Abstract

The ability to selectively and controllably interact with light is useful to a wide range of devices. With the advent of nanotechnology, we now have the ability to create optical materials, which are designed from the bottom up, with dimensions of the order of the wavelength of light. While it has been known for some time that nanoparticles exhibit such exciting properties, recent (widespread) research in nanoparticles has significantly increased our understanding of how to fabricate and use nanoparticles for a myriad of enduring and emerging optical applications. Drastic modifications to the “bulk” optical properties of standard materials in these applications are possible, enabling “nano-engineered” optical properties with several degrees of design freedom, including material, size, morphology, surrounding media, and nearby structures. Understanding these sensitivities has led to optical control from the ultraviolet through the infrared spectrum. To highlight this, the following review provides a comprehensive snapshot of how these effects have been captured in models and experimentally demonstrated in terms of spectral selectivity in absorption, scattering, and emission. In addition, we discuss recent progress toward using nanoparticles in real applications, most commonly in fluid suspensions or solid thin films as a means to create the next generation of highly scalable and (potentially) low-cost spectrally selective optical materials.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feasibility of nanofluid-based optical filters

Robert A. Taylor, Todd P. Otanicar, Yasitha Herukerrupu, Fabienne Bremond, Gary Rosengarten, Evatt R. Hawkes, Xuchuan Jiang, and Sylvain Coulombe
Appl. Opt. 52(7) 1413-1422 (2013)

Comparison of selective transmitters for solar thermal applications

Robert A. Taylor, Yasitha Hewakuruppu, Drew DeJarnette, and Todd P. Otanicar
Appl. Opt. 55(14) 3829-3839 (2016)

Four-wave mixing microscopy of nanostructures

Yong Wang, Chia-Yu Lin, Alexei Nikolaenko, Varun Raghunathan, and Eric O. Potma
Adv. Opt. Photon. 3(1) 1-52 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [Crossref]
  2. M. A. C. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Sol. Wind Technol. 4, 131–138 (1987).
    [Crossref]
  3. Z. J. Yu, K. C. Fisher, B. M. Wheelwright, R. P. Angel, and Z. C. Holman, “PVMirror: a new concept for tandem solar cells and hybrid solar converters,” IEEE J. Photovolt. 5, 1791–1799 (2015).
    [Crossref]
  4. R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
    [Crossref]
  5. A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—a review,” Renew. Sust. Energy Rev. 28, 654–663 (2013).
    [Crossref]
  6. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
    [Crossref]
  7. W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8, 81 (2013).
    [Crossref]
  8. A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91, 829–842 (2007).
    [Crossref]
  9. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
    [Crossref]
  10. C. Fabry and A. Perot, “Theorie et applications d’une nouvelle methode de spectroscopie interferentielle,” Ann. Chim. Phys. 16, 115 (1899).
  11. F. Crisostomo, R. A. Taylor, T. Zhang, I. Perez-Wurfl, G. Rosengarten, V. Everett, and E. R. Hawkes, “Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector,” Renew. Energy 72, 79–87 (2014).
    [Crossref]
  12. C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
    [Crossref]
  13. F. Crisostomo, R. A. Taylor, D. Surjadi, A. Mojiri, G. Rosengarten, and E. R. Hawkes, “Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector,” Appl. Energy 141, 238–246 (2015).
    [Crossref]
  14. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
    [Crossref]
  15. A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14, 114009 (2012).
    [Crossref]
  16. M. Wegener, “Photonic metamaterials and transformation optics: a very brief introduction and review,” in Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale: Plasmonics, Photonic Materials and Sub-Wavelength Resolution (Springer, 2013), pp. 23–28.
  17. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  18. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).
  19. H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235-242 (2015).
    [Crossref]
  20. C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
    [Crossref]
  21. J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2014).
    [Crossref]
  22. Q. Huang, J. Wang, B. Quan, Q. Zhang, D. Zhang, D. Li, Q. Meng, L. Pan, Y. Wang, and G. Yang, “Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells,” Appl. Opt. 52, 2312–2319 (2013).
    [Crossref]
  23. M. Stefancich, A. Zayan, M. Chiesa, S. Rampino, L. Kimerling, and J. Michel, “Single element spectral splitting solar concentrator for multiple cells CPV system,” Opt. Express 20, 9004–9018 (2012).
    [Crossref]
  24. B. Fisher and J. Biddle, “Luminescent spectral splitting: efficient spatial division of solar spectrum at low concentration,” Sol. Energy Mater. Sol. Cells 95, 1741–1755 (2011).
    [Crossref]
  25. L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15, 1315–1323 (2015).
    [Crossref]
  26. R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
    [Crossref]
  27. M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111, 3713–3735 (2011).
    [Crossref]
  28. G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 330, 377–445 (1908).
    [Crossref]
  29. D. DeJarnette and D. K. Roper, “Electron energy loss spectroscopy of gold nanoparticles on graphene,” J. Appl. Phys. 116, 054313 (2014).
    [Crossref]
  30. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
    [Crossref]
  31. C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
    [Crossref]
  32. C. Kojima, Y. Watanabe, H. Hattori, and T. Iida, “Design of photosensitive gold nanoparticles for biomedical applications based on self-consistent optical response theory,” J. Phys. Chem. C 115, 19091–19095 (2011).
    [Crossref]
  33. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
    [Crossref]
  34. S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27, 14621–14626 (2011).
    [Crossref]
  35. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
    [Crossref]
  36. B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
    [Crossref]
  37. T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
    [Crossref]
  38. S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27, 8605–8610 (2011).
    [Crossref]
  39. Y. Nishimura, K. Nishida, Y. Yamamoto, S. Ito, S. Tokonami, and T. Iida, “Control of submillimeter phase transition by collective photothermal effect,” J. Phys. Chem. C 118, 18799–18804 (2014).
    [Crossref]
  40. M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4, 20894–20901 (2014).
    [Crossref]
  41. D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, K. Roberts, A. E. Saunders, and R. Morad, “Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors,” Proc. SPIE 9175, 917509 (2014).
    [Crossref]
  42. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
    [Crossref]
  43. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
    [Crossref]
  44. A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
    [Crossref]
  45. F. Scotognella, G. Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86, 154 (2013).
    [Crossref]
  46. J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5, 976–985 (2014).
    [Crossref]
  47. H. Takeda and K. Adachi, “Near infrared absorption of tungsten oxide nanoparticle dispersions,” J. Am. Ceram. Soc. 4061, 4059–4061 (2007).
    [Crossref]
  48. W. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
    [Crossref]
  49. A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76, 245422 (2007).
    [Crossref]
  50. D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101, 183104 (2012).
    [Crossref]
  51. D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
    [Crossref]
  52. D. DeJarnette, N. Brekke, E. Tunkara, H. Parameswar, K. Roberts, and T. Otanicar, “Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power,” Proc. SPIE 9559, 95590C (2015).
    [Crossref]
  53. T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
    [Crossref]
  54. D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photon. Res. 2, 15–23 (2014).
    [Crossref]
  55. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  56. S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
    [Crossref]
  57. M. Arnold, M. Blaber, and M. Ford, “Local plasmon resonances of metal-in-metal core-shells,” Opt. Express 22, 3186–3198 (2014).
    [Crossref]
  58. A. V. Goncharenko, “Optical properties of core-shell particle composites. I. Linear response,” Chem. Phys. Lett. 386, 25–31 (2004).
    [Crossref]
  59. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
    [Crossref]
  60. L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, 1984).
  61. J. Venermo and A. Sihvola, “Dielectric polarizability of circular cylinder,” J. Electrost. 63, 101–117 (2005).
    [Crossref]
  62. D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, and K. Roberts, “Selective spectral filtration with nanoparticles for concentrating solar collectors,” J. Photon. Energy 5, 057008 (2015).
    [Crossref]
  63. Z.-J. Yang, N.-C. Kim, J.-B. Li, M.-T. Cheng, S.-D. Liu, Z.-H. Hao, and Q.-Q. Wang, “Surface plasmons amplifications in single Ag nanoring,” Opt. Express 18, 4006–4011 (2010).
    [Crossref]
  64. C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
    [Crossref]
  65. G. T. Forcherio, D. DeJarnette, P. Blake, and D. K. Roper, “Polarizability extraction for rapid computation of Fano resonance in nanoring lattices,” Proc. SPIE 9163, 91633O (2014).
    [Crossref]
  66. H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
    [Crossref]
  67. H. Matsui, S. Furuta, and H. Tabata, “Role of electron carriers on local surface plasmon resonances in doped oxide semiconductor nanocrystals,” Appl. Phys. Lett. 104, 211903 (2014).
    [Crossref]
  68. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
    [Crossref]
  69. H. Ishihara, K. Cho, K. Akiyama, N. Tomita, Y. Nomura, and T. Isu, “Large four-wave mixing of spatially extended excitonic states in thin GaAs layers,” Phys. Rev. Lett. 89, 017402 (2002).
    [Crossref]
  70. H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).
    [Crossref]
  71. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  72. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
    [Crossref]
  73. M. Yurkin and A. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
    [Crossref]
  74. M. Collinge and B. Draine, “Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry,” J. Opt. Soc. Am. A 21, 2023–2028 (2004).
    [Crossref]
  75. E. Purcell and C. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [Crossref]
  76. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizability backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
    [Crossref]
  77. R. Filter, M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer, “Tunable graphene antennas for selective enhancement of THz-emission,” Opt. Express 21, 3737–3745 (2013).
    [Crossref]
  78. P. Zhao, N. Li, and D. Astruc, “State of the art in gold nanoparticle synthesis,” Coord. Chem. Rev. 257, 638–665 (2013).
    [Crossref]
  79. J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
    [Crossref]
  80. R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108, 845–910 (2008).
    [Crossref]
  81. A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
    [Crossref]
  82. R. G. Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2012).
    [Crossref]
  83. A. Tavakoli, M. Sohrabi, and A. Kargari, “A review of methods for synthesis of nanostructured metals with emphasis on iron compounds,” Chem. Pap. 61, 151–170 (2007).
    [Crossref]
  84. T. Tsuzuki and P. G. McCormick, “Mechanochemical synthesis of nanoparticles,” J. Mater. Sci. 39, 5143–5146 (2004).
    [Crossref]
  85. H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
    [Crossref]
  86. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
    [Crossref]
  87. Sigma Aldrich, http://www.sigmaaldrich.com/catalog/search?term=Gold+nanoparticles&interface=ProductName&N=0+&mode=modematchpartialmax&lang=en&region=US&focus=productN=0220003048219853286219853269 .
  88. NanoComposix, http://nanocomposix.com/collections/dried-gold/products/10-nm-gold-nanospheres .
  89. Nanopartz, http://www.nanopartz.com/bare_spherical_gold_nanoparticles.asp .
  90. APMEX, http://www.apmex.com/spotprices/gold-price .
  91. Y. Xie, L. Carbone, C. Nobile, and V. Grillo, “Metallic-like stoichiometric copper sulfide nanocrystals: phase-and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7, 7352–7369 (2013).
    [Crossref]
  92. S. D. Lounis, E. L. Runnerstrom, A. Bergerud, D. Nordlund, and D. J. Milliron, “Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals,” J. Am. Chem. Soc. 136, 7110–7116 (2014).
    [Crossref]
  93. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
    [Crossref]
  94. G. A. Shah, “Numerical methods for Mie theory of scattering by a sphere,” Kodaikanal Obs. Bull. Ser. A 2, 42–63 (1977).
  95. Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
    [Crossref]
  96. A. Gole and C. Murphy, “Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed,” Chem. Mater. 16, 3633–3640 (2004).
    [Crossref]
  97. D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19, 15047–15061 (2011).
    [Crossref]
  98. D. DeJarnette, E. Tunkara, N. Brekke, T. Otanicar, K. Roberts, B. Gao, and A. E. Saunders, “Nanoparticle enhanced spectral filtration of insolation from trough concentrators,” Sol. Energy Mater. Sol. Cells 149, 145–153 (2016).
    [Crossref]
  99. C. Guo, S. Yin, Y. Huang, Q. Dong, and T. Sato, “Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties,” Langmuir 27, 12172–12178 (2011).
    [Crossref]
  100. C. Guo, S. Yin, L. Huang, L. Yang, and T. Sato, “Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods,” Chem. Commun. 47, 8853–8855 (2011).
    [Crossref]
  101. C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, and T. Sato, “Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process,” J. Mater. Chem. 20, 8227–8229 (2010).
    [Crossref]
  102. R. A. Gilstrap, C. J. Capozzi, C. G. Carson, R. A. Gerhardt, and C. J. Summers, “Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion,” Adv. Mater. 20, 4163–4166 (2008).
  103. S. D. Lounis, E. L. Runnerstrom, A. Llordes, and D. J. Milliron, “Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals,” J. Phys. Chem. Lett. 5, 1564–1574 (2014).
    [Crossref]
  104. H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91, 2897–2902 (2008).
    [Crossref]
  105. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
    [Crossref]
  106. D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
    [Crossref]
  107. B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15, 1755–1759 (2005).
    [Crossref]
  108. R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
    [Crossref]
  109. D. DeJarnette, P. Blake, G. T. Forcherio, and D. Keith Roper, “Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115, 024306 (2014).
    [Crossref]
  110. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
    [Crossref]
  111. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
    [Crossref]
  112. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [Crossref]
  113. F. B. Arango, T. Coenen, and A. Koenderink, “Underpinning hybridization intuition for complex nanoantennas by magnetoelectric quadrupolar polarizability retrieval,” ACS Photon. 1, 444–453 (2014).
    [Crossref]
  114. A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
    [Crossref]
  115. C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
    [Crossref]
  116. W. De Rooij and C. van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).
  117. A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
    [Crossref]
  118. S. Link and M. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
    [Crossref]
  119. D. DeJarnette, G. G. Jang, P. Blake, and D. K. Roper, “Polarization angle affects energy of plasmonic features in Fano resonant regular lattices,” J. Opt. 16, 105006 (2014).
    [Crossref]
  120. H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
    [Crossref]
  121. G. T. Forcherio, P. Blake, D. DeJarnette, and D. K. Roper, “Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices,” Opt. Express 22, 17791–17804 (2014).
    [Crossref]
  122. J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
    [Crossref]
  123. B. Pietrobon and V. Kitaev, “Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties,” Chem. Mater. 20, 5186–5190 (2008).
    [Crossref]
  124. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
    [Crossref]
  125. J. B. Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
    [Crossref]
  126. C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
    [Crossref]
  127. S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587–1595 (2008).
    [Crossref]
  128. Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
    [Crossref]
  129. S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112, 178–185 (1990).
    [Crossref]
  130. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
    [Crossref]
  131. Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb, Er–SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115, 3291–3296 (2011).
    [Crossref]
  132. W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021004 (2013).
  133. C. Telang, T. Otanicar, L. Dai, P. Phelan, R. Swaminathan, and M. Zhang, “Controllable optical properties of polystyrene/PNIPAM-gold composite nanoparticles,” Plasmonics 10, 17–25 (2015).
    [Crossref]
  134. D. Suzuki and H. Kawaguchi, “Hybrid microgels with reversibly changeable multiple brilliant color,” Langmuir 22, 3818–3822 (2006).
    [Crossref]
  135. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
    [Crossref]
  136. A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. USA 102, 1280–1284 (2005).
    [Crossref]
  137. T. Iida, “Control of plasmonic superradiance in metallic nanoparticle assembly by light-induced force and fluctuations,” J. Phys. Chem. Lett. 3, 332–336 (2012).
    [Crossref]
  138. S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, and T. Iida, “Multipole superradiance from densely assembled metallic nanoparticles,” J. Phys. Chem. B 117, 15247–15252 (2013).
  139. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
    [Crossref]
  140. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
    [Crossref]
  141. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [Crossref]
  142. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [Crossref]
  143. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
    [Crossref]
  144. R. Looser, M. Vivar, and V. Everett, “Spectral characterisation and long-term performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications,” Appl. Energy 113, 1496–1511 (2014).
    [Crossref]
  145. W. A. M. Al-Shohani, A. Sabouri, R. Al-Dadah, S. Mahmoud, and H. Butt, “Experimental investigation of an optical water filter for photovoltaic/thermal conversion module,” Energy Convers. Manag. 111, 431–442 (2016).
    [Crossref]
  146. S. S. Joshi, A. S. Dhoble, and P. R. Jiwanapurkar, “Investigations of different liquid based spectrum beam splitters for combined solar photovoltaic thermal systems,” J. Sol. Energy Eng. 138, 021003 (2016).
    [Crossref]
  147. A. Mojiri, C. Stanley, and G. Rosengarten, “A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators,” Proc. SPIE 9559, 95590D (2015).
    [Crossref]
  148. S. Vijayaraghavan, S. Ganapathisubbu, and C. Santosh Kumar, “Performance analysis of a spectrally selective concentrating direct absorption collector,” Sol. Energy 97, 418–425 (2013).
    [Crossref]
  149. T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
    [Crossref]
  150. R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, e34 (2012).
    [Crossref]
  151. R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jiang, and S. Coulombe, “Feasibility of nanofluid-based optical filters,” Appl. Opt. 52, 1413–1422 (2013).
    [Crossref]
  152. N. E. Hjerrild, S. Mesgari, F. Crisostomo, J. A. Scott, R. Amal, and R. A. Taylor, “Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids,” Sol. Energy Mater. Sol. Cells 147, 281–287 (2016).
    [Crossref]
  153. W. An, J. Zhang, T. Zhu, and N. Gao, “Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: preliminary test,” Renew. Energy 86, 633–642 (2016).
    [Crossref]
  154. D. Jing, Y. Hu, M. Liu, J. Wei, and L. Guo, “Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system,” Sol. Energy 112, 30–40 (2015).
    [Crossref]
  155. N. Brekke, T. Otanicar, D. DeJarnette, and P. Harikumar, “A parametric investigation of a concentrating PV/T system with spectral filtering utilizing a 2-D heat transfer model,” J. Sol. Energy Eng. 138, 021007 (2016).
    [Crossref]
  156. R. Wolf, H. Matz, E. Orion, and J. Lipozencić, “Sunscreens—the ultimate cosmetic,” Acta Dermatovenerol. Croat. 11, 158–162 (2003).
  157. T. G. Smijs and S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness,” Nanotechnol. Sci. Appl. 4, 95–112 (2011).
    [Crossref]
  158. T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki, “Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics,” J. Cosmet. Sci. 55, 219–220 (2004).
  159. M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
    [Crossref]
  160. X. Hua, Z. Zhou, L. Yuan, and S. Liu, “Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes,” Anal. Chim. Acta 788, 135–140 (2013).
    [Crossref]
  161. L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47, 1001–1009 (2014).
    [Crossref]
  162. K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
    [Crossref]
  163. J. M. Dubach, D. I. Harjes, and H. A. Clark, “Ion-selective nano-optodes incorporating quantum dots,” J. Am. Chem. Soc. 129, 8418–8419 (2007).
    [Crossref]
  164. Y. Masuda, N. Kinoshita, F. Sato, and K. Koumoto, “Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals,” Cryst. Growth Des. 6, 75–78 (2006).
    [Crossref]
  165. Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
    [Crossref]
  166. M. Tschikin, S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Radiative cooling of nanoparticles close to a surface,” Eur. Phys. J. B 85, 233 (2012).
    [Crossref]
  167. T. P. Otanicar, “Enhancing the heat transfer in energy systems from a volumetric approach,” in ASME/JSME 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, 13–17 March2011, paper T30074.
  168. T. P. Otanicar, R. Smith, L. Dai, P. E. Phelan, and R. Swaminathan, “Applicability of controllable nanoparticle radiative properties for spacecraft heat rejection,” J. Thermophys. Heat Transfer 29, 869–874 (2015).
    [Crossref]
  169. C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, and T. Sato, “Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties,” Inorg. Chem. 51, 4763–4771 (2012).
    [Crossref]
  170. K. Adachi and T. Asahi, “Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles,” J. Mater. Res. 27, 965–970 (2012).
    [Crossref]
  171. C. Guo, S. Yin, L. Huang, and T. Sato, “Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property,” ACS Appl. Mater. Interfaces 3, 2794–2799 (2011).
    [Crossref]
  172. N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
    [Crossref]
  173. S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108, 063525 (2010).
    [Crossref]
  174. E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
    [Crossref]
  175. G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
    [Crossref]
  176. A. Agrawal, I. Kriegel, and D. J. Milliron, “Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals,” J. Phys. Chem. C 119, 6227–6238 (2015).
    [Crossref]
  177. R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11, 4706–4710 (2011).
    [Crossref]
  178. R. A. Taylor, T. P. Otanicar, Y. L. Hewakuruppu, and D. DeJarnette, “Comparison of selective transmitters for solar thermal applications,” Appl. Opt. 55, 3829–3839 (2016).
  179. J. Li, X. Hu, Y. Gu, and Q. Gong, “Tunable wavelength-division multiplexing based on metallic nanoparticle arrays,” Opt. Lett. 35, 4051–4053 (2010).
    [Crossref]
  180. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
    [Crossref]
  181. D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asén, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
    [Crossref]
  182. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
    [Crossref]
  183. W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref]
  184. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
    [Crossref]
  185. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref]
  186. E. L. I. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices 29, 300–305 (1982).
    [Crossref]
  187. F. J. Beck, A. Polman, K. R. Catchpole, F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
    [Crossref]
  188. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
    [Crossref]
  189. P. Campbell, M. A. Green, P. Campbell, and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
    [Crossref]
  190. C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).
  191. C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2016).
  192. J. G. Smith, J. A. Faucheaux, and P. K. Jain, “Plasmon resonances for solar energy harvesting: a mechanistic outlook,” Nano Today 10(1), 67–80 (2015).
    [Crossref]
  193. A. W. Powell, M. B. Wincott, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” J. Appl. Phys. 113, 184311 (2013).
    [Crossref]
  194. R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
    [Crossref]
  195. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18, 500–504 (2010).
    [Crossref]
  196. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
    [Crossref]
  197. F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 2012–2015 (2009).
  198. M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
    [Crossref]
  199. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).
  200. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18, 10078–10087 (2010).
    [Crossref]
  201. A. Dabirian and N. Taghavinia, “Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles,” ACS Appl. Mater. Interface 7, 14926–14932 (2015).
  202. S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
    [Crossref]
  203. Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
    [Crossref]
  204. X. Chen, B. Jia, Y. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
    [Crossref]
  205. J. R. C. Smirnov, M. E. Calvo, and H. Míguez, “Selective UV reflecting mirrors based on nanoparticle multilayers,” Adv. Funct. Mater. 23, 2805–2811 (2013).
    [Crossref]
  206. P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
    [Crossref]
  207. M. D. Ooms, Y. Jeyaram, and D. Sinton, “Wavelength-selective plasmonics for enhanced cultivation of microalgae,” Appl. Phys. Lett. 106, 063902 (2015).
    [Crossref]
  208. S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97, 043703 (2010).
    [Crossref]
  209. B. Estime, D. Ren, and R. Sureshkumar, “Effects of plasmonic film filters on microalgal growth and biomass composition,” Algal Res. 11, 85–89 (2015).
    [Crossref]
  210. E. Eroglu, P. K. Eggers, M. Winslade, S. M. Smith, and C. L. Raston, “Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices,” Green Chem. 15, 3155–3159 (2013).
    [Crossref]
  211. T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995).
    [Crossref]
  212. A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
    [Crossref]
  213. A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
    [Crossref]
  214. W. Van Sark, “Luminescent solar concentrators—a low cost photovoltaics alternative,” in EPJ Web of Conferences (2012), Vol. 33, paper 02003–1.
  215. R. Kinderman, L. H. Slooff, A. R. Burgers, N. J. Bakker, A. Büchtemann, R. Danz, and J. A. M. van Roosmalen, “I-V performance and stability study of dyes for luminescent plate concentrators,” J. Sol. Energy Eng. 129, 277–282 (2007).
    [Crossref]
  216. W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).
  217. J. I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.-I. Cho, and K.-S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett. 78, 901–903 (2001).
    [Crossref]
  218. L. Chen, H. Yu, J. Zhong, C. Wu, L. Hu, and T. Zhang, “Effectively improved field emission properties of multiwalled carbon nanotubes/graphenes composite field emitter by covering on the Si pyramidal structure,” IEEE Trans. Electron Devices 62, 4305–4312 (2015).
  219. D. Nawn, D. Banerjee, and K. K. Chattopadhyay, “Zinc oxide nanostructure decorated amorphous carbon nanotubes: an improved field emitter,” Diam. Relat. Mater. 34, 50–59 (2013).
    [Crossref]
  220. H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2, 1661–1670 (2008).
    [Crossref]
  221. J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
    [Crossref]
  222. H. Delavari Amrei, R. Ranjbar, S. Rastegar, B. Nasernejad, and A. Nejadebrahim, “Using fluorescent material for enhancing microalgae growth rate in photobioreactors,” J. Appl. Phycol. 27, 67–74 (2015).
    [Crossref]
  223. L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
    [Crossref]
  224. L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2, 1500218 (2015).
    [Crossref]
  225. J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors 12, 2414–2435 (2012).
    [Crossref]
  226. M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, “Upconversion nanoparticles: synthesis, surface modification and biological applications,” Nanomedicine 7, 710–729 (2011).
  227. M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. 50, 5808–5829 (2011).
    [Crossref]
  228. N. Chong and L. Wong, “Algal purification system with efficient solar light utilization,” U.S. patent7,985,338 B1 (July26, 2011).
  229. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
    [Crossref]
  230. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
    [Crossref]
  231. A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
    [Crossref]
  232. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128, 2385–2393 (2006).
    [Crossref]
  233. I. Robel, M. Kuno, and P. V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129, 4136–4137 (2007).
    [Crossref]
  234. M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
    [Crossref]
  235. T. P. Otanicar, R. A. Taylor, and C. Telang, “Photovoltaic/thermal system performance utilizing thin film and nanoparticle dispersion based optical filters,” J. Renewable Sustainable Energy 5, 033124 (2013).
    [Crossref]
  236. K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc. 134, 3995–3998 (2012).
    [Crossref]

