322. L. Cui, P. Chen, S. Chen, Z. Yuan, C. Yu, B. Ren, and K. Zhang, “In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy,” Anal. Chem. 85, 5436–5443 (2013).
    [Crossref]
  323. L. J. Goeller and M. R. Riley, “Discrimination of bacteria and bacteriophages by Raman spectroscopy and surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 61, 679–685 (2007).
    [Crossref]
  324. N. P. Ivleva, M. Wagner, H. Horn, R. Niessner, and C. Haisch, “In situ surface-enhanced Raman scattering analysis of biofilm,” Anal. Chem. 80, 8538–8544 (2008).
    [Crossref]
  325. N. P. Ivleva, M. Wagner, A. Szkola, H. Horn, R. Niessner, and C. Haisch, “Label-free in vivo SERS imaging of biofilms,” J. Phys. Chem. B 114, 10184–10194 (2010).
    [Crossref]
  326. N. P. Ivleva, M. Wagner, H. Horn, R. Niessner, and C. Haisch, “Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms,” J. Biophoton. 3, 548–556 (2010).
    [Crossref]
  327. G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15, 1203–1211 (2016).
  328. M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810–7815 (2005).
    [Crossref]
  329. A. Anshup, J. S. Venkataraman, C. Subramaniam, R. R. Kumar, S. Priya, T. S. Kumar, R. Omkumar, A. John, and T. Pradeep, “Growth of gold nanoparticles in human cells,” Langmuir 21, 11562–11567 (2005).
    [Crossref]
  330. A. Shamsaie, M. Jonczyk, J. Sturgis, J. P. Robinson, and J. Irudayaraj, “Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes,” J. Biomed. Opt. 12, 020502 (2007).
    [Crossref]
  331. J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25, 388–394 (2009).
    [Crossref]
  332. E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes,” ACS Nano 3, 3529–3536 (2009).
    [Crossref]
  333. J. Liu, D. Yin, S. Wang, H.-Y. Chen, and Z. Liu, “Probing low-copy-number proteins in a single living cell,” Angew. Chem. Int. Ed. 55, 13215–13218 (2016).
    [Crossref]
  334. S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in vivo detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
    [Crossref]
  335. M. Schütz, D. Steinigeweg, M. Salehi, K. Kömpe, and S. Schlücker, “Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy,” Chem. Commun. 47, 4216–4218 (2011).
    [Crossref]
  336. E. Cepeda-Pérez, T. López-Luke, P. Salas, G. Plascencia-Villa, A. Ponce, J. Vivero-Escoto, M. José-Yacamán, and E. de la Rosa, “SERS-active Au/SiO2 clouds in powder for rapid ex vivo breast adenocarcinoma diagnosis,” Biomed. Opt. Express 7, 2407–2418 (2016).
    [Crossref]
  337. D. Lin, S. Feng, J. Pan, Y. Chen, J. Lin, G. Chen, S. Xie, H. Zeng, and R. Chen, “Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis,” Opt. Express 19, 13565–13577 (2011).
    [Crossref]
  338. S. Feng, J. Lin, M. Cheng, Y.-Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63, 1089–1094 (2009).
    [Crossref]
  339. S. C. Pînzaru, L. Andronie, I. Domsa, O. Cozar, and S. Astilean, “Bridging biomolecules with nanoparticles: surface-enhanced Raman scattering from colon carcinoma and normal tissue,” J. Raman Spectrosc. 39, 331–334 (2008).
    [Crossref]
  340. X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26, 83–90 (2008).
    [Crossref]
  341. K. K. Maiti, U. Dinish, A. Samanta, M. Vendrell, K.-S. Soh, S.-J. Park, M. Olivo, and Y.-T. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
    [Crossref]
  342. A. Samanta, K. K. Maiti, K.-S. Soh, X. Liao, M. Vendrell, U. S. Dinish, S.-W. Yun, R. Bhuvaneswari, H. Kim, S. Rautela, J. Chung, M. Olivo, and Y.-T. Chang, “Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection,” Angew. Chem. Int. Ed. 50, 6089–6092 (2011).
    [Crossref]
  343. S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. USA 110, 12408–12413 (2013).
  344. M. Espina Palanco, K. B. Mogensen, and K. Kneipp, “Raman spectroscopic probing of plant material using SERS,” J. Raman Spectrosc. 47, 156–161 (2016).
    [Crossref]
  345. H. Chu, Y. Huang, and Y. Zhao, “Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection,” Appl. Spectrosc. 62, 922–931 (2008).
    [Crossref]
  346. Y. Xie, L. Xu, Y. Wang, J. Shao, L. Wang, H. Wang, H. Qian, and W. Yao, “Label-free detection of the foodborne pathogens of Enterobacteriaceae by surface-enhanced Raman spectroscopy,” Anal. Methods 5, 946–952 (2013).
    [Crossref]
  347. P. Falagan-Lotsch, E. M. Grzincic, and C. J. Murphy, “One low-dose exposure of gold nanoparticles induces long-term changes in human cells,” Proc. Natl. Acad. Sci. USA 113, 13318–13323 (2016).
  348. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
    [Crossref]
  349. N. Hayazawa, T.-A. Yano, and S. Kawata, “Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone,” J. Raman Spectrosc. 43, 1177–1182 (2012).
    [Crossref]
  350. N. Kumar, S. J. Spencer, D. Imbraguglio, A. M. Rossi, A. J. Wain, B. M. Weckhuysen, and D. Roy, “Extending the plasmonic lifetime of tip-enhanced Raman spectroscopy probes,” Phys. Chem. Chem. Phys. 18, 13710–13716 (2016).
    [Crossref]
  351. W. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
    [Crossref]
  352. B.-S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. Zhang, “Tip-enhanced Raman spectroscopy–its status, challenges and future directions,” Chem. Phys. Lett. 472, 1–13 (2009).
    [Crossref]
  353. F. Sinjab, B. Lekprasert, R. A. Woolley, C. J. Roberts, S. J. Tendler, and I. Notingher, “Near-field Raman spectroscopy of biological nanomaterials by in vivo laser-induced synthesis of tip-enhanced Raman spectroscopy tips,” Opt. Lett. 37, 2256–2258 (2012).
    [Crossref]
  354. R. Rodriguez, E. Sheremet, S. Müller, O. Gordan, A. Villabona, S. Schulze, M. Hietschold, and D. Zahn, “Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy,” Rev. Sci. Instrum. 83, 123708 (2012).
    [Crossref]
  355. C. Ropers, C. Neacsu, T. Elsaesser, M. Albrecht, M. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
    [Crossref]
  356. T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9, 6297–6304 (2015).
    [Crossref]
  357. Y. You, N. Purnawirman, H. Hu, J. Kasim, H. Yang, C. Du, T. Yu, and Z. Shen, “Tip-enhanced Raman spectroscopy using single-crystalline Ag nanowire as tip,” J. Raman Spectrosc. 41, 1156–1162 (2010).
    [Crossref]
  358. C. Leiterer, T. Deckert-Gaudig, P. Singh, J. Wirth, V. Deckert, and W. Fritzsche, “Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy,” Electrophoresis 36, 1142–1148 (2015).
    [Crossref]
  359. C. S. Sweetenham, R. A. Woolley, and I. Notingher, “In situ fabrication of gold nanoparticle functionalized probes for tip-enhanced Raman spectroscopy by dielectrophoresis,” J. Nanophoton. 10, 030502 (2016).
    [Crossref]
  360. I. Notingher and A. Elfick, “Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips,” J. Phys. Chem. B 109, 15699–15706 (2005).
    [Crossref]
  361. W. Zhang, T. Schmid, B.-S. Yeo, and R. Zenobi, “Near-field heating, annealing, and signal loss in tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 2104–2108 (2008).
    [Crossref]
  362. T. Deckert-Gaudig and V. Deckert, “Ultraflat transparent gold nanoplates-ideal substrates for tip-enhanced Raman scattering experiments,” Small 5, 432–436 (2009).
    [Crossref]
  363. K. F. Domke, D. Zhang, and B. Pettinger, “Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111),” J. Am. Chem. Soc. 129, 6708–6709 (2007).
    [Crossref]
  364. E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. 47, 1658–1661 (2008).
    [Crossref]
  365. R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases—a tip-enhanced Raman approach,” Beilstein J. Nanotechnol. 2, 628–637 (2011).
    [Crossref]
  366. D. Kurouski, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Structure and composition of insulin fibril surfaces probed by TERS,” J. Am. Chem. Soc. 134, 13323–13329 (2012).
    [Crossref]
  367. D. Kurouski, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS),” Biophys. J. 106, 263–271 (2014).
    [Crossref]
  368. L. Opilik, T. Bauer, T. Schmid, J. Stadler, and R. Zenobi, “Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 13, 9978–9981 (2011).
    [Crossref]
  369. N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugne-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 134, 17076–17082 (2012).
    [Crossref]
  370. U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, and V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
    [Crossref]
  371. U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis,” ChemPhysChem 8, 124–137 (2007).
    [Crossref]
  372. D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Möller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40, 240–243 (2009).
    [Crossref]
  373. T. Deckert-Gaudig, R. Böhme, E. Freier, A. Sebesta, T. Merkendorf, J. Popp, K. Gerwert, and V. Deckert, “Nanoscale distinction of membrane patches—a TERS study of Halobacterium salinarum,” J. Biophoton. 5, 582–591 (2012).
    [Crossref]
  374. B. R. Wood, E. Bailo, M. A. Khiavi, L. Tilley, S. Deed, T. Deckert-Gaudig, D. McNaughton, and V. Deckert, “Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte,” Nano Lett. 11, 1868–1873 (2011).
    [Crossref]
  375. B. R. Wood, M. Asghari-Khiavi, E. Bailo, D. McNaughton, and V. Deckert, “Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering,” Nano Lett. 12, 1555–1560 (2012).
    [Crossref]
  376. T. Schmid, A. Messmer, B.-S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Anal. Bioanal. Chem. 391, 1907–1916 (2008).
    [Crossref]
  377. T. Schmid, B.-S. Yeo, G. Leong, J. Stadler, and R. Zenobi, “Performing tip-enhanced Raman spectroscopy in liquids,” J. Raman Spectrosc. 40, 1392–1399 (2009).
    [Crossref]
  378. F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy-DFT assessment of the chemical effect,” Nanoscale 8, 10229–10239 (2016).
    [Crossref]
  379. C. Blum, T. Schmid, L. Opilik, N. Metanis, S. Weidmann, and R. Zenobi, “Missing amide I mode in gap-mode tip-enhanced Raman spectra of proteins,” J. Phys. Chem. C 116, 23061–23066 (2012).
    [Crossref]
  380. D. Kurouski, T. Postiglione, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens,” Analyst 138, 1665–1673 (2013).
    [Crossref]
  381. R. Wiens, C. R. Findlay, S. G. Baldwin, L. Kreplak, J. M. Lee, S. P. Veres, and K. M. Gough, “High spatial resolution (11  μm and 20  nm) FTIR polarization contrast imaging reveals pre-rupture disorder in damaged tendon,” Faraday Discuss. 187, 555–573 (2016).
  382. S. Ekgasit and H. Ishida, “New optical depth-profiling technique by use of the multiple-frequency approach with single ATR FT-IR spectrum: theoretical development,” Appl. Spectrosc. 51, 1488–1495 (1997).
    [Crossref]
  383. M. W. Urban, C. L. Allison, G. L. Johnson, and F. Di Stefano, “Stratification of butyl acrylate/polyurethane (BA/PUR) latexes: ATR and step-scan photoacoustic studies,” Appl. Spectrosc. 53, 1520–1527 (1999).
    [Crossref]
  384. R. W. Jones and J. F. McClelland, “Quantitative depth profiling using saturation-equalized photoacoustic spectra,” Appl. Spectrosc. 56, 409–418 (2002).
    [Crossref]
  385. W. Faubel, S. Heissler, and R. A. Palmer, “Quantitative analysis of corroded copper patina by step scan and rapid scan photoacoustic Fourier transform infrared spectroscopy,” Rev. Sci. Instrum. 74, 331–333 (2003).
    [Crossref]
  386. I. Notingher, R. E. Imhof, P. Xiao, and F. C. Pascut, “Spectral depth profiling of arbitrary surfaces by thermal emission decay-Fourier transform infrared spectroscopy,” Appl. Spectrosc. 57, 1494–1501 (2003).
    [Crossref]
  387. I. Notingher and R. E. Imhof, “Mid-infrared in vivo depth-profiling of topical chemicals on skin,” Skin Res. Technol. 10, 113–121 (2004).
    [Crossref]
  388. P. Matousek, N. Everall, M. Towrie, and A. Parker, “Depth profiling in diffusely scattering media using Raman spectroscopy and picosecond Kerr gating,” Appl. Spectrosc. 59, 200–205 (2005).
    [Crossref]
  389. P. Matousek, I. Clark, E. Draper, M. Morris, A. Goodship, N. Everall, M. Towrie, W. Finney, and A. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59, 393–400 (2005).
    [Crossref]
  390. P. Matousek, M. Morris, N. Everall, I. Clark, M. Towrie, E. Draper, A. Goodship, and A. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59, 1485–1492 (2005).
    [Crossref]
  391. P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc. 60, 758–763 (2006).
    [Crossref]
  392. J. R. Maher and A. J. Berger, “Determination of ideal offset for spatially offset Raman spectroscopy,” Appl. Spectrosc. 64, 61–65 (2010).
    [Crossref]
  393. J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).
  394. Z. Liao, F. Sinjab, G. Gibson, M. Padgett, and I. Notingher, “DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples,” Opt. Express 24, 12701–12712 (2016).
    [Crossref]
  395. P. Matousek, “Inverse spatially offset Raman spectroscopy for deep noninvasive probing of turbid media,” Appl. Spectrosc. 60, 1341–1347 (2006).
    [Crossref]
  396. C. Conti, C. Colombo, M. Realini, G. Zerbi, and P. Matousek, “Subsurface Raman analysis of thin painted layers,” Appl. Spectrosc. 68, 686–691 (2014).
    [Crossref]
  397. C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
    [Crossref]
  398. C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” Analyst 140, 8127–8133 (2015).
    [Crossref]
  399. N. Stone, K. Faulds, D. Graham, and P. Matousek, “Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25  mm of mammalian tissue,” Anal. Chem. 82, 3969–3973 (2010).
    [Crossref]
  400. N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis,” Cancer Research 68, 4424–4430 (2008).
    [Crossref]
  401. J.-L. H. Demers, S. C. Davis, B. W. Pogue, and M. D. Morris, “Multichannel diffuse optical Raman tomography for bone characterization in vivo: a phantom study,” Biomed. Opt. Express 3, 2299–2305 (2012).
    [Crossref]
  402. S. Sil and S. Umapathy, “Raman spectroscopy explores molecular structural signatures of hidden materials in depth: universal multiple angle Raman spectroscopy,” Sci. Rep. 4, 5308 (2014).
    [Crossref]
  403. D. Yang and Y. Ying, “Applications of Raman spectroscopy in agricultural products and food analysis: a review,” Appl. Spectrosc. Rev. 46, 539–560 (2011).
    [Crossref]
  404. C. Eliasson and P. Matousek, “Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy,” Anal. Chem. 79, 1696–1701 (2007).
    [Crossref]
  405. C. Eliasson, N. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79, 8185–8189 (2007).
    [Crossref]
  406. P. Matousek and N. Stone, “Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45, 1794–1802 (2016).
    [Crossref]
  407. K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46, 610–618 (2015).
    [Crossref]
  408. J.-L. H. Demers, F. W. Esmonde-White, K. A. Esmonde-White, M. D. Morris, and B. W. Pogue, “Next-generation Raman tomography instrument for non-invasive in vivo bone imaging,” Biomed. Opt. Express 6, 793–806 (2015).
    [Crossref]
  409. K. Buckley, C. Atkins, D. Chen, H. Schulze, D. Devine, M. Blades, and R. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst 141, 1678–1685 (2016).
    [Crossref]
  410. Z. Liao, F. Sinjab, A. Nommeots-Nomm, J. R. Jones, L. Ruiz Cantu, J. Yang, F. Rose, and I. Notingher, “Feasibility of spatially-offset Raman spectroscopy for in vitro and in vivo monitoring mineralisation of bone tissue-engineering scaffolds,” Anal. Chem. 89, 847–853 (2017).
    [Crossref]
  411. B. Sharma, K. Ma, M. R. Glucksberg, and R. P. Van Duyne, “Seeing through bone with surface-enhanced spatially offset Raman spectroscopy,” J. Am. Chem. Soc. 135, 17290–17293 (2013).
    [Crossref]
  412. J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82, 8382–8385 (2010).
    [Crossref]
  413. B. Gardner, P. Matousek, and N. Stone, “Temperature spatially offset Raman spectroscopy (T-SORS): subsurface chemically specific measurement of temperature in turbid media using anti-Stokes spatially offset Raman spectroscopy,” Anal. Chem. 88, 832–837 (2015).
    [Crossref]
  414. B. Gardner, N. Stone, and P. Matousek, “Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy,” Faraday Discuss. 187, 329–339 (2016).
  415. J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age-and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18, 077001 (2013).
    [Crossref]
  416. J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express 1, 17–30 (2010).
    [Crossref]
  417. M. Agenant, M. Grimbergen, R. Draga, E. Marple, R. Bosch, and C. van Swol, “Clinical superficial Raman probe aimed for epithelial tumor detection: phantom model results,” Biomed. Opt. Express 5, 1203–1216 (2014).
    [Crossref]
  418. J. Wang, M. S. Bergholt, W. Zheng, and Z. Huang, “Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy,” Opt. Lett. 38, 2321–2323 (2013).
    [Crossref]
  419. J. Ma and D. Ben-Amotz, “Rapid micro-Raman imaging using fiber-bundle image compression,” Appl. Spectrosc. 51, 1845–1848 (1997).
    [Crossref]
  420. M. P. Nelson and M. Myrick, “Single-frame chemical imaging: dimension reduction fiber-optic array improvements and application to laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 751–759 (1999).
    [Crossref]
  421. J. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67, 349–354 (2013).
    [Crossref]
  422. P. D. Pudney, E. Y. Bonnist, P. J. Caspers, J.-P. Gorce, C. Marriot, G. J. Puppels, S. Singleton, and M. J. van der Wolf, “A new in vivo Raman probe for enhanced applicability to the body,” Appl. Spectrosc. 66, 882–891 (2012).
    [Crossref]
  423. Z. Wang, H. Ding, G. Lu, and X. Bi, “Use of a mechanical iris-based fiber optic probe for spatially offset Raman spectroscopy,” Opt. Lett. 39, 3790–3793 (2014).
    [Crossref]
  424. M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
    [Crossref]
  425. N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst 132, 899–905 (2007).
    [Crossref]
  426. M. S. Bergholt, W. Zheng, and Z. Huang, “Characterizing variability in in vivo Raman spectroscopic properties of different anatomical sites of normal tissue in the oral cavity,” J. Raman Spectrosc. 43, 255–262 (2012).
    [Crossref]
  427. M. A. Short, I. T. Tai, D. Owen, and H. Zeng, “Using high frequency Raman spectra for colonic neoplasia detection,” Opt. Express 21, 5025–5034 (2013).
    [Crossref]
  428. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427–431 (1998).
    [Crossref]
  429. U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955–959 (2001).
    [Crossref]
  430. J. Horsnell, P. Stonelake, J. Christie-Brown, G. Shetty, J. Hutchings, C. Kendall, and N. Stone, “Raman spectroscopy: a new method for the intraoperative assessment of axillary lymph nodes,” Analyst 135, 3042–3047 (2010).
    [Crossref]
  431. N. Huang, M. Short, J. Zhao, H. Wang, H. Lui, M. Korbelik, and H. Zeng, “Full range characterization of the Raman spectra of organs in a murine model,” Opt. Express 19, 22892–22909 (2011).
    [Crossref]
  432. J. Desroches, M. Jermyn, K. Mok, C. Lemieux-Leduc, J. Mercier, K. St-Arnaud, K. Urmey, M.-C. Guiot, E. Marple, K. Petrecca, and F. Leblond, “Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification,” Biomed. Opt. Express 6, 2380–2397 (2015).
    [Crossref]
  433. S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Express 20, 20156–20169 (2012).
    [Crossref]
  434. A. C. Brunetti, W. Margulis, and K. Rottwitt, “Raman probes based on optically-poled double-clad fiber and coupler,” Opt. Express 20, 28563–28572 (2012).
    [Crossref]
  435. P. I. Okagbare and M. D. Morris, “Fluorocarbon fiber-optic Raman probe for non-invasive Raman spectroscopy,” Appl. Spectrosc. 66, 728–730 (2012).
    [Crossref]
  436. S. Koljenovic, T. B. Schut, R. D. Wolthuis, B. De Jong, L. Santos, P. J. Caspers, J. M. Kros, and G. J. Puppels, “Tissue characterization using high wave number Raman spectroscopy,” J. Biomed. Opt. 10, 031116 (2005).
    [Crossref]
  437. W. Wang, M. Short, I. T. Tai, and H. Zeng, “Disposable sheath that facilitates endoscopic Raman spectroscopy,” J. Biomed. Opt. 21, 025001 (2016).
    [Crossref]
  438. Z. Huang, M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, and K. G. Yeoh, “In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy,” J. Biomed. Opt. 15, 037017 (2010).
    [Crossref]
  439. M. S. Bergholt, K. Lin, W. Zheng, D. P. C. Lau, and Z. Huang, “In vivo, real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx,” J. Biomed. Opt. 17, 0770021 (2012).
    [Crossref]
  440. J. Schleusener, P. Gluszczynska, C. Reble, I. Gersonde, J. Helfmann, H.-J. Cappius, J. W. Fluhr, and M. C. Meinke, “Perturbation factors in the clinical handling of a fiber-coupled Raman probe for cutaneous in vivo diagnostic Raman spectroscopy,” Appl. Spectrosc. 69, 243–256 (2015).
    [Crossref]
  441. C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophoton. 5, 220–229 (2012).
    [Crossref]
  442. K. Kong, C. J. Rowlands, H. Elsheikha, and I. Notingher, “Label-free molecular analysis of live Neospora caninum tachyzoites in host cells by selective scanning Raman micro-spectroscopy,” Analyst 137, 4119–4122 (2012).
    [Crossref]
  443. C. A. Patil, C. L. Arrasmith, M. A. Mackanos, D. L. Dickensheets, and A. Mahadevan-Jansen, “A handheld laser scanning confocal reflectance imaging–confocal Raman microspectroscopy system,” Biomed. Opt. Express 3, 488–502 (2012).
    [Crossref]
  444. A. C.-T. Ko, L.-P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
    [Crossref]
  445. C. A. Patil, H. Kirshnamoorthi, D. L. Ellis, T. G. van Leeuwen, and A. Mahadevan-Jansen, “A clinical instrument for combined Raman spectroscopy-optical coherence tomography of skin cancers,” Lasers Surg. Med. 43, 143–151 (2011).
    [Crossref]
  446. K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Boil. 59, 6141–6152 (2014).
    [Crossref]
  447. S. Takamori, K. Kong, S. Varma, I. Leach, H. C. Williams, and I. Notingher, “Optimization of multimodal spectral imaging for assessment of resection margins during MOHS micrographic surgery for basal cell carcinoma,” Biomed. Opt. Express 6, 98–111 (2015).
    [Crossref]
  448. J. D. Neufeld, M. Wagner, and J. C. Murrell, “Who eats what, where and when? Isotope-labelling experiments are coming of age,” ISME J. 1, 103–110 (2007).
    [Crossref]
  449. H. Zhang, X.-J. Li, D. B. Martin, and R. Aebersold, “Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry,” Nat. Biotechnol. 21, 660–666 (2003).
    [Crossref]
  450. W. E. Huang, K. Stoecker, R. Griffiths, L. Newbold, H. Daims, A. S. Whiteley, and M. Wagner, “Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in vivo hybridization for the single cell analysis of identity and function,” Environ. Microbiol. 9, 1878–1889 (2007).
    [Crossref]
  451. W. E. Huang, A. Ferguson, A. C. Singer, K. Lawson, I. P. Thompson, R. M. Kalin, M. J. Larkin, M. J. Bailey, and A. S. Whiteley, “Resolving genetic functions within microbial populations: in vivo analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization,” Appl. Environ. Microbiol. 75, 234–241 (2009).
    [Crossref]
  452. H.-J. van Manen, A. Lenferink, and C. Otto, “Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy,” Anal. Chem. 80, 9576–9582 (2008).
    [Crossref]
  453. C. Matthäus, C. Krafft, B. Dietzek, B. R. Brehm, S. Lorkowski, and J. Popp, “Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling,” Anal. Chem. 84, 8549–8556 (2012).
    [Crossref]
  454. H. N. N. Venkata and S. Shigeto, “Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells,” Chem. Biol. 19, 1373–1380 (2012).
    [Crossref]
  455. H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
    [Crossref]
  456. H. Yamakoshi, K. Dodo, M. Okada, J. Ando, A. Palonpon, K. Fujita, S. Kawata, and M. Sodeoka, “Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy,” J. Am. Chem. Soc. 133, 6102–6105 (2011).
    [Crossref]
  457. H. Yamakoshi, A. Palonpon, K. Dodo, J. Ando, S. Kawata, K. Fujita, and M. Sodeoka, “A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria,” Bioorg. Med. Chem. Lett. 25, 664–667 (2015).
    [Crossref]
  458. Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).
  459. R. Kurihara, Y. Ikemura, and K. Tanabe, “Preparation of alkyne-labeled 2-nitroimidazoles for identification of tumor hypoxia by Raman spectroscopy,” Bioorg. Med. Chem. Lett. 26, 4892–4894 (2016).
    [Crossref]
  460. J. Cui, S. Matsuoka, M. Kinoshita, N. Matsumori, F. Sato, M. Murata, J. Ando, H. Yamakoshi, K. Dodo, and M. Sodeoka, “Novel Raman-tagged sphingomyelin that closely mimics original raft-forming behavior,” Bioorg. Med. Chem. 23, 2989–2994 (2015).
    [Crossref]
  461. S. Hong, T. Chen, Y. Zhu, A. Li, Y. Huang, and X. Chen, “Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules,” Angew. Chem. Int. Ed. 53, 5827–5831 (2014).
    [Crossref]
  462. F. Hu, Z. Chen, L. Zhang, Y. Shen, L. Wei, and W. Min, “Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering,” Angew. Chem. 127, 9959–9963 (2015).
    [Crossref]
  463. J. Deng, Q. Wei, M. Zhang, Y. Wang, and Y.-Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
    [Crossref]
  464. Z. Huang, X. Chen, Y. Li, J. Chen, J. Lin, J. Wang, J. Lei, and R. Chen, “Quantitative determination of citric acid in seminal plasma by using Raman spectroscopy,” Appl. Spectrosc. 67, 757–760 (2013).
    [Crossref]
  465. G. B. Jung, Y. J. Lee, G. Lee, and H.-K. Park, “A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy,” Biomed. Opt. Express 4, 2673–2682 (2013).
    [Crossref]
  466. Y. J. Lee, H. J. Ahn, G.-J. Lee, G. B. Jung, G. Lee, D. Kim, J.-H. Shin, K.-H. Jin, and H.-K. Park, “Investigation of biochemical property changes in activation-induced CD8+ T cell apoptosis using Raman spectroscopy,” J. Biomed. Opt. 20, 075001 (2015).
    [Crossref]
  467. T. Buchwald, K. Niciejewski, M. Kozielski, M. Szybowicz, M. Siatkowski, and H. Krauss, “Identifying compositional and structural changes in spongy and subchondral bone from the hip joints of patients with osteoarthritis using Raman spectroscopy,” J. Biomed. Opt. 17, 017007 (2012).
    [Crossref]
  468. N. Li, D. Chen, Y. Xu, S. Liu, and H. Zhang, “Confocal Raman micro-spectroscopy for rapid and label-free detection of maleic acid-induced variations in human sperm,” Biomed. Opt. Express 5, 1690–1699 (2014).
    [Crossref]
  469. T. Saxena, B. Deng, D. Stelzner, J. Hasenwinkel, and J. Chaiken, “Raman spectroscopic investigation of spinal cord injury in a rat model,” J. Biomed. Opt. 16, 027003 (2011).
    [Crossref]
  470. H. Bai, H. Li, Z. Han, C. Zhang, J. Zhao, C. Miao, S. Yan, A. Mao, H. Zhao, and Z. Han, “Label-free assessment of replicative senescence in mesenchymal stem cells by Raman microspectroscopy,” Biomed. Opt. Express 6, 4493–4500 (2015).
    [Crossref]
  471. I. Barman, N. C. Dingari, A. Saha, S. McGee, L. H. Galindo, W. Liu, D. Plecha, N. Klein, R. R. Dasari, and M. Fitzmaurice, “Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy,” Cancer Res. 73, 3206–3215 (2013).
    [Crossref]
  472. G. Perna, M. Lasalvia, A. Castro, E. Mezzenga, N. L’Abbate, P. Biagi, and V. Capozzi, “Detection of pesticide effects in human keratinocytes by means of Raman microspectroscopy,” Appl. Phys. Lett. 95, 083701 (2009).
    [Crossref]
  473. A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman tweezers,” Opt. Express 16, 7943–7957 (2008).
    [Crossref]
  474. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 102, 12371–12376 (2005).
    [Crossref]
  475. A. Ghita, F. C. Pascut, V. Sottile, and I. Notingher, “Monitoring the mineralisation of bone nodules in vivo by space-and time-resolved Raman microspectroscopy,” Analyst 139, 55–58 (2014).
    [Crossref]
  476. G. Das, R. La Rocca, T. Lakshmikanth, F. Gentile, R. Tallerico, L. P. Zambetti, J. Devitt, P. Candeloro, F. De Angelis, E. Carbone, and E. Di Fabrizio, “Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level,” J. Biomed. Opt. 15, 027007 (2010).
    [Crossref]
  477. N. D. Magee, J. R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D. A. Fennell, P. W. Hamilton, M. Ennis, J. J. McGarvey, and J. S. Elborn, “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” J. Biomed. Opt. 15, 026015 (2010).
    [Crossref]
  478. Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20, 22158–22171 (2012).
    [Crossref]
  479. Q. Matthews, A. Jirasek, J. Lum, X. Duan, and A. G. Brolo, “Variability in Raman spectra of single human tumor cells cultured in vivo: correlation with cell cycle and culture confluency,” Appl. Spectrosc. 64, 871–887 (2010).
    [Crossref]
  480. S. Barkur, A. Bankapur, M. Pradhan, S. Chidangil, D. Mathur, and U. Ladiwala, “Probing differentiation in cancer cell lines by single-cell micro-Raman spectroscopy,” J. Biomed. Opt. 20, 085001 (2015).
    [Crossref]
  481. E. E. Rossi, L. Silveira, A. L. B. Pinheiro, S. R. Zamuner, F. Aimbire, M. Maia, and M. T. T. Pacheco, “Raman spectroscopy for differential diagnosis of endophthalmitis and uveitis in rabbit iris in vivo,” Exp. Eye Res. 91, 362–368 (2010).
    [Crossref]
  482. M. L. Paret, S. K. Sharma, L. M. Green, and A. M. Alvarez, “Biochemical characterization of gram-positive and gram-negative plant-associated bacteria with micro-Raman spectroscopy,” Appl. Spectrosc. 64, 433–441 (2010).
    [Crossref]
  483. E. Azrad, E. Cagnano, S. Halevy, S. Rosenwaks, and I. Bar, “Bullous pemphigoid detection by micro-Raman spectroscopy and cluster analysis: structure alterations of proteins,” J. Raman Spectrosc. 36, 1034–1039 (2005).
    [Crossref]
  484. J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
    [Crossref]
  485. P. Rösch, S. Stöckel, S. Meisel, A. Bossecker, U. Münchberg, S. Kloss, W. Schumacher, and J. Popp, “Bacterial identification in real samples by means of micro-Raman spectroscopy,” Proc. SPIE 8087, 808708 (2011).
  486. T. Bhattacharjee, S. Tawde, R. Hudlikar, M. Mahimkar, G. Maru, A. Ingle, and C. M. Krishna, “Ex vivo Raman spectroscopic study of breast metastatic lesions in lungs in animal models,” J. Biomed. Opt. 20, 085006 (2015).
    [Crossref]
  487. P. Chen, A. Shen, W. Zhao, S.-J. Baek, H. Yuan, and J. Hu, “Raman signature from brain hippocampus could aid Alzheimer’s disease diagnosis,” Appl. Opt. 48, 4743–4748 (2009).
    [Crossref]
  488. G. B. Jung, S. W. Nam, S. Choi, G.-J. Lee, and H.-K. Park, “Evaluation of antibiotic effects on Pseudomonas aeruginosa biofilm using Raman spectroscopy and multivariate analysis,” Biomed. Opt. Express 5, 3238–3251 (2014).
    [Crossref]
  489. U. Neugebauer, T. Bocklitz, J. Clement, C. Krafft, and J. Popp, “Towards detection and identification of circulating tumour cells using Raman spectroscopy,” Analyst 135, 3178–3182 (2010).
    [Crossref]
  490. C. Bielecki, T. W. Bocklitz, M. Schmitt, C. Krafft, C. Marquardt, A. Gharbi, T. Knösel, A. Stallmach, and J. Popp, “Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells,” J. Biomed. Opt. 17, 0760301 (2012).
    [Crossref]
  491. S. Stöckel, S. Meisel, M. Elschner, P. Rosch, and J. Popp, “Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches,” Anal. Chem. 84, 9873–9880 (2012).
    [Crossref]
  492. N. C. Dingari, I. Barman, J. W. Kang, C.-R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16, 087009 (2011).
    [Crossref]
  493. S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnosis of gastric cancer using near-infrared Raman spectroscopy and classification and regression tree techniques,” J. Biomed. Opt. 13, 034013 (2008).
    [Crossref]
  494. W. Schumacher, M. Kühnert, P. Rösch, and J. Popp, “Identification and classification of organic and inorganic components of particulate matter via Raman spectroscopy and chemometric approaches,” J. Raman Spectrosc. 42, 383–392 (2011).
    [Crossref]
  495. S. K. Teh, W. Zheng, D. P. Lau, and Z. Huang, “Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques,” Analyst 134, 1232–1239 (2009).
    [Crossref]
  496. R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. V. Swol, T. G. Jonges, J. A. Kummer, and J. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82, 5993–5999 (2010).
    [Crossref]
  497. D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
    [Crossref]
  498. K. L. Bechtel, W.-C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: experimental applications,” Opt. Express 16, 12737–12745 (2008).
    [Crossref]
  499. P. Meksiarun, N. Spegazzini, H. Matsui, K. Nakajima, Y. Matsuda, and H. Sato, “In vivo study of lipid accumulation in the microalgae marine diatom Thalassiosira pseudonana using Raman spectroscopy,” Appl. Spectrosc. 69, 45–51 (2015).
    [Crossref]
  500. C. J. Saatkamp, M. L. de Almeida, J. A. M. Bispo, A. L. B. Pinheiro, A. B. Fernandes, and L. Silveira, “Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease,” J. Biomed. Opt. 21, 037001 (2016).
    [Crossref]
  501. W.-C. Shih, K. L. Bechtel, and M. V. Rebec, “Noninvasive glucose sensing by transcutaneous Raman spectroscopy,” J. Biomed. Opt. 20, 051036 (2015).
    [Crossref]
  502. J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16, 087012 (2011).
    [Crossref]
  503. S. Duraipandian, M. S. Bergholt, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, A. Shabbir, and Z. Huang, “Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,” J. Biomed. Opt. 17, 081418 (2012).
    [Crossref]
  504. S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22, 25895–25908 (2014).
    [Crossref]
  505. M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128, 2673–2680 (2011).
    [Crossref]
  506. S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran, and Z. Huang, “In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques,” Analyst 136, 4328–4336 (2011).
    [Crossref]

2017 (2)

R. C. Prince, R. R. Frontiera, and E. O. Potma, “Stimulated Raman scattering: from bulk to nano,” Chem. Rev. 17, 5070–5094 (2017).