2016 (8)

D. DeJarnette, E. Tunkara, N. Brekke, T. Otanicar, K. Roberts, B. Gao, and A. E. Saunders, “Nanoparticle enhanced spectral filtration of insolation from trough concentrators,” Sol. Energy Mater. Sol. Cells 149, 145–153 (2016).
[Crossref]

W. A. M. Al-Shohani, A. Sabouri, R. Al-Dadah, S. Mahmoud, and H. Butt, “Experimental investigation of an optical water filter for photovoltaic/thermal conversion module,” Energy Convers. Manag. 111, 431–442 (2016).
[Crossref]

S. S. Joshi, A. S. Dhoble, and P. R. Jiwanapurkar, “Investigations of different liquid based spectrum beam splitters for combined solar photovoltaic thermal systems,” J. Sol. Energy Eng. 138, 021003 (2016).
[Crossref]

N. E. Hjerrild, S. Mesgari, F. Crisostomo, J. A. Scott, R. Amal, and R. A. Taylor, “Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids,” Sol. Energy Mater. Sol. Cells 147, 281–287 (2016).
[Crossref]

W. An, J. Zhang, T. Zhu, and N. Gao, “Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: preliminary test,” Renew. Energy 86, 633–642 (2016).
[Crossref]

N. Brekke, T. Otanicar, D. DeJarnette, and P. Harikumar, “A parametric investigation of a concentrating PV/T system with spectral filtering utilizing a 2-D heat transfer model,” J. Sol. Energy Eng. 138, 021007 (2016).
[Crossref]

R. A. Taylor, T. P. Otanicar, Y. L. Hewakuruppu, and D. DeJarnette, “Comparison of selective transmitters for solar thermal applications,” Appl. Opt. 55, 3829–3839 (2016).

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2016).

2015 (26)

J. G. Smith, J. A. Faucheaux, and P. K. Jain, “Plasmon resonances for solar energy harvesting: a mechanistic outlook,” Nano Today 10(1), 67–80 (2015).
[Crossref]

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).

A. Dabirian and N. Taghavinia, “Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles,” ACS Appl. Mater. Interface 7, 14926–14932 (2015).

M. D. Ooms, Y. Jeyaram, and D. Sinton, “Wavelength-selective plasmonics for enhanced cultivation of microalgae,” Appl. Phys. Lett. 106, 063902 (2015).
[Crossref]

B. Estime, D. Ren, and R. Sureshkumar, “Effects of plasmonic film filters on microalgal growth and biomass composition,” Algal Res. 11, 85–89 (2015).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
[Crossref]

L. Chen, H. Yu, J. Zhong, C. Wu, L. Hu, and T. Zhang, “Effectively improved field emission properties of multiwalled carbon nanotubes/graphenes composite field emitter by covering on the Si pyramidal structure,” IEEE Trans. Electron Devices 62, 4305–4312 (2015).

H. Delavari Amrei, R. Ranjbar, S. Rastegar, B. Nasernejad, and A. Nejadebrahim, “Using fluorescent material for enhancing microalgae growth rate in photobioreactors,” J. Appl. Phycol. 27, 67–74 (2015).
[Crossref]

A. Agrawal, I. Kriegel, and D. J. Milliron, “Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals,” J. Phys. Chem. C 119, 6227–6238 (2015).
[Crossref]

T. P. Otanicar, R. Smith, L. Dai, P. E. Phelan, and R. Swaminathan, “Applicability of controllable nanoparticle radiative properties for spacecraft heat rejection,” J. Thermophys. Heat Transfer 29, 869–874 (2015).
[Crossref]

N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
[Crossref]

D. Jing, Y. Hu, M. Liu, J. Wei, and L. Guo, “Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system,” Sol. Energy 112, 30–40 (2015).
[Crossref]

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2, 1500218 (2015).
[Crossref]

A. Mojiri, C. Stanley, and G. Rosengarten, “A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators,” Proc. SPIE 9559, 95590D (2015).
[Crossref]

C. Telang, T. Otanicar, L. Dai, P. Phelan, R. Swaminathan, and M. Zhang, “Controllable optical properties of polystyrene/PNIPAM-gold composite nanoparticles,” Plasmonics 10, 17–25 (2015).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

Z. J. Yu, K. C. Fisher, B. M. Wheelwright, R. P. Angel, and Z. C. Holman, “PVMirror: a new concept for tandem solar cells and hybrid solar converters,” IEEE J. Photovolt. 5, 1791–1799 (2015).
[Crossref]

R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
[Crossref]

F. Crisostomo, R. A. Taylor, D. Surjadi, A. Mojiri, G. Rosengarten, and E. R. Hawkes, “Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector,” Appl. Energy 141, 238–246 (2015).
[Crossref]

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235-242 (2015).
[Crossref]

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15, 1315–1323 (2015).
[Crossref]

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

D. DeJarnette, N. Brekke, E. Tunkara, H. Parameswar, K. Roberts, and T. Otanicar, “Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power,” Proc. SPIE 9559, 95590C (2015).
[Crossref]

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, and K. Roberts, “Selective spectral filtration with nanoparticles for concentrating solar collectors,” J. Photon. Energy 5, 057008 (2015).
[Crossref]

2014 (26)

G. T. Forcherio, D. DeJarnette, P. Blake, and D. K. Roper, “Polarizability extraction for rapid computation of Fano resonance in nanoring lattices,” Proc. SPIE 9163, 91633O (2014).
[Crossref]

M. Arnold, M. Blaber, and M. Ford, “Local plasmon resonances of metal-in-metal core-shells,” Opt. Express 22, 3186–3198 (2014).
[Crossref]

H. Matsui, S. Furuta, and H. Tabata, “Role of electron carriers on local surface plasmon resonances in doped oxide semiconductor nanocrystals,” Appl. Phys. Lett. 104, 211903 (2014).
[Crossref]

D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photon. Res. 2, 15–23 (2014).
[Crossref]

J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5, 976–985 (2014).
[Crossref]

Y. Nishimura, K. Nishida, Y. Yamamoto, S. Ito, S. Tokonami, and T. Iida, “Control of submillimeter phase transition by collective photothermal effect,” J. Phys. Chem. C 118, 18799–18804 (2014).
[Crossref]

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4, 20894–20901 (2014).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, K. Roberts, A. E. Saunders, and R. Morad, “Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors,” Proc. SPIE 9175, 917509 (2014).
[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2014).
[Crossref]

D. DeJarnette and D. K. Roper, “Electron energy loss spectroscopy of gold nanoparticles on graphene,” J. Appl. Phys. 116, 054313 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

F. Crisostomo, R. A. Taylor, T. Zhang, I. Perez-Wurfl, G. Rosengarten, V. Everett, and E. R. Hawkes, “Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector,” Renew. Energy 72, 79–87 (2014).
[Crossref]

D. DeJarnette, G. G. Jang, P. Blake, and D. K. Roper, “Polarization angle affects energy of plasmonic features in Fano resonant regular lattices,” J. Opt. 16, 105006 (2014).
[Crossref]

G. T. Forcherio, P. Blake, D. DeJarnette, and D. K. Roper, “Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices,” Opt. Express 22, 17791–17804 (2014).
[Crossref]

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref]

R. Looser, M. Vivar, and V. Everett, “Spectral characterisation and long-term performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications,” Appl. Energy 113, 1496–1511 (2014).
[Crossref]

S. D. Lounis, E. L. Runnerstrom, A. Llordes, and D. J. Milliron, “Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals,” J. Phys. Chem. Lett. 5, 1564–1574 (2014).
[Crossref]

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

D. DeJarnette, P. Blake, G. T. Forcherio, and D. Keith Roper, “Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115, 024306 (2014).
[Crossref]

F. B. Arango, T. Coenen, and A. Koenderink, “Underpinning hybridization intuition for complex nanoantennas by magnetoelectric quadrupolar polarizability retrieval,” ACS Photon. 1, 444–453 (2014).
[Crossref]

S. D. Lounis, E. L. Runnerstrom, A. Bergerud, D. Nordlund, and D. J. Milliron, “Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals,” J. Am. Chem. Soc. 136, 7110–7116 (2014).
[Crossref]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47, 1001–1009 (2014).
[Crossref]

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

2013 (24)

A. W. Powell, M. B. Wincott, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” J. Appl. Phys. 113, 184311 (2013).
[Crossref]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[Crossref]

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref]

J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
[Crossref]

D. Nawn, D. Banerjee, and K. K. Chattopadhyay, “Zinc oxide nanostructure decorated amorphous carbon nanotubes: an improved field emitter,” Diam. Relat. Mater. 34, 50–59 (2013).
[Crossref]

E. Eroglu, P. K. Eggers, M. Winslade, S. M. Smith, and C. L. Raston, “Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices,” Green Chem. 15, 3155–3159 (2013).
[Crossref]

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

J. R. C. Smirnov, M. E. Calvo, and H. Míguez, “Selective UV reflecting mirrors based on nanoparticle multilayers,” Adv. Funct. Mater. 23, 2805–2811 (2013).
[Crossref]

X. Hua, Z. Zhou, L. Yuan, and S. Liu, “Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes,” Anal. Chim. Acta 788, 135–140 (2013).
[Crossref]

R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jiang, and S. Coulombe, “Feasibility of nanofluid-based optical filters,” Appl. Opt. 52, 1413–1422 (2013).
[Crossref]

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

T. P. Otanicar, R. A. Taylor, and C. Telang, “Photovoltaic/thermal system performance utilizing thin film and nanoparticle dispersion based optical filters,” J. Renewable Sustainable Energy 5, 033124 (2013).
[Crossref]

Y. Xie, L. Carbone, C. Nobile, and V. Grillo, “Metallic-like stoichiometric copper sulfide nanocrystals: phase-and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7, 7352–7369 (2013).
[Crossref]

R. Filter, M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer, “Tunable graphene antennas for selective enhancement of THz-emission,” Opt. Express 21, 3737–3745 (2013).
[Crossref]

P. Zhao, N. Li, and D. Astruc, “State of the art in gold nanoparticle synthesis,” Coord. Chem. Rev. 257, 638–665 (2013).
[Crossref]

S. Vijayaraghavan, S. Ganapathisubbu, and C. Santosh Kumar, “Performance analysis of a spectrally selective concentrating direct absorption collector,” Sol. Energy 97, 418–425 (2013).
[Crossref]

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021004 (2013).

S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, and T. Iida, “Multipole superradiance from densely assembled metallic nanoparticles,” J. Phys. Chem. B 117, 15247–15252 (2013).

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—a review,” Renew. Sust. Energy Rev. 28, 654–663 (2013).
[Crossref]

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8, 81 (2013).
[Crossref]

B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
[Crossref]

Q. Huang, J. Wang, B. Quan, Q. Zhang, D. Zhang, D. Li, Q. Meng, L. Pan, Y. Wang, and G. Yang, “Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells,” Appl. Opt. 52, 2312–2319 (2013).
[Crossref]

F. Scotognella, G. Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86, 154 (2013).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).

2012 (22)

D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101, 183104 (2012).
[Crossref]

D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
[Crossref]

M. Stefancich, A. Zayan, M. Chiesa, S. Rampino, L. Kimerling, and J. Michel, “Single element spectral splitting solar concentrator for multiple cells CPV system,” Opt. Express 20, 9004–9018 (2012).
[Crossref]

T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
[Crossref]

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14, 114009 (2012).
[Crossref]

T. Iida, “Control of plasmonic superradiance in metallic nanoparticle assembly by light-induced force and fluctuations,” J. Phys. Chem. Lett. 3, 332–336 (2012).
[Crossref]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

R. G. Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2012).
[Crossref]

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc. 134, 3995–3998 (2012).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors 12, 2414–2435 (2012).
[Crossref]

R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, e34 (2012).
[Crossref]

M. Tschikin, S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Radiative cooling of nanoparticles close to a surface,” Eur. Phys. J. B 85, 233 (2012).
[Crossref]

C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, and T. Sato, “Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties,” Inorg. Chem. 51, 4763–4771 (2012).
[Crossref]

K. Adachi and T. Asahi, “Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles,” J. Mater. Res. 27, 965–970 (2012).
[Crossref]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

2011 (24)

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11, 4706–4710 (2011).
[Crossref]

C. Guo, S. Yin, L. Huang, and T. Sato, “Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property,” ACS Appl. Mater. Interfaces 3, 2794–2799 (2011).
[Crossref]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[Crossref]

T. G. Smijs and S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness,” Nanotechnol. Sci. Appl. 4, 95–112 (2011).
[Crossref]

M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, “Upconversion nanoparticles: synthesis, surface modification and biological applications,” Nanomedicine 7, 710–729 (2011).

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. 50, 5808–5829 (2011).
[Crossref]

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[Crossref]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

C. Guo, S. Yin, Y. Huang, Q. Dong, and T. Sato, “Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties,” Langmuir 27, 12172–12178 (2011).
[Crossref]

C. Guo, S. Yin, L. Huang, L. Yang, and T. Sato, “Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods,” Chem. Commun. 47, 8853–8855 (2011).
[Crossref]

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[Crossref]

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19, 15047–15061 (2011).
[Crossref]

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb, Er–SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115, 3291–3296 (2011).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27, 8605–8610 (2011).
[Crossref]

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27, 14621–14626 (2011).
[Crossref]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref]

C. Kojima, Y. Watanabe, H. Hattori, and T. Iida, “Design of photosensitive gold nanoparticles for biomedical applications based on self-consistent optical response theory,” J. Phys. Chem. C 115, 19091–19095 (2011).
[Crossref]

B. Fisher and J. Biddle, “Luminescent spectral splitting: efficient spatial division of solar spectrum at low concentration,” Sol. Energy Mater. Sol. Cells 95, 1741–1755 (2011).
[Crossref]

M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111, 3713–3735 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

2010 (13)

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Z.-J. Yang, N.-C. Kim, J.-B. Li, M.-T. Cheng, S.-D. Liu, Z.-H. Hao, and Q.-Q. Wang, “Surface plasmons amplifications in single Ag nanoring,” Opt. Express 18, 4006–4011 (2010).
[Crossref]

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, and T. Sato, “Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process,” J. Mater. Chem. 20, 8227–8229 (2010).
[Crossref]

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[Crossref]

S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108, 063525 (2010).
[Crossref]

J. Li, X. Hu, Y. Gu, and Q. Gong, “Tunable wavelength-division multiplexing based on metallic nanoparticle arrays,” Opt. Lett. 35, 4051–4053 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18, 10078–10087 (2010).
[Crossref]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18, 500–504 (2010).
[Crossref]

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asén, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[Crossref]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref]

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97, 043703 (2010).
[Crossref]

2009 (6)

F. J. Beck, A. Polman, K. R. Catchpole, F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[Crossref]

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 2012–2015 (2009).

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

J. B. Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[Crossref]

2008 (14)

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587–1595 (2008).
[Crossref]

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

B. Pietrobon and V. Kitaev, “Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties,” Chem. Mater. 20, 5186–5190 (2008).
[Crossref]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108, 845–910 (2008).
[Crossref]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

R. A. Gilstrap, C. J. Capozzi, C. G. Carson, R. A. Gerhardt, and C. J. Summers, “Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion,” Adv. Mater. 20, 4163–4166 (2008).

H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91, 2897–2902 (2008).
[Crossref]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[Crossref]

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2, 1661–1670 (2008).
[Crossref]

K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
[Crossref]

2007 (12)

J. M. Dubach, D. I. Harjes, and H. A. Clark, “Ion-selective nano-optodes incorporating quantum dots,” J. Am. Chem. Soc. 129, 8418–8419 (2007).
[Crossref]

R. Kinderman, L. H. Slooff, A. R. Burgers, N. J. Bakker, A. Büchtemann, R. Danz, and J. A. M. van Roosmalen, “I-V performance and stability study of dyes for luminescent plate concentrators,” J. Sol. Energy Eng. 129, 277–282 (2007).
[Crossref]

I. Robel, M. Kuno, and P. V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129, 4136–4137 (2007).
[Crossref]

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
[Crossref]

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91, 829–842 (2007).
[Crossref]

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[Crossref]

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

H. Takeda and K. Adachi, “Near infrared absorption of tungsten oxide nanoparticle dispersions,” J. Am. Ceram. Soc. 4061, 4059–4061 (2007).
[Crossref]

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76, 245422 (2007).
[Crossref]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
[Crossref]

A. Tavakoli, M. Sohrabi, and A. Kargari, “A review of methods for synthesis of nanostructured metals with emphasis on iron compounds,” Chem. Pap. 61, 151–170 (2007).
[Crossref]

2006 (9)

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[Crossref]

D. Suzuki and H. Kawaguchi, “Hybrid microgels with reversibly changeable multiple brilliant color,” Langmuir 22, 3818–3822 (2006).
[Crossref]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[Crossref]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
[Crossref]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
[Crossref]

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128, 2385–2393 (2006).
[Crossref]

Y. Masuda, N. Kinoshita, F. Sato, and K. Koumoto, “Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals,” Cryst. Growth Des. 6, 75–78 (2006).
[Crossref]

2005 (3)

J. Venermo and A. Sihvola, “Dielectric polarizability of circular cylinder,” J. Electrost. 63, 101–117 (2005).
[Crossref]

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. USA 102, 1280–1284 (2005).
[Crossref]

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15, 1755–1759 (2005).
[Crossref]

2004 (8)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

T. Tsuzuki and P. G. McCormick, “Mechanochemical synthesis of nanoparticles,” J. Mater. Sci. 39, 5143–5146 (2004).
[Crossref]

A. Gole and C. Murphy, “Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed,” Chem. Mater. 16, 3633–3640 (2004).
[Crossref]

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

A. V. Goncharenko, “Optical properties of core-shell particle composites. I. Linear response,” Chem. Phys. Lett. 386, 25–31 (2004).
[Crossref]

M. Collinge and B. Draine, “Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry,” J. Opt. Soc. Am. A 21, 2023–2028 (2004).
[Crossref]

T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki, “Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics,” J. Cosmet. Sci. 55, 219–220 (2004).