Z. Liao, F. Sinjab, A. Nommeots-Nomm, J. R. Jones, L. Ruiz Cantu, J. Yang, F. Rose, and I. Notingher, “Feasibility of spatially-offset Raman spectroscopy for in vitro and in vivo monitoring mineralisation of bone tissue-engineering scaffolds,” Anal. Chem. 89, 847–853 (2017).
[Crossref]

2016 (25)

B. Gardner, N. Stone, and P. Matousek, “Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy,” Faraday Discuss. 187, 329–339 (2016).

M. Espina Palanco, K. B. Mogensen, and K. Kneipp, “Raman spectroscopic probing of plant material using SERS,” J. Raman Spectrosc. 47, 156–161 (2016).
[Crossref]

K. Buckley, C. Atkins, D. Chen, H. Schulze, D. Devine, M. Blades, and R. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst 141, 1678–1685 (2016).
[Crossref]

P. Matousek and N. Stone, “Development of deep subsurface Raman spectroscopy for medical diagnosis and disease monitoring,” Chem. Soc. Rev. 45, 1794–1802 (2016).
[Crossref]

W. Wang, M. Short, I. T. Tai, and H. Zeng, “Disposable sheath that facilitates endoscopic Raman spectroscopy,” J. Biomed. Opt. 21, 025001 (2016).
[Crossref]

C. S. Sweetenham, R. A. Woolley, and I. Notingher, “In situ fabrication of gold nanoparticle functionalized probes for tip-enhanced Raman spectroscopy by dielectrophoresis,” J. Nanophoton. 10, 030502 (2016).
[Crossref]

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy-DFT assessment of the chemical effect,” Nanoscale 8, 10229–10239 (2016).
[Crossref]

R. Wiens, C. R. Findlay, S. G. Baldwin, L. Kreplak, J. M. Lee, S. P. Veres, and K. M. Gough, “High spatial resolution (11  μm and 20  nm) FTIR polarization contrast imaging reveals pre-rupture disorder in damaged tendon,” Faraday Discuss. 187, 555–573 (2016).

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).

R. Kurihara, Y. Ikemura, and K. Tanabe, “Preparation of alkyne-labeled 2-nitroimidazoles for identification of tumor hypoxia by Raman spectroscopy,” Bioorg. Med. Chem. Lett. 26, 4892–4894 (2016).
[Crossref]

C. J. Saatkamp, M. L. de Almeida, J. A. M. Bispo, A. L. B. Pinheiro, A. B. Fernandes, and L. Silveira, “Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease,” J. Biomed. Opt. 21, 037001 (2016).
[Crossref]

E. Cepeda-Pérez, T. López-Luke, P. Salas, G. Plascencia-Villa, A. Ponce, J. Vivero-Escoto, M. José-Yacamán, and E. de la Rosa, “SERS-active Au/SiO2 clouds in powder for rapid ex vivo breast adenocarcinoma diagnosis,” Biomed. Opt. Express 7, 2407–2418 (2016).
[Crossref]

Z. Liao, F. Sinjab, G. Gibson, M. Padgett, and I. Notingher, “DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples,” Opt. Express 24, 12701–12712 (2016).
[Crossref]

F. Sinjab, K. Kong, G. Gibson, S. Varma, H. Williams, M. Padgett, and I. Notingher, “Tissue diagnosis using power-sharing multifocal Raman microspectroscopy and auto-fluorescence imaging,” Biomed. Opt. Express 7, 2993–3006 (2016).
[Crossref]

A. Fast, J. P. Kenison, C. D. Syme, and E. O. Potma, “Surface-enhanced coherent anti-Stokes Raman imaging of lipids,” Appl. Opt. 55, 5994–6000 (2016).
[Crossref]

A. Naemat, H. M. Elsheikha, R. A. Boitor, and I. Notingher, “Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging,” Sci. Rep. 6, 20811 (2016).
[Crossref]

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy,” Light Sci. Appl. 5, e16149 (2016).

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87, 031101 (2016).
[Crossref]

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15, 1203–1211 (2016).

J. Liu, D. Yin, S. Wang, H.-Y. Chen, and Z. Liu, “Probing low-copy-number proteins in a single living cell,” Angew. Chem. Int. Ed. 55, 13215–13218 (2016).
[Crossref]

P. Falagan-Lotsch, E. M. Grzincic, and C. J. Murphy, “One low-dose exposure of gold nanoparticles induces long-term changes in human cells,” Proc. Natl. Acad. Sci. USA 113, 13318–13323 (2016).

N. Kumar, S. J. Spencer, D. Imbraguglio, A. M. Rossi, A. J. Wain, B. M. Weckhuysen, and D. Roy, “Extending the plasmonic lifetime of tip-enhanced Raman spectroscopy probes,” Phys. Chem. Chem. Phys. 18, 13710–13716 (2016).
[Crossref]

2015 (41)

K. Bando, N. I. Smith, J. Ando, K. Fujita, and S. Kawata, “Analysis of dynamic SERS spectra measured with a nanoparticle during intracellular transportation in 3D,” J. Opt. 17, 114023 (2015).
[Crossref]

B. Kann, H. L. Offerhaus, M. Windbergs, and C. Otto, “Raman microscopy for cellular investigations-from single cell imaging to drug carrier uptake visualization,” Adv. Drug Delivery Rev. 89, 71–90 (2015).
[Crossref]

D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17, 21072–21093 (2015).
[Crossref]

J. W. Kang, P. T. So, R. R. Dasari, and D.-K. Lim, “High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap,” Nano Lett. 15, 1766–1772 (2015).
[Crossref]

A. Jaworska, L. E. Jamieson, K. Malek, C. J. Campbell, J. Choo, S. Chlopicki, and M. Baranska, “SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α,” Analyst 140, 2321–2329 (2015).
[Crossref]

W. S. Chiu, N. A. Belsey, N. L. Garrett, J. Moger, M. B. Delgado-Charro, and R. H. Guy, “Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 7725–7730 (2015).
[Crossref]

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).
[Crossref]

F.-K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. R. Holtom, V. A. Neel, C. W. Freudiger, D. E. Fisher, and X. S. Xie, “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).
[Crossref]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref]

A. Mitchell, L. Ashton, X. B. Yang, R. Goodacre, A. Smith, and J. Kirkham, “Detection of early stage changes associated with adipogenesis using Raman spectroscopy under aseptic conditions,” Cytometry Part A 87, 1012–1019 (2015).
[Crossref]

R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2015).

A. Z. Samuel, S. Yabumoto, K. Kawamura, and K. Iwata, “Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy,” Analyst 140, 1847–1851 (2015).
[Crossref]

K. Watanabe, A. F. Palonpon, N. I. Smith, L. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).

O. Samek, S. Bernatová, J. Ježek, M. Šiler, M. Šerý, V. Krzyžánek, K. Hrubanová, P. Zemánek, V. Holá, and F. Řužička, “Identification of individual biofilm-forming bacterial cells using Raman tweezers,” J. Biomed. Opt. 20, 051038 (2015).
[Crossref]

K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics-from in vivo biofluid assays to in vivo cancer detection,” Adv. Drug Delivery Rev. 89, 121–134 (2015).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

C. Zhang, D. Zhang, and J.-X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17, 415–445 (2015).
[Crossref]

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

S. Takamori, K. Kong, S. Varma, I. Leach, H. C. Williams, and I. Notingher, “Optimization of multimodal spectral imaging for assessment of resection margins during MOHS micrographic surgery for basal cell carcinoma,” Biomed. Opt. Express 6, 98–111 (2015).
[Crossref]

P. Meksiarun, N. Spegazzini, H. Matsui, K. Nakajima, Y. Matsuda, and H. Sato, “In vivo study of lipid accumulation in the microalgae marine diatom Thalassiosira pseudonana using Raman spectroscopy,” Appl. Spectrosc. 69, 45–51 (2015).
[Crossref]

S. Babar and J. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54, 477–481 (2015).
[Crossref]

J. Schleusener, P. Gluszczynska, C. Reble, I. Gersonde, J. Helfmann, H.-J. Cappius, J. W. Fluhr, and M. C. Meinke, “Perturbation factors in the clinical handling of a fiber-coupled Raman probe for cutaneous in vivo diagnostic Raman spectroscopy,” Appl. Spectrosc. 69, 243–256 (2015).
[Crossref]

J.-L. H. Demers, F. W. Esmonde-White, K. A. Esmonde-White, M. D. Morris, and B. W. Pogue, “Next-generation Raman tomography instrument for non-invasive in vivo bone imaging,” Biomed. Opt. Express 6, 793–806 (2015).
[Crossref]

J. Desroches, M. Jermyn, K. Mok, C. Lemieux-Leduc, J. Mercier, K. St-Arnaud, K. Urmey, M.-C. Guiot, E. Marple, K. Petrecca, and F. Leblond, “Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification,” Biomed. Opt. Express 6, 2380–2397 (2015).
[Crossref]

M. Andreana, M.-A. Houle, D. J. Moffatt, A. Ridsdale, E. Buettner, F. Légaré, and A. Stolow, “Amplitude and polarization modulated hyperspectral stimulated Raman scattering microscopy,” Opt. Express 23, 28119–28131 (2015).
[Crossref]

H. Bai, H. Li, Z. Han, C. Zhang, J. Zhao, C. Miao, S. Yan, A. Mao, H. Zhao, and Z. Han, “Label-free assessment of replicative senescence in mesenchymal stem cells by Raman microspectroscopy,” Biomed. Opt. Express 6, 4493–4500 (2015).
[Crossref]

I. S. Ryu, C. H. Camp, Y. Jin, M. T. Cicerone, and Y. J. Lee, “Beam scanning for rapid coherent Raman hyperspectral imaging,” Opt. Lett. 40, 5826–5829 (2015).
[Crossref]

W.-C. Shih, K. L. Bechtel, and M. V. Rebec, “Noninvasive glucose sensing by transcutaneous Raman spectroscopy,” J. Biomed. Opt. 20, 051036 (2015).
[Crossref]

T. Bhattacharjee, S. Tawde, R. Hudlikar, M. Mahimkar, G. Maru, A. Ingle, and C. M. Krishna, “Ex vivo Raman spectroscopic study of breast metastatic lesions in lungs in animal models,” J. Biomed. Opt. 20, 085006 (2015).
[Crossref]

J. Cui, S. Matsuoka, M. Kinoshita, N. Matsumori, F. Sato, M. Murata, J. Ando, H. Yamakoshi, K. Dodo, and M. Sodeoka, “Novel Raman-tagged sphingomyelin that closely mimics original raft-forming behavior,” Bioorg. Med. Chem. 23, 2989–2994 (2015).
[Crossref]

H. Yamakoshi, A. Palonpon, K. Dodo, J. Ando, S. Kawata, K. Fujita, and M. Sodeoka, “A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria,” Bioorg. Med. Chem. Lett. 25, 664–667 (2015).
[Crossref]

F. Hu, Z. Chen, L. Zhang, Y. Shen, L. Wei, and W. Min, “Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering,” Angew. Chem. 127, 9959–9963 (2015).
[Crossref]

Y. J. Lee, H. J. Ahn, G.-J. Lee, G. B. Jung, G. Lee, D. Kim, J.-H. Shin, K.-H. Jin, and H.-K. Park, “Investigation of biochemical property changes in activation-induced CD8+ T cell apoptosis using Raman spectroscopy,” J. Biomed. Opt. 20, 075001 (2015).
[Crossref]

S. Barkur, A. Bankapur, M. Pradhan, S. Chidangil, D. Mathur, and U. Ladiwala, “Probing differentiation in cancer cell lines by single-cell micro-Raman spectroscopy,” J. Biomed. Opt. 20, 085001 (2015).
[Crossref]

C. Leiterer, T. Deckert-Gaudig, P. Singh, J. Wirth, V. Deckert, and W. Fritzsche, “Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy,” Electrophoresis 36, 1142–1148 (2015).
[Crossref]

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9, 6297–6304 (2015).
[Crossref]

B. Gardner, P. Matousek, and N. Stone, “Temperature spatially offset Raman spectroscopy (T-SORS): subsurface chemically specific measurement of temperature in turbid media using anti-Stokes spatially offset Raman spectroscopy,” Anal. Chem. 88, 832–837 (2015).
[Crossref]

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46, 610–618 (2015).
[Crossref]

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref]

C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” Analyst 140, 8127–8133 (2015).
[Crossref]

2014 (34)

S. Sil and S. Umapathy, “Raman spectroscopy explores molecular structural signatures of hidden materials in depth: universal multiple angle Raman spectroscopy,” Sci. Rep. 4, 5308 (2014).
[Crossref]

D. Kurouski, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS),” Biophys. J. 106, 263–271 (2014).
[Crossref]

A. Ghita, F. C. Pascut, V. Sottile, and I. Notingher, “Monitoring the mineralisation of bone nodules in vivo by space-and time-resolved Raman microspectroscopy,” Analyst 139, 55–58 (2014).
[Crossref]

S. Hong, T. Chen, Y. Zhu, A. Li, Y. Huang, and X. Chen, “Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules,” Angew. Chem. Int. Ed. 53, 5827–5831 (2014).
[Crossref]

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Boil. 59, 6141–6152 (2014).
[Crossref]

C. A. Patil, I. J. Pence, C. A. Lieber, and A. Mahadevan-Jansen, “1064  nm dispersive Raman spectroscopy of tissues with strong near-infrared autofluorescence,” Opt. Lett. 39, 303–306 (2014).
[Crossref]

M. Agenant, M. Grimbergen, R. Draga, E. Marple, R. Bosch, and C. van Swol, “Clinical superficial Raman probe aimed for epithelial tumor detection: phantom model results,” Biomed. Opt. Express 5, 1203–1216 (2014).
[Crossref]

C. Di Napoli, I. Pope, F. Masia, P. Watson, W. Langbein, and P. Borri, “Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes,” Biomed. Opt. Express 5, 1378–1390 (2014).
[Crossref]

N. Li, D. Chen, Y. Xu, S. Liu, and H. Zhang, “Confocal Raman micro-spectroscopy for rapid and label-free detection of maleic acid-induced variations in human sperm,” Biomed. Opt. Express 5, 1690–1699 (2014).
[Crossref]

S. Mert and M. Çulha, “Surface-enhanced Raman scattering-based detection of cancerous renal cells,” Appl. Spectrosc. 68, 617–624 (2014).
[Crossref]

C. Conti, C. Colombo, M. Realini, G. Zerbi, and P. Matousek, “Subsurface Raman analysis of thin painted layers,” Appl. Spectrosc. 68, 686–691 (2014).
[Crossref]

Z. Wang, H. Ding, G. Lu, and X. Bi, “Use of a mechanical iris-based fiber optic probe for spatially offset Raman spectroscopy,” Opt. Lett. 39, 3790–3793 (2014).
[Crossref]

G. B. Jung, S. W. Nam, S. Choi, G.-J. Lee, and H.-K. Park, “Evaluation of antibiotic effects on Pseudomonas aeruginosa biofilm using Raman spectroscopy and multivariate analysis,” Biomed. Opt. Express 5, 3238–3251 (2014).
[Crossref]

S. Li, G. Chen, Y. Zhang, Z. Guo, Z. Liu, J. Xu, X. Li, and L. Lin, “Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques,” Opt. Express 22, 25895–25908 (2014).
[Crossref]

S. McAughtrie, K. Faulds, and D. Graham, “Surface enhanced Raman spectroscopy (SERS): potential applications for disease detection and treatment,” J. Photochem. Photobiol. C 21, 40–53 (2014).
[Crossref]

D. Zhang, P. Wang, M. N. Slipchenko, and J.-X. Cheng, “Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy,” Acc. Chem. Res. 47, 2282–2290 (2014).
[Crossref]

L. Kong and J. Chan, “A rapidly modulated multifocal detection scheme for parallel acquisition of Raman spectra from a 2-D focal array,” Anal. Chem. 86, 6604–6609 (2014).
[Crossref]

S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
[Crossref]

F. Sinjab, G. Bondakov, and I. Notingher, “Co-localised Raman and force spectroscopy reveal the roles of hydrogen bonds and π-π interactions in defining the mechanical properties of diphenylalanine nano-and micro-tubes,” Appl. Phys. Lett. 104, 251905 (2014).
[Crossref]

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19, 071407 (2014).
[Crossref]

S. F. El-Mashtoly, D. Niedieker, D. Petersen, S. D. Krauss, E. Freier, A. Maghnouj, A. Mosig, S. Hahn, C. Kötting, and K. Gerwert, “Automated identification of subcellular organelles by coherent anti-Stokes Raman scattering,” Biophys. J. 106, 1910–1920 (2014).
[Crossref]

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophoton. 7, 906–913 (2014).
[Crossref]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref]

P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J.-X. Cheng, “Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations,” Angew. Chem. Int. Ed. 53, 11787–11792 (2014).
[Crossref]

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref]

A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, D. J. Moffatt, and A. Stolow, “Hyperspectral multimodal CARS microscopy in the fingerprint region,” J. Biophotonics 7, 49–58 (2014).
[Crossref]

J. Jiang, C. Auchinvole, K. Fisher, and C. J. Campbell, “Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors,” Nanoscale 6, 12104–12110 (2014).
[Crossref]

L. A. Austin, M. A. Mackey, E. C. Dreaden, and M. A. El-Sayed, “The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery,” Arch. Toxicol. 88, 1391–1417 (2014).
[Crossref]

A. Huefner, D. Septiadi, B. D. Wilts, I. I. Patel, W.-L. Kuan, A. Fragniere, R. A. Barker, and S. Mahajan, “Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes,” Methods 68, 354–363 (2014).
[Crossref]

K.-C. Huang, K. Bando, J. Ando, N. I. Smith, K. Fujita, and S. Kawata, “3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways,” Methods 68, 348–353 (2014).
[Crossref]

D. Craig, S. McAughtrie, J. Simpson, C. McCraw, K. Faulds, and D. Graham, “Confocal SERS mapping of glycan expression for the identification of cancerous cells,” Anal. Chem. 86, 4775–4782 (2014).
[Crossref]

S. Lee, H. Chon, J. Lee, J. Ko, B. H. Chung, D. W. Lim, and J. Choo, “Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging,” Biosens. Bioelectron. 51, 238–243 (2014).
[Crossref]

2013 (33)

S. McAughtrie, K. Lau, K. Faulds, and D. Graham, “3D optical imaging of multiple SERS nanotags in cells,” Chem. Sci. 4, 3566–3572 (2013).
[Crossref]

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

N. Pavillon, K. Bando, K. Fujita, and N. I. Smith, “Feature-based recognition of surface-enhanced Raman spectra for biological targets,” J. Biophoton. 6, 587–597 (2013).
[Crossref]

L. Cui, P. Chen, S. Chen, Z. Yuan, C. Yu, B. Ren, and K. Zhang, “In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy,” Anal. Chem. 85, 5436–5443 (2013).
[Crossref]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Y. Xie, L. Xu, Y. Wang, J. Shao, L. Wang, H. Wang, H. Qian, and W. Yao, “Label-free detection of the foodborne pathogens of Enterobacteriaceae by surface-enhanced Raman spectroscopy,” Anal. Methods 5, 946–952 (2013).
[Crossref]

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. De La Fuente, X.-J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions,” Small 9, 1573–1584 (2013).
[Crossref]

M. M. Harper, K. S. McKeating, and K. Faulds, “Recent developments and future directions in SERS for bioanalysis,” Phys. Chem. Chem. Phys. 15, 5312–5328 (2013).
[Crossref]

S. Jung, J. Nam, S. Hwang, J. Park, J. Hur, K. Im, N. Park, and S. Kim, “Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy,” Anal. Chem. 85, 7674–7681 (2013).
[Crossref]

D. Drescher, T. Büchner, D. McNaughton, and J. Kneipp, “SERS reveals the specific interaction of silver and gold nanoparticles with hemoglobin and red blood cell components,” Phys. Chem. Chem. Phys. 15, 5364–5373 (2013).
[Crossref]

A. Huefner, W.-L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13, 2463–2470 (2013).
[Crossref]

J. C. Mansfield, G. R. Littlejohn, M. P. Seymour, R. J. Lind, S. Perfect, and J. Moger, “Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy,” Anal. Chem. 85, 5055–5063 (2013).
[Crossref]

L. Wei, Y. Yu, Y. Shen, M. C. Wang, and W. Min, “Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 110, 11226–11231 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

K. Kong, C. J. Rowlands, S. Varma, W. Perkins, I. H. Leach, A. A. Koloydenko, H. C. Williams, and I. Notingher, “Diagnosis of tumors during tissue-conserving surgery with integrated autofluorescence and Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 110, 15189–15194 (2013).
[Crossref]

S. Dochow, N. Bergner, C. Krafft, J. Clement, M. Mazilu, B. B. Praveen, P. C. Ashok, R. Marchington, K. Dholakia, and J. Popp, “Classification of Raman spectra of single cells with autofluorescence suppression by wavelength modulated excitation,” Anal. Methods 5, 4608–4614 (2013).
[Crossref]

W. Xie and S. Schlücker, “Medical applications of surface-enhanced Raman scattering,” Phys. Chem. Chem. Phys. 15, 5329–5344 (2013).
[Crossref]

F. C. Pascut, S. Kalra, V. George, N. Welch, C. Denning, and I. Notingher, “Non-invasive label-free monitoring the cardiac differentiation of human embryonic stem cells in vivo by Raman spectroscopy,” Biochim. Biophys. Acta 1830, 3517–3524 (2013).
[Crossref]

M. Diem, A. Mazur, K. Lenau, J. Schubert, B. Bird, M. Miljković, C. Krafft, and J. Popp, “Molecular pathology via IR and Raman spectral imaging,” J. Biophoton. 6, 855–886 (2013).
[Crossref]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
[Crossref]

M. A. Short, I. T. Tai, D. Owen, and H. Zeng, “Using high frequency Raman spectra for colonic neoplasia detection,” Opt. Express 21, 5025–5034 (2013).
[Crossref]

J. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67, 349–354 (2013).
[Crossref]

D. Zhang, M. N. Slipchenko, D. E. Leaird, A. M. Weiner, and J.-X. Cheng, “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21, 13864–13874 (2013).
[Crossref]

J. Wang, M. S. Bergholt, W. Zheng, and Z. Huang, “Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy,” Opt. Lett. 38, 2321–2323 (2013).
[Crossref]

Z. Huang, X. Chen, Y. Li, J. Chen, J. Lin, J. Wang, J. Lei, and R. Chen, “Quantitative determination of citric acid in seminal plasma by using Raman spectroscopy,” Appl. Spectrosc. 67, 757–760 (2013).
[Crossref]

P. C. Ashok, B. B. Praveen, N. Bellini, A. Riches, K. Dholakia, and C. S. Herrington, “Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon,” Biomed. Opt. Express 4, 2179–2186 (2013).
[Crossref]

G. B. Jung, Y. J. Lee, G. Lee, and H.-K. Park, “A simple and rapid detection of tissue adhesive-induced biochemical changes in cells and DNA using Raman spectroscopy,” Biomed. Opt. Express 4, 2673–2682 (2013).
[Crossref]

J. Kostamovaara, J. Tenhunen, M. Kögler, I. Nissinen, J. Nissinen, and P. Keränen, “Fluorescence suppression in Raman spectroscopy using a time-gated CMOS SPAD,” Opt. Express 21, 31632–31645 (2013).
[Crossref]

I. Barman, N. C. Dingari, A. Saha, S. McGee, L. H. Galindo, W. Liu, D. Plecha, N. Klein, R. R. Dasari, and M. Fitzmaurice, “Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy,” Cancer Res. 73, 3206–3215 (2013).
[Crossref]

D. Kurouski, T. Postiglione, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens,” Analyst 138, 1665–1673 (2013).
[Crossref]

J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age-and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18, 077001 (2013).
[Crossref]

B. Sharma, K. Ma, M. R. Glucksberg, and R. P. Van Duyne, “Seeing through bone with surface-enhanced spatially offset Raman spectroscopy,” J. Am. Chem. Soc. 135, 17290–17293 (2013).
[Crossref]

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. USA 110, 12408–12413 (2013).

2012 (49)

M. S. Bergholt, W. Zheng, and Z. Huang, “Characterizing variability in in vivo Raman spectroscopic properties of different anatomical sites of normal tissue in the oral cavity,” J. Raman Spectrosc. 43, 255–262 (2012).
[Crossref]

M. S. Bergholt, K. Lin, W. Zheng, D. P. C. Lau, and Z. Huang, “In vivo, real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx,” J. Biomed. Opt. 17, 0770021 (2012).
[Crossref]

C. J. Rowlands, S. Varma, W. Perkins, I. Leach, H. Williams, and I. Notingher, “Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging,” J. Biophoton. 5, 220–229 (2012).
[Crossref]

K. Kong, C. J. Rowlands, H. Elsheikha, and I. Notingher, “Label-free molecular analysis of live Neospora caninum tachyzoites in host cells by selective scanning Raman micro-spectroscopy,” Analyst 137, 4119–4122 (2012).
[Crossref]

C. Blum, T. Schmid, L. Opilik, N. Metanis, S. Weidmann, and R. Zenobi, “Missing amide I mode in gap-mode tip-enhanced Raman spectra of proteins,” J. Phys. Chem. C 116, 23061–23066 (2012).
[Crossref]

K. K. Maiti, U. Dinish, A. Samanta, M. Vendrell, K.-S. Soh, S.-J. Park, M. Olivo, and Y.-T. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[Crossref]

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugne-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 134, 17076–17082 (2012).
[Crossref]

T. Deckert-Gaudig, R. Böhme, E. Freier, A. Sebesta, T. Merkendorf, J. Popp, K. Gerwert, and V. Deckert, “Nanoscale distinction of membrane patches—a TERS study of Halobacterium salinarum,” J. Biophoton. 5, 582–591 (2012).
[Crossref]

B. R. Wood, M. Asghari-Khiavi, E. Bailo, D. McNaughton, and V. Deckert, “Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering,” Nano Lett. 12, 1555–1560 (2012).
[Crossref]

D. Kurouski, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Structure and composition of insulin fibril surfaces probed by TERS,” J. Am. Chem. Soc. 134, 13323–13329 (2012).
[Crossref]

R. Rodriguez, E. Sheremet, S. Müller, O. Gordan, A. Villabona, S. Schulze, M. Hietschold, and D. Zahn, “Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy,” Rev. Sci. Instrum. 83, 123708 (2012).
[Crossref]

T. Buchwald, K. Niciejewski, M. Kozielski, M. Szybowicz, M. Siatkowski, and H. Krauss, “Identifying compositional and structural changes in spongy and subchondral bone from the hip joints of patients with osteoarthritis using Raman spectroscopy,” J. Biomed. Opt. 17, 017007 (2012).
[Crossref]

C. Bielecki, T. W. Bocklitz, M. Schmitt, C. Krafft, C. Marquardt, A. Gharbi, T. Knösel, A. Stallmach, and J. Popp, “Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells,” J. Biomed. Opt. 17, 0760301 (2012).
[Crossref]

S. Stöckel, S. Meisel, M. Elschner, P. Rosch, and J. Popp, “Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches,” Anal. Chem. 84, 9873–9880 (2012).
[Crossref]

C. Matthäus, C. Krafft, B. Dietzek, B. R. Brehm, S. Lorkowski, and J. Popp, “Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling,” Anal. Chem. 84, 8549–8556 (2012).
[Crossref]

H. N. N. Venkata and S. Shigeto, “Stable isotope-labeled Raman imaging reveals dynamic proteome localization to lipid droplets in single fission yeast cells,” Chem. Biol. 19, 1373–1380 (2012).
[Crossref]

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref]

S. Duraipandian, M. S. Bergholt, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, A. Shabbir, and Z. Huang, “Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,” J. Biomed. Opt. 17, 081418 (2012).
[Crossref]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20, 4484–4493 (2012).
[Crossref]

C. A. Patil, C. L. Arrasmith, M. A. Mackanos, D. L. Dickensheets, and A. Mahadevan-Jansen, “A handheld laser scanning confocal reflectance imaging–confocal Raman microspectroscopy system,” Biomed. Opt. Express 3, 488–502 (2012).
[Crossref]

F. Sinjab, B. Lekprasert, R. A. Woolley, C. J. Roberts, S. J. Tendler, and I. Notingher, “Near-field Raman spectroscopy of biological nanomaterials by in vivo laser-induced synthesis of tip-enhanced Raman spectroscopy tips,” Opt. Lett. 37, 2256–2258 (2012).
[Crossref]

P. I. Okagbare and M. D. Morris, “Fluorocarbon fiber-optic Raman probe for non-invasive Raman spectroscopy,” Appl. Spectrosc. 66, 728–730 (2012).
[Crossref]

Y. Oshima, H. Sato, H. Kajiura-Kobayashi, T. Kimura, K. Naruse, and S. Nonaka, “Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope,” Opt. Express 20, 16195–16204 (2012).
[Crossref]

P. D. Pudney, E. Y. Bonnist, P. J. Caspers, J.-P. Gorce, C. Marriot, G. J. Puppels, S. Singleton, and M. J. van der Wolf, “A new in vivo Raman probe for enhanced applicability to the body,” Appl. Spectrosc. 66, 882–891 (2012).
[Crossref]

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Express 20, 20156–20169 (2012).
[Crossref]

J.-L. H. Demers, S. C. Davis, B. W. Pogue, and M. D. Morris, “Multichannel diffuse optical Raman tomography for bone characterization in vivo: a phantom study,” Biomed. Opt. Express 3, 2299–2305 (2012).
[Crossref]

Y. H. Ong, M. Lim, and Q. Liu, “Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells,” Opt. Express 20, 22158–22171 (2012).
[Crossref]

A. C. Brunetti, W. Margulis, and K. Rottwitt, “Raman probes based on optically-poled double-clad fiber and coupler,” Opt. Express 20, 28563–28572 (2012).
[Crossref]

K. Ramser, E. Malinina, and S. Candefjord, “Resonance micro-Raman investigations of the rat medial preoptic nucleus: effects of a low-iron diet on the neuroglobin content,” Appl. Spectrosc. 66, 1454–1460 (2012).
[Crossref]

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17, 040801 (2012).
[Crossref]

S. Stewart, R. J. Priore, M. P. Nelson, and P. J. Treado, “Raman imaging,” Annu. Rev. Anal. Chem. 5, 337–360 (2012).
[Crossref]

B. Lekprasert, V. Korolkov, A. Falamas, V. Chis, C. J. Roberts, S. J. Tendler, and I. Notingher, “Investigations of the supramolecular structure of individual diphenylalanine nano-and microtubes by polarized Raman microspectroscopy,” Biomacromolecules 13, 2181–2187 (2012).
[Crossref]

X. Zhang, M. B. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” Chem. Phys. Chem. 13, 1054–1059 (2012).
[Crossref]

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. USA 109, 28–32 (2012).
[Crossref]

S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran, and Z. Huang, “Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo,” Anal. Chem. 84, 5913–5919 (2012).
[Crossref]

A. Ghita, F. C. Pascut, M. Mather, V. Sottile, and I. Notingher, “Cytoplasmic RNA in undifferentiated neural stem cells: a potential label-free Raman spectral marker for assessing the undifferentiated status,” Anal. Chem. 84, 3155–3162 (2012).
[Crossref]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134, 3623–3626 (2012).
[Crossref]

C. W. Freudiger, R. Pfannl, D. A. Orringer, B. G. Saar, M. Ji, Q. Zeng, L. Ottoboni, W. Ying, C. Waeber, J. R. Sims, P. L. De Jager, O. Sagher, M. A. Philbert, X. Xu, S. Kesari, X. S. Xie, and G. S. Young, “Multicolored stain-free histopathology with coherent Raman imaging,” Lab. Invest. 92, 1492–1502 (2012).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

N. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. Uchegbu, A. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-Stokes Raman scattering microscopy,” J. Raman Spectrosc. 43, 681–688 (2012).
[Crossref]

M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J. Biophoton. 5, 801–807 (2012).
[Crossref]

T. Meyer, N. Bergner, A. Medyukhina, B. Dietzek, C. Krafft, B. F. Romeike, R. Reichart, R. Kalff, and J. Popp, “Interpreting CARS images of tissue within the C–H-stretching region,” J. Biophoton. 5, 729–733 (2012).
[Crossref]