2003 (7)

R. Wolf, H. Matz, E. Orion, and J. Lipozencić, “Sunscreens—the ultimate cosmetic,” Acta Dermatovenerol. Croat. 11, 158–162 (2003).

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[Crossref]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

2002 (4)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref]

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
[Crossref]

H. Ishihara, K. Cho, K. Akiyama, N. Tomita, Y. Nomura, and T. Isu, “Large four-wave mixing of spatially extended excitonic states in thin GaAs layers,” Phys. Rev. Lett. 89, 017402 (2002).
[Crossref]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).
[Crossref]

2001 (1)

J. I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.-I. Cho, and K.-S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett. 78, 901–903 (2001).
[Crossref]

2000 (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

1999 (2)

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[Crossref]

S. Link and M. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

1998 (2)

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizability backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[Crossref]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[Crossref]

1997 (1)

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

1995 (1)

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995).
[Crossref]

1992 (1)

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[Crossref]

1990 (1)

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112, 178–185 (1990).
[Crossref]

1989 (1)

W. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[Crossref]

1987 (2)

M. A. C. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Sol. Wind Technol. 4, 131–138 (1987).
[Crossref]

P. Campbell, M. A. Green, P. Campbell, and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

1984 (1)

W. De Rooij and C. van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).

1982 (1)

E. L. I. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices 29, 300–305 (1982).
[Crossref]

1977 (1)

G. A. Shah, “Numerical methods for Mie theory of scattering by a sphere,” Kodaikanal Obs. Bull. Ser. A 2, 42–63 (1977).

1973 (1)

E. Purcell and C. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

1951 (1)

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

1908 (1)

G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

1899 (1)

C. Fabry and A. Perot, “Theorie et applications d’une nouvelle methode de spectroscopie interferentielle,” Ann. Chim. Phys. 16, 115 (1899).

Abbineni, G.

M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, “Upconversion nanoparticles: synthesis, surface modification and biological applications,” Nanomedicine 7, 710–729 (2011).

Abdelhamid, M.

R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
[Crossref]

Acuna, J. J. S.

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Adachi, K.

K. Adachi and T. Asahi, “Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles,” J. Mater. Res. 27, 965–970 (2012).
[Crossref]

C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, and T. Sato, “Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process,” J. Mater. Chem. 20, 8227–8229 (2010).
[Crossref]

H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91, 2897–2902 (2008).
[Crossref]

H. Takeda and K. Adachi, “Near infrared absorption of tungsten oxide nanoparticle dispersions,” J. Am. Ceram. Soc. 4061, 4059–4061 (2007).
[Crossref]

Adachi, M.

T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki, “Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics,” J. Cosmet. Sci. 55, 219–220 (2004).

Agrawal, A.

A. Agrawal, I. Kriegel, and D. J. Milliron, “Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals,” J. Phys. Chem. C 119, 6227–6238 (2015).
[Crossref]

Águas, H.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Ahn, W.

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asén, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[Crossref]

Aizpurua, J.

Ajayan, P. M.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Ajiki, H.

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).
[Crossref]

Akiyama, K.

H. Ishihara, K. Cho, K. Akiyama, N. Tomita, Y. Nomura, and T. Isu, “Large four-wave mixing of spatially extended excitonic states in thin GaAs layers,” Phys. Rev. Lett. 89, 017402 (2002).
[Crossref]

Akiyama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
[Crossref]

Alaee, R.

Albella, P.

Alcantara, C. C. J.

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Al-Dadah, R.

W. A. M. Al-Shohani, A. Sabouri, R. Al-Dadah, S. Mahmoud, and H. Butt, “Experimental investigation of an optical water filter for photovoltaic/thermal conversion module,” Energy Convers. Manag. 111, 431–442 (2016).
[Crossref]

Alivisatos, A. P.

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc. 134, 3995–3998 (2012).
[Crossref]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

Aloni, S.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11, 4706–4710 (2011).
[Crossref]

Alonso-González, P.

Al-Shohani, W. A. M.

W. A. M. Al-Shohani, A. Sabouri, R. Al-Dadah, S. Mahmoud, and H. Butt, “Experimental investigation of an optical water filter for photovoltaic/thermal conversion module,” Energy Convers. Manag. 111, 431–442 (2016).
[Crossref]

Alù, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

Amal, R.

N. E. Hjerrild, S. Mesgari, F. Crisostomo, J. A. Scott, R. Amal, and R. A. Taylor, “Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids,” Sol. Energy Mater. Sol. Cells 147, 281–287 (2016).
[Crossref]

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

An, W.

W. An, J. Zhang, T. Zhu, and N. Gao, “Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: preliminary test,” Renew. Energy 86, 633–642 (2016).
[Crossref]

Anders, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[Crossref]

Angel, R. P.

Z. J. Yu, K. C. Fisher, B. M. Wheelwright, R. P. Angel, and Z. C. Holman, “PVMirror: a new concept for tandem solar cells and hybrid solar converters,” IEEE J. Photovolt. 5, 1791–1799 (2015).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Arango, F. B.

F. B. Arango, T. Coenen, and A. Koenderink, “Underpinning hybridization intuition for complex nanoantennas by magnetoelectric quadrupolar polarizability retrieval,” ACS Photon. 1, 444–453 (2014).
[Crossref]

Arkhipov, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[Crossref]

Arnold, M.

Artemyev, M.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
[Crossref]

Arya, M.

B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
[Crossref]

Asahi, T.

K. Adachi and T. Asahi, “Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles,” J. Mater. Res. 27, 965–970 (2012).
[Crossref]

Assender, H. E.

A. W. Powell, M. B. Wincott, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” J. Appl. Phys. 113, 184311 (2013).
[Crossref]

Astruc, D.

P. Zhao, N. Li, and D. Astruc, “State of the art in gold nanoparticle synthesis,” Coord. Chem. Rev. 257, 638–665 (2013).
[Crossref]

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Atwater, H. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[Crossref]

Au, L.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587–1595 (2008).
[Crossref]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Ayala-Orozco, C.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref]

Bagnall, D. M.

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[Crossref]

Bakker, N. J.

R. Kinderman, L. H. Slooff, A. R. Burgers, N. J. Bakker, A. Büchtemann, R. Danz, and J. A. M. van Roosmalen, “I-V performance and stability study of dyes for luminescent plate concentrators,” J. Sol. Energy Eng. 129, 277–282 (2007).
[Crossref]

Banerjee, A.

B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
[Crossref]

Banerjee, D.

D. Nawn, D. Banerjee, and K. K. Chattopadhyay, “Zinc oxide nanostructure decorated amorphous carbon nanotubes: an improved field emitter,” Diam. Relat. Mater. 34, 50–59 (2013).
[Crossref]

Bao, K.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Barnes, W.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

Batentschuk, M.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref]

Beard, M. C.

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
[Crossref]

Beaucarne, G.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[Crossref]

Beck, F. J.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18, 500–504 (2010).
[Crossref]

F. J. Beck, A. Polman, K. R. Catchpole, F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[Crossref]

F. J. Beck, A. Polman, K. R. Catchpole, F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[Crossref]

Ben-Abdallah, P.

M. Tschikin, S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Radiative cooling of nanoparticles close to a surface,” Eur. Phys. J. B 85, 233 (2012).
[Crossref]

Bergerud, A.

S. D. Lounis, E. L. Runnerstrom, A. Bergerud, D. Nordlund, and D. J. Milliron, “Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals,” J. Am. Chem. Soc. 136, 7110–7116 (2014).
[Crossref]

Berry, K. R.

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4, 20894–20901 (2014).
[Crossref]

Biddle, J.

B. Fisher and J. Biddle, “Luminescent spectral splitting: efficient spatial division of solar spectrum at low concentration,” Sol. Energy Mater. Sol. Cells 95, 1741–1755 (2011).
[Crossref]

Biehs, S.-A.

M. Tschikin, S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Radiative cooling of nanoparticles close to a surface,” Eur. Phys. J. B 85, 233 (2012).
[Crossref]

Bienstman, P.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).

Bigall, N. C.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

Bilmes, S. A.

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Bilotti, F.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

Biteen, J. S.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[Crossref]

Blaber, M.

Blake, P.

G. T. Forcherio, P. Blake, D. DeJarnette, and D. K. Roper, “Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices,” Opt. Express 22, 17791–17804 (2014).
[Crossref]

D. DeJarnette, G. G. Jang, P. Blake, and D. K. Roper, “Polarization angle affects energy of plasmonic features in Fano resonant regular lattices,” J. Opt. 16, 105006 (2014).
[Crossref]

D. DeJarnette, P. Blake, G. T. Forcherio, and D. Keith Roper, “Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115, 024306 (2014).
[Crossref]

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4, 20894–20901 (2014).
[Crossref]

G. T. Forcherio, D. DeJarnette, P. Blake, and D. K. Roper, “Polarizability extraction for rapid computation of Fano resonance in nanoring lattices,” Proc. SPIE 9163, 91633O (2014).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bonifacio, L. D.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

Borchardt, R.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref]

Bouhelier, A.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76, 245422 (2007).
[Crossref]

Brabec, C. J.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref]

Bradshaw, L. R.

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15, 1315–1323 (2015).
[Crossref]

Brekke, N.

D. DeJarnette, E. Tunkara, N. Brekke, T. Otanicar, K. Roberts, B. Gao, and A. E. Saunders, “Nanoparticle enhanced spectral filtration of insolation from trough concentrators,” Sol. Energy Mater. Sol. Cells 149, 145–153 (2016).
[Crossref]

N. Brekke, T. Otanicar, D. DeJarnette, and P. Harikumar, “A parametric investigation of a concentrating PV/T system with spectral filtering utilizing a 2-D heat transfer model,” J. Sol. Energy Eng. 138, 021007 (2016).
[Crossref]

D. DeJarnette, N. Brekke, E. Tunkara, H. Parameswar, K. Roberts, and T. Otanicar, “Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power,” Proc. SPIE 9559, 95590C (2015).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, and K. Roberts, “Selective spectral filtration with nanoparticles for concentrating solar collectors,” J. Photon. Energy 5, 057008 (2015).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, K. Roberts, A. E. Saunders, and R. Morad, “Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors,” Proc. SPIE 9175, 917509 (2014).
[Crossref]

Bremond, F.

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Brus, L. E.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. USA 102, 1280–1284 (2005).
[Crossref]

Büchtemann, A.

R. Kinderman, L. H. Slooff, A. R. Burgers, N. J. Bakker, A. Büchtemann, R. Danz, and J. A. M. van Roosmalen, “I-V performance and stability study of dyes for luminescent plate concentrators,” J. Sol. Energy Eng. 129, 277–282 (2007).
[Crossref]

Buonsanti, R.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11, 4706–4710 (2011).
[Crossref]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[Crossref]

Burgers, A. R.

R. Kinderman, L. H. Slooff, A. R. Burgers, N. J. Bakker, A. Büchtemann, R. Danz, and J. A. M. van Roosmalen, “I-V performance and stability study of dyes for luminescent plate concentrators,” J. Sol. Energy Eng. 129, 277–282 (2007).
[Crossref]

Burrows, A.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15, 1755–1759 (2005).
[Crossref]

Butt, H.

W. A. M. Al-Shohani, A. Sabouri, R. Al-Dadah, S. Mahmoud, and H. Butt, “Experimental investigation of an optical water filter for photovoltaic/thermal conversion module,” Energy Convers. Manag. 111, 431–442 (2016).
[Crossref]

Cai, W.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2, 1661–1670 (2008).
[Crossref]

Calvo, M. E.

J. R. C. Smirnov, M. E. Calvo, and H. Míguez, “Selective UV reflecting mirrors based on nanoparticle multilayers,” Adv. Funct. Mater. 23, 2805–2811 (2013).
[Crossref]

Campbell, P.

P. Campbell, M. A. Green, P. Campbell, and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

P. Campbell, M. A. Green, P. Campbell, and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

Cao, F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2016).

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Capozzi, C. J.

R. A. Gilstrap, C. J. Capozzi, C. G. Carson, R. A. Gerhardt, and C. J. Summers, “Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion,” Adv. Mater. 20, 4163–4166 (2008).

Carbone, L.

Y. Xie, L. Carbone, C. Nobile, and V. Grillo, “Metallic-like stoichiometric copper sulfide nanocrystals: phase-and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7, 7352–7369 (2013).
[Crossref]

Carson, C. G.

R. A. Gilstrap, C. J. Capozzi, C. G. Carson, R. A. Gerhardt, and C. J. Summers, “Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion,” Adv. Mater. 20, 4163–4166 (2008).

Catchpole, K. R.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18, 500–504 (2010).
[Crossref]

F. J. Beck, A. Polman, K. R. Catchpole, F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[Crossref]

F. J. Beck, A. Polman, K. R. Catchpole, F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[Crossref]

Celanovic, I.

Cen, K.

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

Chang, S.-S.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Chang, W.-S.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

Chattopadhyay, K. K.

D. Nawn, D. Banerjee, and K. K. Chattopadhyay, “Zinc oxide nanostructure decorated amorphous carbon nanotubes: an improved field emitter,” Diam. Relat. Mater. 34, 50–59 (2013).
[Crossref]

Chaudhuri, R. G.

R. G. Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2012).
[Crossref]

Chen, F. C.

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 2012–2015 (2009).

Chen, H.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Chen, J.

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors 12, 2414–2435 (2012).
[Crossref]

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587–1595 (2008).
[Crossref]

Chen, L.

L. Chen, H. Yu, J. Zhong, C. Wu, L. Hu, and T. Zhang, “Effectively improved field emission properties of multiwalled carbon nanotubes/graphenes composite field emitter by covering on the Si pyramidal structure,” IEEE Trans. Electron Devices 62, 4305–4312 (2015).

Chen, X.

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

Chendo, M. A. C.

M. A. C. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Sol. Wind Technol. 4, 131–138 (1987).
[Crossref]

Cheng, M.-T.

Chi, T.-T.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Chiang, C.-P.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

Chiesa, M.

Cho, K.

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).
[Crossref]

H. Ishihara, K. Cho, K. Akiyama, N. Tomita, Y. Nomura, and T. Isu, “Large four-wave mixing of spatially extended excitonic states in thin GaAs layers,” Phys. Rev. Lett. 89, 017402 (2002).
[Crossref]

Cho, K.-I.

J. I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.-I. Cho, and K.-S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett. 78, 901–903 (2001).
[Crossref]

Choi, S.-Y.

J. I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.-I. Cho, and K.-S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett. 78, 901–903 (2001).
[Crossref]

Choi, W. B.

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

Choi, Y. S.

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

Chonan, T.

C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, and T. Sato, “Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process,” J. Mater. Chem. 20, 8227–8229 (2010).
[Crossref]

Chong, N.

N. Chong and L. Wong, “Algal purification system with efficient solar light utilization,” U.S. patent7,985,338 B1 (July26, 2011).

Chou, H.-Y. E.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Chou, J. B.

Chowdhury, I.

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[Crossref]

Chu, W.

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

Chutinan, A.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

Clark, H. A.

J. M. Dubach, D. I. Harjes, and H. A. Clark, “Ion-selective nano-optodes incorporating quantum dots,” J. Am. Chem. Soc. 129, 8418–8419 (2007).
[Crossref]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Clevenger, A.

M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, “Upconversion nanoparticles: synthesis, surface modification and biological applications,” Nanomedicine 7, 710–729 (2011).

Cobley, C. M.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587–1595 (2008).
[Crossref]

Cody, G. D.

E. L. I. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices 29, 300–305 (1982).
[Crossref]

Coenen, T.

F. B. Arango, T. Coenen, and A. Koenderink, “Underpinning hybridization intuition for complex nanoantennas by magnetoelectric quadrupolar polarizability retrieval,” ACS Photon. 1, 444–453 (2014).
[Crossref]

Colliex, C.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

Collinge, M.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Cortie, M. B.

M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111, 3713–3735 (2011).
[Crossref]

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
[Crossref]

Coulombe, S.

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Crisostomo, F.

N. E. Hjerrild, S. Mesgari, F. Crisostomo, J. A. Scott, R. Amal, and R. A. Taylor, “Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids,” Sol. Energy Mater. Sol. Cells 147, 281–287 (2016).
[Crossref]

F. Crisostomo, R. A. Taylor, D. Surjadi, A. Mojiri, G. Rosengarten, and E. R. Hawkes, “Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector,” Appl. Energy 141, 238–246 (2015).
[Crossref]

F. Crisostomo, R. A. Taylor, T. Zhang, I. Perez-Wurfl, G. Rosengarten, V. Everett, and E. R. Hawkes, “Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector,” Renew. Energy 72, 79–87 (2014).
[Crossref]

Crupi, I.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

Cygan, D.

R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
[Crossref]

Dabirian, A.

A. Dabirian and N. Taghavinia, “Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles,” ACS Appl. Mater. Interface 7, 14926–14932 (2015).

Dai, H.

K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
[Crossref]

Dai, L.

T. P. Otanicar, R. Smith, L. Dai, P. E. Phelan, and R. Swaminathan, “Applicability of controllable nanoparticle radiative properties for spacecraft heat rejection,” J. Thermophys. Heat Transfer 29, 869–874 (2015).
[Crossref]

C. Telang, T. Otanicar, L. Dai, P. Phelan, R. Swaminathan, and M. Zhang, “Controllable optical properties of polystyrene/PNIPAM-gold composite nanoparticles,” Plasmonics 10, 17–25 (2015).
[Crossref]

Dall’Asén, A. G.

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asén, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[Crossref]

Danz, R.

R. Kinderman, L. H. Slooff, A. R. Burgers, N. J. Bakker, A. Büchtemann, R. Danz, and J. A. M. van Roosmalen, “I-V performance and stability study of dyes for luminescent plate concentrators,” J. Sol. Energy Eng. 129, 277–282 (2007).
[Crossref]

Daranciang, D.

K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
[Crossref]

David, C.

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[Crossref]

Day, J. K.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref]

De Rooij, W.

W. De Rooij and C. van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).

de Wild, J.

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8, 81 (2013).
[Crossref]

DeForest, N.

N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
[Crossref]

DeJarnette, D.

N. Brekke, T. Otanicar, D. DeJarnette, and P. Harikumar, “A parametric investigation of a concentrating PV/T system with spectral filtering utilizing a 2-D heat transfer model,” J. Sol. Energy Eng. 138, 021007 (2016).
[Crossref]

R. A. Taylor, T. P. Otanicar, Y. L. Hewakuruppu, and D. DeJarnette, “Comparison of selective transmitters for solar thermal applications,” Appl. Opt. 55, 3829–3839 (2016).

D. DeJarnette, E. Tunkara, N. Brekke, T. Otanicar, K. Roberts, B. Gao, and A. E. Saunders, “Nanoparticle enhanced spectral filtration of insolation from trough concentrators,” Sol. Energy Mater. Sol. Cells 149, 145–153 (2016).
[Crossref]

D. DeJarnette, N. Brekke, E. Tunkara, H. Parameswar, K. Roberts, and T. Otanicar, “Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power,” Proc. SPIE 9559, 95590C (2015).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, and K. Roberts, “Selective spectral filtration with nanoparticles for concentrating solar collectors,” J. Photon. Energy 5, 057008 (2015).
[Crossref]

G. T. Forcherio, D. DeJarnette, P. Blake, and D. K. Roper, “Polarizability extraction for rapid computation of Fano resonance in nanoring lattices,” Proc. SPIE 9163, 91633O (2014).
[Crossref]

D. DeJarnette and D. K. Roper, “Electron energy loss spectroscopy of gold nanoparticles on graphene,” J. Appl. Phys. 116, 054313 (2014).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, K. Roberts, A. E. Saunders, and R. Morad, “Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors,” Proc. SPIE 9175, 917509 (2014).
[Crossref]

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4, 20894–20901 (2014).
[Crossref]

D. DeJarnette, P. Blake, G. T. Forcherio, and D. Keith Roper, “Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115, 024306 (2014).
[Crossref]

D. DeJarnette, G. G. Jang, P. Blake, and D. K. Roper, “Polarization angle affects energy of plasmonic features in Fano resonant regular lattices,” J. Opt. 16, 105006 (2014).
[Crossref]

G. T. Forcherio, P. Blake, D. DeJarnette, and D. K. Roper, “Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices,” Opt. Express 22, 17791–17804 (2014).
[Crossref]

D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photon. Res. 2, 15–23 (2014).
[Crossref]

D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
[Crossref]

D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101, 183104 (2012).
[Crossref]

del Cañizo, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[Crossref]

Delavari Amrei, H.

H. Delavari Amrei, R. Ranjbar, S. Rastegar, B. Nasernejad, and A. Nejadebrahim, “Using fluorescent material for enhancing microalgae growth rate in photobioreactors,” J. Appl. Phycol. 27, 67–74 (2015).
[Crossref]

Dereux, A.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76, 245422 (2007).
[Crossref]

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Dhoble, A. S.

S. S. Joshi, A. S. Dhoble, and P. R. Jiwanapurkar, “Investigations of different liquid based spectrum beam splitters for combined solar photovoltaic thermal systems,” J. Sol. Energy Eng. 138, 021003 (2016).
[Crossref]

Dong, Q.

C. Guo, S. Yin, Y. Huang, Q. Dong, and T. Sato, “Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties,” Langmuir 27, 12172–12178 (2011).
[Crossref]

Dorfs, D.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

Doyle, W.

W. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[Crossref]

Draine, B.

Du, X.-W.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Dubach, J. M.

J. M. Dubach, D. I. Harjes, and H. A. Clark, “Ion-selective nano-optodes incorporating quantum dots,” J. Am. Chem. Soc. 129, 8418–8419 (2007).
[Crossref]

Ebbesen, T.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

Eggers, P. K.

E. Eroglu, P. K. Eggers, M. Winslade, S. M. Smith, and C. L. Raston, “Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices,” Green Chem. 15, 3155–3159 (2013).
[Crossref]

Eliaz, N.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Eliezer, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Ellingson, R. J.

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
[Crossref]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

El-Sayed, M.

S. Link and M. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

Eroglu, E.

E. Eroglu, P. K. Eggers, M. Winslade, S. M. Smith, and C. L. Raston, “Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices,” Green Chem. 15, 3155–3159 (2013).
[Crossref]

Estime, B.

B. Estime, D. Ren, and R. Sureshkumar, “Effects of plasmonic film filters on microalgal growth and biomass composition,” Algal Res. 11, 85–89 (2015).
[Crossref]

Everett, V.

R. Looser, M. Vivar, and V. Everett, “Spectral characterisation and long-term performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications,” Appl. Energy 113, 1496–1511 (2014).
[Crossref]

F. Crisostomo, R. A. Taylor, T. Zhang, I. Perez-Wurfl, G. Rosengarten, V. Everett, and E. R. Hawkes, “Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector,” Renew. Energy 72, 79–87 (2014).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

Fabry, C.

C. Fabry and A. Perot, “Theorie et applications d’une nouvelle methode de spectroscopie interferentielle,” Ann. Chim. Phys. 16, 115 (1899).

Falqui, A.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

Fan, S.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).

Fang, C.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

Fang, Y.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

Fang, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Farhat, M.

Faucheaux, J. A.

J. G. Smith, J. A. Faucheaux, and P. K. Jain, “Plasmon resonances for solar energy harvesting: a mechanistic outlook,” Nano Today 10(1), 67–80 (2015).
[Crossref]

J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5, 976–985 (2014).
[Crossref]

Feng, L.

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

Fermino, T. Z.

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Ferrando, R.

R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108, 845–910 (2008).
[Crossref]

Ferrazza, F.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[Crossref]

Ferreira, I.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Ferreira-Neto, E. P.

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Ferry, V. E.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Filter, R.

Fisher, B.

B. Fisher and J. Biddle, “Luminescent spectral splitting: efficient spatial division of solar spectrum at low concentration,” Sol. Energy Mater. Sol. Cells 95, 1741–1755 (2011).
[Crossref]

Fisher, D.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Fisher, K. C.

Z. J. Yu, K. C. Fisher, B. M. Wheelwright, R. P. Angel, and Z. C. Holman, “PVMirror: a new concept for tandem solar cells and hybrid solar converters,” IEEE J. Photovolt. 5, 1791–1799 (2015).
[Crossref]

Forcherio, G. T.

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4, 20894–20901 (2014).
[Crossref]

G. T. Forcherio, D. DeJarnette, P. Blake, and D. K. Roper, “Polarizability extraction for rapid computation of Fano resonance in nanoring lattices,” Proc. SPIE 9163, 91633O (2014).
[Crossref]

D. DeJarnette, P. Blake, G. T. Forcherio, and D. Keith Roper, “Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115, 024306 (2014).
[Crossref]

G. T. Forcherio, P. Blake, D. DeJarnette, and D. K. Roper, “Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices,” Opt. Express 22, 17791–17804 (2014).
[Crossref]

Ford, M.

Fortunato, E.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Fraenkel, M.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Francescato, Y.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

Fujii, S.

T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
[Crossref]

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27, 8605–8610 (2011).
[Crossref]

Fukushima, H.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27, 14621–14626 (2011).
[Crossref]

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Furuta, S.

H. Matsui, S. Furuta, and H. Tabata, “Role of electron carriers on local surface plasmon resonances in doped oxide semiconductor nanocrystals,” Appl. Phys. Lett. 104, 211903 (2014).
[Crossref]

Gamelin, D. R.

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15, 1315–1323 (2015).
[Crossref]

Ganapathisubbu, S.

S. Vijayaraghavan, S. Ganapathisubbu, and C. Santosh Kumar, “Performance analysis of a spectrally selective concentrating direct absorption collector,” Sol. Energy 97, 418–425 (2013).
[Crossref]

Gao, B.

D. DeJarnette, E. Tunkara, N. Brekke, T. Otanicar, K. Roberts, B. Gao, and A. E. Saunders, “Nanoparticle enhanced spectral filtration of insolation from trough concentrators,” Sol. Energy Mater. Sol. Cells 149, 145–153 (2016).
[Crossref]

Gao, N.

W. An, J. Zhang, T. Zhu, and N. Gao, “Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: preliminary test,” Renew. Energy 86, 633–642 (2016).
[Crossref]

Gaponenko, S.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
[Crossref]

Garcia, G.

N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
[Crossref]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[Crossref]

García de Abajo, F. J.

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[Crossref]

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Genovese, A.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

Gentle, A. R.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref]

Gerhardt, R. A.

R. A. Gilstrap, C. J. Capozzi, C. G. Carson, R. A. Gerhardt, and C. J. Summers, “Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion,” Adv. Mater. 20, 4163–4166 (2008).

Geuquet, N.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

Ghanekar, A.

Giannini, V.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

Gilstrap, R. A.

R. A. Gilstrap, C. J. Capozzi, C. G. Carson, R. A. Gerhardt, and C. J. Summers, “Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion,” Adv. Mater. 20, 4163–4166 (2008).

Gole, A.

A. Gole and C. Murphy, “Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed,” Chem. Mater. 16, 3633–3640 (2004).
[Crossref]

Gómez Rivas, J.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Goncharenko, A. V.

A. V. Goncharenko, “Optical properties of core-shell particle composites. I. Linear response,” Chem. Phys. Lett. 386, 25–31 (2004).
[Crossref]

Gong, Q.

Gouzman, I.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Govorov, A. O.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Granqvist, C. G.

S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108, 063525 (2010).
[Crossref]

Green, M. A.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91, 829–842 (2007).
[Crossref]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[Crossref]

P. Campbell, M. A. Green, P. Campbell, and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

P. Campbell, M. A. Green, P. Campbell, and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

Greenblatt, J.

N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
[Crossref]

Grillo, V.

Y. Xie, L. Carbone, C. Nobile, and V. Grillo, “Metallic-like stoichiometric copper sulfide nanocrystals: phase-and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7, 7352–7369 (2013).
[Crossref]

Grossman, E.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Gu, M.

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Gu, Y.

Gui, H.

Guo, C.

C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, and T. Sato, “Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties,” Inorg. Chem. 51, 4763–4771 (2012).
[Crossref]

C. Guo, S. Yin, L. Huang, and T. Sato, “Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property,” ACS Appl. Mater. Interfaces 3, 2794–2799 (2011).
[Crossref]

C. Guo, S. Yin, Y. Huang, Q. Dong, and T. Sato, “Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties,” Langmuir 27, 12172–12178 (2011).
[Crossref]

C. Guo, S. Yin, L. Huang, L. Yang, and T. Sato, “Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods,” Chem. Commun. 47, 8853–8855 (2011).
[Crossref]

C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, and T. Sato, “Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process,” J. Mater. Chem. 20, 8227–8229 (2010).
[Crossref]

Guo, C. F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2016).