C. A. Auchinvole, P. Richardson, C. McGuinnes, V. Mallikarjun, K. Donaldson, H. McNab, and C. J. Campbell, “Monitoring intracellular redox potential changes using SERS nanosensors,” ACS Nano 6, 888–896 (2012).
[Crossref]

B. Kang, L. A. Austin, and M. A. El-Sayed, “Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy,” Nano Lett. 12, 5369–5375 (2012).
[Crossref]

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112, 2739–2779 (2012).
[Crossref]

D. Drescher and J. Kneipp, “Nanomaterials in complex biological systems: insights from Raman spectroscopy,” Chem. Soc. Rev. 41, 5780–5799 (2012).
[Crossref]

E. A. Vitol, Z. Orynbayeva, G. Friedman, and Y. Gogotsi, “Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS),” J. Raman Spectrosc. 43, 817–827 (2012).
[Crossref]

N. Hayazawa, T.-A. Yano, and S. Kawata, “Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone,” J. Raman Spectrosc. 43, 1177–1182 (2012).
[Crossref]

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4, 124–129 (2012).
[Crossref]

2011 (41)

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71, 1526–1532 (2011).
[Crossref]

K. K. Maiti, A. Samanta, M. Vendrell, K.-S. Soh, M. Olivo, and Y.-T. Chang, “Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters,” Chem. Commun. 47, 3514–3516 (2011).
[Crossref]

M. Schütz, D. Steinigeweg, M. Salehi, K. Kömpe, and S. Schlücker, “Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy,” Chem. Commun. 47, 4216–4218 (2011).
[Crossref]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

M. D. Hodges, J. G. Kelly, A. J. Bentley, S. Fogarty, I. I. Patel, F. L. Martin, and N. J. Fullwood, “Combining immunolabeling and surface-enhanced Raman spectroscopy on cell membranes,” ACS Nano 5, 9535–9541 (2011).
[Crossref]

M. K. Gregas, F. Yan, J. Scaffidi, H.-N. Wang, and T. Vo-Dinh, “Characterization of nanoprobe uptake in single cells: spatial and temporal tracking via SERS labeling and modulation of surface charge,” Nanomedicine 7, 115–122 (2011).
[Crossref]

R. R. Sathuluri, H. Yoshikawa, E. Shimizu, M. Saito, and E. Tamiya, “Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation,” PloS One 6, e22802 (2011).
[Crossref]

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8, 969–975 (2011).
[Crossref]

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[Crossref]

F. C. Pascut, H. T. Goh, N. Welch, L. D. Buttery, C. Denning, and I. Notingher, “Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells,” Biophys. J. 100, 251–259 (2011).
[Crossref]

A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
[Crossref]

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[Crossref]

A. Zoladek, F. C. Pascut, P. Patel, and I. Notingher, “Non-invasive time-course imaging of apoptotic cells by confocal Raman micro-spectroscopy,” J. Raman Spectrosc. 42, 251–258 (2011).
[Crossref]

A. García-Flores, L. Raniero, R. Canevari, K. J. Jalkanen, R. Bitar, H. Martinho, and A. Martin, “High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer,” Theor. Chem. Acc. 130, 1231–1238 (2011).
[Crossref]

G. Zhu, X. Zhu, Q. Fan, and X. Wan, “Raman spectra of amino acids and their aqueous solutions,” Spectrochim. Acta A 78, 1187–1195 (2011).
[Crossref]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[Crossref]

C. A. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined Raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16, 011007 (2011).
[Crossref]

L. Kong, P. Zhang, P. Setlow, and Y.-Q. Li, “Multifocus confocal Raman microspectroscopy for rapid single-particle analysis,” J. Biomed. Opt. 16, 120503 (2011).
[Crossref]

E. Canetta, M. Mazilu, A. C. De Luca, A. E. Carruthers, K. Dholakia, S. Neilson, H. Sargeant, T. Briscoe, C. S. Herrington, and A. C. Riches, “Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples,” J. Biomed. Opt. 16, 037002 (2011).
[Crossref]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62, 507–530 (2011).
[Crossref]

D. Lin, S. Feng, J. Pan, Y. Chen, J. Lin, G. Chen, S. Xie, H. Zeng, and R. Chen, “Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis,” Opt. Express 19, 13565–13577 (2011).
[Crossref]

J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2, 2484–2492 (2011).
[Crossref]

G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, “Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications,” Appl. Spectrosc. 65, 825–837 (2011).
[Crossref]

H. T. Beier, G. D. Noojin, and B. A. Rockwell, “Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications,” Opt. Express 19, 18885–18892 (2011).
[Crossref]

A. Walter, W. Schumacher, T. Bocklitz, M. Reinicke, P. Rösch, E. Kothe, and J. Popp, “From bulk to single-cell classification of the filamentous growing Streptomyces bacteria by means of Raman spectroscopy,” Appl. Spectrosc. 65, 1116–1125 (2011).
[Crossref]

N. Huang, M. Short, J. Zhao, H. Wang, H. Lui, M. Korbelik, and H. Zeng, “Full range characterization of the Raman spectra of organs in a murine model,” Opt. Express 19, 22892–22909 (2011).
[Crossref]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128, 2673–2680 (2011).
[Crossref]

S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran, and Z. Huang, “In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques,” Analyst 136, 4328–4336 (2011).
[Crossref]

W. Schumacher, M. Kühnert, P. Rösch, and J. Popp, “Identification and classification of organic and inorganic components of particulate matter via Raman spectroscopy and chemometric approaches,” J. Raman Spectrosc. 42, 383–392 (2011).
[Crossref]

J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16, 087012 (2011).
[Crossref]

H. Yamakoshi, K. Dodo, M. Okada, J. Ando, A. Palonpon, K. Fujita, S. Kawata, and M. Sodeoka, “Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy,” J. Am. Chem. Soc. 133, 6102–6105 (2011).
[Crossref]

N. C. Dingari, I. Barman, J. W. Kang, C.-R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16, 087009 (2011).
[Crossref]

P. Rösch, S. Stöckel, S. Meisel, A. Bossecker, U. Münchberg, S. Kloss, W. Schumacher, and J. Popp, “Bacterial identification in real samples by means of micro-Raman spectroscopy,” Proc. SPIE 8087, 808708 (2011).

T. Saxena, B. Deng, D. Stelzner, J. Hasenwinkel, and J. Chaiken, “Raman spectroscopic investigation of spinal cord injury in a rat model,” J. Biomed. Opt. 16, 027003 (2011).
[Crossref]

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases—a tip-enhanced Raman approach,” Beilstein J. Nanotechnol. 2, 628–637 (2011).
[Crossref]

L. Opilik, T. Bauer, T. Schmid, J. Stadler, and R. Zenobi, “Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 13, 9978–9981 (2011).
[Crossref]

B. R. Wood, E. Bailo, M. A. Khiavi, L. Tilley, S. Deed, T. Deckert-Gaudig, D. McNaughton, and V. Deckert, “Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte,” Nano Lett. 11, 1868–1873 (2011).
[Crossref]

A. Samanta, K. K. Maiti, K.-S. Soh, X. Liao, M. Vendrell, U. S. Dinish, S.-W. Yun, R. Bhuvaneswari, H. Kim, S. Rautela, J. Chung, M. Olivo, and Y.-T. Chang, “Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection,” Angew. Chem. Int. Ed. 50, 6089–6092 (2011).
[Crossref]

C. A. Patil, H. Kirshnamoorthi, D. L. Ellis, T. G. van Leeuwen, and A. Mahadevan-Jansen, “A clinical instrument for combined Raman spectroscopy-optical coherence tomography of skin cancers,” Lasers Surg. Med. 43, 143–151 (2011).
[Crossref]

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

D. Yang and Y. Ying, “Applications of Raman spectroscopy in agricultural products and food analysis: a review,” Appl. Spectrosc. Rev. 46, 539–560 (2011).
[Crossref]

2010 (33)

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82, 8382–8385 (2010).
[Crossref]

N. Stone, K. Faulds, D. Graham, and P. Matousek, “Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25  mm of mammalian tissue,” Anal. Chem. 82, 3969–3973 (2010).
[Crossref]

J. Horsnell, P. Stonelake, J. Christie-Brown, G. Shetty, J. Hutchings, C. Kendall, and N. Stone, “Raman spectroscopy: a new method for the intraoperative assessment of axillary lymph nodes,” Analyst 135, 3042–3047 (2010).
[Crossref]

Z. Huang, M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, and K. G. Yeoh, “In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy,” J. Biomed. Opt. 15, 037017 (2010).
[Crossref]

Y. You, N. Purnawirman, H. Hu, J. Kasim, H. Yang, C. Du, T. Yu, and Z. Shen, “Tip-enhanced Raman spectroscopy using single-crystalline Ag nanowire as tip,” J. Raman Spectrosc. 41, 1156–1162 (2010).
[Crossref]

G. Das, R. La Rocca, T. Lakshmikanth, F. Gentile, R. Tallerico, L. P. Zambetti, J. Devitt, P. Candeloro, F. De Angelis, E. Carbone, and E. Di Fabrizio, “Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level,” J. Biomed. Opt. 15, 027007 (2010).
[Crossref]

N. D. Magee, J. R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D. A. Fennell, P. W. Hamilton, M. Ennis, J. J. McGarvey, and J. S. Elborn, “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” J. Biomed. Opt. 15, 026015 (2010).
[Crossref]

E. E. Rossi, L. Silveira, A. L. B. Pinheiro, S. R. Zamuner, F. Aimbire, M. Maia, and M. T. T. Pacheco, “Raman spectroscopy for differential diagnosis of endophthalmitis and uveitis in rabbit iris in vivo,” Exp. Eye Res. 91, 362–368 (2010).
[Crossref]

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. V. Swol, T. G. Jonges, J. A. Kummer, and J. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82, 5993–5999 (2010).
[Crossref]

U. Neugebauer, T. Bocklitz, J. Clement, C. Krafft, and J. Popp, “Towards detection and identification of circulating tumour cells using Raman spectroscopy,” Analyst 135, 3178–3182 (2010).
[Crossref]

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18, 2380–2388 (2010).
[Crossref]

J. R. Maher and A. J. Berger, “Determination of ideal offset for spatially offset Raman spectroscopy,” Appl. Spectrosc. 64, 61–65 (2010).
[Crossref]

M. L. Paret, S. K. Sharma, L. M. Green, and A. M. Alvarez, “Biochemical characterization of gram-positive and gram-negative plant-associated bacteria with micro-Raman spectroscopy,” Appl. Spectrosc. 64, 433–441 (2010).
[Crossref]

M. Mazilu, A. C. De Luca, A. Riches, C. S. Herrington, and K. Dholakia, “Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy,” Opt. Express 18, 11382–11395 (2010).
[Crossref]

J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express 1, 17–30 (2010).
[Crossref]

M. K. Gregas, J. P. Scaffidi, B. Lauly, and T. Vo-Dinh, “Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells,” Appl. Spectrosc. 64, 858–866 (2010).
[Crossref]

Q. Matthews, A. Jirasek, J. Lum, X. Duan, and A. G. Brolo, “Variability in Raman spectra of single human tumor cells cultured in vivo: correlation with cell cycle and culture confluency,” Appl. Spectrosc. 64, 871–887 (2010).
[Crossref]

M. Okuno and H.-O. Hamaguchi, “Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells,” Opt. Lett. 35, 4096–4098 (2010).
[Crossref]

B. Lekprasert, V. Sedman, C. J. Roberts, S. J. Tedler, and I. Notingher, “Nondestructive Raman and atomic force microscopy measurement of molecular structure for individual diphenylalanine nanotubes,” Opt. Lett. 35, 4193–4195 (2010).
[Crossref]

A. B. Zoladek, R. K. Johal, S. Garcia-Nieto, F. Pascut, K. M. Shakesheff, A. M. Ghaemmaghami, and I. Notingher, “Label-free molecular imaging of immunological synapses between dendritic and T cells by Raman micro-spectroscopy,” Analyst 135, 3205–3212 (2010).
[Crossref]

B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010).
[Crossref]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

H. G. Schulze, S. O. Konorov, N. J. Caron, J. M. Piret, M. W. Blades, and R. F. Turner, “Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy,” Anal. Chem. 82, 5020–5027 (2010).
[Crossref]

Z. J. Smith, J.-C. E. Wang, S. A. Quataert, and A. J. Berger, “Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes,” J. Biomed. Opt. 15, 036021 (2010).
[Crossref]

E. Ly, A. Durlach, F. Antonicelli, P. Bernard, M. Manfait, and O. Piot, “Probing tumor and peritumoral tissues in superficial and nodular basal cell carcinoma using polarized Raman microspectroscopy,” Exp. Dermatol. 19, 68–73 (2010).
[Crossref]

R. A. Sperling and W. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. R. Soc. London A 368, 1333–1383 (2010).
[Crossref]

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 51, 3091–3102 (2010).
[Crossref]

S.-H. Kim, E.-S. Lee, J. Y. Lee, E. S. Lee, B.-S. Lee, J. E. Park, and D. W. Moon, “Multiplex coherent anti-Stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids,” Circ. Res. 106, 1332–1341 (2010).
[Crossref]

A. Matschulat, D. Drescher, and J. Kneipp, “Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems,” ACS Nano 4, 3259–3269 (2010).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine 6, 214–226 (2010).
[Crossref]

N. P. Ivleva, M. Wagner, A. Szkola, H. Horn, R. Niessner, and C. Haisch, “Label-free in vivo SERS imaging of biofilms,” J. Phys. Chem. B 114, 10184–10194 (2010).
[Crossref]

N. P. Ivleva, M. Wagner, H. Horn, R. Niessner, and C. Haisch, “Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms,” J. Biophoton. 3, 548–556 (2010).
[Crossref]

2009 (27)

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25, 388–394 (2009).
[Crossref]

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes,” ACS Nano 3, 3529–3536 (2009).
[Crossref]

J. Kneipp, H. Kneipp, A. Rajadurai, R. W. Redmond, and K. Kneipp, “Optical probing and imaging of live cells using SERS labels,” J. Raman Spectrosc. 40, 1–5 (2009).
[Crossref]

Ö. F. Karata, E. Sezgin, Ö. Aydın, and M. Çulha, “Interaction of gold nanoparticles with mitochondria,” Colloids Surf. B 71, 315–318 (2009).
[Crossref]

S. Schlücker, “SERS microscopy: nanoparticle probes and biomedical applications,” ChemPhysChem 10, 1344–1354 (2009).
[Crossref]

J. Zhu, B. Lee, K. K. Buhman, and J.-X. Cheng, “A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging,” J. Lipid Res. 50, 1080–1089 (2009).
[Crossref]

H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscler. Thromb. Vasc. Biol. 29, 1342–1348 (2009).
[Crossref]

C. Krafft, A. A. Ramoji, C. Bielecki, N. Vogler, T. Meyer, D. Akimov, P. Rösch, M. Schmitt, B. Dietzek, I. Petersen, A. Stallmach, and J. Popp, “A comparative Raman and CARS imaging study of colon tissue,” J. Biophoton. 2, 303–312 (2009).
[Crossref]

M. N. Slipchenko, T. T. Le, H. Chen, and J.-X. Cheng, “High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy,” J. Phys. Chem. B 113, 7681–7686 (2009).
[Crossref]

F. Draux, P. Jeannesson, A. Beljebbar, A. Tfayli, N. Fourre, M. Manfait, J. Sulé-Suso, and G. D. Sockalingum, “Raman spectral imaging of single living cancer cells: a preliminary study,” Analyst 134, 542–548 (2009).
[Crossref]

T. T. Le and J.-X. Cheng, “Single-cell profiling reveals the origin of phenotypic variability in adipogenesis,” PLoS One 4, e5189 (2009).
[Crossref]

B. R. Wood, A. Hermelink, P. Lasch, K. R. Bambery, G. T. Webster, M. A. Khiavi, B. M. Cooke, S. Deed, D. Naumann, and D. McNaughton, “Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics,” Analyst 134, 1119–1125 (2009).
[Crossref]

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?” Angew. Chem. Int. Ed. 48, 60–103 (2009).
[Crossref]

J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81, 8908–8915 (2009).
[Crossref]

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14, 054031 (2009).
[Crossref]

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: prospective analysis,” J. Biomed. Opt. 14, 054023 (2009).
[Crossref]

B. D. Beier and A. J. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst 134, 1198–1202 (2009).
[Crossref]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17, 2984–2996 (2009).
[Crossref]

P. Chen, A. Shen, W. Zhao, S.-J. Baek, H. Yuan, and J. Hu, “Raman signature from brain hippocampus could aid Alzheimer’s disease diagnosis,” Appl. Opt. 48, 4743–4748 (2009).
[Crossref]

S. Feng, J. Lin, M. Cheng, Y.-Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63, 1089–1094 (2009).
[Crossref]

S. K. Teh, W. Zheng, D. P. Lau, and Z. Huang, “Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques,” Analyst 134, 1232–1239 (2009).
[Crossref]

G. Perna, M. Lasalvia, A. Castro, E. Mezzenga, N. L’Abbate, P. Biagi, and V. Capozzi, “Detection of pesticide effects in human keratinocytes by means of Raman microspectroscopy,” Appl. Phys. Lett. 95, 083701 (2009).
[Crossref]

W. E. Huang, A. Ferguson, A. C. Singer, K. Lawson, I. P. Thompson, R. M. Kalin, M. J. Larkin, M. J. Bailey, and A. S. Whiteley, “Resolving genetic functions within microbial populations: in vivo analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization,” Appl. Environ. Microbiol. 75, 234–241 (2009).
[Crossref]

B.-S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. Zhang, “Tip-enhanced Raman spectroscopy–its status, challenges and future directions,” Chem. Phys. Lett. 472, 1–13 (2009).
[Crossref]

T. Deckert-Gaudig and V. Deckert, “Ultraflat transparent gold nanoplates-ideal substrates for tip-enhanced Raman scattering experiments,” Small 5, 432–436 (2009).
[Crossref]

T. Schmid, B.-S. Yeo, G. Leong, J. Stadler, and R. Zenobi, “Performing tip-enhanced Raman spectroscopy in liquids,” J. Raman Spectrosc. 40, 1392–1399 (2009).
[Crossref]

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Möller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40, 240–243 (2009).
[Crossref]

2008 (23)

T. Schmid, A. Messmer, B.-S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Anal. Bioanal. Chem. 391, 1907–1916 (2008).
[Crossref]

S. C. Pînzaru, L. Andronie, I. Domsa, O. Cozar, and S. Astilean, “Bridging biomolecules with nanoparticles: surface-enhanced Raman scattering from colon carcinoma and normal tissue,” J. Raman Spectrosc. 39, 331–334 (2008).
[Crossref]

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26, 83–90 (2008).
[Crossref]

W. Zhang, T. Schmid, B.-S. Yeo, and R. Zenobi, “Near-field heating, annealing, and signal loss in tip-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 2104–2108 (2008).
[Crossref]

E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. 47, 1658–1661 (2008).
[Crossref]

N. Stone and P. Matousek, “Advanced transmission Raman spectroscopy: a promising tool for breast disease diagnosis,” Cancer Research 68, 4424–4430 (2008).
[Crossref]

H.-J. van Manen, A. Lenferink, and C. Otto, “Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy,” Anal. Chem. 80, 9576–9582 (2008).
[Crossref]

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnosis of gastric cancer using near-infrared Raman spectroscopy and classification and regression tree techniques,” J. Biomed. Opt. 13, 034013 (2008).
[Crossref]

J. Moger, B. D. Johnston, and C. R. Tyler, “Imaging metal oxide nanoparticles in biological structures with CARS microscopy,” Opt. Express 16, 3408–3419 (2008).
[Crossref]

Z. J. Smith and A. J. Berger, “Integrated Raman-and angular-scattering microscopy,” Opt. Lett. 33, 714–716 (2008).
[Crossref]

A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman tweezers,” Opt. Express 16, 7943–7957 (2008).
[Crossref]

K. L. Bechtel, W.-C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: experimental applications,” Opt. Express 16, 12737–12745 (2008).
[Crossref]

H. Chu, Y. Huang, and Y. Zhao, “Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection,” Appl. Spectrosc. 62, 922–931 (2008).
[Crossref]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[Crossref]

R. J. Swain, G. Jell, and M. M. Stevens, “Non-invasive analysis of cell cycle dynamics in single living cells with Raman micro-spectroscopy,” J. Cell. Biochem. 104, 1427–1438 (2008).
[Crossref]

S. D. Bergeson, J. B. Peatross, N. J. Eyring, J. F. Fralick, D. N. Stevenson, and S. B. Ferguson, “Resonance Raman measurements of carotenoids using light-emitting diodes,” J. Biomed. Opt. 13, 044026 (2008).
[Crossref]

W. Smith, “Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis,” Chem. Soc. Rev. 37, 955–964 (2008).
[Crossref]

A. Sujith, T. Itoh, H. Abe, A. A. Anas, K. Yoshida, V. Biju, and M. Ishikawa, “Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall,” Appl. Phys. Lett. 92, 103901 (2008).
[Crossref]

X.-M. Qian and S. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37, 912–920 (2008).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

I. Patel, W. Premasiri, D. Moir, and L. Ziegler, “Barcoding bacterial cells: a SERS-based methodology for pathogen identification,” J. Raman Spectrosc. 39, 1660–1672 (2008).
[Crossref]

N. P. Ivleva, M. Wagner, H. Horn, R. Niessner, and C. Haisch, “In situ surface-enhanced Raman scattering analysis of biofilm,” Anal. Chem. 80, 8538–8544 (2008).
[Crossref]

2007 (26)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7, 1591–1597 (2007).
[Crossref]

A. Shamsaie, M. Jonczyk, J. Sturgis, J. P. Robinson, and J. Irudayaraj, “Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes,” J. Biomed. Opt. 12, 020502 (2007).
[Crossref]

W. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[Crossref]

H.-W. Tang, X. B. Yang, J. Kirkham, and D. A. Smith, “Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering,” Anal. Chem. 79, 3646–3653 (2007).
[Crossref]

S. Lee, S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh, “Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy,” Anal. Chem. 79, 916–922 (2007).
[Crossref]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neorosci. Res. 85, 2870–2881 (2007).
[Crossref]

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 104, 14658–14663 (2007).
[Crossref]

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. B. Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12, 034004 (2007).
[Crossref]

C. Matthäus, T. Chernenko, J. A. Newmark, C. M. Warner, and M. Diem, “Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy,” Biophys. J. 93, 668–673 (2007).
[Crossref]

S. Koljenovic, T. Bakker Schut, R. Wolthuis, A. Vincent, G. Hendriks-Hagevi, L. Santos, J. Kros, and G. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557–564 (2007).
[Crossref]

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387, 1691–1703 (2007).
[Crossref]

E. Katainen, M. Elomaa, U.-M. Laakkonen, E. Sippola, P. Niemelä, J. Suhonen, and K. Järvinen, “Quantification of the amphetamine content in seized street samples by Raman spectroscopy,” J. Forensic Sci. 52, 88–92 (2007).
[Crossref]

J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “Reference database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38, 1133–1147 (2007).
[Crossref]

H. Schulz and M. Baranska, “Identification and quantification of valuable plant substances by IR and Raman spectroscopy,” Vib. Spectrosc. 43, 13–25 (2007).
[Crossref]

R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” Analyst 132, 48–53 (2007).
[Crossref]

L. J. Goeller and M. R. Riley, “Discrimination of bacteria and bacteriophages by Raman spectroscopy and surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 61, 679–685 (2007).
[Crossref]

C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076–12087 (2007).
[Crossref]

J. D. Neufeld, M. Wagner, and J. C. Murrell, “Who eats what, where and when? Isotope-labelling experiments are coming of age,” ISME J. 1, 103–110 (2007).
[Crossref]

W. E. Huang, K. Stoecker, R. Griffiths, L. Newbold, H. Daims, A. S. Whiteley, and M. Wagner, “Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in vivo hybridization for the single cell analysis of identity and function,” Environ. Microbiol. 9, 1878–1889 (2007).
[Crossref]

C. Eliasson and P. Matousek, “Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy,” Anal. Chem. 79, 1696–1701 (2007).
[Crossref]

C. Eliasson, N. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79, 8185–8189 (2007).
[Crossref]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst 132, 899–905 (2007).
[Crossref]

K. F. Domke, D. Zhang, and B. Pettinger, “Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111),” J. Am. Chem. Soc. 129, 6708–6709 (2007).
[Crossref]

C. Ropers, C. Neacsu, T. Elsaesser, M. Albrecht, M. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref]

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis,” ChemPhysChem 8, 124–137 (2007).
[Crossref]

2006 (15)

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, and V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[Crossref]

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14, 3942–3951 (2006).
[Crossref]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872–1874 (2006).
[Crossref]

P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc. 60, 758–763 (2006).
[Crossref]

P. Matousek, “Inverse spatially offset Raman spectroscopy for deep noninvasive probing of turbid media,” Appl. Spectrosc. 60, 1341–1347 (2006).
[Crossref]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-stokes Raman scattering measurement of gas temperatures from frequency spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006).
[Crossref]

R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. Kartha, and C. M. Krishna, “Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study,” Biopolymers 81, 179–193 (2006).
[Crossref]

R. A. Bitar, H. da Silva Martinho, C. J. Tierra-Criollo, L. N. Z. Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11, 054001 (2006).
[Crossref]

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

U. P. Agarwal, “Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana),” Planta 224, 1141–1153 (2006).
[Crossref]

I. Notingher and L. L. Hench, “Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vivo,” Expert Rev. Med. Dev. 3, 215–234 (2006).
[Crossref]

X. Nan, A. M. Tonary, A. Stolow, X. S. Xie, and J. P. Pezacki, “Intracellular imaging of HCV RNA and cellular lipids by using simultaneous two-photon fluorescence and coherent anti-Stokes Raman scattering microscopies,” ChemBioChem 7, 1895–1897 (2006).
[Crossref]

J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, and K. Kneipp, “In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates,” Nano Lett. 6, 2225–2231 (2006).
[Crossref]

S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in vivo detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
[Crossref]

2005 (27)

M. B. Wabuyele and T. Vo-Dinh, “Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes,” Anal. Chem. 77, 7810–7815 (2005).
[Crossref]

A. Anshup, J. S. Venkataraman, C. Subramaniam, R. R. Kumar, S. Priya, T. S. Kumar, R. Omkumar, A. John, and T. Pradeep, “Growth of gold nanoparticles in human cells,” Langmuir 21, 11562–11567 (2005).
[Crossref]

W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
[Crossref]

J. Kneipp, H. Kneipp, W. L. Rice, and K. Kneipp, “Optical probes for biological applications based on surface-enhanced Raman scattering from Indocyanine Green on gold nanoparticles,” Anal. Chem. 77, 2381–2385 (2005).
[Crossref]

C. Eliasson, A. Lorén, J. Engelbrektsson, M. Josefson, J. Abrahamsson, and K. Abrahamsson, “Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation,” Spectrochim. Acta A 61, 755–760 (2005).
[Crossref]

W.-T. Cheng, M.-T. Liu, H.-N. Liu, and S.-Y. Lin, “Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma,” Microsc. Res. Tech. 68, 75–79 (2005).
[Crossref]

J. M. Benevides, S. A. Overman, and G. J. Thomas, “Raman, polarized Raman and ultraviolet resonance Raman spectroscopy of nucleic acids and their complexes,” J. Raman Spectrosc. 36, 279–299 (2005).
[Crossref]

M. Harz, P. Rösch, K.-D. Peschke, O. Ronneberger, H. Burkhardt, and J. Popp, “Micro-Raman spectroscopic identification of bacterial cells of the genus staphylococcus and dependence on their cultivation conditions,” Analyst 130, 1543–1550 (2005).
[Crossref]

S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77, 7958–7965 (2005).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

N. S. Eikje, Y. Ozaki, K. Aizawa, and S. Arase, “Fiber optic near-infrared Raman spectroscopy for clinical noninvasive determination of water content in diseased skin and assessment of cutaneous edema,” J. Biomed. Opt. 10, 014013 (2005).
[Crossref]

L. F. Santos, R. Wolthuis, S. Koljenovic, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
[Crossref]

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[Crossref]

S. Farquharson, C. Shende, F. E. Inscore, P. Maksymiuk, and A. Gift, “Analysis of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 36, 208–212 (2005).
[Crossref]

D. P. Lau, Z. Huang, H. Lui, D. W. Anderson, K. Berean, M. D. Morrison, L. Shen, and H. Zeng, “Raman spectroscopy for optical diagnosis in the larynx: preliminary findings,” Lasers Surg. Med. 37, 192–200 (2005).
[Crossref]

C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near infrared Raman spectra of human brain lipids,” Spectrochim. Acta A 61, 1529–1535 (2005).
[Crossref]

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10, 014005 (2005).
[Crossref]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

P. Matousek, N. Everall, M. Towrie, and A. Parker, “Depth profiling in diffusely scattering media using Raman spectroscopy and picosecond Kerr gating,” Appl. Spectrosc. 59, 200–205 (2005).
[Crossref]

P. Matousek, I. Clark, E. Draper, M. Morris, A. Goodship, N. Everall, M. Towrie, W. Finney, and A. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59, 393–400 (2005).
[Crossref]

P. Matousek, M. Morris, N. Everall, I. Clark, M. Towrie, E. Draper, A. Goodship, and A. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59, 1485–1492 (2005).
[Crossref]

J. Deng, Q. Wei, M. Zhang, Y. Wang, and Y.-Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[Crossref]

E. Azrad, E. Cagnano, S. Halevy, S. Rosenwaks, and I. Bar, “Bullous pemphigoid detection by micro-Raman spectroscopy and cluster analysis: structure alterations of proteins,” J. Raman Spectrosc. 36, 1034–1039 (2005).
[Crossref]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 102, 12371–12376 (2005).
[Crossref]

I. Notingher and A. Elfick, “Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips,” J. Phys. Chem. B 109, 15699–15706 (2005).
[Crossref]

S. Koljenovic, T. B. Schut, R. D. Wolthuis, B. De Jong, L. Santos, P. J. Caspers, J. M. Kros, and G. J. Puppels, “Tissue characterization using high wave number Raman spectroscopy,” J. Biomed. Opt. 10, 031116 (2005).
[Crossref]

A. C.-T. Ko, L.-P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[Crossref]

2004 (11)

I. Notingher and R. E. Imhof, “Mid-infrared in vivo depth-profiling of topical chemicals on skin,” Skin Res. Technol. 10, 113–121 (2004).
[Crossref]

I. Notingher, I. Bisson, A. E. Bishop, W. L. Randle, J. M. Polak, and L. L. Hench, “In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro,” Anal. Chem. 76, 3185–3193 (2004).
[Crossref]

M.-E. Rousseau, T. Lefevre, L. Beaulieu, T. Asakura, and M. Pézolet, “Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy,” Biomacromolecules 5, 2247–2257 (2004).
[Crossref]

H.-J. van Manen, Y. M. Kraan, D. Roos, and C. Otto, “Intracellular chemical imaging of heme-containing enzymes involved in innate immunity using resonance Raman microscopy,” J. Phys. Chem. B 108, 18762–18771 (2004).
[Crossref]

J. W. Chan, A. Esposito, C. Talley, C. Hollars, S. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76, 599–603 (2004).
[Crossref]

J.-X. Cheng and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004).
[Crossref]

A. Ruiz-Chica, M. Medina, F. Sanchez-Jimenez, and F. Ramirez, “Characterization by Raman spectroscopy of conformational changes on guanine-cytosine and adenine-thymine oligonucleotides induced by aminooxy analogues of spermidine,” J. Raman Spectrosc. 35, 93–100 (2004).
[Crossref]

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
[Crossref]

I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay, and L. L. Hench, “Discrimination between ricin and sulphur mustard toxicity in vivo using Raman spectroscopy,” J. R. Soc. Interface 1, 79–90 (2004).
[Crossref]

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76, 7064–7068 (2004).
[Crossref]

R. M. Jarvis and R. Goodacre, “Discrimination of bacteria using surface-enhanced Raman spectroscopy,” Anal. Chem. 76, 40–47 (2004).
[Crossref]

2003 (16)

X. Nan, J.-X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208 (2003).
[Crossref]

V. Yakovlev, “Advanced instrumentation for non-linear Raman microscopy,” J. Raman Spectrosc. 34, 957–964 (2003).
[Crossref]

E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34, 642–650 (2003).
[Crossref]

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1–9 (2003).
[Crossref]

I. Notingher, S. Verrier, S. Haque, J. Polak, and L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23, 649–655 (2003).

A. Robichaux Viehoever, D. Anderson, D. Jansen, and A. Mahadevan-Jansen, “Organotypic raft cultures as an effective in vivo tool for understanding Raman spectral analysis of tissue,” Photochem. Photobiol. 78, 517–524 (2003).
[Crossref]

P. Caspers, G. Lucassen, and G. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003).
[Crossref]

D. P. Lau, Z. Huang, H. Lui, C. S. Man, K. Berean, M. D. Morrison, and H. Zeng, “Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx: preliminary findings,” Lasers Surg. Med. 32, 210–214 (2003).
[Crossref]

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75, 4312–4318 (2003).
[Crossref]

B. R. Wood, S. J. Langford, B. M. Cooke, F. K. Glenister, J. Lim, and D. McNaughton, “Raman imaging of hemozoin within the food vacuole of plasmodium falciparum trophozoites,” FEBS Lett. 554, 247–252 (2003).
[Crossref]

W. Faubel, S. Heissler, and R. A. Palmer, “Quantitative analysis of corroded copper patina by step scan and rapid scan photoacoustic Fourier transform infrared spectroscopy,” Rev. Sci. Instrum. 74, 331–333 (2003).
[Crossref]

H. Zhang, X.-J. Li, D. B. Martin, and R. Aebersold, “Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry,” Nat. Biotechnol. 21, 660–666 (2003).
[Crossref]

I. Notingher, R. E. Imhof, P. Xiao, and F. C. Pascut, “Spectral depth profiling of arbitrary surfaces by thermal emission decay-Fourier transform infrared spectroscopy,” Appl. Spectrosc. 57, 1494–1501 (2003).
[Crossref]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc. 57, 1363–1367 (2003).
[Crossref]

2002 (12)

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56, 150–154 (2002).
[Crossref]

R. W. Jones and J. F. McClelland, “Quantitative depth profiling using saturation-equalized photoacoustic spectra,” Appl. Spectrosc. 56, 409–418 (2002).
[Crossref]

G. W. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
[Crossref]

I. Notingher, S. Verrier, H. Romanska, A. Bishop, J. Polak, and L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectrosc. 16, 43–51 (2002).
[Crossref]

R. J. Lakshmi, V. Kartha, C. Murali Krishna, J. R. Solomon, G. Ullas, and P. Uma Devi, “Tissue Raman spectroscopy for the study of radiation damage: brain irradiation of mice,” Radiat. Res. 157, 175–182 (2002).
[Crossref]

L. Silveira, S. Sathaiah, R. A. Zângaro, M. T. Pacheco, M. C. Chavantes, and C. A. Pasqualucci, “Correlation between near-infrared Raman spectroscopy and the histopathological analysis of atherosclerosis in human coronary arteries,” Lasers Surg. Med. 30, 290–297 (2002).
[Crossref]

N. Stone, C. Kendall, N. Shepherd, P. Crow, and H. Barr, “Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers,” J. Raman Spectrosc. 33, 564–573 (2002).
[Crossref]

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
[Crossref]

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[Crossref]

2001 (2)

E. O. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. USA 98, 1577–1582 (2001).

U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955–959 (2001).
[Crossref]

2000 (3)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[Crossref]

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5, 259–268 (2000).
[Crossref]

1999 (9)

R. A. Shaw and H. H. Mantsch, “Vibrational biospectroscopy: from plants to animals to humans. A historical perspective,” J. Mol. Struct. 480, 1–13 (1999).
[Crossref]

D. Borchman, D. Tang, and M. C. Yappert, “Lipid composition, membrane structure relationships in lens and muscle sarcoplasmic reticulum membranes,” Biospectroscopy 5, 151–167 (1999).
[Crossref]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[Crossref]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

P. Matousek, M. Towrie, A. Stanley, and A. Parker, “Efficient rejection of fluorescence from Raman spectra using picosecond Kerr gating,” Appl. Spectrosc. 53, 1485–1489 (1999).
[Crossref]

M. W. Urban, C. L. Allison, G. L. Johnson, and F. Di Stefano, “Stratification of butyl acrylate/polyurethane (BA/PUR) latexes: ATR and step-scan photoacoustic studies,” Appl. Spectrosc. 53, 1520–1527 (1999).
[Crossref]

M. P. Nelson and M. Myrick, “Single-frame chemical imaging: dimension reduction fiber-optic array improvements and application to laser-induced breakdown spectroscopy,” Appl. Spectrosc. 53, 751–759 (1999).
[Crossref]

1998 (5)

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochem. Photobiol. 68, 427–431 (1998).
[Crossref]

N. Sijtsema, C. Otto, G. Segers-Nolten, A. Verhoeven, and J. Greve, “Resonance Raman microspectroscopy of myeloperoxidase and cytochrome b558 in human neutrophilic granulocytes,” Biophys. J. 74, 3250–3255 (1998).
[Crossref]

D. Naumann, “Infrared and NIR Raman spectroscopy in medical microbiology,” Proc. SPIE 3257, 245–257 (1998).
[Crossref]

M. Gniadecka, O. F. Nielsen, S. Wessel, M. Heidenheim, D. H. Christensen, and H. C. Wulf, “Water and protein structure in photoaged and chronically aged skin,” J. Invest. Dermatol. 111, 1129–1133 (1998).
[Crossref]

S. A. Overman, K. L. Aubrey, K. E. Reilly, O. Osman, S. J. Hayes, P. Serwer, and G. J. Thomas, “Conformation and interactions of the packaged double-stranded DNA genome of bacteriophage T7,” Biospectroscopy 4, S47–S56 (1998).
[Crossref]

1997 (4)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

J. Ma and D. Ben-Amotz, “Rapid micro-Raman imaging using fiber-bundle image compression,” Appl. Spectrosc. 51, 1845–1848 (1997).
[Crossref]

S. Ekgasit and H. Ishida, “New optical depth-profiling technique by use of the multiple-frequency approach with single ATR FT-IR spectrum: theoretical development,” Appl. Spectrosc. 51, 1488–1495 (1997).
[Crossref]

1996 (2)

K. König, Y. Tadir, P. Patrizio, M. W. Berns, and B. J. Tromberg, “Andrology: effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa,” Human Reprod. 11, 2162–2164 (1996).
[Crossref]

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70, 1529–1533 (1996).
[Crossref]

1995 (3)

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777–783 (1995).
[Crossref]

H. G. Edwards, D. W. Farwell, A. C. Williams, B. W. Barry, and F. Rull, “Novel spectroscopic deconvolution procedure for complex biological systems: vibrational components in the FT-Raman spectra of ice-man and contemporary skin,” J. Chem. Soc. Faraday Trans. 91, 3883–3887 (1995).
[Crossref]

G. Puppels, T. B. Schut, N. Sijtsema, M. Grond, F. Maraboeuf, C. De Grauw, C. Figdor, and J. Greve, “Development and application of Raman microspectroscopic and Raman imaging techniques for cell biological studies,” J. Mol. Struct. 347, 477–483 (1995).
[Crossref]

1994 (2)

A. Williams and H. Edwards, “Fourier transform Raman spectroscopy of bacterial cell walls,” J. Raman Spectrosc. 25, 673–677 (1994).
[Crossref]

B. Salmaso, G. Puppels, P. Caspers, R. Floris, R. Wever, and J. Greve, “Resonance Raman microspectroscopic characterization of eosinophil peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[Crossref]

1993 (1)

G. Puppels, H. Garritsen, J. Kummer, and J. Greve, “Carotenoids located in human lymphocyte subpopulations and natural killer cells by Raman microspectroscopy,” Cytometry 14, 251–256 (1993).
[Crossref]

1992 (1)

H. Friedmann and R. Lubart, “Towards an explanation of visible and infrared laser induced stimulation and damage of cell cultures,” Laser Therapy 4, 39–42 (1992).
[Crossref]

1991 (2)

G. Puppels, H. Garritsen, G. Segers-Nolten, F. De Mul, and J. Greve, “Raman microspectroscopic approach to the study of human granulocytes,” Biophys. J. 60, 1046–1056 (1991).
[Crossref]

G. Puppels, J. Olminkhof, G. Segers-Nolten, C. Otto, F. De Mul, and J. Greve, “Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5  nm but not with 660  nm laser light,” Exp. Cell Res. 195, 361–367 (1991).
[Crossref]

1990 (3)

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[Crossref]

G. Puppels, A. Huizinga, H. Krabbe, H. De Boer, G. Gijsbers, and F. De Mul, “A high-throughput Raman notch filter set,” Rev. Sci. Instrum. 61, 3709–3712 (1990).
[Crossref]

G. Puppels, F. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. Arndt-Jovin, and T. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).

1988 (2)

B. Welz, M. Sperling, G. Schlemmer, N. Wenzel, and G. Marowsky, “Spatially and temporally resolved gas phase temperature measurements in a Massmann-type graphite tube furnace using coherent anti-stokes Raman scattering,” Spectrochim. Acta B 43, 1187–1207 (1988).
[Crossref]

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[Crossref]

1986 (2)

T. Hirschfeld and B. Chase, “FT-Raman spectroscopy: development and justification,” Appl. Spectrosc. 40, 133–137 (1986).
[Crossref]

S. Krimm and J. Bandekar, “Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins,” Adv. Protein Chem. 38, 181–364 (1986).
[Crossref]

1984 (1)

1983 (1)

P. P. Calmettes and M. W. Berns, “Laser-induced multiphoton processes in living cells,” Proc. Natl. Acad. Sci. USA 80, 7197–7199 (1983).
[Crossref]

1982 (2)

P. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[Crossref]

M. D. Duncan, J. Reintjes, and T. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352 (1982).
[Crossref]

1981 (1)

D. Rousseau, “Raman difference spectroscopy as a probe of biological molecules,” J. Raman Spectrosc. 10, 94–99 (1981).
[Crossref]

1980 (1)

M. D. Manson, P. Tedesco, and H. C. Berg, “Energetics of flagellar rotation in bacteria,” J. Mol. Biol. 138, 541–561 (1980).
[Crossref]

1979 (1)

I. Ashikawa and K. Itoh, “Raman spectra of polypeptides containing L-histidine residues and tautomerism of imidazole side chain,” Biopolymers 18, 1859–1876 (1979).
[Crossref]

1978 (1)

M. Moskovits and K. Michaelian, “A reinvestigation of the Raman spectrum of water,” J. Chem. Phys. 69, 2306–2311 (1978).
[Crossref]

1977 (2)

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
[Crossref]

A. Owyoung and E. D. Jones, “Stimulated Raman spectroscopy using low-power CW lasers,” Opt. Lett. 1, 152–154 (1977).
[Crossref]

1975 (2)

M. Delhaye and P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman Spectrosc. 3, 33–43 (1975).
[Crossref]

B. G. Frushour and J. L. Koenig, “Raman scattering of collagen, gelatin, and elastin,” Biopolymers 14, 379–391 (1975).
[Crossref]

1974 (2)

H. Susi and J. S. Ard, “Laser-Raman spectra of lactose,” Carbohydr. Res. 37, 351–354 (1974).
[Crossref]

M. Fleischmann, P. J. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

1972 (2)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

S. C. Erfurth, E. J. Kiser, and W. L. Peticolas, “Determination of the backbone structure of nucleic acids and nucleic acid oligomers by laser Raman scattering,” Proc. Natl. Acad. Sci. USA 69, 938–941 (1972).
[Crossref]

1970 (1)

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[Crossref]

1967 (1)

N. Bloembergen, “The stimulated Raman effect,” Am. J. Phys. 35, 989–1023 (1967).
[Crossref]

1965 (1)

P. Maker and R. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. 137, A801–A818 (1965).
[Crossref]

1963 (2)

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
[Crossref]

H. Kogelnik and S. Porto, “Continuous helium-neon red laser as a Raman source,” J. Opt. Soc. Am. 53, 1446–1447 (1963).
[Crossref]

1962 (3)

S. Porto and D. Wood, “Ruby optical maser as a Raman source,” J. Opt. Soc. Am. 52, 251–252 (1962).
[Crossref]

G. Eckhardt, R. Hellwarth, F. McClung, S. Schwarz, D. Weiner, and E. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

E. Woodbury and W. Ng, “Ruby laser operation in near IR,” Proc. IRE 50, 2367 (1962).

1955 (1)

R. Mulliken, “Report on notation for the spectra of polyatomic molecules,” J. Chem. Phys 23, 1997–2011 (1955).
[Crossref]

1952 (1)

T. Burke, D. Smith, and A. Nielsen, “The molecular structure of MoF6, WF6, and UF6 from infrared and Raman spectra,” J. Chem. Phys. 20, 447–454 (1952).
[Crossref]

1951 (1)

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

1937 (1)

P. C. Cross, J. Burnham, and P. A. Leighton, “The Raman spectrum and the structure of water,” J. Am. Chem. Soc. 59, 1134–1147 (1937).
[Crossref]

1928 (1)

C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature 121, 501–502 (1928).
[Crossref]

1857 (1)

M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).
[Crossref]

Abe, H.

A. Sujith, T. Itoh, H. Abe, A. A. Anas, K. Yoshida, V. Biju, and M. Ishikawa, “Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall,” Appl. Phys. Lett. 92, 103901 (2008).
[Crossref]

Abrahamsson, J.

C. Eliasson, A. Lorén, J. Engelbrektsson, M. Josefson, J. Abrahamsson, and K. Abrahamsson, “Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation,” Spectrochim. Acta A 61, 755–760 (2005).
[Crossref]

Abrahamsson, K.

C. Eliasson, A. Lorén, J. Engelbrektsson, M. Josefson, J. Abrahamsson, and K. Abrahamsson, “Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation,” Spectrochim. Acta A 61, 755–760 (2005).
[Crossref]

Achete, C. A.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9, 6297–6304 (2015).
[Crossref]

Aebersold, R.

H. Zhang, X.-J. Li, D. B. Martin, and R. Aebersold, “Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry,” Nat. Biotechnol. 21, 660–666 (2003).
[Crossref]

Afseth, N. K.

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref]

Agar, N. Y.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

Agarwal, U. P.

U. P. Agarwal, “Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana),” Planta 224, 1141–1153 (2006).
[Crossref]

Agasti, S. S.

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112, 2739–2779 (2012).
[Crossref]

Agenant, M.

Aggarwal, R.

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[Crossref]

Ahn, H. J.

Y. J. Lee, H. J. Ahn, G.-J. Lee, G. B. Jung, G. Lee, D. Kim, J.-H. Shin, K.-H. Jin, and H.-K. Park, “Investigation of biochemical property changes in activation-induced CD8+ T cell apoptosis using Raman spectroscopy,” J. Biomed. Opt. 20, 075001 (2015).
[Crossref]

Aimbire, F.

E. E. Rossi, L. Silveira, A. L. B. Pinheiro, S. R. Zamuner, F. Aimbire, M. Maia, and M. T. T. Pacheco, “Raman spectroscopy for differential diagnosis of endophthalmitis and uveitis in rabbit iris in vivo,” Exp. Eye Res. 91, 362–368 (2010).
[Crossref]

Aizawa, K.

N. S. Eikje, Y. Ozaki, K. Aizawa, and S. Arase, “Fiber optic near-infrared Raman spectroscopy for clinical noninvasive determination of water content in diseased skin and assessment of cutaneous edema,” J. Biomed. Opt. 10, 014013 (2005).
[Crossref]

Aizpurua, J.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Akimov, D.

C. Krafft, A. A. Ramoji, C. Bielecki, N. Vogler, T. Meyer, D. Akimov, P. Rösch, M. Schmitt, B. Dietzek, I. Petersen, A. Stallmach, and J. Popp, “A comparative Raman and CARS imaging study of colon tissue,” J. Biophoton. 2, 303–312 (2009).
[Crossref]

Akkus, A.

S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
[Crossref]

Akkus, O.

S. Yang, B. Li, A. Akkus, O. Akkus, and L. Lang, “Wide-field Raman imaging of dental lesions,” Analyst 139, 3107–3114 (2014).
[Crossref]

Albrecht, M.

C. Ropers, C. Neacsu, T. Elsaesser, M. Albrecht, M. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref]

Alfonso-García, A.

A. Alfonso-García, R. Mittal, E. S. Lee, and E. O. Potma, “Biological imaging with coherent Raman scattering microscopy: a tutorial,” J. Biomed. Opt. 19, 071407 (2014).
[Crossref]

Allison, C. L.

Almeida, R. M.

L. F. Santos, R. Wolthuis, S. Koljenovic, R. M. Almeida, and G. J. Puppels, “Fiber-optic probes for in vivo Raman spectroscopy in the high-wavenumber region,” Anal. Chem. 77, 6747–6752 (2005).
[Crossref]

Alvarez, A. M.

Anas, A. A.

A. Sujith, T. Itoh, H. Abe, A. A. Anas, K. Yoshida, V. Biju, and M. Ishikawa, “Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall,” Appl. Phys. Lett. 92, 103901 (2008).
[Crossref]

Anderson, D.

A. Robichaux Viehoever, D. Anderson, D. Jansen, and A. Mahadevan-Jansen, “Organotypic raft cultures as an effective in vivo tool for understanding Raman spectral analysis of tissue,” Photochem. Photobiol. 78, 517–524 (2003).
[Crossref]

Anderson, D. W.

D. P. Lau, Z. Huang, H. Lui, D. W. Anderson, K. Berean, M. D. Morrison, L. Shen, and H. Zeng, “Raman spectroscopy for optical diagnosis in the larynx: preliminary findings,” Lasers Surg. Med. 37, 192–200 (2005).
[Crossref]

Ando, J.

K. Bando, N. I. Smith, J. Ando, K. Fujita, and S. Kawata, “Analysis of dynamic SERS spectra measured with a nanoparticle during intracellular transportation in 3D,” J. Opt. 17, 114023 (2015).
[Crossref]

H. Yamakoshi, A. Palonpon, K. Dodo, J. Ando, S. Kawata, K. Fujita, and M. Sodeoka, “A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria,” Bioorg. Med. Chem. Lett. 25, 664–667 (2015).
[Crossref]

J. Cui, S. Matsuoka, M. Kinoshita, N. Matsumori, F. Sato, M. Murata, J. Ando, H. Yamakoshi, K. Dodo, and M. Sodeoka, “Novel Raman-tagged sphingomyelin that closely mimics original raft-forming behavior,” Bioorg. Med. Chem. 23, 2989–2994 (2015).
[Crossref]

K.-C. Huang, K. Bando, J. Ando, N. I. Smith, K. Fujita, and S. Kawata, “3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways,” Methods 68, 348–353 (2014).
[Crossref]

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref]

H. Yamakoshi, K. Dodo, M. Okada, J. Ando, A. Palonpon, K. Fujita, S. Kawata, and M. Sodeoka, “Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy,” J. Am. Chem. Soc. 133, 6102–6105 (2011).
[Crossref]

Andreana, M.

Andronie, L.

S. C. Pînzaru, L. Andronie, I. Domsa, O. Cozar, and S. Astilean, “Bridging biomolecules with nanoparticles: surface-enhanced Raman scattering from colon carcinoma and normal tissue,” J. Raman Spectrosc. 39, 331–334 (2008).
[Crossref]

Ansari, D. O.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26, 83–90 (2008).
[Crossref]

Anshup, A.

A. Anshup, J. S. Venkataraman, C. Subramaniam, R. R. Kumar, S. Priya, T. S. Kumar, R. Omkumar, A. John, and T. Pradeep, “Growth of gold nanoparticles in human cells,” Langmuir 21, 11562–11567 (2005).
[Crossref]

Antonicelli, F.

E. Ly, A. Durlach, F. Antonicelli, P. Bernard, M. Manfait, and O. Piot, “Probing tumor and peritumoral tissues in superficial and nodular basal cell carcinoma using polarized Raman microspectroscopy,” Exp. Dermatol. 19, 68–73 (2010).
[Crossref]

Arase, S.

N. S. Eikje, Y. Ozaki, K. Aizawa, and S. Arase, “Fiber optic near-infrared Raman spectroscopy for clinical noninvasive determination of water content in diseased skin and assessment of cutaneous edema,” J. Biomed. Opt. 10, 014013 (2005).
[Crossref]

Archanjo, B. S.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9, 6297–6304 (2015).
[Crossref]

Ard, J. S.

H. Susi and J. S. Ard, “Laser-Raman spectra of lactose,” Carbohydr. Res. 37, 351–354 (1974).
[Crossref]

Arndt-Jovin, D.

G. Puppels, F. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. Arndt-Jovin, and T. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).

Arrasmith, C. L.

Asakura, T.

M.-E. Rousseau, T. Lefevre, L. Beaulieu, T. Asakura, and M. Pézolet, “Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy,” Biomacromolecules 5, 2247–2257 (2004).
[Crossref]

Asghari-Khiavi, M.

B. R. Wood, M. Asghari-Khiavi, E. Bailo, D. McNaughton, and V. Deckert, “Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering,” Nano Lett. 12, 1555–1560 (2012).
[Crossref]

Ashikawa, I.

I. Ashikawa and K. Itoh, “Raman spectra of polypeptides containing L-histidine residues and tautomerism of imidazole side chain,” Biopolymers 18, 1859–1876 (1979).
[Crossref]

Ashok, P. C.

S. Dochow, N. Bergner, C. Krafft, J. Clement, M. Mazilu, B. B. Praveen, P. C. Ashok, R. Marchington, K. Dholakia, and J. Popp, “Classification of Raman spectra of single cells with autofluorescence suppression by wavelength modulated excitation,” Anal. Methods 5, 4608–4614 (2013).
[Crossref]

P. C. Ashok, B. B. Praveen, N. Bellini, A. Riches, K. Dholakia, and C. S. Herrington, “Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon,” Biomed. Opt. Express 4, 2179–2186 (2013).
[Crossref]

Ashton, L.

A. Mitchell, L. Ashton, X. B. Yang, R. Goodacre, A. Smith, and J. Kirkham, “Detection of early stage changes associated with adipogenesis using Raman spectroscopy under aseptic conditions,” Cytometry Part A 87, 1012–1019 (2015).
[Crossref]

Astilean, S.

S. C. Pînzaru, L. Andronie, I. Domsa, O. Cozar, and S. Astilean, “Bridging biomolecules with nanoparticles: surface-enhanced Raman scattering from colon carcinoma and normal tissue,” J. Raman Spectrosc. 39, 331–334 (2008).
[Crossref]

Atkins, C.

K. Buckley, C. Atkins, D. Chen, H. Schulze, D. Devine, M. Blades, and R. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst 141, 1678–1685 (2016).
[Crossref]

Aubrey, K. L.

S. A. Overman, K. L. Aubrey, K. E. Reilly, O. Osman, S. J. Hayes, P. Serwer, and G. J. Thomas, “Conformation and interactions of the packaged double-stranded DNA genome of bacteriophage T7,” Biospectroscopy 4, S47–S56 (1998).
[Crossref]

Auchinvole, C.

J. Jiang, C. Auchinvole, K. Fisher, and C. J. Campbell, “Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors,” Nanoscale 6, 12104–12110 (2014).
[Crossref]

Auchinvole, C. A.

C. A. Auchinvole, P. Richardson, C. McGuinnes, V. Mallikarjun, K. Donaldson, H. McNab, and C. J. Campbell, “Monitoring intracellular redox potential changes using SERS nanosensors,” ACS Nano 6, 888–896 (2012).
[Crossref]

Austin, L. A.

L. A. Austin, M. A. Mackey, E. C. Dreaden, and M. A. El-Sayed, “The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery,” Arch. Toxicol. 88, 1391–1417 (2014).
[Crossref]

B. Kang, L. A. Austin, and M. A. El-Sayed, “Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy,” Nano Lett. 12, 5369–5375 (2012).
[Crossref]

Awad, H. A.

J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age-and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18, 077001 (2013).
[Crossref]

J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16, 087012 (2011).
[Crossref]

Axäng, C.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 104, 14658–14663 (2007).
[Crossref]

Axner, O.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
[Crossref]

Aydin, Ö.

Ö. F. Karata, E. Sezgin, Ö. Aydın, and M. Çulha, “Interaction of gold nanoparticles with mitochondria,” Colloids Surf. B 71, 315–318 (2009).
[Crossref]

Azizkhan-Clifford, J.

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes,” ACS Nano 3, 3529–3536 (2009).
[Crossref]

Azrad, E.

E. Azrad, E. Cagnano, S. Halevy, S. Rosenwaks, and I. Bar, “Bullous pemphigoid detection by micro-Raman spectroscopy and cluster analysis: structure alterations of proteins,” J. Raman Spectrosc. 36, 1034–1039 (2005).
[Crossref]

Babar, S.

Badizadegan, K.

Baek, S.-J.

Bagnaninchi, P.

A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
[Crossref]

Bai, H.

Bai, X.

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).

Bailey, M. J.

W. E. Huang, A. Ferguson, A. C. Singer, K. Lawson, I. P. Thompson, R. M. Kalin, M. J. Larkin, M. J. Bailey, and A. S. Whiteley, “Resolving genetic functions within microbial populations: in vivo analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization,” Appl. Environ. Microbiol. 75, 234–241 (2009).
[Crossref]

Bailo, E.

B. R. Wood, M. Asghari-Khiavi, E. Bailo, D. McNaughton, and V. Deckert, “Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering,” Nano Lett. 12, 1555–1560 (2012).
[Crossref]

B. R. Wood, E. Bailo, M. A. Khiavi, L. Tilley, S. Deed, T. Deckert-Gaudig, D. McNaughton, and V. Deckert, “Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte,” Nano Lett. 11, 1868–1873 (2011).
[Crossref]

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases—a tip-enhanced Raman approach,” Beilstein J. Nanotechnol. 2, 628–637 (2011).
[Crossref]

E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. 47, 1658–1661 (2008).
[Crossref]

Baker, R.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst 132, 899–905 (2007).
[Crossref]

R. Baker, P. Matousek, K. L. Ronayne, A. W. Parker, K. Rogers, and N. Stone, “Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy,” Analyst 132, 48–53 (2007).
[Crossref]

Bakker Schut, T.

S. Koljenovic, T. Bakker Schut, R. Wolthuis, A. Vincent, G. Hendriks-Hagevi, L. Santos, J. Kros, and G. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557–564 (2007).
[Crossref]

Baldwin, S. G.

R. Wiens, C. R. Findlay, S. G. Baldwin, L. Kreplak, J. M. Lee, S. P. Veres, and K. M. Gough, “High spatial resolution (11  μm and 20  nm) FTIR polarization contrast imaging reveals pre-rupture disorder in damaged tendon,” Faraday Discuss. 187, 555–573 (2016).

Balu, M.

Bambery, K. R.

B. R. Wood, A. Hermelink, P. Lasch, K. R. Bambery, G. T. Webster, M. A. Khiavi, B. M. Cooke, S. Deed, D. Naumann, and D. McNaughton, “Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics,” Analyst 134, 1119–1125 (2009).
[Crossref]

Bandekar, J.

S. Krimm and J. Bandekar, “Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins,” Adv. Protein Chem. 38, 181–364 (1986).
[Crossref]

Bando, K.

K. Bando, N. I. Smith, J. Ando, K. Fujita, and S. Kawata, “Analysis of dynamic SERS spectra measured with a nanoparticle during intracellular transportation in 3D,” J. Opt. 17, 114023 (2015).
[Crossref]

K.-C. Huang, K. Bando, J. Ando, N. I. Smith, K. Fujita, and S. Kawata, “3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways,” Methods 68, 348–353 (2014).
[Crossref]

N. Pavillon, K. Bando, K. Fujita, and N. I. Smith, “Feature-based recognition of surface-enhanced Raman spectra for biological targets,” J. Biophoton. 6, 587–597 (2013).
[Crossref]

Bankapur, A.

S. Barkur, A. Bankapur, M. Pradhan, S. Chidangil, D. Mathur, and U. Ladiwala, “Probing differentiation in cancer cell lines by single-cell micro-Raman spectroscopy,” J. Biomed. Opt. 20, 085001 (2015).
[Crossref]

Bar, I.

E. Azrad, E. Cagnano, S. Halevy, S. Rosenwaks, and I. Bar, “Bullous pemphigoid detection by micro-Raman spectroscopy and cluster analysis: structure alterations of proteins,” J. Raman Spectrosc. 36, 1034–1039 (2005).
[Crossref]

Baranska, M.

A. Jaworska, L. E. Jamieson, K. Malek, C. J. Campbell, J. Choo, S. Chlopicki, and M. Baranska, “SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α,” Analyst 140, 2321–2329 (2015).
[Crossref]

H. Schulz and M. Baranska, “Identification and quantification of valuable plant substances by IR and Raman spectroscopy,” Vib. Spectrosc. 43, 13–25 (2007).
[Crossref]

Barker, R. A.

A. Huefner, D. Septiadi, B. D. Wilts, I. I. Patel, W.-L. Kuan, A. Fragniere, R. A. Barker, and S. Mahajan, “Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes,” Methods 68, 354–363 (2014).
[Crossref]

A. Huefner, W.-L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13, 2463–2470 (2013).
[Crossref]

Barkur, S.

S. Barkur, A. Bankapur, M. Pradhan, S. Chidangil, D. Mathur, and U. Ladiwala, “Probing differentiation in cancer cell lines by single-cell micro-Raman spectroscopy,” J. Biomed. Opt. 20, 085001 (2015).
[Crossref]

Barman, I.

I. Barman, N. C. Dingari, A. Saha, S. McGee, L. H. Galindo, W. Liu, D. Plecha, N. Klein, R. R. Dasari, and M. Fitzmaurice, “Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy,” Cancer Res. 73, 3206–3215 (2013).
[Crossref]

N. C. Dingari, I. Barman, J. W. Kang, C.-R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16, 087009 (2011).
[Crossref]

J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2, 2484–2492 (2011).
[Crossref]

Barr, H.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
[Crossref]

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
[Crossref]

N. Stone, C. Kendall, N. Shepherd, P. Crow, and H. Barr, “Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers,” J. Raman Spectrosc. 33, 564–573 (2002).
[Crossref]

Barry, B. W.

H. G. Edwards, D. W. Farwell, A. C. Williams, B. W. Barry, and F. Rull, “Novel spectroscopic deconvolution procedure for complex biological systems: vibrational components in the FT-Raman spectra of ice-man and contemporary skin,” J. Chem. Soc. Faraday Trans. 91, 3883–3887 (1995).
[Crossref]

Basu, S.

F.-K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. R. Holtom, V. A. Neel, C. W. Freudiger, D. E. Fisher, and X. S. Xie, “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).
[Crossref]

X. Zhang, M. B. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” Chem. Phys. Chem. 13, 1054–1059 (2012).
[Crossref]

Bauer, T.

L. Opilik, T. Bauer, T. Schmid, J. Stadler, and R. Zenobi, “Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy,” Phys. Chem. Chem. Phys. 13, 9978–9981 (2011).
[Crossref]

Baumann, K.

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis,” ChemPhysChem 8, 124–137 (2007).
[Crossref]

Baumberg, J. J.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[Crossref]

Baumgartl, M.

Beattie, J. R.

N. D. Magee, J. R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D. A. Fennell, P. W. Hamilton, M. Ennis, J. J. McGarvey, and J. S. Elborn, “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” J. Biomed. Opt. 15, 026015 (2010).
[Crossref]

Beaulieu, L.

M.-E. Rousseau, T. Lefevre, L. Beaulieu, T. Asakura, and M. Pézolet, “Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy,” Biomacromolecules 5, 2247–2257 (2004).
[Crossref]

Bechtel, K. L.

W.-C. Shih, K. L. Bechtel, and M. V. Rebec, “Noninvasive glucose sensing by transcutaneous Raman spectroscopy,” J. Biomed. Opt. 20, 051036 (2015).
[Crossref]

K. L. Bechtel, W.-C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: experimental applications,” Opt. Express 16, 12737–12745 (2008).
[Crossref]

Becker, M.

Begley, D.

N. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. Uchegbu, A. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-Stokes Raman scattering microscopy,” J. Raman Spectrosc. 43, 681–688 (2012).
[Crossref]

Beier, B. D.

B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010).
[Crossref]

B. D. Beier and A. J. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst 134, 1198–1202 (2009).
[Crossref]

Beier, H. T.

Beitler, J. J.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71, 1526–1532 (2011).
[Crossref]

Belew, M. Y.

P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J.-X. Cheng, “Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations,” Angew. Chem. Int. Ed. 53, 11787–11792 (2014).
[Crossref]

Beljebbar, A.

F. Draux, P. Jeannesson, A. Beljebbar, A. Tfayli, N. Fourre, M. Manfait, J. Sulé-Suso, and G. D. Sockalingum, “Raman spectral imaging of single living cancer cells: a preliminary study,” Analyst 134, 542–548 (2009).
[Crossref]

Bellini, N.

Belsey, N. A.

W. S. Chiu, N. A. Belsey, N. L. Garrett, J. Moger, M. B. Delgado-Charro, and R. H. Guy, “Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 7725–7730 (2015).
[Crossref]

Ben-Amotz, D.

Benevides, J. M.

J. M. Benevides, S. A. Overman, and G. J. Thomas, “Raman, polarized Raman and ultraviolet resonance Raman spectroscopy of nucleic acids and their complexes,” J. Raman Spectrosc. 36, 279–299 (2005).
[Crossref]

Bentley, A. J.

M. D. Hodges, J. G. Kelly, A. J. Bentley, S. Fogarty, I. I. Patel, F. L. Martin, and N. J. Fullwood, “Combining immunolabeling and surface-enhanced Raman spectroscopy on cell membranes,” ACS Nano 5, 9535–9541 (2011).
[Crossref]

Berean, K.

D. P. Lau, Z. Huang, H. Lui, D. W. Anderson, K. Berean, M. D. Morrison, L. Shen, and H. Zeng, “Raman spectroscopy for optical diagnosis in the larynx: preliminary findings,” Lasers Surg. Med. 37, 192–200 (2005).
[Crossref]

D. P. Lau, Z. Huang, H. Lui, C. S. Man, K. Berean, M. D. Morrison, and H. Zeng, “Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx: preliminary findings,” Lasers Surg. Med. 32, 210–214 (2003).
[Crossref]

Berg, H. C.

M. D. Manson, P. Tedesco, and H. C. Berg, “Energetics of flagellar rotation in bacteria,” J. Mol. Biol. 138, 541–561 (1980).
[Crossref]

Berger, A. J.

J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age-and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18, 077001 (2013).
[Crossref]

J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16, 087012 (2011).
[Crossref]

J. R. Maher and A. J. Berger, “Determination of ideal offset for spatially offset Raman spectroscopy,” Appl. Spectrosc. 64, 61–65 (2010).
[Crossref]

Z. J. Smith, J.-C. E. Wang, S. A. Quataert, and A. J. Berger, “Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes,” J. Biomed. Opt. 15, 036021 (2010).
[Crossref]

B. D. Beier, R. G. Quivey, and A. J. Berger, “Identification of different bacterial species in biofilms using confocal Raman microscopy,” J. Biomed. Opt. 15, 066001 (2010).
[Crossref]

B. D. Beier and A. J. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst 134, 1198–1202 (2009).
[Crossref]

Z. J. Smith and A. J. Berger, “Integrated Raman-and angular-scattering microscopy,” Opt. Lett. 33, 714–716 (2008).
[Crossref]

Bergeson, S. D.

S. D. Bergeson, J. B. Peatross, N. J. Eyring, J. F. Fralick, D. N. Stevenson, and S. B. Ferguson, “Resonance Raman measurements of carotenoids using light-emitting diodes,” J. Biomed. Opt. 13, 044026 (2008).
[Crossref]

Bergholt, M. S.