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Guo, L.

D. Jing, Y. Hu, M. Liu, J. Wei, and L. Guo, “Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system,” Sol. Energy 112, 30–40 (2015).
[Crossref]

Haase, M.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. 50, 5808–5829 (2011).
[Crossref]

Hafner, J. H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[Crossref]

Haga, M.

T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
[Crossref]

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27, 8605–8610 (2011).
[Crossref]

Halas, N. J.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

J. B. Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[Crossref]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[Crossref]

Hallock, A. J.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. USA 102, 1280–1284 (2005).
[Crossref]

Hao, Z.-H.

Harbin, B.

Hari, P.

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, and K. Roberts, “Selective spectral filtration with nanoparticles for concentrating solar collectors,” J. Photon. Energy 5, 057008 (2015).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, K. Roberts, A. E. Saunders, and R. Morad, “Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors,” Proc. SPIE 9175, 917509 (2014).
[Crossref]

Harikumar, P.

N. Brekke, T. Otanicar, D. DeJarnette, and P. Harikumar, “A parametric investigation of a concentrating PV/T system with spectral filtering utilizing a 2-D heat transfer model,” J. Sol. Energy Eng. 138, 021007 (2016).
[Crossref]

Harjes, D. I.

J. M. Dubach, D. I. Harjes, and H. A. Clark, “Ion-selective nano-optodes incorporating quantum dots,” J. Am. Chem. Soc. 129, 8418–8419 (2007).
[Crossref]

Härtling, T.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

Hattori, H.

C. Kojima, Y. Watanabe, H. Hattori, and T. Iida, “Design of photosensitive gold nanoparticles for biomedical applications based on self-consistent optical response theory,” J. Phys. Chem. C 115, 19091–19095 (2011).
[Crossref]

Hawkes, E. R.

F. Crisostomo, R. A. Taylor, D. Surjadi, A. Mojiri, G. Rosengarten, and E. R. Hawkes, “Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector,” Appl. Energy 141, 238–246 (2015).
[Crossref]

F. Crisostomo, R. A. Taylor, T. Zhang, I. Perez-Wurfl, G. Rosengarten, V. Everett, and E. R. Hawkes, “Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector,” Renew. Energy 72, 79–87 (2014).
[Crossref]

R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jiang, and S. Coulombe, “Feasibility of nanofluid-based optical filters,” Appl. Opt. 52, 1413–1422 (2013).
[Crossref]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]

He, J.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Helms, B. A.

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11, 4706–4710 (2011).
[Crossref]

Henis, Z.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Henrard, L.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

Herukerrupu, Y.

Hewakuruppu, Y. L.

Hidaka, S.

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, and T. Iida, “Multipole superradiance from densely assembled metallic nanoparticles,” J. Phys. Chem. B 117, 15247–15252 (2013).

Hillenbrand, R.

Hillier, J.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

Hjerrild, N. E.

N. E. Hjerrild, S. Mesgari, F. Crisostomo, J. A. Scott, R. Amal, and R. A. Taylor, “Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids,” Sol. Energy Mater. Sol. Cells 147, 281–287 (2016).
[Crossref]

Hoekstra, A.

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

Hoggard, A.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

Hohenau, A.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76, 245422 (2007).
[Crossref]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Holman, Z. C.

Z. J. Yu, K. C. Fisher, B. M. Wheelwright, R. P. Angel, and Z. C. Holman, “PVMirror: a new concept for tandem solar cells and hybrid solar converters,” IEEE J. Photovolt. 5, 1791–1799 (2015).
[Crossref]

Hong, Y.

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 2012–2015 (2009).

Horovitz, Y.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Hou, Z.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[Crossref]

Hu, L.

L. Chen, H. Yu, J. Zhong, C. Wu, L. Hu, and T. Zhang, “Effectively improved field emission properties of multiwalled carbon nanotubes/graphenes composite field emitter by covering on the Si pyramidal structure,” IEEE Trans. Electron Devices 62, 4305–4312 (2015).

Hu, X.

Hu, Y.

D. Jing, Y. Hu, M. Liu, J. Wei, and L. Guo, “Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system,” Sol. Energy 112, 30–40 (2015).
[Crossref]

Hua, X.

X. Hua, Z. Zhou, L. Yuan, and S. Liu, “Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes,” Anal. Chim. Acta 788, 135–140 (2013).
[Crossref]

Huang, C.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Huang, L.

C. Guo, S. Yin, L. Huang, L. Yang, and T. Sato, “Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods,” Chem. Commun. 47, 8853–8855 (2011).
[Crossref]

C. Guo, S. Yin, L. Huang, and T. Sato, “Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property,” ACS Appl. Mater. Interfaces 3, 2794–2799 (2011).
[Crossref]

Huang, M. H.

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 2012–2015 (2009).

Huang, Q.

Huang, Y.

C. Guo, S. Yin, Y. Huang, Q. Dong, and T. Sato, “Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties,” Langmuir 27, 12172–12178 (2011).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Iida, T.

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

Y. Nishimura, K. Nishida, Y. Yamamoto, S. Ito, S. Tokonami, and T. Iida, “Control of submillimeter phase transition by collective photothermal effect,” J. Phys. Chem. C 118, 18799–18804 (2014).
[Crossref]

S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, and T. Iida, “Multipole superradiance from densely assembled metallic nanoparticles,” J. Phys. Chem. B 117, 15247–15252 (2013).

T. Iida, “Control of plasmonic superradiance in metallic nanoparticle assembly by light-induced force and fluctuations,” J. Phys. Chem. Lett. 3, 332–336 (2012).
[Crossref]

C. Kojima, Y. Watanabe, H. Hattori, and T. Iida, “Design of photosensitive gold nanoparticles for biomedical applications based on self-consistent optical response theory,” J. Phys. Chem. C 115, 19091–19095 (2011).
[Crossref]

Ishihara, H.

H. Ishihara, K. Cho, K. Akiyama, N. Tomita, Y. Nomura, and T. Isu, “Large four-wave mixing of spatially extended excitonic states in thin GaAs layers,” Phys. Rev. Lett. 89, 017402 (2002).
[Crossref]

Isu, T.

H. Ishihara, K. Cho, K. Akiyama, N. Tomita, Y. Nomura, and T. Isu, “Large four-wave mixing of spatially extended excitonic states in thin GaAs layers,” Phys. Rev. Lett. 89, 017402 (2002).
[Crossref]

Ito, S.

Y. Nishimura, K. Nishida, Y. Yamamoto, S. Ito, S. Tokonami, and T. Iida, “Control of submillimeter phase transition by collective photothermal effect,” J. Phys. Chem. C 118, 18799–18804 (2014).
[Crossref]

Jacobson, M. R.

M. A. C. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Sol. Wind Technol. 4, 131–138 (1987).
[Crossref]

Jain, P. K.

J. G. Smith, J. A. Faucheaux, and P. K. Jain, “Plasmon resonances for solar energy harvesting: a mechanistic outlook,” Nano Today 10(1), 67–80 (2015).
[Crossref]

J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5, 976–985 (2014).
[Crossref]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

Jang, G. G.

D. DeJarnette, G. G. Jang, P. Blake, and D. K. Roper, “Polarization angle affects energy of plasmonic features in Fano resonant regular lattices,” J. Opt. 16, 105006 (2014).
[Crossref]

Jellinek, J.

R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108, 845–910 (2008).
[Crossref]

Jensen, T.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[Crossref]

Jeyaram, Y.

M. D. Ooms, Y. Jeyaram, and D. Sinton, “Wavelength-selective plasmonics for enhanced cultivation of microalgae,” Appl. Phys. Lett. 106, 063902 (2015).
[Crossref]

Jia, B.

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Jiang, L.

R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
[Crossref]

Jiang, R.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

Jiang, X.

Jin, Y. W.

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

Jing, D.

D. Jing, Y. Hu, M. Liu, J. Wei, and L. Guo, “Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system,” Sol. Energy 112, 30–40 (2015).
[Crossref]

Jiwanapurkar, P. R.

S. S. Joshi, A. S. Dhoble, and P. R. Jiwanapurkar, “Investigations of different liquid based spectrum beam splitters for combined solar photovoltaic thermal systems,” J. Sol. Energy Eng. 138, 021003 (2016).
[Crossref]

Jo, J.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[Crossref]

Johnston, R. L.

R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108, 845–910 (2008).
[Crossref]

Joshi, S. S.

S. S. Joshi, A. S. Dhoble, and P. R. Jiwanapurkar, “Investigations of different liquid based spectrum beam splitters for combined solar photovoltaic thermal systems,” J. Sol. Energy Eng. 138, 021003 (2016).
[Crossref]

Jurgschat, J. K.

B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
[Crossref]

Kaida, T.

T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki, “Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics,” J. Cosmet. Sci. 55, 219–220 (2004).

Kakihana, M.

C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, and T. Sato, “Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties,” Inorg. Chem. 51, 4763–4771 (2012).
[Crossref]

Käll, M.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref]

Kalt, H.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2, 1661–1670 (2008).
[Crossref]

Kamat, P. V.

I. Robel, M. Kuno, and P. V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129, 4136–4137 (2007).
[Crossref]

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128, 2385–2393 (2006).
[Crossref]

Kanaizuka, K.

T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
[Crossref]

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27, 8605–8610 (2011).
[Crossref]

Kanehara, M.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

Kang, J. H.

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

Kang, X.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[Crossref]

Kargari, A.

A. Tavakoli, M. Sohrabi, and A. Kargari, “A review of methods for synthesis of nanostructured metals with emphasis on iron compounds,” Chem. Pap. 61, 151–170 (2007).
[Crossref]

Katayama, Y.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27, 14621–14626 (2011).
[Crossref]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
[Crossref]

Kawaguchi, H.

D. Suzuki and H. Kawaguchi, “Hybrid microgels with reversibly changeable multiple brilliant color,” Langmuir 22, 3818–3822 (2006).
[Crossref]

Kawano, K.

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).
[Crossref]

Kawano, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
[Crossref]

Keith Roper, D.

D. DeJarnette, P. Blake, G. T. Forcherio, and D. Keith Roper, “Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115, 024306 (2014).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[Crossref]

Kelly, L.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[Crossref]

Khan, I.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Kherani, N. P.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

Kiang, Y.-W.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Kiely, C. J.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15, 1755–1759 (2005).
[Crossref]

Kim, D.-Y.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[Crossref]

Kim, H. Y.

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

Kim, M. R.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

Kim, N.-C.

Kim, S.-G.

Kim, S.-S.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[Crossref]

Kimerling, L.

Kinderman, R.

R. Kinderman, L. H. Slooff, A. R. Burgers, N. J. Bakker, A. Büchtemann, R. Danz, and J. A. M. van Roosmalen, “I-V performance and stability study of dyes for luminescent plate concentrators,” J. Sol. Energy Eng. 129, 277–282 (2007).
[Crossref]

Kinoshita, N.

Y. Masuda, N. Kinoshita, F. Sato, and K. Koumoto, “Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals,” Cryst. Growth Des. 6, 75–78 (2006).
[Crossref]

Kitaev, V.

B. Pietrobon and V. Kitaev, “Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties,” Chem. Mater. 20, 5186–5190 (2008).
[Crossref]

Klingshirn, C.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2, 1661–1670 (2008).
[Crossref]

Knight, M. W.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref]

J. B. Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[Crossref]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[Crossref]

Knowles, K. E.

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15, 1315–1323 (2015).
[Crossref]

Knutsen, K. P.

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
[Crossref]

Kobayashi, K.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27, 8605–8610 (2011).
[Crossref]

T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki, “Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics,” J. Cosmet. Sci. 55, 219–220 (2004).

Kobayashi, M.

C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, and T. Sato, “Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties,” Inorg. Chem. 51, 4763–4771 (2012).
[Crossref]

Kociak, M.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

Koenderink, A.

F. B. Arango, T. Coenen, and A. Koenderink, “Underpinning hybridization intuition for complex nanoantennas by magnetoelectric quadrupolar polarizability retrieval,” ACS Photon. 1, 444–453 (2014).
[Crossref]

Koh, A. L.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Koike, H.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

Kojima, C.

C. Kojima, Y. Watanabe, H. Hattori, and T. Iida, “Design of photosensitive gold nanoparticles for biomedical applications based on self-consistent optical response theory,” J. Phys. Chem. C 115, 19091–19095 (2011).
[Crossref]

Koleske, D. D.

J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
[Crossref]

Koller, D.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76, 245422 (2007).
[Crossref]

Kostuk, R. K.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

Kosuga, A.

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

Kothleitner, G.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Kotov, N. A.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Kou, X.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Koumoto, K.

Y. Masuda, N. Kinoshita, F. Sato, and K. Koumoto, “Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals,” Cryst. Growth Des. 6, 75–78 (2006).
[Crossref]

Kozlov, A.

R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
[Crossref]

Krenn, J.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76, 245422 (2007).
[Crossref]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Kriegel, I.

A. Agrawal, I. Kriegel, and D. J. Milliron, “Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals,” J. Phys. Chem. C 119, 6227–6238 (2015).
[Crossref]

Kulakovich, O.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
[Crossref]

Kulinich, S. A.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Kumar, S.

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112, 178–185 (1990).
[Crossref]

Kuno, H.

H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91, 2897–2902 (2008).
[Crossref]

Kuno, M.

I. Robel, M. Kuno, and P. V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129, 4136–4137 (2007).
[Crossref]

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128, 2385–2393 (2006).
[Crossref]

Kuo, C. H.

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 2012–2015 (2009).

Lagae, L.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Landau, L. D.

L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, 1984).

Landers, R.

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Lanzani, G.

F. Scotognella, G. Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86, 154 (2013).
[Crossref]

Lassiter, J. B.

J. B. Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[Crossref]

Lauhon, L. J.

J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
[Crossref]

Lazarides, A.

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[Crossref]

Lederer, F.

Lee, C. L.

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 2012–2015 (2009).

Lee, C.-K.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Lee, C.-L.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Lee, E. S.

N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
[Crossref]

Lee, J.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Lee, J.-Y.

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

Lee, N. S.

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

Lee, P.-T.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref]

Lee, S.

J. I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.-I. Cho, and K.-S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett. 78, 901–903 (2001).
[Crossref]

Lee, S. J.