J. Wang, M. S. Bergholt, W. Zheng, and Z. Huang, “Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy,” Opt. Lett. 38, 2321–2323 (2013).
[Crossref]

S. Duraipandian, M. S. Bergholt, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, A. Shabbir, and Z. Huang, “Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,” J. Biomed. Opt. 17, 081418 (2012).
[Crossref]

M. S. Bergholt, W. Zheng, and Z. Huang, “Characterizing variability in in vivo Raman spectroscopic properties of different anatomical sites of normal tissue in the oral cavity,” J. Raman Spectrosc. 43, 255–262 (2012).
[Crossref]

M. S. Bergholt, K. Lin, W. Zheng, D. P. C. Lau, and Z. Huang, “In vivo, real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx,” J. Biomed. Opt. 17, 0770021 (2012).
[Crossref]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128, 2673–2680 (2011).
[Crossref]

Z. Huang, M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, and K. G. Yeoh, “In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy,” J. Biomed. Opt. 15, 037017 (2010).
[Crossref]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

Bergner, N.

S. Dochow, N. Bergner, C. Krafft, J. Clement, M. Mazilu, B. B. Praveen, P. C. Ashok, R. Marchington, K. Dholakia, and J. Popp, “Classification of Raman spectra of single cells with autofluorescence suppression by wavelength modulated excitation,” Anal. Methods 5, 4608–4614 (2013).
[Crossref]

T. Meyer, N. Bergner, A. Medyukhina, B. Dietzek, C. Krafft, B. F. Romeike, R. Reichart, R. Kalff, and J. Popp, “Interpreting CARS images of tissue within the C–H-stretching region,” J. Biophoton. 5, 729–733 (2012).
[Crossref]

Bernard, P.

E. Ly, A. Durlach, F. Antonicelli, P. Bernard, M. Manfait, and O. Piot, “Probing tumor and peritumoral tissues in superficial and nodular basal cell carcinoma using polarized Raman microspectroscopy,” Exp. Dermatol. 19, 68–73 (2010).
[Crossref]

Bernatová, S.

O. Samek, S. Bernatová, J. Ježek, M. Šiler, M. Šerý, V. Krzyžánek, K. Hrubanová, P. Zemánek, V. Holá, and F. Řužička, “Identification of individual biofilm-forming bacterial cells using Raman tweezers,” J. Biomed. Opt. 20, 051038 (2015).
[Crossref]

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Berns, M. W.

H. Liang, K. T. Vu, P. Krishnan, T. C. Trang, D. Shin, S. Kimel, and M. W. Berns, “Wavelength dependence of cell cloning efficiency after optical trapping,” Biophys. J. 70, 1529–1533 (1996).
[Crossref]

K. König, Y. Tadir, P. Patrizio, M. W. Berns, and B. J. Tromberg, “Andrology: effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa,” Human Reprod. 11, 2162–2164 (1996).
[Crossref]

P. P. Calmettes and M. W. Berns, “Laser-induced multiphoton processes in living cells,” Proc. Natl. Acad. Sci. USA 80, 7197–7199 (1983).
[Crossref]

Bertasa, M.

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref]

Bhattacharjee, T.

T. Bhattacharjee, S. Tawde, R. Hudlikar, M. Mahimkar, G. Maru, A. Ingle, and C. M. Krishna, “Ex vivo Raman spectroscopic study of breast metastatic lesions in lungs in animal models,” J. Biomed. Opt. 20, 085006 (2015).
[Crossref]

Bhuvaneswari, R.

A. Samanta, K. K. Maiti, K.-S. Soh, X. Liao, M. Vendrell, U. S. Dinish, S.-W. Yun, R. Bhuvaneswari, H. Kim, S. Rautela, J. Chung, M. Olivo, and Y.-T. Chang, “Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection,” Angew. Chem. Int. Ed. 50, 6089–6092 (2011).
[Crossref]

Bi, X.

Biagi, P.

G. Perna, M. Lasalvia, A. Castro, E. Mezzenga, N. L’Abbate, P. Biagi, and V. Capozzi, “Detection of pesticide effects in human keratinocytes by means of Raman microspectroscopy,” Appl. Phys. Lett. 95, 083701 (2009).
[Crossref]

Bielecki, C.

C. Bielecki, T. W. Bocklitz, M. Schmitt, C. Krafft, C. Marquardt, A. Gharbi, T. Knösel, A. Stallmach, and J. Popp, “Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells,” J. Biomed. Opt. 17, 0760301 (2012).
[Crossref]

C. Krafft, A. A. Ramoji, C. Bielecki, N. Vogler, T. Meyer, D. Akimov, P. Rösch, M. Schmitt, B. Dietzek, I. Petersen, A. Stallmach, and J. Popp, “A comparative Raman and CARS imaging study of colon tissue,” J. Biophoton. 2, 303–312 (2009).
[Crossref]

Biju, V.

A. Sujith, T. Itoh, H. Abe, A. A. Anas, K. Yoshida, V. Biju, and M. Ishikawa, “Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall,” Appl. Phys. Lett. 92, 103901 (2008).
[Crossref]

Bird, B.

M. Diem, A. Mazur, K. Lenau, J. Schubert, B. Bird, M. Miljković, C. Krafft, and J. Popp, “Molecular pathology via IR and Raman spectral imaging,” J. Biophoton. 6, 855–886 (2013).
[Crossref]

Bishop, A.

I. Notingher, S. Verrier, H. Romanska, A. Bishop, J. Polak, and L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectrosc. 16, 43–51 (2002).
[Crossref]

Bishop, A. E.

I. Notingher, I. Bisson, A. E. Bishop, W. L. Randle, J. M. Polak, and L. L. Hench, “In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro,” Anal. Chem. 76, 3185–3193 (2004).
[Crossref]

Bispo, J. A. M.

C. J. Saatkamp, M. L. de Almeida, J. A. M. Bispo, A. L. B. Pinheiro, A. B. Fernandes, and L. Silveira, “Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease,” J. Biomed. Opt. 21, 037001 (2016).
[Crossref]

Bisson, I.

I. Notingher, I. Bisson, A. E. Bishop, W. L. Randle, J. M. Polak, and L. L. Hench, “In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro,” Anal. Chem. 76, 3185–3193 (2004).
[Crossref]

Bitar, R.

A. García-Flores, L. Raniero, R. Canevari, K. J. Jalkanen, R. Bitar, H. Martinho, and A. Martin, “High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer,” Theor. Chem. Acc. 130, 1231–1238 (2011).
[Crossref]

Bitar, R. A.

R. A. Bitar, H. da Silva Martinho, C. J. Tierra-Criollo, L. N. Z. Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11, 054001 (2006).
[Crossref]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Blades, M.

K. Buckley, C. Atkins, D. Chen, H. Schulze, D. Devine, M. Blades, and R. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst 141, 1678–1685 (2016).
[Crossref]

Blades, M. W.

H. G. Schulze, S. O. Konorov, N. J. Caron, J. M. Piret, M. W. Blades, and R. F. Turner, “Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy,” Anal. Chem. 82, 5020–5027 (2010).
[Crossref]

Blake, J. A.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[Crossref]

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

Bloembergen, N.

N. Bloembergen, “The stimulated Raman effect,” Am. J. Phys. 35, 989–1023 (1967).
[Crossref]

Blum, C.

C. Blum, T. Schmid, L. Opilik, N. Metanis, S. Weidmann, and R. Zenobi, “Missing amide I mode in gap-mode tip-enhanced Raman spectra of proteins,” J. Phys. Chem. C 116, 23061–23066 (2012).
[Crossref]

Bocklitz, T.

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy-DFT assessment of the chemical effect,” Nanoscale 8, 10229–10239 (2016).
[Crossref]

A. Walter, W. Schumacher, T. Bocklitz, M. Reinicke, P. Rösch, E. Kothe, and J. Popp, “From bulk to single-cell classification of the filamentous growing Streptomyces bacteria by means of Raman spectroscopy,” Appl. Spectrosc. 65, 1116–1125 (2011).
[Crossref]

U. Neugebauer, T. Bocklitz, J. Clement, C. Krafft, and J. Popp, “Towards detection and identification of circulating tumour cells using Raman spectroscopy,” Analyst 135, 3178–3182 (2010).
[Crossref]

Bocklitz, T. W.

C. Bielecki, T. W. Bocklitz, M. Schmitt, C. Krafft, C. Marquardt, A. Gharbi, T. Knösel, A. Stallmach, and J. Popp, “Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells,” J. Biomed. Opt. 17, 0760301 (2012).
[Crossref]

Bodelón, G.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15, 1203–1211 (2016).

Böhme, R.

T. Deckert-Gaudig, R. Böhme, E. Freier, A. Sebesta, T. Merkendorf, J. Popp, K. Gerwert, and V. Deckert, “Nanoscale distinction of membrane patches—a TERS study of Halobacterium salinarum,” J. Biophoton. 5, 582–591 (2012).
[Crossref]

Bohndiek, S. E.

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. USA 110, 12408–12413 (2013).

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Boitor, R.

R. Boitor, F. Sinjab, S. Strohbuecker, V. Sottile, and I. Notingher, “Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography,” Faraday Discuss. 187, 199–212 (2015).

Boitor, R. A.

A. Naemat, H. M. Elsheikha, R. A. Boitor, and I. Notingher, “Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging,” Sci. Rep. 6, 20811 (2016).
[Crossref]

Bondakov, G.

F. Sinjab, G. Bondakov, and I. Notingher, “Co-localised Raman and force spectroscopy reveal the roles of hydrogen bonds and π-π interactions in defining the mechanical properties of diphenylalanine nano-and micro-tubes,” Appl. Phys. Lett. 104, 251905 (2014).
[Crossref]

Bonfig, R.

S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, and P. Ströbel, “Immuno-Raman microspectroscopy: in vivo detection of antigens in tissue specimens by surface-enhanced Raman scattering,” J. Raman Spectrosc. 37, 719–721 (2006).
[Crossref]

Bonnist, E. Y.

Book, L. D.

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

Boone, C.

Boppart, S. A.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).

Borchman, D.

D. Borchman, D. Tang, and M. C. Yappert, “Lipid composition, membrane structure relationships in lens and muscle sarcoplasmic reticulum membranes,” Biospectroscopy 5, 151–167 (1999).
[Crossref]

Boren, J.

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophoton. 7, 906–913 (2014).
[Crossref]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Borri, P.

Bosch, R.

Bossecker, A.

P. Rösch, S. Stöckel, S. Meisel, A. Bossecker, U. Münchberg, S. Kloss, W. Schumacher, and J. Popp, “Bacterial identification in real samples by means of micro-Raman spectroscopy,” Proc. SPIE 8087, 808708 (2011).

Botteon, A.

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref]

Bouchard, M. J.

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes,” ACS Nano 3, 3529–3536 (2009).
[Crossref]

Bowden, M.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Brackmann, C.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 104, 14658–14663 (2007).
[Crossref]

Bradbury, I.

N. D. Magee, J. R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D. A. Fennell, P. W. Hamilton, M. Ennis, J. J. McGarvey, and J. S. Elborn, “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” J. Biomed. Opt. 15, 026015 (2010).
[Crossref]

Brehm, B. R.

C. Matthäus, C. Krafft, B. Dietzek, B. R. Brehm, S. Lorkowski, and J. Popp, “Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling,” Anal. Chem. 84, 8549–8556 (2012).
[Crossref]

Brindle, K. M.

C. Steuwe, I. I. Patel, M. Ul-Hasan, A. Schreiner, J. Boren, K. M. Brindle, S. Reichelt, and S. Mahajan, “CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells,” J. Biophoton. 7, 906–913 (2014).
[Crossref]

Briscoe, T.

E. Canetta, M. Mazilu, A. C. De Luca, A. E. Carruthers, K. Dholakia, S. Neilson, H. Sargeant, T. Briscoe, C. S. Herrington, and A. C. Riches, “Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples,” J. Biomed. Opt. 16, 037002 (2011).
[Crossref]

Brolo, A. G.

Brown, D.

J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, and K. Kneipp, “In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates,” Nano Lett. 6, 2225–2231 (2006).
[Crossref]

Brückner, S.

Brunetti, A. C.

Büchner, T.

D. Drescher, T. Büchner, D. McNaughton, and J. Kneipp, “SERS reveals the specific interaction of silver and gold nanoparticles with hemoglobin and red blood cell components,” Phys. Chem. Chem. Phys. 15, 5364–5373 (2013).
[Crossref]

Buchwald, T.

T. Buchwald, K. Niciejewski, M. Kozielski, M. Szybowicz, M. Siatkowski, and H. Krauss, “Identifying compositional and structural changes in spongy and subchondral bone from the hip joints of patients with osteoarthritis using Raman spectroscopy,” J. Biomed. Opt. 17, 017007 (2012).
[Crossref]

Buckley, K.

K. Buckley, C. Atkins, D. Chen, H. Schulze, D. Devine, M. Blades, and R. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst 141, 1678–1685 (2016).
[Crossref]

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46, 610–618 (2015).
[Crossref]

Budich, C.

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Möller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40, 240–243 (2009).
[Crossref]

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, and V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[Crossref]

Buettner, E.

Buhman, K. K.

J. Zhu, B. Lee, K. K. Buhman, and J.-X. Cheng, “A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging,” J. Lipid Res. 50, 1080–1089 (2009).
[Crossref]

Burke, T.

T. Burke, D. Smith, and A. Nielsen, “The molecular structure of MoF6, WF6, and UF6 from infrared and Raman spectra,” J. Chem. Phys. 20, 447–454 (1952).
[Crossref]

Burkhardt, H.

M. Harz, P. Rösch, K.-D. Peschke, O. Ronneberger, H. Burkhardt, and J. Popp, “Micro-Raman spectroscopic identification of bacterial cells of the genus staphylococcus and dependence on their cultivation conditions,” Analyst 130, 1543–1550 (2005).
[Crossref]

Burnham, J.

P. C. Cross, J. Burnham, and P. A. Leighton, “The Raman spectrum and the structure of water,” J. Am. Chem. Soc. 59, 1134–1147 (1937).
[Crossref]

Buttery, L. D.

F. C. Pascut, H. T. Goh, N. Welch, L. D. Buttery, C. Denning, and I. Notingher, “Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells,” Biophys. J. 100, 251–259 (2011).
[Crossref]

Cagnano, E.

E. Azrad, E. Cagnano, S. Halevy, S. Rosenwaks, and I. Bar, “Bullous pemphigoid detection by micro-Raman spectroscopy and cluster analysis: structure alterations of proteins,” J. Raman Spectrosc. 36, 1034–1039 (2005).
[Crossref]

Calligaris, D.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

Calmettes, P. P.

P. P. Calmettes and M. W. Berns, “Laser-induced multiphoton processes in living cells,” Proc. Natl. Acad. Sci. USA 80, 7197–7199 (1983).
[Crossref]

Camelo-Piragua, S.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).
[Crossref]

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

I. S. Ryu, C. H. Camp, Y. Jin, M. T. Cicerone, and Y. J. Lee, “Beam scanning for rapid coherent Raman hyperspectral imaging,” Opt. Lett. 40, 5826–5829 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Campbell, C. J.

A. Jaworska, L. E. Jamieson, K. Malek, C. J. Campbell, J. Choo, S. Chlopicki, and M. Baranska, “SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α,” Analyst 140, 2321–2329 (2015).
[Crossref]

J. Jiang, C. Auchinvole, K. Fisher, and C. J. Campbell, “Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors,” Nanoscale 6, 12104–12110 (2014).
[Crossref]

C. A. Auchinvole, P. Richardson, C. McGuinnes, V. Mallikarjun, K. Donaldson, H. McNab, and C. J. Campbell, “Monitoring intracellular redox potential changes using SERS nanosensors,” ACS Nano 6, 888–896 (2012).
[Crossref]

Cançado, L. G.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9, 6297–6304 (2015).
[Crossref]

Candefjord, S.

Candeloro, P.

G. Das, R. La Rocca, T. Lakshmikanth, F. Gentile, R. Tallerico, L. P. Zambetti, J. Devitt, P. Candeloro, F. De Angelis, E. Carbone, and E. Di Fabrizio, “Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level,” J. Biomed. Opt. 15, 027007 (2010).
[Crossref]

Canetta, E.

E. Canetta, M. Mazilu, A. C. De Luca, A. E. Carruthers, K. Dholakia, S. Neilson, H. Sargeant, T. Briscoe, C. S. Herrington, and A. C. Riches, “Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples,” J. Biomed. Opt. 16, 037002 (2011).
[Crossref]

Canevari, R.

A. García-Flores, L. Raniero, R. Canevari, K. J. Jalkanen, R. Bitar, H. Martinho, and A. Martin, “High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer,” Theor. Chem. Acc. 130, 1231–1238 (2011).
[Crossref]

Capozzi, V.

G. Perna, M. Lasalvia, A. Castro, E. Mezzenga, N. L’Abbate, P. Biagi, and V. Capozzi, “Detection of pesticide effects in human keratinocytes by means of Raman microspectroscopy,” Appl. Phys. Lett. 95, 083701 (2009).
[Crossref]

Cappius, H.-J.

Carbone, E.

G. Das, R. La Rocca, T. Lakshmikanth, F. Gentile, R. Tallerico, L. P. Zambetti, J. Devitt, P. Candeloro, F. De Angelis, E. Carbone, and E. Di Fabrizio, “Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level,” J. Biomed. Opt. 15, 027007 (2010).
[Crossref]

Carden, A.

A. Carden and M. D. Morris, “Application of vibrational spectroscopy to the study of mineralized tissues (review),” J. Biomed. Opt. 5, 259–268 (2000).
[Crossref]

Carland, C.

N. D. Magee, J. R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D. A. Fennell, P. W. Hamilton, M. Ennis, J. J. McGarvey, and J. S. Elborn, “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” J. Biomed. Opt. 15, 026015 (2010).
[Crossref]

Caron, N. J.

H. G. Schulze, S. O. Konorov, N. J. Caron, J. M. Piret, M. W. Blades, and R. F. Turner, “Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy,” Anal. Chem. 82, 5020–5027 (2010).
[Crossref]

Carpenter, S.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[Crossref]

Carruthers, A. E.

E. Canetta, M. Mazilu, A. C. De Luca, A. E. Carruthers, K. Dholakia, S. Neilson, H. Sargeant, T. Briscoe, C. S. Herrington, and A. C. Riches, “Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples,” J. Biomed. Opt. 16, 037002 (2011).
[Crossref]

Carter, E.

E. Carter, H. Edwards, H. Gremlich, and B. Yan, Infrared and Raman Spectroscopy of Biological Materials (Marcel Dekker, 2000).

Caspers, P.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem. 387, 1691–1703 (2007).
[Crossref]

P. Caspers, G. Lucassen, and G. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003).
[Crossref]

B. Salmaso, G. Puppels, P. Caspers, R. Floris, R. Wever, and J. Greve, “Resonance Raman microspectroscopic characterization of eosinophil peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[Crossref]

Caspers, P. J.

P. D. Pudney, E. Y. Bonnist, P. J. Caspers, J.-P. Gorce, C. Marriot, G. J. Puppels, S. Singleton, and M. J. van der Wolf, “A new in vivo Raman probe for enhanced applicability to the body,” Appl. Spectrosc. 66, 882–891 (2012).
[Crossref]

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. B. Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12, 034004 (2007).
[Crossref]

S. Koljenovic, T. B. Schut, R. D. Wolthuis, B. De Jong, L. Santos, P. J. Caspers, J. M. Kros, and G. J. Puppels, “Tissue characterization using high wave number Raman spectroscopy,” J. Biomed. Opt. 10, 031116 (2005).
[Crossref]

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

Castro, A.

G. Perna, M. Lasalvia, A. Castro, E. Mezzenga, N. L’Abbate, P. Biagi, and V. Capozzi, “Detection of pesticide effects in human keratinocytes by means of Raman microspectroscopy,” Appl. Phys. Lett. 95, 083701 (2009).
[Crossref]

Celiksoy, S.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15, 1203–1211 (2016).

Cepeda-Pérez, E.

Cerullo, G.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy,” Light Sci. Appl. 5, e16149 (2016).

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref]

Chaiken, J.

T. Saxena, B. Deng, D. Stelzner, J. Hasenwinkel, and J. Chaiken, “Raman spectroscopic investigation of spinal cord injury in a rat model,” J. Biomed. Opt. 16, 027003 (2011).
[Crossref]

Chan, J.

L. Kong and J. Chan, “A rapidly modulated multifocal detection scheme for parallel acquisition of Raman spectra from a 2-D focal array,” Anal. Chem. 86, 6604–6609 (2014).
[Crossref]

Chan, J. W.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref]

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

J. W. Chan, A. Esposito, C. Talley, C. Hollars, S. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76, 599–603 (2004).
[Crossref]

Chaney, E. J.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).

Chang, S.-I.

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4, 124–129 (2012).
[Crossref]

Chang, Y.-T.

K. K. Maiti, U. Dinish, A. Samanta, M. Vendrell, K.-S. Soh, S.-J. Park, M. Olivo, and Y.-T. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[Crossref]

A. Samanta, K. K. Maiti, K.-S. Soh, X. Liao, M. Vendrell, U. S. Dinish, S.-W. Yun, R. Bhuvaneswari, H. Kim, S. Rautela, J. Chung, M. Olivo, and Y.-T. Chang, “Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection,” Angew. Chem. Int. Ed. 50, 6089–6092 (2011).
[Crossref]

K. K. Maiti, A. Samanta, M. Vendrell, K.-S. Soh, M. Olivo, and Y.-T. Chang, “Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters,” Chem. Commun. 47, 3514–3516 (2011).
[Crossref]

Chao, K.

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).

Charron, G.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. De La Fuente, X.-J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions,” Small 9, 1573–1584 (2013).
[Crossref]

Chase, B.

Chavantes, M. C.

L. Silveira, S. Sathaiah, R. A. Zângaro, M. T. Pacheco, M. C. Chavantes, and C. A. Pasqualucci, “Correlation between near-infrared Raman spectroscopy and the histopathological analysis of atherosclerosis in human coronary arteries,” Lasers Surg. Med. 30, 290–297 (2002).
[Crossref]

Chemnitz, M.

Chen, D.

K. Buckley, C. Atkins, D. Chen, H. Schulze, D. Devine, M. Blades, and R. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst 141, 1678–1685 (2016).
[Crossref]

N. Li, D. Chen, Y. Xu, S. Liu, and H. Zhang, “Confocal Raman micro-spectroscopy for rapid and label-free detection of maleic acid-induced variations in human sperm,” Biomed. Opt. Express 5, 1690–1699 (2014).
[Crossref]

Chen, G.

Chen, G. Z.

X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nat. Biotechnol. 26, 83–90 (2008).
[Crossref]

Chen, H.

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugne-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 134, 17076–17082 (2012).
[Crossref]

M. N. Slipchenko, T. T. Le, H. Chen, and J.-X. Cheng, “High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy,” J. Phys. Chem. B 113, 7681–7686 (2009).
[Crossref]

Chen, H.-Y.

J. Liu, D. Yin, S. Wang, H.-Y. Chen, and Z. Liu, “Probing low-copy-number proteins in a single living cell,” Angew. Chem. Int. Ed. 55, 13215–13218 (2016).
[Crossref]

Chen, J.

Chen, L. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Chen, P.

L. Cui, P. Chen, S. Chen, Z. Yuan, C. Yu, B. Ren, and K. Zhang, “In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy,” Anal. Chem. 85, 5436–5443 (2013).
[Crossref]

P. Chen, A. Shen, W. Zhao, S.-J. Baek, H. Yuan, and J. Hu, “Raman signature from brain hippocampus could aid Alzheimer’s disease diagnosis,” Appl. Opt. 48, 4743–4748 (2009).
[Crossref]

Chen, R.

Chen, S.

L. Cui, P. Chen, S. Chen, Z. Yuan, C. Yu, B. Ren, and K. Zhang, “In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy,” Anal. Chem. 85, 5436–5443 (2013).
[Crossref]

Chen, T.

S. Hong, T. Chen, Y. Zhu, A. Li, Y. Huang, and X. Chen, “Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules,” Angew. Chem. Int. Ed. 53, 5827–5831 (2014).
[Crossref]

Chen, X.

S. Hong, T. Chen, Y. Zhu, A. Li, Y. Huang, and X. Chen, “Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules,” Angew. Chem. Int. Ed. 53, 5827–5831 (2014).
[Crossref]

Z. Huang, X. Chen, Y. Li, J. Chen, J. Lin, J. Wang, J. Lei, and R. Chen, “Quantitative determination of citric acid in seminal plasma by using Raman spectroscopy,” Appl. Spectrosc. 67, 757–760 (2013).
[Crossref]

Chen, Y.

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).

D. Lin, S. Feng, J. Pan, Y. Chen, J. Lin, G. Chen, S. Xie, H. Zeng, and R. Chen, “Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis,” Opt. Express 19, 13565–13577 (2011).
[Crossref]

Chen, Z.

F. Hu, Z. Chen, L. Zhang, Y. Shen, L. Wei, and W. Min, “Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering,” Angew. Chem. 127, 9959–9963 (2015).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref]

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18, 2380–2388 (2010).
[Crossref]

Chen, Z. G.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71, 1526–1532 (2011).
[Crossref]

Cheng, J.-X.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref]

C. Zhang, D. Zhang, and J.-X. Cheng, “Coherent Raman scattering microscopy in biology and medicine,” Annu. Rev. Biomed. Eng. 17, 415–445 (2015).
[Crossref]

D. Zhang, P. Wang, M. N. Slipchenko, and J.-X. Cheng, “Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy,” Acc. Chem. Res. 47, 2282–2290 (2014).
[Crossref]

P. Wang, B. Liu, D. Zhang, M. Y. Belew, H. A. Tissenbaum, and J.-X. Cheng, “Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations,” Angew. Chem. Int. Ed. 53, 11787–11792 (2014).
[Crossref]

D. Zhang, M. N. Slipchenko, D. E. Leaird, A. M. Weiner, and J.-X. Cheng, “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21, 13864–13874 (2013).
[Crossref]

M. N. Slipchenko, R. A. Oglesbee, D. Zhang, W. Wu, and J.-X. Cheng, “Heterodyne detected nonlinear optical imaging in a lock-in free manner,” J. Biophoton. 5, 801–807 (2012).
[Crossref]

T. T. Le, S. Yue, and J.-X. Cheng, “Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 51, 3091–3102 (2010).
[Crossref]

T. T. Le and J.-X. Cheng, “Single-cell profiling reveals the origin of phenotypic variability in adipogenesis,” PLoS One 4, e5189 (2009).
[Crossref]

J. Zhu, B. Lee, K. K. Buhman, and J.-X. Cheng, “A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging,” J. Lipid Res. 50, 1080–1089 (2009).
[Crossref]

H.-W. Wang, I. M. Langohr, M. Sturek, and J.-X. Cheng, “Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy,” Arterioscler. Thromb. Vasc. Biol. 29, 1342–1348 (2009).
[Crossref]

M. N. Slipchenko, T. T. Le, H. Chen, and J.-X. Cheng, “High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy,” J. Phys. Chem. B 113, 7681–7686 (2009).
[Crossref]

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neorosci. Res. 85, 2870–2881 (2007).
[Crossref]

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14, 3942–3951 (2006).
[Crossref]

J.-X. Cheng and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B 108, 827–840 (2004).
[Crossref]

X. Nan, J.-X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208 (2003).
[Crossref]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106, 8493–8498 (2002).
[Crossref]

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[Crossref]

Cheng, M.

S. Feng, J. Lin, M. Cheng, Y.-Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63, 1089–1094 (2009).
[Crossref]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25, 388–394 (2009).
[Crossref]

Cheng, W.-T.

W.-T. Cheng, M.-T. Liu, H.-N. Liu, and S.-Y. Lin, “Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma,” Microsc. Res. Tech. 68, 75–79 (2005).
[Crossref]

Chernenko, T.

C. Matthäus, T. Chernenko, J. A. Newmark, C. M. Warner, and M. Diem, “Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy,” Biophys. J. 93, 668–673 (2007).
[Crossref]

Chidangil, S.

S. Barkur, A. Bankapur, M. Pradhan, S. Chidangil, D. Mathur, and U. Ladiwala, “Probing differentiation in cancer cell lines by single-cell micro-Raman spectroscopy,” J. Biomed. Opt. 20, 085001 (2015).
[Crossref]

Chis, V.

B. Lekprasert, V. Korolkov, A. Falamas, V. Chis, C. J. Roberts, S. J. Tendler, and I. Notingher, “Investigations of the supramolecular structure of individual diphenylalanine nano-and microtubes by polarized Raman microspectroscopy,” Biomacromolecules 13, 2181–2187 (2012).
[Crossref]

Chiu, L.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).

Chiu, W. S.

W. S. Chiu, N. A. Belsey, N. L. Garrett, J. Moger, M. B. Delgado-Charro, and R. H. Guy, “Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 7725–7730 (2015).
[Crossref]

Chlopicki, S.

A. Jaworska, L. E. Jamieson, K. Malek, C. J. Campbell, J. Choo, S. Chlopicki, and M. Baranska, “SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α,” Analyst 140, 2321–2329 (2015).
[Crossref]

Cho, B.-K.

J. Qin, M. S. Kim, W. F. Schmidt, B.-K. Cho, Y. Peng, and K. Chao, “A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy,” J. Raman Spectrosc. 47, 437–443 (2015).

Choi, H. Y.

S. Lee, S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh, “Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy,” Anal. Chem. 79, 916–922 (2007).
[Crossref]

Choi, S.

Chon, H.

S. Lee, H. Chon, J. Lee, J. Ko, B. H. Chung, D. W. Lim, and J. Choo, “Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging,” Biosens. Bioelectron. 51, 238–243 (2014).
[Crossref]

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4, 124–129 (2012).
[Crossref]

Choo, J.

A. Jaworska, L. E. Jamieson, K. Malek, C. J. Campbell, J. Choo, S. Chlopicki, and M. Baranska, “SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α,” Analyst 140, 2321–2329 (2015).
[Crossref]

S. Lee, H. Chon, J. Lee, J. Ko, B. H. Chung, D. W. Lim, and J. Choo, “Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging,” Biosens. Bioelectron. 51, 238–243 (2014).
[Crossref]

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4, 124–129 (2012).
[Crossref]

S. Lee, S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh, “Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy,” Anal. Chem. 79, 916–922 (2007).
[Crossref]

Choo-Smith, L.-P.

A. C.-T. Ko, L.-P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[Crossref]

Christensen, D. H.

M. Gniadecka, O. F. Nielsen, S. Wessel, M. Heidenheim, D. H. Christensen, and H. C. Wulf, “Water and protein structure in photoaged and chronically aged skin,” J. Invest. Dermatol. 111, 1129–1133 (1998).
[Crossref]

Christie-Brown, J.

J. Horsnell, P. Stonelake, J. Christie-Brown, G. Shetty, J. Hutchings, C. Kendall, and N. Stone, “Raman spectroscopy: a new method for the intraoperative assessment of axillary lymph nodes,” Analyst 135, 3042–3047 (2010).
[Crossref]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chu, H.

Chung, B. H.

S. Lee, H. Chon, J. Lee, J. Ko, B. H. Chung, D. W. Lim, and J. Choo, “Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging,” Biosens. Bioelectron. 51, 238–243 (2014).
[Crossref]

Chung, J.

A. Samanta, K. K. Maiti, K.-S. Soh, X. Liao, M. Vendrell, U. S. Dinish, S.-W. Yun, R. Bhuvaneswari, H. Kim, S. Rautela, J. Chung, M. Olivo, and Y.-T. Chang, “Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection,” Angew. Chem. Int. Ed. 50, 6089–6092 (2011).
[Crossref]

Cialla, D.

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Möller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40, 240–243 (2009).
[Crossref]

Ciancia, R.

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
[Crossref]

I. S. Ryu, C. H. Camp, Y. Jin, M. T. Cicerone, and Y. J. Lee, “Beam scanning for rapid coherent Raman hyperspectral imaging,” Opt. Lett. 40, 5826–5829 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Clark, I.

Clark, I. P.

Cleghorn, B.

A. C.-T. Ko, L.-P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[Crossref]

Clement, J.

S. Dochow, N. Bergner, C. Krafft, J. Clement, M. Mazilu, B. B. Praveen, P. C. Ashok, R. Marchington, K. Dholakia, and J. Popp, “Classification of Raman spectra of single cells with autofluorescence suppression by wavelength modulated excitation,” Anal. Methods 5, 4608–4614 (2013).
[Crossref]

U. Neugebauer, T. Bocklitz, J. Clement, C. Krafft, and J. Popp, “Towards detection and identification of circulating tumour cells using Raman spectroscopy,” Analyst 135, 3178–3182 (2010).
[Crossref]

Cobley, C. M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[Crossref]

Coburn, L.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[Crossref]

Colombo, C.

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref]

C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” Analyst 140, 8127–8133 (2015).
[Crossref]

C. Conti, C. Colombo, M. Realini, G. Zerbi, and P. Matousek, “Subsurface Raman analysis of thin painted layers,” Appl. Spectrosc. 68, 686–691 (2014).
[Crossref]

Conti, C.

C. Conti, M. Realini, C. Colombo, and P. Matousek, “Comparison of key modalities of micro-scale spatially offset Raman spectroscopy,” Analyst 140, 8127–8133 (2015).
[Crossref]

C. Conti, M. Realini, C. Colombo, K. Sowoidnich, N. K. Afseth, M. Bertasa, A. Botteon, and P. Matousek, “Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy,” Anal. Chem. 87, 5810–5815 (2015).
[Crossref]

C. Conti, C. Colombo, M. Realini, G. Zerbi, and P. Matousek, “Subsurface Raman analysis of thin painted layers,” Appl. Spectrosc. 68, 686–691 (2014).
[Crossref]

Contreras-Rojas, L. R.

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8, 969–975 (2011).
[Crossref]

Cooke, B. M.