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Lenert, A.

Lenzmann, F.

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).

Leong, K.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

Lereah, Y.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Li, B.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

Li, C.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[Crossref]

Li, D.

Li, G.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[Crossref]

Li, J.

Li, J.-B.

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Li, N.

P. Zhao, N. Li, and D. Astruc, “State of the art in gold nanoparticle synthesis,” Coord. Chem. Rev. 257, 638–665 (2013).
[Crossref]

Li, Q.

J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
[Crossref]

Li, S.-Y.

S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108, 063525 (2010).
[Crossref]

Li, Z.

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb, Er–SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115, 3291–3296 (2011).
[Crossref]

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

Liao, H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[Crossref]

Lifschitz, E. M.

L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, 1984).

Lin, C.-W.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

Lin, J.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[Crossref]

Lin, J.-W.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref]

Lin, L.

Link, S.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

S. Link and M. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

Lipozencic, J.

R. Wolf, H. Matz, E. Orion, and J. Lipozencić, “Sunscreens—the ultimate cosmetic,” Acta Dermatovenerol. Croat. 11, 158–162 (2003).

Lisunova, M.

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4, 20894–20901 (2014).
[Crossref]

Liu, A. Q.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14, 114009 (2012).
[Crossref]

Liu, D.

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

Liu, J. G.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref]

Liu, M.

D. Jing, Y. Hu, M. Liu, J. Wei, and L. Guo, “Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system,” Sol. Energy 112, 30–40 (2015).
[Crossref]

Liu, P.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2, 1661–1670 (2008).
[Crossref]

Liu, Q.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2016).

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Liu, S.

X. Hua, Z. Zhou, L. Yuan, and S. Liu, “Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes,” Anal. Chim. Acta 788, 135–140 (2013).
[Crossref]

Liu, S.-D.

Liu, X.

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb, Er–SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115, 3291–3296 (2011).
[Crossref]

Liu, Z.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
[Crossref]

Liz-Marzán, L. M.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15, 1755–1759 (2005).
[Crossref]

Llordes, A.

S. D. Lounis, E. L. Runnerstrom, A. Llordes, and D. J. Milliron, “Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals,” J. Phys. Chem. Lett. 5, 1564–1574 (2014).
[Crossref]

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11, 4706–4710 (2011).
[Crossref]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[Crossref]

Llordés, A.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

Longhi, S.

F. Scotognella, G. Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86, 154 (2013).
[Crossref]

Looser, R.

R. Looser, M. Vivar, and V. Everett, “Spectral characterisation and long-term performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications,” Appl. Energy 113, 1496–1511 (2014).
[Crossref]

Lounis, S. D.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

S. D. Lounis, E. L. Runnerstrom, A. Llordes, and D. J. Milliron, “Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals,” J. Phys. Chem. Lett. 5, 1564–1574 (2014).
[Crossref]

S. D. Lounis, E. L. Runnerstrom, A. Bergerud, D. Nordlund, and D. J. Milliron, “Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals,” J. Am. Chem. Soc. 136, 7110–7116 (2014).
[Crossref]

Lu, A.-H.

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
[Crossref]

Lu, P.

J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
[Crossref]

Lu, S.-P.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref]

Lu, X.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587–1595 (2008).
[Crossref]

Luo, Z.

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
[Crossref]

Lv, W.

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021004 (2013).

Lyubchyk, A.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Ma, L.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

Madsen, S. J.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[Crossref]

Maes, B.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).

Mahmoud, S.

W. A. M. Al-Shohani, A. Sabouri, R. Al-Dadah, S. Mahmoud, and H. Butt, “Experimental investigation of an optical water filter for photovoltaic/thermal conversion module,” Energy Convers. Manag. 111, 431–442 (2016).
[Crossref]

Mahtani, P.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

Maier, S. A.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Maman, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Manna, L.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

Manthiram, K.

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc. 134, 3995–3998 (2012).
[Crossref]

Mao, C.

M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, “Upconversion nanoparticles: synthesis, surface modification and biological applications,” Nanomedicine 7, 710–729 (2011).

Martin, O. J. F.

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizability backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[Crossref]

Martins, R.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Mary, A.

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76, 245422 (2007).
[Crossref]

Maskevich, S.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
[Crossref]

Masuda, Y.

Y. Masuda, N. Kinoshita, F. Sato, and K. Koumoto, “Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals,” Cryst. Growth Des. 6, 75–78 (2006).
[Crossref]

Masuhara, H.

T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
[Crossref]

Mateus, T.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

Matsui, H.

H. Matsui, S. Furuta, and H. Tabata, “Role of electron carriers on local surface plasmon resonances in doped oxide semiconductor nanocrystals,” Appl. Phys. Lett. 104, 211903 (2014).
[Crossref]

Matsuzawa, M.

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

Matz, H.

R. Wolf, H. Matz, E. Orion, and J. Lipozencić, “Sunscreens—the ultimate cosmetic,” Acta Dermatovenerol. Croat. 11, 158–162 (2003).

McCann, M.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[Crossref]

McComb, D. W.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

McCormick, P. G.

T. Tsuzuki and P. G. McCormick, “Mechanochemical synthesis of nanoparticles,” J. Mater. Sci. 39, 5143–5146 (2004).
[Crossref]

McDonagh, A. M.

M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111, 3713–3735 (2011).
[Crossref]

McDowall, S.

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15, 1315–1323 (2015).
[Crossref]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]

Meijerink, A.

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8, 81 (2013).
[Crossref]

Mendelsberg, R. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[Crossref]

Mendes, M. J.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

Méndez-Ramos, J.

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2, 1500218 (2015).
[Crossref]

Meng, Q.

Mertens, H.

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[Crossref]

Mesgari, S.

N. E. Hjerrild, S. Mesgari, F. Crisostomo, J. A. Scott, R. Amal, and R. A. Taylor, “Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids,” Sol. Energy Mater. Sol. Cells 147, 281–287 (2016).
[Crossref]

Metzger, W. K.

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
[Crossref]

Michel, J.

Mie, G.

G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Míguez, H.

J. R. C. Smirnov, M. E. Calvo, and H. Míguez, “Selective UV reflecting mirrors based on nanoparticle multilayers,” Adv. Funct. Mater. 23, 2805–2811 (2013).
[Crossref]

Milliron, D. J.

A. Agrawal, I. Kriegel, and D. J. Milliron, “Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals,” J. Phys. Chem. C 119, 6227–6238 (2015).
[Crossref]

N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
[Crossref]

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

S. D. Lounis, E. L. Runnerstrom, A. Bergerud, D. Nordlund, and D. J. Milliron, “Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals,” J. Am. Chem. Soc. 136, 7110–7116 (2014).
[Crossref]

S. D. Lounis, E. L. Runnerstrom, A. Llordes, and D. J. Milliron, “Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals,” J. Phys. Chem. Lett. 5, 1564–1574 (2014).
[Crossref]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[Crossref]

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11, 4706–4710 (2011).
[Crossref]

Mirin, N. A.

J. B. Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[Crossref]

Miszta, K.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

Mitchell, A.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235-242 (2015).
[Crossref]

Miura, A.

T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
[Crossref]

Miyai, M.

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Mojiri, A.

F. Crisostomo, R. A. Taylor, D. Surjadi, A. Mojiri, G. Rosengarten, and E. R. Hawkes, “Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector,” Appl. Energy 141, 238–246 (2015).
[Crossref]

A. Mojiri, C. Stanley, and G. Rosengarten, “A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators,” Proc. SPIE 9559, 95590D (2015).
[Crossref]

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—a review,” Renew. Sust. Energy Rev. 28, 654–663 (2013).
[Crossref]

Mokkapati, S.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18, 500–504 (2010).
[Crossref]

Monti, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

Morad, R.

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, K. Roberts, A. E. Saunders, and R. Morad, “Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors,” Proc. SPIE 9175, 917509 (2014).
[Crossref]

Morawiec, S.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

Mori, T.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27, 14621–14626 (2011).
[Crossref]

Müller, F. A.

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2, 1500218 (2015).
[Crossref]

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Muneyuki, E.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27, 8605–8610 (2011).
[Crossref]

Murphy, C.

A. Gole and C. Murphy, “Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed,” Chem. Mater. 16, 3633–3640 (2004).
[Crossref]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Na, S.-I.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[Crossref]

Nabiev, I.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
[Crossref]

Nagao, T.

Nah, Y.-C.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[Crossref]

Nakao, H.

S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, and T. Iida, “Multipole superradiance from densely assembled metallic nanoparticles,” J. Phys. Chem. B 117, 15247–15252 (2013).

Nam, K.-S.

J. I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.-I. Cho, and K.-S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett. 78, 901–903 (2001).
[Crossref]

Nasernejad, B.

H. Delavari Amrei, R. Ranjbar, S. Rastegar, B. Nasernejad, and A. Nejadebrahim, “Using fluorescent material for enhancing microalgae growth rate in photobioreactors,” J. Appl. Phycol. 27, 67–74 (2015).
[Crossref]

Nawn, D.

D. Nawn, D. Banerjee, and K. K. Chattopadhyay, “Zinc oxide nanostructure decorated amorphous carbon nanotubes: an improved field emitter,” Diam. Relat. Mater. 34, 50–59 (2013).
[Crossref]

Nehl, C. L.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[Crossref]

Nejadebrahim, A.

H. Delavari Amrei, R. Ranjbar, S. Rastegar, B. Nasernejad, and A. Nejadebrahim, “Using fluorescent material for enhancing microalgae growth rate in photobioreactors,” J. Appl. Phycol. 27, 67–74 (2015).
[Crossref]

Nelayah, J.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

Neubrech, F.

Ni, M.

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

Ni, W.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Niidome, T.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27, 14621–14626 (2011).
[Crossref]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
[Crossref]

Niidome, Y.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27, 14621–14626 (2011).
[Crossref]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
[Crossref]

Niklasson, G. A.

S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108, 063525 (2010).
[Crossref]

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995).
[Crossref]

Nilsson, T. M. J.

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995).
[Crossref]

Nishida, K.

Y. Nishimura, K. Nishida, Y. Yamamoto, S. Ito, S. Tokonami, and T. Iida, “Control of submillimeter phase transition by collective photothermal effect,” J. Phys. Chem. C 118, 18799–18804 (2014).
[Crossref]

S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, and T. Iida, “Multipole superradiance from densely assembled metallic nanoparticles,” J. Phys. Chem. B 117, 15247–15252 (2013).

Nishimura, Y.

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

Y. Nishimura, K. Nishida, Y. Yamamoto, S. Ito, S. Tokonami, and T. Iida, “Control of submillimeter phase transition by collective photothermal effect,” J. Phys. Chem. C 118, 18799–18804 (2014).
[Crossref]

Nobile, C.

Y. Xie, L. Carbone, C. Nobile, and V. Grillo, “Metallic-like stoichiometric copper sulfide nanocrystals: phase-and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7, 7352–7369 (2013).
[Crossref]

Nomura, Y.

H. Ishihara, K. Cho, K. Akiyama, N. Tomita, Y. Nomura, and T. Isu, “Large four-wave mixing of spatially extended excitonic states in thin GaAs layers,” Phys. Rev. Lett. 89, 017402 (2002).
[Crossref]

Nordlander, P.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Nordlund, D.

S. D. Lounis, E. L. Runnerstrom, A. Bergerud, D. Nordlund, and D. J. Milliron, “Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals,” J. Am. Chem. Soc. 136, 7110–7116 (2014).
[Crossref]

Norman, J.

D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photon. Res. 2, 15–23 (2014).
[Crossref]

D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101, 183104 (2012).
[Crossref]

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Nozik, A. J.

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
[Crossref]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

O’Brien, P. G.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

O’Donnell, J.

N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
[Crossref]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Okamoto, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
[Crossref]

Olson, J.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

Ooms, M. D.

M. D. Ooms, Y. Jeyaram, and D. Sinton, “Wavelength-selective plasmonics for enhanced cultivation of microalgae,” Appl. Phys. Lett. 106, 063902 (2015).
[Crossref]

Orion, E.

R. Wolf, H. Matz, E. Orion, and J. Lipozencić, “Sunscreens—the ultimate cosmetic,” Acta Dermatovenerol. Croat. 11, 158–162 (2003).

Osborn, D. E.

M. A. C. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Sol. Wind Technol. 4, 131–138 (1987).
[Crossref]

Otanicar, T.

D. DeJarnette, E. Tunkara, N. Brekke, T. Otanicar, K. Roberts, B. Gao, and A. E. Saunders, “Nanoparticle enhanced spectral filtration of insolation from trough concentrators,” Sol. Energy Mater. Sol. Cells 149, 145–153 (2016).
[Crossref]

N. Brekke, T. Otanicar, D. DeJarnette, and P. Harikumar, “A parametric investigation of a concentrating PV/T system with spectral filtering utilizing a 2-D heat transfer model,” J. Sol. Energy Eng. 138, 021007 (2016).
[Crossref]

C. Telang, T. Otanicar, L. Dai, P. Phelan, R. Swaminathan, and M. Zhang, “Controllable optical properties of polystyrene/PNIPAM-gold composite nanoparticles,” Plasmonics 10, 17–25 (2015).
[Crossref]

D. DeJarnette, N. Brekke, E. Tunkara, H. Parameswar, K. Roberts, and T. Otanicar, “Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power,” Proc. SPIE 9559, 95590C (2015).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, and K. Roberts, “Selective spectral filtration with nanoparticles for concentrating solar collectors,” J. Photon. Energy 5, 057008 (2015).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, K. Roberts, A. E. Saunders, and R. Morad, “Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors,” Proc. SPIE 9175, 917509 (2014).
[Crossref]

Otanicar, T. P.

R. A. Taylor, T. P. Otanicar, Y. L. Hewakuruppu, and D. DeJarnette, “Comparison of selective transmitters for solar thermal applications,” Appl. Opt. 55, 3829–3839 (2016).

T. P. Otanicar, R. Smith, L. Dai, P. E. Phelan, and R. Swaminathan, “Applicability of controllable nanoparticle radiative properties for spacecraft heat rejection,” J. Thermophys. Heat Transfer 29, 869–874 (2015).
[Crossref]

R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jiang, and S. Coulombe, “Feasibility of nanofluid-based optical filters,” Appl. Opt. 52, 1413–1422 (2013).
[Crossref]

T. P. Otanicar, R. A. Taylor, and C. Telang, “Photovoltaic/thermal system performance utilizing thin film and nanoparticle dispersion based optical filters,” J. Renewable Sustainable Energy 5, 033124 (2013).
[Crossref]

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021004 (2013).