B. R. Wood, A. Hermelink, P. Lasch, K. R. Bambery, G. T. Webster, M. A. Khiavi, B. M. Cooke, S. Deed, D. Naumann, and D. McNaughton, “Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics,” Analyst 134, 1119–1125 (2009).
[Crossref]

B. R. Wood, S. J. Langford, B. M. Cooke, F. K. Glenister, J. Lim, and D. McNaughton, “Raman imaging of hemozoin within the food vacuole of plasmodium falciparum trophozoites,” FEBS Lett. 554, 247–252 (2003).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Corset, J.

G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic, 1996).

Costas, C.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15, 1203–1211 (2016).

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Cozar, O.

S. C. Pînzaru, L. Andronie, I. Domsa, O. Cozar, and S. Astilean, “Bridging biomolecules with nanoparticles: surface-enhanced Raman scattering from colon carcinoma and normal tissue,” J. Raman Spectrosc. 39, 331–334 (2008).
[Crossref]

Craig, D.

D. Craig, S. McAughtrie, J. Simpson, C. McCraw, K. Faulds, and D. Graham, “Confocal SERS mapping of glycan expression for the identification of cancerous cells,” Anal. Chem. 86, 4775–4782 (2014).
[Crossref]

Cross, P. C.

P. C. Cross, J. Burnham, and P. A. Leighton, “The Raman spectrum and the structure of water,” J. Am. Chem. Soc. 59, 1134–1147 (1937).
[Crossref]

Crow, P.

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
[Crossref]

N. Stone, C. Kendall, N. Shepherd, P. Crow, and H. Barr, “Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers,” J. Raman Spectrosc. 33, 564–573 (2002).
[Crossref]

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 102, 12371–12376 (2005).
[Crossref]

Cui, J.

J. Cui, S. Matsuoka, M. Kinoshita, N. Matsumori, F. Sato, M. Murata, J. Ando, H. Yamakoshi, K. Dodo, and M. Sodeoka, “Novel Raman-tagged sphingomyelin that closely mimics original raft-forming behavior,” Bioorg. Med. Chem. 23, 2989–2994 (2015).
[Crossref]

Cui, L.

L. Cui, P. Chen, S. Chen, Z. Yuan, C. Yu, B. Ren, and K. Zhang, “In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy,” Anal. Chem. 85, 5436–5443 (2013).
[Crossref]

Çulha, M.

S. Mert and M. Çulha, “Surface-enhanced Raman scattering-based detection of cancerous renal cells,” Appl. Spectrosc. 68, 617–624 (2014).
[Crossref]

Ö. F. Karata, E. Sezgin, Ö. Aydın, and M. Çulha, “Interaction of gold nanoparticles with mitochondria,” Colloids Surf. B 71, 315–318 (2009).
[Crossref]

da Silva Martinho, H.

R. A. Bitar, H. da Silva Martinho, C. J. Tierra-Criollo, L. N. Z. Ramalho, M. M. Netto, and A. A. Martin, “Biochemical analysis of human breast tissues using Fourier-transform Raman spectroscopy,” J. Biomed. Opt. 11, 054001 (2006).
[Crossref]

Daims, H.

W. E. Huang, K. Stoecker, R. Griffiths, L. Newbold, H. Daims, A. S. Whiteley, and M. Wagner, “Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in vivo hybridization for the single cell analysis of identity and function,” Environ. Microbiol. 9, 1878–1889 (2007).
[Crossref]

Daniele, J. R.

X. Zhang, M. B. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” Chem. Phys. Chem. 13, 1054–1059 (2012).
[Crossref]

Danielson, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7, 137–145 (2011).
[Crossref]

Dantus, M.

H. Tu, Y. Liu, D. Turchinovich, M. Marjanovic, J. K. Lyngsø, J. Lægsgaard, E. J. Chaney, Y. Zhao, S. You, W. L. Wilson, B. Xu, M. Dantus, and S. A. Boppart, “Stain-free histopathology by programmable supercontinuum pulses,” Nat. Photonics 10, 534–540 (2016).

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

Das, G.

G. Das, R. La Rocca, T. Lakshmikanth, F. Gentile, R. Tallerico, L. P. Zambetti, J. Devitt, P. Candeloro, F. De Angelis, E. Carbone, and E. Di Fabrizio, “Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level,” J. Biomed. Opt. 15, 027007 (2010).
[Crossref]

Dasari, R.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Dasari, R. R.

J. W. Kang, P. T. So, R. R. Dasari, and D.-K. Lim, “High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap,” Nano Lett. 15, 1766–1772 (2015).
[Crossref]

I. Barman, N. C. Dingari, A. Saha, S. McGee, L. H. Galindo, W. Liu, D. Plecha, N. Klein, R. R. Dasari, and M. Fitzmaurice, “Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy,” Cancer Res. 73, 3206–3215 (2013).
[Crossref]

N. C. Dingari, I. Barman, J. W. Kang, C.-R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16, 087009 (2011).
[Crossref]

J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2, 2484–2492 (2011).
[Crossref]

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: prospective analysis,” J. Biomed. Opt. 14, 054023 (2009).
[Crossref]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 102, 12371–12376 (2005).
[Crossref]

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56, 150–154 (2002).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Davis, L.

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10, 014005 (2005).
[Crossref]

Davis, R.

N. D. Magee, J. R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D. A. Fennell, P. W. Hamilton, M. Ennis, J. J. McGarvey, and J. S. Elborn, “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” J. Biomed. Opt. 15, 026015 (2010).
[Crossref]

Davis, S. C.

Day, J. C.

de Almeida, M. L.

C. J. Saatkamp, M. L. de Almeida, J. A. M. Bispo, A. L. B. Pinheiro, A. B. Fernandes, and L. Silveira, “Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease,” J. Biomed. Opt. 21, 037001 (2016).
[Crossref]

De Angelis, F.

G. Das, R. La Rocca, T. Lakshmikanth, F. Gentile, R. Tallerico, L. P. Zambetti, J. Devitt, P. Candeloro, F. De Angelis, E. Carbone, and E. Di Fabrizio, “Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level,” J. Biomed. Opt. 15, 027007 (2010).
[Crossref]

de Boeij, W. P.

E. O. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. USA 98, 1577–1582 (2001).

De Boer, H.

G. Puppels, A. Huizinga, H. Krabbe, H. De Boer, G. Gijsbers, and F. De Mul, “A high-throughput Raman notch filter set,” Rev. Sci. Instrum. 61, 3709–3712 (1990).
[Crossref]

De Gelder, J.

J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “Reference database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38, 1133–1147 (2007).
[Crossref]

De Grauw, C.

G. Puppels, T. B. Schut, N. Sijtsema, M. Grond, F. Maraboeuf, C. De Grauw, C. Figdor, and J. Greve, “Development and application of Raman microspectroscopic and Raman imaging techniques for cell biological studies,” J. Mol. Struct. 347, 477–483 (1995).
[Crossref]

De Gussem, K.

J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “Reference database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38, 1133–1147 (2007).
[Crossref]

De Jager, P. L.

C. W. Freudiger, R. Pfannl, D. A. Orringer, B. G. Saar, M. Ji, Q. Zeng, L. Ottoboni, W. Ying, C. Waeber, J. R. Sims, P. L. De Jager, O. Sagher, M. A. Philbert, X. Xu, S. Kesari, X. S. Xie, and G. S. Young, “Multicolored stain-free histopathology with coherent Raman imaging,” Lab. Invest. 92, 1492–1502 (2012).
[Crossref]

De Jong, B.

S. Koljenovic, T. B. Schut, R. D. Wolthuis, B. De Jong, L. Santos, P. J. Caspers, J. M. Kros, and G. J. Puppels, “Tissue characterization using high wave number Raman spectroscopy,” J. Biomed. Opt. 10, 031116 (2005).
[Crossref]

De La Fuente, J. M.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. De La Fuente, X.-J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions,” Small 9, 1573–1584 (2013).
[Crossref]

de la Rosa, E.

De Luca, A. C.

E. Canetta, M. Mazilu, A. C. De Luca, A. E. Carruthers, K. Dholakia, S. Neilson, H. Sargeant, T. Briscoe, C. S. Herrington, and A. C. Riches, “Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples,” J. Biomed. Opt. 16, 037002 (2011).
[Crossref]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

M. Mazilu, A. C. De Luca, A. Riches, C. S. Herrington, and K. Dholakia, “Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy,” Opt. Express 18, 11382–11395 (2010).
[Crossref]

A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman tweezers,” Opt. Express 16, 7943–7957 (2008).
[Crossref]

de Matos Granja, N.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

De Mul, F.

G. Puppels, J. Olminkhof, G. Segers-Nolten, C. Otto, F. De Mul, and J. Greve, “Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5  nm but not with 660  nm laser light,” Exp. Cell Res. 195, 361–367 (1991).
[Crossref]

G. Puppels, H. Garritsen, G. Segers-Nolten, F. De Mul, and J. Greve, “Raman microspectroscopic approach to the study of human granulocytes,” Biophys. J. 60, 1046–1056 (1991).
[Crossref]

G. Puppels, A. Huizinga, H. Krabbe, H. De Boer, G. Gijsbers, and F. De Mul, “A high-throughput Raman notch filter set,” Rev. Sci. Instrum. 61, 3709–3712 (1990).
[Crossref]

G. Puppels, F. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. Arndt-Jovin, and T. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).

Deckert, V.

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy-DFT assessment of the chemical effect,” Nanoscale 8, 10229–10239 (2016).
[Crossref]

C. Leiterer, T. Deckert-Gaudig, P. Singh, J. Wirth, V. Deckert, and W. Fritzsche, “Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy,” Electrophoresis 36, 1142–1148 (2015).
[Crossref]

D. Kurouski, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS),” Biophys. J. 106, 263–271 (2014).
[Crossref]

D. Kurouski, T. Postiglione, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens,” Analyst 138, 1665–1673 (2013).
[Crossref]

T. Deckert-Gaudig, R. Böhme, E. Freier, A. Sebesta, T. Merkendorf, J. Popp, K. Gerwert, and V. Deckert, “Nanoscale distinction of membrane patches—a TERS study of Halobacterium salinarum,” J. Biophoton. 5, 582–591 (2012).
[Crossref]

B. R. Wood, M. Asghari-Khiavi, E. Bailo, D. McNaughton, and V. Deckert, “Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering,” Nano Lett. 12, 1555–1560 (2012).
[Crossref]

D. Kurouski, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Structure and composition of insulin fibril surfaces probed by TERS,” J. Am. Chem. Soc. 134, 13323–13329 (2012).
[Crossref]

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases—a tip-enhanced Raman approach,” Beilstein J. Nanotechnol. 2, 628–637 (2011).
[Crossref]

B. R. Wood, E. Bailo, M. A. Khiavi, L. Tilley, S. Deed, T. Deckert-Gaudig, D. McNaughton, and V. Deckert, “Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte,” Nano Lett. 11, 1868–1873 (2011).
[Crossref]

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Möller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40, 240–243 (2009).
[Crossref]

T. Deckert-Gaudig and V. Deckert, “Ultraflat transparent gold nanoplates-ideal substrates for tip-enhanced Raman scattering experiments,” Small 5, 432–436 (2009).
[Crossref]

E. Bailo and V. Deckert, “Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method,” Angew. Chem. Int. Ed. 47, 1658–1661 (2008).
[Crossref]

U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt, and J. Popp, “Towards a detailed understanding of bacterial metabolism—spectroscopic characterization of Staphylococcus epidermidis,” ChemPhysChem 8, 124–137 (2007).
[Crossref]

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, and V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[Crossref]

Deckert-Gaudig, T.

C. Leiterer, T. Deckert-Gaudig, P. Singh, J. Wirth, V. Deckert, and W. Fritzsche, “Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy,” Electrophoresis 36, 1142–1148 (2015).
[Crossref]

D. Kurouski, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS),” Biophys. J. 106, 263–271 (2014).
[Crossref]

D. Kurouski, T. Postiglione, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens,” Analyst 138, 1665–1673 (2013).
[Crossref]

D. Kurouski, T. Deckert-Gaudig, V. Deckert, and I. K. Lednev, “Structure and composition of insulin fibril surfaces probed by TERS,” J. Am. Chem. Soc. 134, 13323–13329 (2012).
[Crossref]

T. Deckert-Gaudig, R. Böhme, E. Freier, A. Sebesta, T. Merkendorf, J. Popp, K. Gerwert, and V. Deckert, “Nanoscale distinction of membrane patches—a TERS study of Halobacterium salinarum,” J. Biophoton. 5, 582–591 (2012).
[Crossref]

B. R. Wood, E. Bailo, M. A. Khiavi, L. Tilley, S. Deed, T. Deckert-Gaudig, D. McNaughton, and V. Deckert, “Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte,” Nano Lett. 11, 1868–1873 (2011).
[Crossref]

R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig, and V. Deckert, “Distinction of nucleobases—a tip-enhanced Raman approach,” Beilstein J. Nanotechnol. 2, 628–637 (2011).
[Crossref]

T. Deckert-Gaudig and V. Deckert, “Ultraflat transparent gold nanoplates-ideal substrates for tip-enhanced Raman scattering experiments,” Small 5, 432–436 (2009).
[Crossref]

D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Möller, D. Naumann, V. Deckert, and J. Popp, “Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus,” J. Raman Spectrosc. 40, 240–243 (2009).
[Crossref]

Deed, S.

B. R. Wood, E. Bailo, M. A. Khiavi, L. Tilley, S. Deed, T. Deckert-Gaudig, D. McNaughton, and V. Deckert, “Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte,” Nano Lett. 11, 1868–1873 (2011).
[Crossref]

B. R. Wood, A. Hermelink, P. Lasch, K. R. Bambery, G. T. Webster, M. A. Khiavi, B. M. Cooke, S. Deed, D. Naumann, and D. McNaughton, “Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics,” Analyst 134, 1119–1125 (2009).
[Crossref]

Del Pino, P.

B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J. M. De La Fuente, X.-J. Liang, W. J. Parak, and P. Del Pino, “Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions,” Small 9, 1573–1584 (2013).
[Crossref]

Delgado-Charro, M. B.

W. S. Chiu, N. A. Belsey, N. L. Garrett, J. Moger, M. B. Delgado-Charro, and R. H. Guy, “Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 7725–7730 (2015).
[Crossref]

Delhaye, M.

M. Delhaye and P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman Spectrosc. 3, 33–43 (1975).
[Crossref]

Demers, J.-L. H.

den Hollander, J. C.

A. Nijssen, K. Maquelin, L. F. Santos, P. J. Caspers, T. C. B. Schut, J. C. den Hollander, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy,” J. Biomed. Opt. 12, 034004 (2007).
[Crossref]

Deng, B.

T. Saxena, B. Deng, D. Stelzner, J. Hasenwinkel, and J. Chaiken, “Raman spectroscopic investigation of spinal cord injury in a rat model,” J. Biomed. Opt. 16, 027003 (2011).
[Crossref]

Deng, J.

J. Deng, Q. Wei, M. Zhang, Y. Wang, and Y.-Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[Crossref]

Denning, C.

F. C. Pascut, S. Kalra, V. George, N. Welch, C. Denning, and I. Notingher, “Non-invasive label-free monitoring the cardiac differentiation of human embryonic stem cells in vivo by Raman spectroscopy,” Biochim. Biophys. Acta 1830, 3517–3524 (2013).
[Crossref]

F. C. Pascut, H. T. Goh, N. Welch, L. D. Buttery, C. Denning, and I. Notingher, “Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells,” Biophys. J. 100, 251–259 (2011).
[Crossref]

Desroches, J.

Devine, D.

K. Buckley, C. Atkins, D. Chen, H. Schulze, D. Devine, M. Blades, and R. Turner, “Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags,” Analyst 141, 1678–1685 (2016).
[Crossref]

Devitt, J.

G. Das, R. La Rocca, T. Lakshmikanth, F. Gentile, R. Tallerico, L. P. Zambetti, J. Devitt, P. Candeloro, F. De Angelis, E. Carbone, and E. Di Fabrizio, “Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level,” J. Biomed. Opt. 15, 027007 (2010).
[Crossref]

Dhamelincourt, P.

M. Delhaye and P. Dhamelincourt, “Raman microprobe and microscope with laser excitation,” J. Raman Spectrosc. 3, 33–43 (1975).
[Crossref]

Dholakia, K.

S. Dochow, N. Bergner, C. Krafft, J. Clement, M. Mazilu, B. B. Praveen, P. C. Ashok, R. Marchington, K. Dholakia, and J. Popp, “Classification of Raman spectra of single cells with autofluorescence suppression by wavelength modulated excitation,” Anal. Methods 5, 4608–4614 (2013).
[Crossref]

P. C. Ashok, B. B. Praveen, N. Bellini, A. Riches, K. Dholakia, and C. S. Herrington, “Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon,” Biomed. Opt. Express 4, 2179–2186 (2013).
[Crossref]

E. Canetta, M. Mazilu, A. C. De Luca, A. E. Carruthers, K. Dholakia, S. Neilson, H. Sargeant, T. Briscoe, C. S. Herrington, and A. C. Riches, “Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples,” J. Biomed. Opt. 16, 037002 (2011).
[Crossref]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

M. Mazilu, A. C. De Luca, A. Riches, C. S. Herrington, and K. Dholakia, “Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy,” Opt. Express 18, 11382–11395 (2010).
[Crossref]

Di Fabrizio, E.

G. Das, R. La Rocca, T. Lakshmikanth, F. Gentile, R. Tallerico, L. P. Zambetti, J. Devitt, P. Candeloro, F. De Angelis, E. Carbone, and E. Di Fabrizio, “Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level,” J. Biomed. Opt. 15, 027007 (2010).
[Crossref]

Di Napoli, C.

Di Stefano, F.

Dickensheets, D. L.

Diem, M.

M. Diem, A. Mazur, K. Lenau, J. Schubert, B. Bird, M. Miljković, C. Krafft, and J. Popp, “Molecular pathology via IR and Raman spectral imaging,” J. Biophoton. 6, 855–886 (2013).
[Crossref]

C. Matthäus, T. Chernenko, J. A. Newmark, C. M. Warner, and M. Diem, “Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy,” Biophys. J. 93, 668–673 (2007).
[Crossref]

M. Diem, Introduction to Modern Vibrational Spectroscopy (Wiley, 1993), Vol. 543.

Dietzek, B.

C. Krafft, B. Dietzek, M. Schmitt, and J. Popp, “Raman and coherent anti-stokes Raman scattering microspectroscopy for biomedical applications,” J. Biomed. Opt. 17, 040801 (2012).
[Crossref]

T. Meyer, N. Bergner, A. Medyukhina, B. Dietzek, C. Krafft, B. F. Romeike, R. Reichart, R. Kalff, and J. Popp, “Interpreting CARS images of tissue within the C–H-stretching region,” J. Biophoton. 5, 729–733 (2012).
[Crossref]

C. Matthäus, C. Krafft, B. Dietzek, B. R. Brehm, S. Lorkowski, and J. Popp, “Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling,” Anal. Chem. 84, 8549–8556 (2012).
[Crossref]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20, 4484–4493 (2012).
[Crossref]

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Express 20, 20156–20169 (2012).
[Crossref]

C. Krafft, A. A. Ramoji, C. Bielecki, N. Vogler, T. Meyer, D. Akimov, P. Rösch, M. Schmitt, B. Dietzek, I. Petersen, A. Stallmach, and J. Popp, “A comparative Raman and CARS imaging study of colon tissue,” J. Biophoton. 2, 303–312 (2009).
[Crossref]

Ding, H.

Dingari, N. C.

I. Barman, N. C. Dingari, A. Saha, S. McGee, L. H. Galindo, W. Liu, D. Plecha, N. Klein, R. R. Dasari, and M. Fitzmaurice, “Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy,” Cancer Res. 73, 3206–3215 (2013).
[Crossref]

N. C. Dingari, I. Barman, J. W. Kang, C.-R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16, 087009 (2011).
[Crossref]

J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2, 2484–2492 (2011).
[Crossref]

Dinish, U.

K. K. Maiti, U. Dinish, A. Samanta, M. Vendrell, K.-S. Soh, S.-J. Park, M. Olivo, and Y.-T. Chang, “Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags,” Nano Today 7(2), 85–93 (2012).
[Crossref]

Dinish, U. S.

A. Samanta, K. K. Maiti, K.-S. Soh, X. Liao, M. Vendrell, U. S. Dinish, S.-W. Yun, R. Bhuvaneswari, H. Kim, S. Rautela, J. Chung, M. Olivo, and Y.-T. Chang, “Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection,” Angew. Chem. Int. Ed. 50, 6089–6092 (2011).
[Crossref]

Dochow, S.

S. Dochow, N. Bergner, C. Krafft, J. Clement, M. Mazilu, B. B. Praveen, P. C. Ashok, R. Marchington, K. Dholakia, and J. Popp, “Classification of Raman spectra of single cells with autofluorescence suppression by wavelength modulated excitation,” Anal. Methods 5, 4608–4614 (2013).
[Crossref]

S. Dochow, I. Latka, M. Becker, R. Spittel, J. Kobelke, K. Schuster, A. Graf, S. Brückner, S. Unger, M. Rothhardt, B. Dietzek, C. Krafft, and J. Popp, “Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing,” Opt. Express 20, 20156–20169 (2012).
[Crossref]

Dodo, K.

J. Cui, S. Matsuoka, M. Kinoshita, N. Matsumori, F. Sato, M. Murata, J. Ando, H. Yamakoshi, K. Dodo, and M. Sodeoka, “Novel Raman-tagged sphingomyelin that closely mimics original raft-forming behavior,” Bioorg. Med. Chem. 23, 2989–2994 (2015).
[Crossref]

H. Yamakoshi, A. Palonpon, K. Dodo, J. Ando, S. Kawata, K. Fujita, and M. Sodeoka, “A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria,” Bioorg. Med. Chem. Lett. 25, 664–667 (2015).
[Crossref]

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref]

H. Yamakoshi, K. Dodo, M. Okada, J. Ando, A. Palonpon, K. Fujita, S. Kawata, and M. Sodeoka, “Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy,” J. Am. Chem. Soc. 133, 6102–6105 (2011).
[Crossref]

Domke, K. F.

K. F. Domke, D. Zhang, and B. Pettinger, “Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111),” J. Am. Chem. Soc. 129, 6708–6709 (2007).
[Crossref]

Domsa, I.

S. C. Pînzaru, L. Andronie, I. Domsa, O. Cozar, and S. Astilean, “Bridging biomolecules with nanoparticles: surface-enhanced Raman scattering from colon carcinoma and normal tissue,” J. Raman Spectrosc. 39, 331–334 (2008).
[Crossref]

Donaldson, K.

C. A. Auchinvole, P. Richardson, C. McGuinnes, V. Mallikarjun, K. Donaldson, H. McNab, and C. J. Campbell, “Monitoring intracellular redox potential changes using SERS nanosensors,” ACS Nano 6, 888–896 (2012).
[Crossref]

Dong, C. C. S.

A. C.-T. Ko, L.-P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[Crossref]

Dong, Z. C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Downes, A.

A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
[Crossref]

Draga, R.

Draga, R. O.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. V. Swol, T. G. Jonges, J. A. Kummer, and J. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82, 5993–5999 (2010).
[Crossref]

Draper, E.

Draper, E. R.

P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc. 60, 758–763 (2006).
[Crossref]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

Draux, F.

F. Draux, P. Jeannesson, A. Beljebbar, A. Tfayli, N. Fourre, M. Manfait, J. Sulé-Suso, and G. D. Sockalingum, “Raman spectral imaging of single living cancer cells: a preliminary study,” Analyst 134, 542–548 (2009).
[Crossref]

Dreaden, E. C.

L. A. Austin, M. A. Mackey, E. C. Dreaden, and M. A. El-Sayed, “The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery,” Arch. Toxicol. 88, 1391–1417 (2014).
[Crossref]

Drescher, D.

D. Drescher, T. Büchner, D. McNaughton, and J. Kneipp, “SERS reveals the specific interaction of silver and gold nanoparticles with hemoglobin and red blood cell components,” Phys. Chem. Chem. Phys. 15, 5364–5373 (2013).
[Crossref]

D. Drescher and J. Kneipp, “Nanomaterials in complex biological systems: insights from Raman spectroscopy,” Chem. Soc. Rev. 41, 5780–5799 (2012).
[Crossref]

A. Matschulat, D. Drescher, and J. Kneipp, “Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems,” ACS Nano 4, 3259–3269 (2010).
[Crossref]

Du, C.

Y. You, N. Purnawirman, H. Hu, J. Kasim, H. Yang, C. Du, T. Yu, and Z. Shen, “Tip-enhanced Raman spectroscopy using single-crystalline Ag nanowire as tip,” J. Raman Spectrosc. 41, 1156–1162 (2010).
[Crossref]

Du, Z.

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).

Duan, X.

Dukor, R. K.

R. K. Dukor, “Vibrational spectroscopy in the detection of cancer,” in Handbook of Vibrational Spectroscopy (Wiley, 2002), pp. 3335–3361.

Duncan, M. D.

Duraipandian, S.

S. Duraipandian, M. S. Bergholt, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, A. Shabbir, and Z. Huang, “Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,” J. Biomed. Opt. 17, 081418 (2012).
[Crossref]

S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran, and Z. Huang, “Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo,” Anal. Chem. 84, 5913–5919 (2012).
[Crossref]

S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran, and Z. Huang, “In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques,” Analyst 136, 4328–4336 (2011).
[Crossref]

Durlach, A.

E. Ly, A. Durlach, F. Antonicelli, P. Bernard, M. Manfait, and O. Piot, “Probing tumor and peritumoral tissues in superficial and nodular basal cell carcinoma using polarized Raman microspectroscopy,” Exp. Dermatol. 19, 68–73 (2010).
[Crossref]

Dyer, C.

I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay, and L. L. Hench, “Discrimination between ricin and sulphur mustard toxicity in vivo using Raman spectroscopy,” J. R. Soc. Interface 1, 79–90 (2004).
[Crossref]

Eckhardt, G.

G. Eckhardt, R. Hellwarth, F. McClung, S. Schwarz, D. Weiner, and E. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Edwards, H.

A. Williams and H. Edwards, “Fourier transform Raman spectroscopy of bacterial cell walls,” J. Raman Spectrosc. 25, 673–677 (1994).
[Crossref]

E. Carter, H. Edwards, H. Gremlich, and B. Yan, Infrared and Raman Spectroscopy of Biological Materials (Marcel Dekker, 2000).

Edwards, H. G.

H. G. Edwards, D. W. Farwell, A. C. Williams, B. W. Barry, and F. Rull, “Novel spectroscopic deconvolution procedure for complex biological systems: vibrational components in the FT-Raman spectra of ice-man and contemporary skin,” J. Chem. Soc. Faraday Trans. 91, 3883–3887 (1995).
[Crossref]

Eikje, N. S.

N. S. Eikje, Y. Ozaki, K. Aizawa, and S. Arase, “Fiber optic near-infrared Raman spectroscopy for clinical noninvasive determination of water content in diseased skin and assessment of cutaneous edema,” J. Biomed. Opt. 10, 014013 (2005).
[Crossref]

Ekgasit, S.

Elborn, J. S.

N. D. Magee, J. R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D. A. Fennell, P. W. Hamilton, M. Ennis, J. J. McGarvey, and J. S. Elborn, “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” J. Biomed. Opt. 15, 026015 (2010).
[Crossref]

Elfick, A.

A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
[Crossref]

I. Notingher and A. Elfick, “Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips,” J. Phys. Chem. B 109, 15699–15706 (2005).
[Crossref]

Eliasson, C.

C. Eliasson and P. Matousek, “Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy,” Anal. Chem. 79, 1696–1701 (2007).
[Crossref]

C. Eliasson, N. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79, 8185–8189 (2007).
[Crossref]

C. Eliasson, A. Lorén, J. Engelbrektsson, M. Josefson, J. Abrahamsson, and K. Abrahamsson, “Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation,” Spectrochim. Acta A 61, 755–760 (2005).
[Crossref]

Ellis, D. L.

C. A. Patil, H. Kirshnamoorthi, D. L. Ellis, T. G. van Leeuwen, and A. Mahadevan-Jansen, “A clinical instrument for combined Raman spectroscopy-optical coherence tomography of skin cancers,” Lasers Surg. Med. 43, 143–151 (2011).
[Crossref]

Ellis, I.

K. Kong, F. Zaabar, E. Rakha, I. Ellis, A. Koloydenko, and I. Notingher, “Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman micro-spectroscopy,” Phys. Med. Boil. 59, 6141–6152 (2014).
[Crossref]

El-Mashtoly, S. F.

S. F. El-Mashtoly, D. Niedieker, D. Petersen, S. D. Krauss, E. Freier, A. Maghnouj, A. Mosig, S. Hahn, C. Kötting, and K. Gerwert, “Automated identification of subcellular organelles by coherent anti-Stokes Raman scattering,” Biophys. J. 106, 1910–1920 (2014).
[Crossref]

Elomaa, M.

E. Katainen, M. Elomaa, U.-M. Laakkonen, E. Sippola, P. Niemelä, J. Suhonen, and K. Järvinen, “Quantification of the amphetamine content in seized street samples by Raman spectroscopy,” J. Forensic Sci. 52, 88–92 (2007).
[Crossref]

Elsaesser, T.

C. Ropers, C. Neacsu, T. Elsaesser, M. Albrecht, M. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7, 1591–1597 (2007).
[Crossref]

El-Sayed, M. A.

L. A. Austin, M. A. Mackey, E. C. Dreaden, and M. A. El-Sayed, “The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery,” Arch. Toxicol. 88, 1391–1417 (2014).
[Crossref]

B. Kang, L. A. Austin, and M. A. El-Sayed, “Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy,” Nano Lett. 12, 5369–5375 (2012).
[Crossref]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7, 1591–1597 (2007).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[Crossref]

Elschner, M.

S. Stöckel, S. Meisel, M. Elschner, P. Rosch, and J. Popp, “Identification of Bacillus anthracis via Raman spectroscopy and chemometric approaches,” Anal. Chem. 84, 9873–9880 (2012).
[Crossref]

Elsheikha, H.

K. Kong, C. J. Rowlands, H. Elsheikha, and I. Notingher, “Label-free molecular analysis of live Neospora caninum tachyzoites in host cells by selective scanning Raman micro-spectroscopy,” Analyst 137, 4119–4122 (2012).
[Crossref]

Elsheikha, H. M.

A. Naemat, H. M. Elsheikha, R. A. Boitor, and I. Notingher, “Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging,” Sci. Rep. 6, 20811 (2016).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref]

Endo, H.

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. USA 109, 28–32 (2012).
[Crossref]

Enejder, A.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 104, 14658–14663 (2007).
[Crossref]

Engelbrektsson, J.

C. Eliasson, A. Lorén, J. Engelbrektsson, M. Josefson, J. Abrahamsson, and K. Abrahamsson, “Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation,” Spectrochim. Acta A 61, 755–760 (2005).
[Crossref]

English, J.

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23, 649–655 (2003).

Ennis, M.

N. D. Magee, J. R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D. A. Fennell, P. W. Hamilton, M. Ennis, J. J. McGarvey, and J. S. Elborn, “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” J. Biomed. Opt. 15, 026015 (2010).
[Crossref]

Erfurth, S. C.

S. C. Erfurth, E. J. Kiser, and W. L. Peticolas, “Determination of the backbone structure of nucleic acids and nucleic acid oligomers by laser Raman scattering,” Proc. Natl. Acad. Sci. USA 69, 938–941 (1972).
[Crossref]

Esmonde-White, F. W.

Esmonde-White, K. A.

Espina Palanco, M.

M. Espina Palanco, K. B. Mogensen, and K. Kneipp, “Raman spectroscopic probing of plant material using SERS,” J. Raman Spectrosc. 47, 156–161 (2016).
[Crossref]

Esposito, A.

J. W. Chan, A. Esposito, C. Talley, C. Hollars, S. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76, 599–603 (2004).
[Crossref]

Etchegoin, P.

E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2008).

Eustace, D.

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[Crossref]

C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076–12087 (2007).
[Crossref]

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872–1874 (2006).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 102, 16807–16812 (2005).
[Crossref]

Everall, N.

Eyring, N. J.

S. D. Bergeson, J. B. Peatross, N. J. Eyring, J. F. Fralick, D. N. Stevenson, and S. B. Ferguson, “Resonance Raman measurements of carotenoids using light-emitting diodes,” J. Biomed. Opt. 13, 044026 (2008).
[Crossref]

Faber, D. J.

C. A. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined Raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16, 011007 (2011).
[Crossref]

Fabris, L.

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

Falagan-Lotsch, P.

P. Falagan-Lotsch, E. M. Grzincic, and C. J. Murphy, “One low-dose exposure of gold nanoparticles induces long-term changes in human cells,” Proc. Natl. Acad. Sci. USA 113, 13318–13323 (2016).

Falamas, A.

B. Lekprasert, V. Korolkov, A. Falamas, V. Chis, C. J. Roberts, S. J. Tendler, and I. Notingher, “Investigations of the supramolecular structure of individual diphenylalanine nano-and microtubes by polarized Raman microspectroscopy,” Biomacromolecules 13, 2181–2187 (2012).
[Crossref]

Fällman, E.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002).
[Crossref]

Fan, Q.

G. Zhu, X. Zhu, Q. Fan, and X. Wan, “Raman spectra of amino acids and their aqueous solutions,” Spectrochim. Acta A 78, 1187–1195 (2011).
[Crossref]

Faraday, M.

M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. London 147, 145–181 (1857).
[Crossref]

Farquharson, S.

S. Farquharson, C. Shende, F. E. Inscore, P. Maksymiuk, and A. Gift, “Analysis of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 36, 208–212 (2005).
[Crossref]

Farwell, D. W.

H. G. Edwards, D. W. Farwell, A. C. Williams, B. W. Barry, and F. Rull, “Novel spectroscopic deconvolution procedure for complex biological systems: vibrational components in the FT-Raman spectra of ice-man and contemporary skin,” J. Chem. Soc. Faraday Trans. 91, 3883–3887 (1995).
[Crossref]

Fast, A.

Faubel, W.

W. Faubel, S. Heissler, and R. A. Palmer, “Quantitative analysis of corroded copper patina by step scan and rapid scan photoacoustic Fourier transform infrared spectroscopy,” Rev. Sci. Instrum. 74, 331–333 (2003).
[Crossref]

Faulds, K.

D. Craig, S. McAughtrie, J. Simpson, C. McCraw, K. Faulds, and D. Graham, “Confocal SERS mapping of glycan expression for the identification of cancerous cells,” Anal. Chem. 86, 4775–4782 (2014).
[Crossref]

S. McAughtrie, K. Faulds, and D. Graham, “Surface enhanced Raman spectroscopy (SERS): potential applications for disease detection and treatment,” J. Photochem. Photobiol. C 21, 40–53 (2014).
[Crossref]

M. M. Harper, K. S. McKeating, and K. Faulds, “Recent developments and future directions in SERS for bioanalysis,” Phys. Chem. Chem. Phys. 15, 5312–5328 (2013).
[Crossref]

S. McAughtrie, K. Lau, K. Faulds, and D. Graham, “3D optical imaging of multiple SERS nanotags in cells,” Chem. Sci. 4, 3566–3572 (2013).
[Crossref]

G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, “Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications,” Appl. Spectrosc. 65, 825–837 (2011).
[Crossref]

N. Stone, K. Faulds, D. Graham, and P. Matousek, “Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25  mm of mammalian tissue,” Anal. Chem. 82, 3969–3973 (2010).
[Crossref]

Feld, M.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Feld, M. S.

N. C. Dingari, I. Barman, J. W. Kang, C.-R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16, 087009 (2011).
[Crossref]

J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2, 2484–2492 (2011).
[Crossref]

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: prospective analysis,” J. Biomed. Opt. 14, 054023 (2009).
[Crossref]

K. L. Bechtel, W.-C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: experimental applications,” Opt. Express 16, 12737–12745 (2008).
[Crossref]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 102, 12371–12376 (2005).
[Crossref]

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56, 150–154 (2002).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Feng, S.

Fennell, D. A.

N. D. Magee, J. R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D. A. Fennell, P. W. Hamilton, M. Ennis, J. J. McGarvey, and J. S. Elborn, “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” J. Biomed. Opt. 15, 026015 (2010).
[Crossref]

Ferguson, A.

W. E. Huang, A. Ferguson, A. C. Singer, K. Lawson, I. P. Thompson, R. M. Kalin, M. J. Larkin, M. J. Bailey, and A. S. Whiteley, “Resolving genetic functions within microbial populations: in vivo analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization,” Appl. Environ. Microbiol. 75, 234–241 (2009).
[Crossref]

Ferguson, S. B.

S. D. Bergeson, J. B. Peatross, N. J. Eyring, J. F. Fralick, D. N. Stevenson, and S. B. Ferguson, “Resonance Raman measurements of carotenoids using light-emitting diodes,” J. Biomed. Opt. 13, 044026 (2008).
[Crossref]

Fernandes, A. B.

C. J. Saatkamp, M. L. de Almeida, J. A. M. Bispo, A. L. B. Pinheiro, A. B. Fernandes, and L. Silveira, “Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease,” J. Biomed. Opt. 21, 037001 (2016).
[Crossref]

Figdor, C.

G. Puppels, T. B. Schut, N. Sijtsema, M. Grond, F. Maraboeuf, C. De Grauw, C. Figdor, and J. Greve, “Development and application of Raman microspectroscopic and Raman imaging techniques for cell biological studies,” J. Mol. Struct. 347, 477–483 (1995).
[Crossref]

Findlay, C. R.

R. Wiens, C. R. Findlay, S. G. Baldwin, L. Kreplak, J. M. Lee, S. P. Veres, and K. M. Gough, “High spatial resolution (11  μm and 20  nm) FTIR polarization contrast imaging reveals pre-rupture disorder in damaged tendon,” Faraday Discuss. 187, 555–573 (2016).

Finney, W.

Fischer, M. C.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited review article: pump-probe microscopy,” Rev. Sci. Instrum. 87, 031101 (2016).
[Crossref]

Fisher, D. E.

F.-K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. R. Holtom, V. A. Neel, C. W. Freudiger, D. E. Fisher, and X. S. Xie, “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).
[Crossref]

Fisher, K.

J. Jiang, C. Auchinvole, K. Fisher, and C. J. Campbell, “Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors,” Nanoscale 6, 12104–12110 (2014).
[Crossref]

Fisher-Hubbard, A.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).
[Crossref]

Fitzmaurice, M.

I. Barman, N. C. Dingari, A. Saha, S. McGee, L. H. Galindo, W. Liu, D. Plecha, N. Klein, R. R. Dasari, and M. Fitzmaurice, “Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy,” Cancer Res. 73, 3206–3215 (2013).
[Crossref]

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: prospective analysis,” J. Biomed. Opt. 14, 054023 (2009).
[Crossref]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 102, 12371–12376 (2005).
[Crossref]

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Floess, M.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy,” Light Sci. Appl. 5, e16149 (2016).

Floris, R.

B. Salmaso, G. Puppels, P. Caspers, R. Floris, R. Wever, and J. Greve, “Resonance Raman microspectroscopic characterization of eosinophil peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[Crossref]

Fluhr, J. W.

Fogarty, S.

M. D. Hodges, J. G. Kelly, A. J. Bentley, S. Fogarty, I. I. Patel, F. L. Martin, and N. J. Fullwood, “Combining immunolabeling and surface-enhanced Raman spectroscopy on cell membranes,” ACS Nano 5, 9535–9541 (2011).
[Crossref]

Follen, M.

Fourre, N.

F. Draux, P. Jeannesson, A. Beljebbar, A. Tfayli, N. Fourre, M. Manfait, J. Sulé-Suso, and G. D. Sockalingum, “Raman spectral imaging of single living cancer cells: a preliminary study,” Analyst 134, 542–548 (2009).
[Crossref]

Fragneaud, B.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9, 6297–6304 (2015).
[Crossref]

Fragniere, A.

A. Huefner, D. Septiadi, B. D. Wilts, I. I. Patel, W.-L. Kuan, A. Fragniere, R. A. Barker, and S. Mahajan, “Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes,” Methods 68, 354–363 (2014).
[Crossref]

Fralick, J. F.

S. D. Bergeson, J. B. Peatross, N. J. Eyring, J. F. Fralick, D. N. Stevenson, and S. B. Ferguson, “Resonance Raman measurements of carotenoids using light-emitting diodes,” J. Biomed. Opt. 13, 044026 (2008).
[Crossref]

Frank, C. J.

C. J. Frank, R. L. McCreery, and D. C. Redd, “Raman spectroscopy of normal and diseased human breast tissues,” Anal. Chem. 67, 777–783 (1995).
[Crossref]

Freier, E.

S. F. El-Mashtoly, D. Niedieker, D. Petersen, S. D. Krauss, E. Freier, A. Maghnouj, A. Mosig, S. Hahn, C. Kötting, and K. Gerwert, “Automated identification of subcellular organelles by coherent anti-Stokes Raman scattering,” Biophys. J. 106, 1910–1920 (2014).
[Crossref]

T. Deckert-Gaudig, R. Böhme, E. Freier, A. Sebesta, T. Merkendorf, J. Popp, K. Gerwert, and V. Deckert, “Nanoscale distinction of membrane patches—a TERS study of Halobacterium salinarum,” J. Biophoton. 5, 582–591 (2012).
[Crossref]

Freudiger, C.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134, 3623–3626 (2012).
[Crossref]

Freudiger, C. W.

F.-K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. R. Holtom, V. A. Neel, C. W. Freudiger, D. E. Fisher, and X. S. Xie, “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).
[Crossref]

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).
[Crossref]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
[Crossref]

C. W. Freudiger, R. Pfannl, D. A. Orringer, B. G. Saar, M. Ji, Q. Zeng, L. Ottoboni, W. Ying, C. Waeber, J. R. Sims, P. L. De Jager, O. Sagher, M. A. Philbert, X. Xu, S. Kesari, X. S. Xie, and G. S. Young, “Multicolored stain-free histopathology with coherent Raman imaging,” Lab. Invest. 92, 1492–1502 (2012).
[Crossref]

X. Zhang, M. B. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” Chem. Phys. Chem. 13, 1054–1059 (2012).
[Crossref]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62, 507–530 (2011).
[Crossref]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

Freyer, J. P.

J. R. Mourant, K. W. Short, S. Carpenter, N. Kunapareddy, L. Coburn, T. M. Powers, and J. P. Freyer, “Biochemical differences in tumorigenic and nontumorigenic cells measured by Raman and infrared spectroscopy,” J. Biomed. Opt. 10, 031106 (2005).
[Crossref]

Friedman, G.

E. A. Vitol, Z. Orynbayeva, G. Friedman, and Y. Gogotsi, “Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS),” J. Raman Spectrosc. 43, 817–827 (2012).
[Crossref]

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes,” ACS Nano 3, 3529–3536 (2009).
[Crossref]

Friedmann, H.

H. Friedmann and R. Lubart, “Towards an explanation of visible and infrared laser induced stimulation and damage of cell cultures,” Laser Therapy 4, 39–42 (1992).
[Crossref]

Fritzsche, W.

C. Leiterer, T. Deckert-Gaudig, P. Singh, J. Wirth, V. Deckert, and W. Fritzsche, “Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy,” Electrophoresis 36, 1142–1148 (2015).
[Crossref]

Frontiera, R. R.

R. C. Prince, R. R. Frontiera, and E. O. Potma, “Stimulated Raman scattering: from bulk to nano,” Chem. Rev. 17, 5070–5094 (2017).

Frushour, B. G.

B. G. Frushour and J. L. Koenig, “Raman scattering of collagen, gelatin, and elastin,” Biopolymers 14, 379–391 (1975).
[Crossref]

Fu, D.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).
[Crossref]

F.-K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. R. Holtom, V. A. Neel, C. W. Freudiger, D. E. Fisher, and X. S. Xie, “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).
[Crossref]

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
[Crossref]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134, 3623–3626 (2012).
[Crossref]

X. Zhang, M. B. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” Chem. Phys. Chem. 13, 1054–1059 (2012).
[Crossref]

Fu, Y.

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neorosci. Res. 85, 2870–2881 (2007).
[Crossref]

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14, 3942–3951 (2006).
[Crossref]

Fujita, K.

H. Yamakoshi, A. Palonpon, K. Dodo, J. Ando, S. Kawata, K. Fujita, and M. Sodeoka, “A sensitive and specific Raman probe based on bisarylbutadiyne for live cell imaging of mitochondria,” Bioorg. Med. Chem. Lett. 25, 664–667 (2015).
[Crossref]

K. Bando, N. I. Smith, J. Ando, K. Fujita, and S. Kawata, “Analysis of dynamic SERS spectra measured with a nanoparticle during intracellular transportation in 3D,” J. Opt. 17, 114023 (2015).
[Crossref]

K. Watanabe, A. F. Palonpon, N. I. Smith, L. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).

K.-C. Huang, K. Bando, J. Ando, N. I. Smith, K. Fujita, and S. Kawata, “3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways,” Methods 68, 348–353 (2014).
[Crossref]

N. Pavillon, K. Bando, K. Fujita, and N. I. Smith, “Feature-based recognition of surface-enhanced Raman spectra for biological targets,” J. Biophoton. 6, 587–597 (2013).
[Crossref]

H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata, and M. Sodeoka, “Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells,” J. Am. Chem. Soc. 134, 20681–20689 (2012).
[Crossref]

M. Okada, N. I. Smith, A. F. Palonpon, H. Endo, S. Kawata, M. Sodeoka, and K. Fujita, “Label-free Raman observation of cytochrome c dynamics during apoptosis,” Proc. Natl. Acad. Sci. USA 109, 28–32 (2012).
[Crossref]

H. Yamakoshi, K. Dodo, M. Okada, J. Ando, A. Palonpon, K. Fujita, S. Kawata, and M. Sodeoka, “Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy,” J. Am. Chem. Soc. 133, 6102–6105 (2011).
[Crossref]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Fullwood, N. J.

M. D. Hodges, J. G. Kelly, A. J. Bentley, S. Fogarty, I. I. Patel, F. L. Martin, and N. J. Fullwood, “Combining immunolabeling and surface-enhanced Raman spectroscopy on cell membranes,” ACS Nano 5, 9535–9541 (2011).
[Crossref]

Galindo, L. H.

I. Barman, N. C. Dingari, A. Saha, S. McGee, L. H. Galindo, W. Liu, D. Plecha, N. Klein, R. R. Dasari, and M. Fitzmaurice, “Application of Raman spectroscopy to identify microcalcifications and underlying breast lesions at stereotactic core needle biopsy,” Cancer Res. 73, 3206–3215 (2013).
[Crossref]

Gambhir, S. S.

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. USA 110, 12408–12413 (2013).

Ganikhanov, F.

Garai, E.

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. USA 110, 12408–12413 (2013).

García-Flores, A.

A. García-Flores, L. Raniero, R. Canevari, K. J. Jalkanen, R. Bitar, H. Martinho, and A. Martin, “High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer,” Theor. Chem. Acc. 130, 1231–1238 (2011).
[Crossref]

Garcia-Nieto, S.

A. B. Zoladek, R. K. Johal, S. Garcia-Nieto, F. Pascut, K. M. Shakesheff, A. M. Ghaemmaghami, and I. Notingher, “Label-free molecular imaging of immunological synapses between dendritic and T cells by Raman micro-spectroscopy,” Analyst 135, 3205–3212 (2010).
[Crossref]

Gardecki, J. A.

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: prospective analysis,” J. Biomed. Opt. 14, 054023 (2009).
[Crossref]

Gardiner, D. J.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[Crossref]

Gardner, B.

B. Gardner, N. Stone, and P. Matousek, “Non-invasive chemically specific measurement of subsurface temperature in biological tissues using surface-enhanced spatially offset Raman spectroscopy,” Faraday Discuss. 187, 329–339 (2016).

B. Gardner, P. Matousek, and N. Stone, “Temperature spatially offset Raman spectroscopy (T-SORS): subsurface chemically specific measurement of temperature in turbid media using anti-Stokes spatially offset Raman spectroscopy,” Anal. Chem. 88, 832–837 (2015).
[Crossref]

Garrard, M.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).
[Crossref]

Garrett, N.

N. Garrett, A. Lalatsa, D. Begley, L. Mihoreanu, I. Uchegbu, A. Schätzlein, and J. Moger, “Label-free imaging of polymeric nanomedicines using coherent anti-Stokes Raman scattering microscopy,” J. Raman Spectrosc. 43, 681–688 (2012).
[Crossref]

Garrett, N. L.

W. S. Chiu, N. A. Belsey, N. L. Garrett, J. Moger, M. B. Delgado-Charro, and R. H. Guy, “Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 7725–7730 (2015).
[Crossref]

Garritsen, H.

G. Puppels, H. Garritsen, J. Kummer, and J. Greve, “Carotenoids located in human lymphocyte subpopulations and natural killer cells by Raman microspectroscopy,” Cytometry 14, 251–256 (1993).
[Crossref]

G. Puppels, H. Garritsen, G. Segers-Nolten, F. De Mul, and J. Greve, “Raman microspectroscopic approach to the study of human granulocytes,” Biophys. J. 60, 1046–1056 (1991).
[Crossref]

Gentile, F.

G. Das, R. La Rocca, T. Lakshmikanth, F. Gentile, R. Tallerico, L. P. Zambetti, J. Devitt, P. Candeloro, F. De Angelis, E. Carbone, and E. Di Fabrizio, “Monitoring human leukocyte antigen class I molecules by micro-Raman spectroscopy at single-cell level,” J. Biomed. Opt. 15, 027007 (2010).
[Crossref]

George, V.

F. C. Pascut, S. Kalra, V. George, N. Welch, C. Denning, and I. Notingher, “Non-invasive label-free monitoring the cardiac differentiation of human embryonic stem cells in vivo by Raman spectroscopy,” Biochim. Biophys. Acta 1830, 3517–3524 (2013).
[Crossref]

Gerrard, D. L.

M. Bowden, D. J. Gardiner, G. Rice, and D. L. Gerrard, “Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector,” J. Raman Spectrosc. 21, 37–41 (1990).
[Crossref]

Gersonde, I.

Gerwert, K.

S. F. El-Mashtoly, D. Niedieker, D. Petersen, S. D. Krauss, E. Freier, A. Maghnouj, A. Mosig, S. Hahn, C. Kötting, and K. Gerwert, “Automated identification of subcellular organelles by coherent anti-Stokes Raman scattering,” Biophys. J. 106, 1910–1920 (2014).
[Crossref]

T. Deckert-Gaudig, R. Böhme, E. Freier, A. Sebesta, T. Merkendorf, J. Popp, K. Gerwert, and V. Deckert, “Nanoscale distinction of membrane patches—a TERS study of Halobacterium salinarum,” J. Biophoton. 5, 582–591 (2012).
[Crossref]

Ghaemmaghami, A. M.

A. B. Zoladek, R. K. Johal, S. Garcia-Nieto, F. Pascut, K. M. Shakesheff, A. M. Ghaemmaghami, and I. Notingher, “Label-free molecular imaging of immunological synapses between dendritic and T cells by Raman micro-spectroscopy,” Analyst 135, 3205–3212 (2010).
[Crossref]

Gharbi, A.

C. Bielecki, T. W. Bocklitz, M. Schmitt, C. Krafft, C. Marquardt, A. Gharbi, T. Knösel, A. Stallmach, and J. Popp, “Classification of inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells,” J. Biomed. Opt. 17, 0760301 (2012).
[Crossref]

Ghita, A.

A. Ghita, F. C. Pascut, V. Sottile, and I. Notingher, “Monitoring the mineralisation of bone nodules in vivo by space-and time-resolved Raman microspectroscopy,” Analyst 139, 55–58 (2014).
[Crossref]

A. Ghita, F. C. Pascut, M. Mather, V. Sottile, and I. Notingher, “Cytoplasmic RNA in undifferentiated neural stem cells: a potential label-free Raman spectral marker for assessing the undifferentiated status,” Anal. Chem. 84, 3155–3162 (2012).
[Crossref]

M. Larraona-Puy, A. Ghita, A. Zoladek, W. Perkins, S. Varma, I. H. Leach, A. A. Koloydenko, H. Williams, and I. Notingher, “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J. Biomed. Opt. 14, 054031 (2009).
[Crossref]

Gibson, G.

Giessen, H.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-free all-solid-state laser system for stimulated Raman scattering microscopy,” Light Sci. Appl. 5, e16149 (2016).

Gift, A.

S. Farquharson, C. Shende, F. E. Inscore, P. Maksymiuk, and A. Gift, “Analysis of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 36, 208–212 (2005).
[Crossref]

Gijsbers, G.

G. Puppels, A. Huizinga, H. Krabbe, H. De Boer, G. Gijsbers, and F. De Mul, “A high-throughput Raman notch filter set,” Rev. Sci. Instrum. 61, 3709–3712 (1990).
[Crossref]

Gikas, P. D.

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46, 610–618 (2015).
[Crossref]

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[Crossref]

Glenister, F. K.

B. R. Wood, S. J. Langford, B. M. Cooke, F. K. Glenister, J. Lim, and D. McNaughton, “Raman imaging of hemozoin within the food vacuole of plasmodium falciparum trophozoites,” FEBS Lett. 554, 247–252 (2003).
[Crossref]

Glucksberg, M. R.

B. Sharma, K. Ma, M. R. Glucksberg, and R. P. Van Duyne, “Seeing through bone with surface-enhanced spatially offset Raman spectroscopy,” J. Am. Chem. Soc. 135, 17290–17293 (2013).
[Crossref]

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82, 8382–8385 (2010).
[Crossref]

Gluszczynska, P.

Gniadecka, M.

M. Gniadecka, O. F. Nielsen, S. Wessel, M. Heidenheim, D. H. Christensen, and H. C. Wulf, “Water and protein structure in photoaged and chronically aged skin,” J. Invest. Dermatol. 111, 1129–1133 (1998).
[Crossref]

Goeller, L. J.

Gogotsi, Y.

E. A. Vitol, Z. Orynbayeva, G. Friedman, and Y. Gogotsi, “Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS),” J. Raman Spectrosc. 43, 817–827 (2012).
[Crossref]

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes,” ACS Nano 3, 3529–3536 (2009).
[Crossref]

Goh, H. T.

F. C. Pascut, H. T. Goh, N. Welch, L. D. Buttery, C. Denning, and I. Notingher, “Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells,” Biophys. J. 100, 251–259 (2011).
[Crossref]

Golby, A. J.

F.-K. Lu, D. Calligaris, O. I. Olubiyi, I. Norton, W. Yang, S. Santagata, X. S. Xie, A. J. Golby, and N. Y. Agar, “Label-free neurosurgical pathology with stimulated Raman imaging,” Cancer Res. 76, 3451–3462 (2016).
[Crossref]

Goldberg, H. A.

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugne-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 134, 17076–17082 (2012).
[Crossref]

Goldfless, S. J.

Goodacre, R.

A. Mitchell, L. Ashton, X. B. Yang, R. Goodacre, A. Smith, and J. Kirkham, “Detection of early stage changes associated with adipogenesis using Raman spectroscopy under aseptic conditions,” Cytometry Part A 87, 1012–1019 (2015).
[Crossref]

R. M. Jarvis and R. Goodacre, “Discrimination of bacteria using surface-enhanced Raman spectroscopy,” Anal. Chem. 76, 40–47 (2004).
[Crossref]

Goodship, A.

Goodship, A. E.

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46, 610–618 (2015).
[Crossref]

P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc. 60, 758–763 (2006).
[Crossref]

M. D. Morris, P. Matousek, M. Towrie, A. W. Parker, A. E. Goodship, and E. R. Draper, “Kerr-gated time-resolved Raman spectroscopy of equine cortical bone tissue,” J. Biomed. Opt. 10, 014014 (2005).
[Crossref]

Gorce, J.-P.

Gord, J. R.

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-stokes Raman scattering measurement of gas temperatures from frequency spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006).
[Crossref]

Gordan, O.

R. Rodriguez, E. Sheremet, S. Müller, O. Gordan, A. Villabona, S. Schulze, M. Hietschold, and D. Zahn, “Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy,” Rev. Sci. Instrum. 83, 123708 (2012).
[Crossref]

Gough, K. M.

R. Wiens, C. R. Findlay, S. G. Baldwin, L. Kreplak, J. M. Lee, S. P. Veres, and K. M. Gough, “High spatial resolution (11  μm and 20  nm) FTIR polarization contrast imaging reveals pre-rupture disorder in damaged tendon,” Faraday Discuss. 187, 555–573 (2016).

Graf, A.

Gräfe, S.

F. Latorre, S. Kupfer, T. Bocklitz, D. Kinzel, S. Trautmann, S. Gräfe, and V. Deckert, “Spatial resolution of tip-enhanced Raman spectroscopy-DFT assessment of the chemical effect,” Nanoscale 8, 10229–10239 (2016).
[Crossref]

Graham, D.

D. Craig, S. McAughtrie, J. Simpson, C. McCraw, K. Faulds, and D. Graham, “Confocal SERS mapping of glycan expression for the identification of cancerous cells,” Anal. Chem. 86, 4775–4782 (2014).
[Crossref]

S. McAughtrie, K. Faulds, and D. Graham, “Surface enhanced Raman spectroscopy (SERS): potential applications for disease detection and treatment,” J. Photochem. Photobiol. C 21, 40–53 (2014).
[Crossref]

S. McAughtrie, K. Lau, K. Faulds, and D. Graham, “3D optical imaging of multiple SERS nanotags in cells,” Chem. Sci. 4, 3566–3572 (2013).
[Crossref]

G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, “Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications,” Appl. Spectrosc. 65, 825–837 (2011).
[Crossref]

N. Stone, K. Faulds, D. Graham, and P. Matousek, “Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25  mm of mammalian tissue,” Anal. Chem. 82, 3969–3973 (2010).
[Crossref]

Green, C.

I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay, and L. L. Hench, “Discrimination between ricin and sulphur mustard toxicity in vivo using Raman spectroscopy,” J. R. Soc. Interface 1, 79–90 (2004).
[Crossref]

Green, L. M.

Gregas, M. K.

M. K. Gregas, F. Yan, J. Scaffidi, H.-N. Wang, and T. Vo-Dinh, “Characterization of nanoprobe uptake in single cells: spatial and temporal tracking via SERS labeling and modulation of surface charge,” Nanomedicine 7, 115–122 (2011).
[Crossref]

M. K. Gregas, J. P. Scaffidi, B. Lauly, and T. Vo-Dinh, “Surface-enhanced Raman scattering detection and tracking of nanoprobes: enhanced uptake and nuclear targeting in single cells,” Appl. Spectrosc. 64, 858–866 (2010).
[Crossref]

Gremlich, H.

E. Carter, H. Edwards, H. Gremlich, and B. Yan, Infrared and Raman Spectroscopy of Biological Materials (Marcel Dekker, 2000).

Greve, J.

N. Uzunbajakava, A. Lenferink, Y. Kraan, B. Willekens, G. Vrensen, J. Greve, and C. Otto, “Nonresonant Raman imaging of protein distribution in single human cells,” Biopolymers 72, 1–9 (2003).
[Crossref]

N. Sijtsema, C. Otto, G. Segers-Nolten, A. Verhoeven, and J. Greve, “Resonance Raman microspectroscopy of myeloperoxidase and cytochrome b558 in human neutrophilic granulocytes,” Biophys. J. 74, 3250–3255 (1998).
[Crossref]

G. Puppels, T. B. Schut, N. Sijtsema, M. Grond, F. Maraboeuf, C. De Grauw, C. Figdor, and J. Greve, “Development and application of Raman microspectroscopic and Raman imaging techniques for cell biological studies,” J. Mol. Struct. 347, 477–483 (1995).
[Crossref]

B. Salmaso, G. Puppels, P. Caspers, R. Floris, R. Wever, and J. Greve, “Resonance Raman microspectroscopic characterization of eosinophil peroxidase in human eosinophilic granulocytes,” Biophys. J. 67, 436–446 (1994).
[Crossref]

G. Puppels, H. Garritsen, J. Kummer, and J. Greve, “Carotenoids located in human lymphocyte subpopulations and natural killer cells by Raman microspectroscopy,” Cytometry 14, 251–256 (1993).
[Crossref]

G. Puppels, J. Olminkhof, G. Segers-Nolten, C. Otto, F. De Mul, and J. Greve, “Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5  nm but not with 660  nm laser light,” Exp. Cell Res. 195, 361–367 (1991).
[Crossref]

G. Puppels, H. Garritsen, G. Segers-Nolten, F. De Mul, and J. Greve, “Raman microspectroscopic approach to the study of human granulocytes,” Biophys. J. 60, 1046–1056 (1991).
[Crossref]

G. Puppels, F. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. Arndt-Jovin, and T. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).

Griffiths, D. J.

D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999).

D. J. Griffiths, Introduction to Quantum Mechanics (Pearson Education, 2005).

Griffiths, R.

W. E. Huang, K. Stoecker, R. Griffiths, L. Newbold, H. Daims, A. S. Whiteley, and M. Wagner, “Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in vivo hybridization for the single cell analysis of identity and function,” Environ. Microbiol. 9, 1878–1889 (2007).
[Crossref]

Grimbergen, M.

Grimbergen, M. C.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. V. Swol, T. G. Jonges, J. A. Kummer, and J. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82, 5993–5999 (2010).
[Crossref]

Grohe, B.

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugne-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 134, 17076–17082 (2012).
[Crossref]

Grond, M.

G. Puppels, T. B. Schut, N. Sijtsema, M. Grond, F. Maraboeuf, C. De Grauw, C. Figdor, and J. Greve, “Development and application of Raman microspectroscopic and Raman imaging techniques for cell biological studies,” J. Mol. Struct. 347, 477–483 (1995).
[Crossref]

Grzincic, E. M.

P. Falagan-Lotsch, E. M. Grzincic, and C. J. Murphy, “One low-dose exposure of gold nanoparticles induces long-term changes in human cells,” Proc. Natl. Acad. Sci. USA 113, 13318–13323 (2016).

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Guiot, M.-C.

Guo, Z.

Guy, R. H.

W. S. Chiu, N. A. Belsey, N. L. Garrett, J. Moger, M. B. Delgado-Charro, and R. H. Guy, “Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 7725–7730 (2015).
[Crossref]

B. G. Saar, L. R. Contreras-Rojas, X. S. Xie, and R. H. Guy, “Imaging drug delivery to skin with stimulated Raman scattering microscopy,” Mol. Pharm. 8, 969–975 (2011).
[Crossref]

Ha, S.

S. Lee, S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh, “Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy,” Anal. Chem. 79, 916–922 (2007).
[Crossref]

Haaland, D. M.

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60, 1193–1202 (1988).
[Crossref]

Hahn, S.

S. F. El-Mashtoly, D. Niedieker, D. Petersen, S. D. Krauss, E. Freier, A. Maghnouj, A. Mosig, S. Hahn, C. Kötting, and K. Gerwert, “Automated identification of subcellular organelles by coherent anti-Stokes Raman scattering,” Biophys. J. 106, 1910–1920 (2014).
[Crossref]

Haisch, C.

N. P. Ivleva, M. Wagner, H. Horn, R. Niessner, and C. Haisch, “Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms,” J. Biophoton. 3, 548–556 (2010).
[Crossref]

N. P. Ivleva, M. Wagner, A. Szkola, H. Horn, R. Niessner, and C. Haisch, “Label-free in vivo SERS imaging of biofilms,” J. Phys. Chem. B 114, 10184–10194 (2010).
[Crossref]

N. P. Ivleva, M. Wagner, H. Horn, R. Niessner, and C. Haisch, “In situ surface-enhanced Raman scattering analysis of biofilm,” Anal. Chem. 80, 8538–8544 (2008).
[Crossref]

Haka, A. S.

A. S. Haka, Z. Volynskaya, J. A. Gardecki, J. Nazemi, R. Shenk, N. Wang, R. R. Dasari, M. Fitzmaurice, and M. S. Feld, “Diagnosing breast cancer using Raman spectroscopy: prospective analysis,” J. Biomed. Opt. 14, 054023 (2009).
[Crossref]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 102, 12371–12376 (2005).
[Crossref]

K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56, 150–154 (2002).
[Crossref]

Halevy, S.

E. Azrad, E. Cagnano, S. Halevy, S. Rosenwaks, and I. Bar, “Bullous pemphigoid detection by micro-Raman spectroscopy and cluster analysis: structure alterations of proteins,” J. Raman Spectrosc. 36, 1034–1039 (2005).
[Crossref]

Hamaguchi, H.-O.

Hamilton, P. W.

N. D. Magee, J. R. Beattie, C. Carland, R. Davis, K. McManus, I. Bradbury, D. A. Fennell, P. W. Hamilton, M. Ennis, J. J. McGarvey, and J. S. Elborn, “Raman microscopy in the diagnosis and prognosis of surgically resected nonsmall cell lung cancer,” J. Biomed. Opt. 15, 026015 (2010).
[Crossref]

Hammer, L.

B. R. Wood, L. Hammer, L. Davis, and D. McNaughton, “Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes,” J. Biomed. Opt. 10, 014005 (2005).
[Crossref]

Hamon, C.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15, 1203–1211 (2016).

Han, Z.

Hanlon, E.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

Hänsch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Haque, S.

I. Notingher, S. Verrier, S. Haque, J. Polak, and L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

Harper, M. M.

M. M. Harper, K. S. McKeating, and K. Faulds, “Recent developments and future directions in SERS for bioanalysis,” Phys. Chem. Chem. Phys. 15, 5312–5328 (2013).
[Crossref]

Hart, T.

T. Hart, R. Aggarwal, and B. Lax, “Temperature dependence of Raman scattering in silicon,” Phys. Rev. B 1, 638–642 (1970).
[Crossref]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Harz, M.

M. Harz, P. Rösch, K.-D. Peschke, O. Ronneberger, H. Burkhardt, and J. Popp, “Micro-Raman spectroscopic identification of bacterial cells of the genus staphylococcus and dependence on their cultivation conditions,” Analyst 130, 1543–1550 (2005).
[Crossref]

Hasenwinkel, J.

T. Saxena, B. Deng, D. Stelzner, J. Hasenwinkel, and J. Chaiken, “Raman spectroscopic investigation of spinal cord injury in a rat model,” J. Biomed. Opt. 16, 027003 (2011).
[Crossref]

Hashimoto, H.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

Hayazawa, N.

N. Hayazawa, T.-A. Yano, and S. Kawata, “Highly reproducible tip-enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone,” J. Raman Spectrosc. 43, 1177–1182 (2012).
[Crossref]

Hayes, D. P.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

Hayes, S. J.

S. A. Overman, K. L. Aubrey, K. E. Reilly, O. Osman, S. J. Hayes, P. Serwer, and G. J. Thomas, “Conformation and interactions of the packaged double-stranded DNA genome of bacteriophage T7,” Biospectroscopy 4, S47–S56 (1998).
[Crossref]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8, 627–634 (2014).
[Crossref]

Heidenheim, M.

M. Gniadecka, O. F. Nielsen, S. Wessel, M. Heidenheim, D. H. Christensen, and H. C. Wulf, “Water and protein structure in photoaged and chronically aged skin,” J. Invest. Dermatol. 111, 1129–1133 (1998).
[Crossref]

Heintzelman, D. L.

Heissler, S.

W. Faubel, S. Heissler, and R. A. Palmer, “Quantitative analysis of corroded copper patina by step scan and rapid scan photoacoustic Fourier transform infrared spectroscopy,” Rev. Sci. Instrum. 74, 331–333 (2003).
[Crossref]

Helfmann, J.

Hellerer, T.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 104, 14658–14663 (2007).
[Crossref]

Hellwarth, R.

G. Eckhardt, R. Hellwarth, F. McClung, S. Schwarz, D. Weiner, and E. Woodbury, “Stimulated Raman scattering from organic liquids,” Phys. Rev. Lett. 9, 455–457 (1962).
[Crossref]

Hellwarth, R. W.

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
[Crossref]

Hench, L.

I. Notingher, S. Verrier, S. Haque, J. Polak, and L. Hench, “Spectroscopic study of human lung epithelial cells (A549) in culture: living cells versus dead cells,” Biopolymers 72, 230–240 (2003).
[Crossref]

I. Notingher, S. Verrier, H. Romanska, A. Bishop, J. Polak, and L. Hench, “In situ characterisation of living cells by Raman spectroscopy,” J. Spectrosc. 16, 43–51 (2002).
[Crossref]

Hench, L. L.

I. Notingher and L. L. Hench, “Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vivo,” Expert Rev. Med. Dev. 3, 215–234 (2006).
[Crossref]

I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay, and L. L. Hench, “Discrimination between ricin and sulphur mustard toxicity in vivo using Raman spectroscopy,” J. R. Soc. Interface 1, 79–90 (2004).
[Crossref]

I. Notingher, I. Bisson, A. E. Bishop, W. L. Randle, J. M. Polak, and L. L. Hench, “In situ spectral monitoring of mRNA translation in embryonic stem cells during differentiation in vitro,” Anal. Chem. 76, 3185–3193 (2004).
[Crossref]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[Crossref]

Hendriks-Hagevi, G.

S. Koljenovic, T. Bakker Schut, R. Wolthuis, A. Vincent, G. Hendriks-Hagevi, L. Santos, J. Kros, and G. Puppels, “Raman spectroscopic characterization of porcine brain tissue using a single fiber-optic probe,” Anal. Chem. 79, 557–564 (2007).
[Crossref]

Hermelink, A.

B. R. Wood, A. Hermelink, P. Lasch, K. R. Bambery, G. T. Webster, M. A. Khiavi, B. M. Cooke, S. Deed, D. Naumann, and D. McNaughton, “Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics,” Analyst 134, 1119–1125 (2009).
[Crossref]

Herrington, C. S.

P. C. Ashok, B. B. Praveen, N. Bellini, A. Riches, K. Dholakia, and C. S. Herrington, “Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon,” Biomed. Opt. Express 4, 2179–2186 (2013).
[Crossref]

E. Canetta, M. Mazilu, A. C. De Luca, A. E. Carruthers, K. Dholakia, S. Neilson, H. Sargeant, T. Briscoe, C. S. Herrington, and A. C. Riches, “Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples,” J. Biomed. Opt. 16, 037002 (2011).
[Crossref]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[Crossref]

M. Mazilu, A. C. De Luca, A. Riches, C. S. Herrington, and K. Dholakia, “Optimal algorithm for fluorescence suppression of modulated Raman spectroscopy,” Opt. Express 18, 11382–11395 (2010).
[Crossref]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure, Vol II: Infrared and Raman Spectra (D. Van Nostrand, 1945).

Heth, J. A.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).
[Crossref]

Heule, F.

A. Nijssen, T. C. B. Schut, F. Heule, P. J. Caspers, D. P. Hayes, M. H. Neumann, and G. J. Puppels, “Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy,” J. Invest. Dermatol. 119, 64–69 (2002).
[Crossref]

Hewko, M.

A. C.-T. Ko, L.-P. Choo-Smith, M. Hewko, L. Leonardi, M. G. Sowa, C. C. S. Dong, P. Williams, and B. Cleghorn, “Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy,” J. Biomed. Opt. 10, 031118 (2005).
[Crossref]

Hibben, J. H.

J. H. Hibben and E. Teller, The Raman Effect and Its Chemical Applications (Reinhold, 1939).

Hietschold, M.

R. Rodriguez, E. Sheremet, S. Müller, O. Gordan, A. Villabona, S. Schulze, M. Hietschold, and D. Zahn, “Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy,” Rev. Sci. Instrum. 83, 123708 (2012).
[Crossref]

Hill, E. H.

G. Bodelón, V. Montes-García, V. López-Puente, E. H. Hill, C. Hamon, M. N. Sanz-Ortiz, S. Rodal-Cedeira, C. Costas, S. Celiksoy, I. Pérez-Juste, L. Scarabelli, A. La Porta, J. Pérez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzán, “Detection and imaging of quorum sensing in pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering,” Nat. Mater. 15, 1203–1211 (2016).

Hillertz, P.

T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. USA 104, 14658–14663 (2007).
[Crossref]

Hillier, J.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

Hirschfeld, T.

Ho, K. Y.

S. Duraipandian, M. S. Bergholt, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, A. Shabbir, and Z. Huang, “Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,” J. Biomed. Opt. 17, 081418 (2012).
[Crossref]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128, 2673–2680 (2011).
[Crossref]

Z. Huang, M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, and K. G. Yeoh, “In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy,” J. Biomed. Opt. 15, 037017 (2010).
[Crossref]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnosis of gastric cancer using near-infrared Raman spectroscopy and classification and regression tree techniques,” J. Biomed. Opt. 13, 034013 (2008).
[Crossref]

Hoang, M. P.

F.-K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. R. Holtom, V. A. Neel, C. W. Freudiger, D. E. Fisher, and X. S. Xie, “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).
[Crossref]

Hodges, M. D.

M. D. Hodges, J. G. Kelly, A. J. Bentley, S. Fogarty, I. I. Patel, F. L. Martin, and N. J. Fullwood, “Combining immunolabeling and surface-enhanced Raman spectroscopy on cell membranes,” ACS Nano 5, 9535–9541 (2011).
[Crossref]

Holá, V.

O. Samek, S. Bernatová, J. Ježek, M. Šiler, M. Šerý, V. Krzyžánek, K. Hrubanová, P. Zemánek, V. Holá, and F. Řužička, “Identification of individual biofilm-forming bacterial cells using Raman tweezers,” J. Biomed. Opt. 20, 051038 (2015).
[Crossref]

Hollars, C.

J. W. Chan, A. Esposito, C. Talley, C. Hollars, S. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76, 599–603 (2004).
[Crossref]

Hollars, C. W.

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76, 7064–7068 (2004).
[Crossref]

Holtom, G.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134, 3623–3626 (2012).
[Crossref]

Holtom, G. R.

F.-K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. R. Holtom, V. A. Neel, C. W. Freudiger, D. E. Fisher, and X. S. Xie, “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).
[Crossref]

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8, 153–159 (2014).
[Crossref]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
[Crossref]

X. Zhang, M. B. Roeffaers, S. Basu, J. R. Daniele, D. Fu, C. W. Freudiger, G. R. Holtom, and X. S. Xie, “Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy,” Chem. Phys. Chem. 13, 1054–1059 (2012).
[Crossref]

C. W. Freudiger, W. Min, G. R. Holtom, B. Xu, M. Dantus, and X. S. Xie, “Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics 5, 103–109 (2011).
[Crossref]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Hong, S.

S. Hong, T. Chen, Y. Zhu, A. Li, Y. Huang, and X. Chen, “Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules,” Angew. Chem. Int. Ed. 53, 5827–5831 (2014).
[Crossref]

Hood, T.

D. Fu, J. Zhou, W. S. Zhu, P. W. Manley, Y. K. Wang, T. Hood, A. Wylie, and X. S. Xie, “Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering,” Nat. Chem. 6, 614–622 (2014).
[Crossref]

Hopkins, N.

I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay, and L. L. Hench, “Discrimination between ricin and sulphur mustard toxicity in vivo using Raman spectroscopy,” J. R. Soc. Interface 1, 79–90 (2004).
[Crossref]

Horn, H.

N. P. Ivleva, M. Wagner, H. Horn, R. Niessner, and C. Haisch, “Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms,” J. Biophoton. 3, 548–556 (2010).
[Crossref]

N. P. Ivleva, M. Wagner, A. Szkola, H. Horn, R. Niessner, and C. Haisch, “Label-free in vivo SERS imaging of biofilms,” J. Phys. Chem. B 114, 10184–10194 (2010).
[Crossref]

N. P. Ivleva, M. Wagner, H. Horn, R. Niessner, and C. Haisch, “In situ surface-enhanced Raman scattering analysis of biofilm,” Anal. Chem. 80, 8538–8544 (2008).
[Crossref]

Horsnell, J.

J. Horsnell, P. Stonelake, J. Christie-Brown, G. Shetty, J. Hutchings, C. Kendall, and N. Stone, “Raman spectroscopy: a new method for the intraoperative assessment of axillary lymph nodes,” Analyst 135, 3042–3047 (2010).
[Crossref]

Hou, J. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Houle, M.-A.

Hrubanová, K.

O. Samek, S. Bernatová, J. Ježek, M. Šiler, M. Šerý, V. Krzyžánek, K. Hrubanová, P. Zemánek, V. Holá, and F. Řužička, “Identification of individual biofilm-forming bacterial cells using Raman tweezers,” J. Biomed. Opt. 20, 051038 (2015).
[Crossref]

Hu, F.

F. Hu, Z. Chen, L. Zhang, Y. Shen, L. Wei, and W. Min, “Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering,” Angew. Chem. 127, 9959–9963 (2015).
[Crossref]

L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C.-C. Lin, M. C. Wang, and W. Min, “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11, 410–412 (2014).
[Crossref]

Hu, H.

Y. You, N. Purnawirman, H. Hu, J. Kasim, H. Yang, C. Du, T. Yu, and Z. Shen, “Tip-enhanced Raman spectroscopy using single-crystalline Ag nanowire as tip,” J. Raman Spectrosc. 41, 1156–1162 (2010).
[Crossref]

Hu, J.

Y. Chen, X. Bai, L. Su, Z. Du, A. Shen, A. Materny, and J. Hu, “Combined labelled and label-free SERS probes for triplex three-dimensional cellular imaging,” Sci. Rep. 6, 19173 (2016).

P. Chen, A. Shen, W. Zhao, S.-J. Baek, H. Yuan, and J. Hu, “Raman signature from brain hippocampus could aid Alzheimer’s disease diagnosis,” Appl. Opt. 48, 4743–4748 (2009).
[Crossref]

Hu, J.-M.

Y. Chen, J.-Q. Ren, X.-G. Zhang, D.-Y. Wu, A.-G. Shen, and J.-M. Hu, “Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging,” Anal. Chem. 88, 6115–6119 (2016).

Huang, K.-C.

K.-C. Huang, K. Bando, J. Ando, N. I. Smith, K. Fujita, and S. Kawata, “3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways,” Methods 68, 348–353 (2014).
[Crossref]

Huang, N.

Huang, W. E.

W. E. Huang, A. Ferguson, A. C. Singer, K. Lawson, I. P. Thompson, R. M. Kalin, M. J. Larkin, M. J. Bailey, and A. S. Whiteley, “Resolving genetic functions within microbial populations: in vivo analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization,” Appl. Environ. Microbiol. 75, 234–241 (2009).
[Crossref]

W. E. Huang, K. Stoecker, R. Griffiths, L. Newbold, H. Daims, A. S. Whiteley, and M. Wagner, “Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in vivo hybridization for the single cell analysis of identity and function,” Environ. Microbiol. 9, 1878–1889 (2007).
[Crossref]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7, 1591–1597 (2007).
[Crossref]

Huang, Y.

S. Hong, T. Chen, Y. Zhu, A. Li, Y. Huang, and X. Chen, “Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules,” Angew. Chem. Int. Ed. 53, 5827–5831 (2014).
[Crossref]

H. Chu, Y. Huang, and Y. Zhao, “Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection,” Appl. Spectrosc. 62, 922–931 (2008).
[Crossref]

Huang, Z.

J. Wang, M. S. Bergholt, W. Zheng, and Z. Huang, “Development of a beveled fiber-optic confocal Raman probe for enhancing in vivo epithelial tissue Raman measurements at endoscopy,” Opt. Lett. 38, 2321–2323 (2013).
[Crossref]

Z. Huang, X. Chen, Y. Li, J. Chen, J. Lin, J. Wang, J. Lei, and R. Chen, “Quantitative determination of citric acid in seminal plasma by using Raman spectroscopy,” Appl. Spectrosc. 67, 757–760 (2013).
[Crossref]

S. Duraipandian, M. S. Bergholt, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Y. So, A. Shabbir, and Z. Huang, “Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination,” J. Biomed. Opt. 17, 081418 (2012).
[Crossref]

M. S. Bergholt, W. Zheng, and Z. Huang, “Characterizing variability in in vivo Raman spectroscopic properties of different anatomical sites of normal tissue in the oral cavity,” J. Raman Spectrosc. 43, 255–262 (2012).
[Crossref]

M. S. Bergholt, K. Lin, W. Zheng, D. P. C. Lau, and Z. Huang, “In vivo, real-time, transnasal, image-guided Raman endoscopy: defining spectral properties in the nasopharynx and larynx,” J. Biomed. Opt. 17, 0770021 (2012).
[Crossref]

S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran, and Z. Huang, “Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo,” Anal. Chem. 84, 5913–5919 (2012).
[Crossref]

M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, K. G. Yeoh, J. B. Yan So, and Z. Huang, “In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques,” Int. J. Cancer 128, 2673–2680 (2011).
[Crossref]

S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran, and Z. Huang, “In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques,” Analyst 136, 4328–4336 (2011).
[Crossref]

Z. Huang, M. S. Bergholt, W. Zheng, K. Lin, K. Y. Ho, M. Teh, and K. G. Yeoh, “In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy,” J. Biomed. Opt. 15, 037017 (2010).
[Crossref]

J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express 1, 17–30 (2010).
[Crossref]

S. K. Teh, W. Zheng, D. P. Lau, and Z. Huang, “Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques,” Analyst 134, 1232–1239 (2009).
[Crossref]

S. Feng, J. Lin, M. Cheng, Y.-Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63, 1089–1094 (2009).
[Crossref]

J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, and H. Zeng, “Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy,” Biosens. Bioelectron. 25, 388–394 (2009).
[Crossref]

J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81, 8908–8915 (2009).
[Crossref]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnosis of gastric cancer using near-infrared Raman spectroscopy and classification and regression tree techniques,” J. Biomed. Opt. 13, 034013 (2008).
[Crossref]

D. P. Lau, Z. Huang, H. Lui, D. W. Anderson, K. Berean, M. D. Morrison, L. Shen, and H. Zeng, “Raman spectroscopy for optical diagnosis in the larynx: preliminary findings,” Lasers Surg. Med. 37, 192–200 (2005).
[Crossref]

D. P. Lau, Z. Huang, H. Lui, C. S. Man, K. Berean, M. D. Morrison, and H. Zeng, “Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx: preliminary findings,” Lasers Surg. Med. 32, 210–214 (2003).
[Crossref]

Z. Huang, A. McWilliams, S. Lam, J. English, D. I. McLean, H. Lui, and H. Zeng, “Effect of formalin fixation on the near-infrared Raman spectroscopy of normal and cancerous human bronchial tissues,” Int. J. Oncol. 23, 649–655 (2003).

Hudlikar, R.

T. Bhattacharjee, S. Tawde, R. Hudlikar, M. Mahimkar, G. Maru, A. Ingle, and C. M. Krishna, “Ex vivo Raman spectroscopic study of breast metastatic lesions in lungs in animal models,” J. Biomed. Opt. 20, 085006 (2015).
[Crossref]

Huefner, A.

A. Huefner, D. Septiadi, B. D. Wilts, I. I. Patel, W.-L. Kuan, A. Fragniere, R. A. Barker, and S. Mahajan, “Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes,” Methods 68, 354–363 (2014).
[Crossref]

A. Huefner, W.-L. Kuan, R. A. Barker, and S. Mahajan, “Intracellular SERS nanoprobes for distinction of different neuronal cell types,” Nano Lett. 13, 2463–2470 (2013).
[Crossref]

Huff, T. B.

Y. Fu, H. Wang, T. B. Huff, R. Shi, and J.-X. Cheng, “Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination,” J. Neorosci. Res. 85, 2870–2881 (2007).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).

Huffman, S. W.

S. Schlücker, M. D. Schaeberle, S. W. Huffman, and I. W. Levin, “Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies,” Anal. Chem. 75, 4312–4318 (2003).
[Crossref]

Huizinga, A.

G. Puppels, A. Huizinga, H. Krabbe, H. De Boer, G. Gijsbers, and F. De Mul, “A high-throughput Raman notch filter set,” Rev. Sci. Instrum. 61, 3709–3712 (1990).
[Crossref]

Hunter, G. K.

N. Kazemi-Zanjani, H. Chen, H. A. Goldberg, G. K. Hunter, B. Grohe, and F. Lagugne-Labarthet, “Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 134, 17076–17082 (2012).
[Crossref]

Hur, J.

S. Jung, J. Nam, S. Hwang, J. Park, J. Hur, K. Im, N. Park, and S. Kim, “Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy,” Anal. Chem. 85, 7674–7681 (2013).
[Crossref]

Huser, T.

J. W. Chan, D. S. Taylor, S. M. Lane, T. Zwerdling, J. Tuscano, and T. Huser, “Nondestructive identification of individual leukemia cells by laser trapping Raman spectroscopy,” Anal. Chem. 80, 2180–2187 (2008).
[Crossref]

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

J. W. Chan, A. Esposito, C. Talley, C. Hollars, S. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76, 599–603 (2004).
[Crossref]

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76, 7064–7068 (2004).
[Crossref]

Hutchings, J.

J. Horsnell, P. Stonelake, J. Christie-Brown, G. Shetty, J. Hutchings, C. Kendall, and N. Stone, “Raman spectroscopy: a new method for the intraoperative assessment of axillary lymph nodes,” Analyst 135, 3042–3047 (2010).
[Crossref]

Hwang, S.

S. Jung, J. Nam, S. Hwang, J. Park, J. Hur, K. Im, N. Park, and S. Kim, “Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy,” Anal. Chem. 85, 7674–7681 (2013).
[Crossref]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Igras, V.

F.-K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. R. Holtom, V. A. Neel, C. W. Freudiger, D. E. Fisher, and X. S. Xie, “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).
[Crossref]

Ihara, K.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[Crossref]

Ikemura, Y.

R. Kurihara, Y. Ikemura, and K. Tanabe, “Preparation of alkyne-labeled 2-nitroimidazoles for identification of tumor hypoxia by Raman spectroscopy,” Bioorg. Med. Chem. Lett. 26, 4892–4894 (2016).
[Crossref]

Ilancheran, A.

S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran, and Z. Huang, “Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo,” Anal. Chem. 84, 5913–5919 (2012).
[Crossref]

S. Duraipandian, W. Zheng, J. Ng, J. J. Low, A. Ilancheran, and Z. Huang, “In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques,” Analyst 136, 4328–4336 (2011).
[Crossref]

J. Mo, W. Zheng, J. J. Low, J. Ng, A. Ilancheran, and Z. Huang, “High wavenumber Raman spectroscopy for in vivo detection of cervical dysplasia,” Anal. Chem. 81, 8908–8915 (2009).
[Crossref]

Im, K.

S. Jung, J. Nam, S. Hwang, J. Park, J. Hur, K. Im, N. Park, and S. Kim, “Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy,” Anal. Chem. 85, 7674–7681 (2013).
[Crossref]

Imbraguglio, D.

N. Kumar, S. J. Spencer, D. Imbraguglio, A. M. Rossi, A. J. Wain, B. M. Weckhuysen, and D. Roy, “Extending the plasmonic lifetime of tip-enhanced Raman spectroscopy probes,” Phys. Chem. Chem. Phys. 18, 13710–13716 (2016).
[Crossref]

Imhof, R. E.

Indrasekara, A.

A. Indrasekara, B. J. Paladini, D. J. Naczynski, V. Starovoytov, P. V. Moghe, and L. Fabris, “Dimeric gold nanoparticle assemblies as tags for SERS-based cancer detection,” Adv. Healthcare Mater. 2, 1370–1376 (2013).
[Crossref]

Ingle, A.

T. Bhattacharjee, S. Tawde, R. Hudlikar, M. Mahimkar, G. Maru, A. Ingle, and C. M. Krishna, “Ex vivo Raman spectroscopic study of breast metastatic lesions in lungs in animal models,” J. Biomed. Opt. 20, 085006 (2015).
[Crossref]

Inscore, F. E.

S. Farquharson, C. Shende, F. E. Inscore, P. Maksymiuk, and A. Gift, “Analysis of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy,” J. Raman Spectrosc. 36, 208–212 (2005).
[Crossref]

Inzana, J. A.

J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age-and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18, 077001 (2013).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Irudayaraj, J.

A. Shamsaie, M. Jonczyk, J. Sturgis, J. P. Robinson, and J. Irudayaraj, “Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes,” J. Biomed. Opt. 12, 020502 (2007).
[Crossref]

Ishida, H.

Ishikawa, M.

A. Sujith, T. Itoh, H. Abe, A. A. Anas, K. Yoshida, V. Biju, and M. Ishikawa, “Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall,” Appl. Phys. Lett. 92, 103901 (2008).
[Crossref]

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6, 845–851 (2012).
[Crossref]

I. Ashikawa and K. Itoh, “Raman spectra of polypeptides containing L-histidine residues and tautomerism of imidazole side chain,” Biopolymers 18, 1859–1876 (1979).
[Crossref]

Itoh, T.

A. Sujith, T. Itoh, H. Abe, A. A. Anas, K. Yoshida, V. Biju, and M. Ishikawa, “Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall,” Appl. Phys. Lett. 92, 103901 (2008).
[Crossref]

Itzkan, I.

E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1 (2000).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Ivleva, N. P.

N. P. Ivleva, M. Wagner, A. Szkola, H. Horn, R. Niessner, and C. Haisch, “Label-free in vivo SERS imaging of biofilms,” J. Phys. Chem. B 114, 10184–10194 (2010).
[Crossref]

N. P. Ivleva, M. Wagner, H. Horn, R. Niessner, and C. Haisch, “Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms,” J. Biophoton. 3, 548–556 (2010).
[Crossref]

N. P. Ivleva, M. Wagner, H. Horn, R. Niessner, and C. Haisch, “In situ surface-enhanced Raman scattering analysis of biofilm,” Anal. Chem. 80, 8538–8544 (2008).
[Crossref]

Iwata, K.

A. Z. Samuel, S. Yabumoto, K. Kawamura, and K. Iwata, “Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy,” Analyst 140, 1847–1851 (2015).
[Crossref]

Jalkanen, K. J.

A. García-Flores, L. Raniero, R. Canevari, K. J. Jalkanen, R. Bitar, H. Martinho, and A. Martin, “High-wavenumber FT-Raman spectroscopy for in vivo and ex vivo measurements of breast cancer,” Theor. Chem. Acc. 130, 1231–1238 (2011).
[Crossref]

Jamieson, L. E.

A. Jaworska, L. E. Jamieson, K. Malek, C. J. Campbell, J. Choo, S. Chlopicki, and M. Baranska, “SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α,” Analyst 140, 2321–2329 (2015).
[Crossref]

Jansen, D.

A. Robichaux Viehoever, D. Anderson, D. Jansen, and A. Mahadevan-Jansen, “Organotypic raft cultures as an effective in vivo tool for understanding Raman spectral analysis of tissue,” Photochem. Photobiol. 78, 517–524 (2003).
[Crossref]

Järvinen, K.

E. Katainen, M. Elomaa, U.-M. Laakkonen, E. Sippola, P. Niemelä, J. Suhonen, and K. Järvinen, “Quantification of the amphetamine content in seized street samples by Raman spectroscopy,” J. Forensic Sci. 52, 88–92 (2007).
[Crossref]

Jarvis, R. M.

R. M. Jarvis and R. Goodacre, “Discrimination of bacteria using surface-enhanced Raman spectroscopy,” Anal. Chem. 76, 40–47 (2004).
[Crossref]

Jauregui, C.

Jaworska, A.

A. Jaworska, L. E. Jamieson, K. Malek, C. J. Campbell, J. Choo, S. Chlopicki, and M. Baranska, “SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α,” Analyst 140, 2321–2329 (2015).
[Crossref]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: rules and recipes,” ACS Photon. 2, 326–333 (2015).
[Crossref]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).
[Crossref]

Jeannesson, P.

F. Draux, P. Jeannesson, A. Beljebbar, A. Tfayli, N. Fourre, M. Manfait, J. Sulé-Suso, and G. D. Sockalingum, “Raman spectral imaging of single living cancer cells: a preliminary study,” Analyst 134, 542–548 (2009).
[Crossref]

Jell, G.

R. J. Swain, G. Jell, and M. M. Stevens, “Non-invasive analysis of cell cycle dynamics in single living cells with Raman micro-spectroscopy,” J. Cell. Biochem. 104, 1427–1438 (2008).
[Crossref]

Jermyn, M.

Ježek, J.

O. Samek, S. Bernatová, J. Ježek, M. Šiler, M. Šerý, V. Krzyžánek, K. Hrubanová, P. Zemánek, V. Holá, and F. Řužička, “Identification of individual biofilm-forming bacterial cells using Raman tweezers,” J. Biomed. Opt. 20, 051038 (2015).
[Crossref]

Ji, M.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).
[Crossref]

F.-K. Lu, S. Basu, V. Igras, M. P. Hoang, M. Ji, D. Fu, G. R. Holtom, V. A. Neel, C. W. Freudiger, D. E. Fisher, and X. S. Xie, “Label-free DNA imaging in vivo with stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).
[Crossref]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38, 145–147 (2013).
[Crossref]

C. W. Freudiger, R. Pfannl, D. A. Orringer, B. G. Saar, M. Ji, Q. Zeng, L. Ottoboni, W. Ying, C. Waeber, J. R. Sims, P. L. De Jager, O. Sagher, M. A. Philbert, X. Xu, S. Kesari, X. S. Xie, and G. S. Young, “Multicolored stain-free histopathology with coherent Raman imaging,” Lab. Invest. 92, 1492–1502 (2012).
[Crossref]

Jia, Y.

Jia, Y. K.

J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophys. J. 83, 502–509 (2002).
[Crossref]

Jiang, J.

J. Jiang, C. Auchinvole, K. Fisher, and C. J. Campbell, “Quantitative measurement of redox potential in hypoxic cells using SERS nanosensors,” Nanoscale 6, 12104–12110 (2014).
[Crossref]

Jiang, S.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Jin, K.-H.

Y. J. Lee, H. J. Ahn, G.-J. Lee, G. B. Jung, G. Lee, D. Kim, J.-H. Shin, K.-H. Jin, and H.-K. Park, “Investigation of biochemical property changes in activation-induced CD8+ T cell apoptosis using Raman spectroscopy,” J. Biomed. Opt. 20, 075001 (2015).
[Crossref]

Jin, Y.

Jirasek, A.

Johal, R. K.

A. B. Zoladek, R. K. Johal, S. Garcia-Nieto, F. Pascut, K. M. Shakesheff, A. M. Ghaemmaghami, and I. Notingher, “Label-free molecular imaging of immunological synapses between dendritic and T cells by Raman micro-spectroscopy,” Analyst 135, 3205–3212 (2010).
[Crossref]

John, A.

A. Anshup, J. S. Venkataraman, C. Subramaniam, R. R. Kumar, S. Priya, T. S. Kumar, R. Omkumar, A. John, and T. Pradeep, “Growth of gold nanoparticles in human cells,” Langmuir 21, 11562–11567 (2005).
[Crossref]

Johnson, G. L.

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Johnson, T. D.

M. Ji, S. Lewis, S. Camelo-Piragua, S. H. Ramkissoon, M. Snuderl, S. Venneti, A. Fisher-Hubbard, M. Garrard, D. Fu, A. C. Wang, J. A. Heth, C. O. Maher, N. Sanai, T. D. Johnson, C. W. Freudiger, O. Sagher, X. S. Xie, and D. A. Orringer, “Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy,” Sci. Transl. Med. 7, 309ra163 (2015).
[Crossref]

Johnston, B. D.

Jokerst, J. V.

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. USA 110, 12408–12413 (2013).

Jonczyk, M.

A. Shamsaie, M. Jonczyk, J. Sturgis, J. P. Robinson, and J. Irudayaraj, “Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes,” J. Biomed. Opt. 12, 020502 (2007).
[Crossref]

Jones, E. D.

Jones, G.

W. Premasiri, D. Moir, M. Klempner, N. Krieger, G. Jones, and L. Ziegler, “Characterization of the surface enhanced Raman scattering (SERS) of bacteria,” J. Phys. Chem. B 109, 312–320 (2005).
[Crossref]

Jones, J. R.

Z. Liao, F. Sinjab, A. Nommeots-Nomm, J. R. Jones, L. Ruiz Cantu, J. Yang, F. Rose, and I. Notingher, “Feasibility of spatially-offset Raman spectroscopy for in vitro and in vivo monitoring mineralisation of bone tissue-engineering scaffolds,” Anal. Chem. 89, 847–853 (2017).
[Crossref]

Jones, R. W.

Jonges, T. G.

R. O. Draga, M. C. Grimbergen, P. L. Vijverberg, C. F. V. Swol, T. G. Jonges, J. A. Kummer, and J. Ruud Bosch, “In vivo bladder cancer diagnosis by high-volume Raman spectroscopy,” Anal. Chem. 82, 5993–5999 (2010).
[Crossref]

Jorio, A.

T. L. Vasconcelos, B. S. Archanjo, B. Fragneaud, B. S. Oliveira, J. Riikonen, C. Li, D. S. Ribeiro, C. Rabelo, W. N. Rodrigues, A. Jorio, C. A. Achete, and L. G. Cançado, “Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes,” ACS Nano 9, 6297–6304 (2015).
[Crossref]

Josefson, M.

C. Eliasson, A. Lorén, J. Engelbrektsson, M. Josefson, J. Abrahamsson, and K. Abrahamsson, “Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation,” Spectrochim. Acta A 61, 755–760 (2005).
[Crossref]

José-Yacamán, M.

Jovin, T.

G. Puppels, F. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. Arndt-Jovin, and T. Jovin, “Studying single living cells and chromosomes by confocal Raman microspectroscopy,” Nature 347, 301–303 (1990).

Julien, C.

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, and V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[Crossref]

Jung, G. B.

Jung, S.

S. Jung, J. Nam, S. Hwang, J. Park, J. Hur, K. Im, N. Park, and S. Kim, “Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy,” Anal. Chem. 85, 7674–7681 (2013).
[Crossref]

Jusinski, L.

C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, “Intracellular pH sensors based on surface-enhanced Raman scattering,” Anal. Chem. 76, 7064–7068 (2004).
[Crossref]

Kajiura-Kobayashi, H.

Kalff, R.

T. Meyer, N. Bergner, A. Medyukhina, B. Dietzek, C. Krafft, B. F. Romeike, R. Reichart, R. Kalff, and J. Popp, “Interpreting CARS images of tissue within the C–H-stretching region,” J. Biophoton. 5, 729–733 (2012).
[Crossref]

Kalin, R. M.

W. E. Huang, A. Ferguson, A. C. Singer, K. Lawson, I. P. Thompson, R. M. Kalin, M. J. Larkin, M. J. Bailey, and A. S. Whiteley, “Resolving genetic functions within microbial populations: in vivo analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization,” Appl. Environ. Microbiol. 75, 234–241 (2009).
[Crossref]

Kalkman, J.

C. A. Patil, J. Kalkman, D. J. Faber, J. S. Nyman, T. G. van Leeuwen, and A. Mahadevan-Jansen, “Integrated system for combined Raman spectroscopy-spectral domain optical coherence tomography,” J. Biomed. Opt. 16, 011007 (2011).
[Crossref]

Käll, M.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Kalra, S.

F. C. Pascut, S. Kalra, V. George, N. Welch, C. Denning, and I. Notingher, “Non-invasive label-free monitoring the cardiac differentiation of human embryonic stem cells in vivo by Raman spectroscopy,” Biochim. Biophys. Acta 1830, 3517–3524 (2013).
[Crossref]

Kaminski, C. F.

C. Steuwe, C. F. Kaminski, J. J. Baumberg, and S. Mahajan, “Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces,” Nano Lett. 11, 5339–5343 (2011).
[Crossref]

Kang, B.

B. Kang, L. A. Austin, and M. A. El-Sayed, “Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy,” Nano Lett. 12, 5369–5375 (2012).
[Crossref]

Kang, J. W.

J. W. Kang, P. T. So, R. R. Dasari, and D.-K. Lim, “High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap,” Nano Lett. 15, 1766–1772 (2015).
[Crossref]

N. C. Dingari, I. Barman, J. W. Kang, C.-R. Kong, R. R. Dasari, and M. S. Feld, “Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy,” J. Biomed. Opt. 16, 087009 (2011).
[Crossref]

J. W. Kang, N. Lue, C.-R. Kong, I. Barman, N. C. Dingari, S. J. Goldfless, J. C. Niles, R. R. Dasari, and M. S. Feld, “Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis,” Biomed. Opt. Express 2, 2484–2492 (2011).
[Crossref]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref]

Kang, K.

S. Lee, S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh, “Biological imaging of HEK293 cells expressing PLCγ1 using surface-enhanced Raman microscopy,” Anal. Chem. 79, 916–922 (2007).
[Crossref]

Kann, B.

B. Kann, H. L. Offerhaus, M. Windbergs, and C. Otto, “Raman microscopy for cellular investigations-from single cell imaging to drug carrier uptake visualization,” Adv. Drug Delivery Rev. 89, 71–90 (2015).
[Crossref]

Kano, S.

M. Levenson and S. Kano, Introduction to Nonlinear Optical Spectroscopy (Academic, 1988).

Karata, Ö. F.

Ö. F. Karata, E. Sezgin, Ö. Aydın, and M. Çulha, “Interaction of gold nanoparticles with mitochondria,” Colloids Surf. B 71, 315–318 (2009).
[Crossref]

Kartha, V.

R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. Kartha, and C. M. Krishna, “Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study,” Biopolymers 81, 179–193 (2006).
[Crossref]

R. J. Lakshmi, V. Kartha, C. Murali Krishna, J. R. Solomon, G. Ullas, and P. Uma Devi, “Tissue Raman spectroscopy for the study of radiation damage: brain irradiation of mice,” Radiat. Res. 157, 175–182 (2002).
[Crossref]

Kasai, A.

K. Watanabe, A. F. Palonpon, N. I. Smith, L. Chiu, A. Kasai, H. Hashimoto, S. Kawata, and K. Fujita, “Structured line illumination Raman microscopy,” Nat. Commun. 6, 10095 (2015).

Kasim, J.

Y. You,