R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, e34 (2012).
[Crossref]

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[Crossref]

T. P. Otanicar, “Enhancing the heat transfer in energy systems from a volumetric approach,” in ASME/JSME 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, 13–17 March2011, paper T30074.

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Ouyang, Z.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Ozin, G. A.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

Padalkar, S.

J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
[Crossref]

Pan, L.

Parameswar, H.

D. DeJarnette, N. Brekke, E. Tunkara, H. Parameswar, K. Roberts, and T. Otanicar, “Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power,” Proc. SPIE 9559, 95590C (2015).
[Crossref]

Paria, S.

R. G. Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2012).
[Crossref]

Park, N. S.

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

Pasa, A. A.

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Pastoriza-Santos, I.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Patterson, M. S.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[Crossref]

Pavel, S.

T. G. Smijs and S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness,” Nanotechnol. Sci. Appl. 4, 95–112 (2011).
[Crossref]

Pecker, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Pennypacker, C.

E. Purcell and C. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Perez-Wurfl, I.

F. Crisostomo, R. A. Taylor, T. Zhang, I. Perez-Wurfl, G. Rosengarten, V. Everett, and E. R. Hawkes, “Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector,” Renew. Energy 72, 79–87 (2014).
[Crossref]

Perot, A.

C. Fabry and A. Perot, “Theorie et applications d’une nouvelle methode de spectroscopie interferentielle,” Ann. Chim. Phys. 16, 115 (1899).

Peumans, P.

Phelan, P.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235-242 (2015).
[Crossref]

C. Telang, T. Otanicar, L. Dai, P. Phelan, R. Swaminathan, and M. Zhang, “Controllable optical properties of polystyrene/PNIPAM-gold composite nanoparticles,” Plasmonics 10, 17–25 (2015).
[Crossref]

Phelan, P. E.

T. P. Otanicar, R. Smith, L. Dai, P. E. Phelan, and R. Swaminathan, “Applicability of controllable nanoparticle radiative properties for spacecraft heat rejection,” J. Thermophys. Heat Transfer 29, 869–874 (2015).
[Crossref]

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021004 (2013).

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[Crossref]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

Pietrobon, B.

B. Pietrobon and V. Kitaev, “Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties,” Chem. Mater. 20, 5186–5190 (2008).
[Crossref]

Piller, N. B.

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizability backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[Crossref]

Pissuwan, D.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
[Crossref]

Polman, A.

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

F. J. Beck, A. Polman, K. R. Catchpole, F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[Crossref]

F. J. Beck, A. Polman, K. R. Catchpole, F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[Crossref]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[Crossref]

Povia, M.

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

Powell, A. W.

A. W. Powell, M. B. Wincott, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” J. Appl. Phys. 113, 184311 (2013).
[Crossref]

Prasad Sivan, V.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235-242 (2015).
[Crossref]

Prasher, R.

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[Crossref]

Priolo, F.

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Pucci, A.

Purcell, E.

E. Purcell and C. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Puzzo, D. P.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

Quan, B.

Raman, A.

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Rampino, S.

Ranjbar, R.

H. Delavari Amrei, R. Ranjbar, S. Rastegar, B. Nasernejad, and A. Nejadebrahim, “Using fluorescent material for enhancing microalgae growth rate in photobioreactors,” J. Appl. Phycol. 27, 67–74 (2015).
[Crossref]

Rao, K. V.

B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
[Crossref]

Rastegar, S.

H. Delavari Amrei, R. Ranjbar, S. Rastegar, B. Nasernejad, and A. Nejadebrahim, “Using fluorescent material for enhancing microalgae growth rate in photobioreactors,” J. Appl. Phycol. 27, 67–74 (2015).
[Crossref]

Raston, C. L.

E. Eroglu, P. K. Eggers, M. Winslade, S. M. Smith, and C. L. Raston, “Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices,” Green Chem. 15, 3155–3159 (2013).
[Crossref]

Rath, J. K.

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8, 81 (2013).
[Crossref]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Reddy, C. M.

B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
[Crossref]

Redmond, P. L.

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. USA 102, 1280–1284 (2005).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

Ren, D.

B. Estime, D. Ren, and R. Sureshkumar, “Effects of plasmonic film filters on microalgal growth and biomass composition,” Algal Res. 11, 85–89 (2015).
[Crossref]

Ren, Z.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2016).

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).

Ricci, M. L. M.

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Richards, B. S.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91, 829–842 (2007).
[Crossref]

Richardson, H.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Richardson, H. H.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

Richardson, T. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[Crossref]

Riley, J. R.

J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
[Crossref]

Rinnerbauer, V.

Robel, I.

I. Robel, M. Kuno, and P. V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129, 4136–4137 (2007).
[Crossref]

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128, 2385–2393 (2006).
[Crossref]

Roberts, K.

D. DeJarnette, E. Tunkara, N. Brekke, T. Otanicar, K. Roberts, B. Gao, and A. E. Saunders, “Nanoparticle enhanced spectral filtration of insolation from trough concentrators,” Sol. Energy Mater. Sol. Cells 149, 145–153 (2016).
[Crossref]

D. DeJarnette, N. Brekke, E. Tunkara, H. Parameswar, K. Roberts, and T. Otanicar, “Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power,” Proc. SPIE 9559, 95590C (2015).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, and K. Roberts, “Selective spectral filtration with nanoparticles for concentrating solar collectors,” J. Photon. Energy 5, 057008 (2015).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, K. Roberts, A. E. Saunders, and R. Morad, “Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors,” Proc. SPIE 9175, 917509 (2014).
[Crossref]

Rockstuhl, C.

Rodrigues-Filho, U. P.

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Rodriguez, S. R. K.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Rodríguez-González, B.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15, 1755–1759 (2005).
[Crossref]

Roper, D. K.

D. DeJarnette, G. G. Jang, P. Blake, and D. K. Roper, “Polarization angle affects energy of plasmonic features in Fano resonant regular lattices,” J. Opt. 16, 105006 (2014).
[Crossref]

G. T. Forcherio, D. DeJarnette, P. Blake, and D. K. Roper, “Polarizability extraction for rapid computation of Fano resonance in nanoring lattices,” Proc. SPIE 9163, 91633O (2014).
[Crossref]

D. DeJarnette and D. K. Roper, “Electron energy loss spectroscopy of gold nanoparticles on graphene,” J. Appl. Phys. 116, 054313 (2014).
[Crossref]

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4, 20894–20901 (2014).
[Crossref]

D. DeJarnette, J. Norman, and D. K. Roper, “Attribution of Fano resonant features to plasmonic particle size, lattice constant, and dielectric wavenumber in square nanoparticle lattices,” Photon. Res. 2, 15–23 (2014).
[Crossref]

G. T. Forcherio, P. Blake, D. DeJarnette, and D. K. Roper, “Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices,” Opt. Express 22, 17791–17804 (2014).
[Crossref]

D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
[Crossref]

D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101, 183104 (2012).
[Crossref]

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asén, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[Crossref]

Rosa, F. S. S.

M. Tschikin, S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Radiative cooling of nanoparticles close to a surface,” Eur. Phys. J. B 85, 233 (2012).
[Crossref]

Rosenberg, G.

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

Rosengarten, G.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235-242 (2015).
[Crossref]

F. Crisostomo, R. A. Taylor, D. Surjadi, A. Mojiri, G. Rosengarten, and E. R. Hawkes, “Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector,” Appl. Energy 141, 238–246 (2015).
[Crossref]

A. Mojiri, C. Stanley, and G. Rosengarten, “A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators,” Proc. SPIE 9559, 95590D (2015).
[Crossref]

F. Crisostomo, R. A. Taylor, T. Zhang, I. Perez-Wurfl, G. Rosengarten, V. Everett, and E. R. Hawkes, “Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector,” Renew. Energy 72, 79–87 (2014).
[Crossref]

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—a review,” Renew. Sust. Energy Rev. 28, 654–663 (2013).
[Crossref]

R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jiang, and S. Coulombe, “Feasibility of nanofluid-based optical filters,” Appl. Opt. 52, 1413–1422 (2013).
[Crossref]

R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, e34 (2012).
[Crossref]

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

Roy, B.

B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
[Crossref]

Roy, S.

B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
[Crossref]

Runnerstrom, E. L.

S. D. Lounis, E. L. Runnerstrom, A. Llordes, and D. J. Milliron, “Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals,” J. Phys. Chem. Lett. 5, 1564–1574 (2014).
[Crossref]

S. D. Lounis, E. L. Runnerstrom, A. Bergerud, D. Nordlund, and D. J. Milliron, “Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals,” J. Am. Chem. Soc. 136, 7110–7116 (2014).
[Crossref]

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[Crossref]

Sabouri, A.

W. A. M. Al-Shohani, A. Sabouri, R. Al-Dadah, S. Mahmoud, and H. Butt, “Experimental investigation of an optical water filter for photovoltaic/thermal conversion module,” Energy Convers. Manag. 111, 431–442 (2016).
[Crossref]

Salabas, E. L.

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
[Crossref]

Santbergen, R.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref]

Santosh Kumar, C.

S. Vijayaraghavan, S. Ganapathisubbu, and C. Santosh Kumar, “Performance analysis of a spectrally selective concentrating direct absorption collector,” Sol. Energy 97, 418–425 (2013).
[Crossref]

Sato, F.

Y. Masuda, N. Kinoshita, F. Sato, and K. Koumoto, “Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals,” Cryst. Growth Des. 6, 75–78 (2006).
[Crossref]

Sato, T.

C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, and T. Sato, “Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties,” Inorg. Chem. 51, 4763–4771 (2012).
[Crossref]

C. Guo, S. Yin, L. Huang, and T. Sato, “Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property,” ACS Appl. Mater. Interfaces 3, 2794–2799 (2011).
[Crossref]

C. Guo, S. Yin, L. Huang, L. Yang, and T. Sato, “Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods,” Chem. Commun. 47, 8853–8855 (2011).
[Crossref]

C. Guo, S. Yin, Y. Huang, Q. Dong, and T. Sato, “Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties,” Langmuir 27, 12172–12178 (2011).
[Crossref]

C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, and T. Sato, “Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process,” J. Mater. Chem. 20, 8227–8229 (2010).
[Crossref]

Saunders, A. E.

D. DeJarnette, E. Tunkara, N. Brekke, T. Otanicar, K. Roberts, B. Gao, and A. E. Saunders, “Nanoparticle enhanced spectral filtration of insolation from trough concentrators,” Sol. Energy Mater. Sol. Cells 149, 145–153 (2016).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, K. Roberts, A. E. Saunders, and R. Morad, “Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors,” Proc. SPIE 9175, 917509 (2014).
[Crossref]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. 50, 5808–5829 (2011).
[Crossref]

Schatz, G. C.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[Crossref]

Scheiner, S.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref]

Schmidt, M. A.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref]

Schropp, R. E.

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8, 81 (2013).
[Crossref]

Schropp, R. E. I.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Schüth, F.

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
[Crossref]

Schweizer, P.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref]

Scotognella, F.

F. Scotognella, G. Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86, 154 (2013).
[Crossref]

Scott, J. A.

N. E. Hjerrild, S. Mesgari, F. Crisostomo, J. A. Scott, R. Amal, and R. A. Taylor, “Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids,” Sol. Energy Mater. Sol. Cells 147, 281–287 (2016).
[Crossref]

Scranton, G.

R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
[Crossref]

Seemann, B.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref]

Selkowitz, S.

N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
[Crossref]

Sesuraj, R. S. A.

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[Crossref]

Shah, G. A.

G. A. Shah, “Numerical methods for Mie theory of scattering by a sphere,” Kodaikanal Obs. Bull. Ser. A 2, 42–63 (1977).

Shalav, A.

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91, 829–842 (2007).
[Crossref]

Shehabi, A.

N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
[Crossref]

Shen, H.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).

Shen, W.

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

Shi, Z.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Shou, C.

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

Sihvola, A.

J. Venermo and A. Sihvola, “Dielectric polarizability of circular cylinder,” J. Electrost. 63, 101–117 (2005).
[Crossref]

Simone, F.

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

Singh, S. C.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Sinton, D.

M. D. Ooms, Y. Jeyaram, and D. Sinton, “Wavelength-selective plasmonics for enhanced cultivation of microalgae,” Appl. Phys. Lett. 106, 063902 (2015).
[Crossref]

Skeini, T.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Skrabalak, S. E.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587–1595 (2008).
[Crossref]

Slaoui, A.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[Crossref]

Slooff, L. H.

R. Kinderman, L. H. Slooff, A. R. Burgers, N. J. Bakker, A. Büchtemann, R. Danz, and J. A. M. van Roosmalen, “I-V performance and stability study of dyes for luminescent plate concentrators,” J. Sol. Energy Eng. 129, 277–282 (2007).
[Crossref]

Smets, A. H. M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref]

Smijs, T. G.

T. G. Smijs and S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness,” Nanotechnol. Sci. Appl. 4, 95–112 (2011).
[Crossref]

Smirnov, J. R. C.

J. R. C. Smirnov, M. E. Calvo, and H. Míguez, “Selective UV reflecting mirrors based on nanoparticle multilayers,” Adv. Funct. Mater. 23, 2805–2811 (2013).
[Crossref]

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Smith, G. B.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref]

Smith, J. G.

J. G. Smith, J. A. Faucheaux, and P. K. Jain, “Plasmon resonances for solar energy harvesting: a mechanistic outlook,” Nano Today 10(1), 67–80 (2015).
[Crossref]

Smith, J. M.

A. W. Powell, M. B. Wincott, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” J. Appl. Phys. 113, 184311 (2013).
[Crossref]

Smith, R.

T. P. Otanicar, R. Smith, L. Dai, P. E. Phelan, and R. Swaminathan, “Applicability of controllable nanoparticle radiative properties for spacecraft heat rejection,” J. Thermophys. Heat Transfer 29, 869–874 (2015).
[Crossref]

Smith, S. M.

E. Eroglu, P. K. Eggers, M. Winslade, S. M. Smith, and C. L. Raston, “Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices,” Green Chem. 15, 3155–3159 (2013).
[Crossref]

Smith, W. E.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Sohn, J. I.

J. I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.-I. Cho, and K.-S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett. 78, 901–903 (2001).
[Crossref]

Sohrabi, M.

A. Tavakoli, M. Sohrabi, and A. Kargari, “A review of methods for synthesis of nanostructured metals with emphasis on iron compounds,” Chem. Pap. 61, 151–170 (2007).
[Crossref]

Soljacic, M.

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

Song, Q.

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
[Crossref]

Song, Y.-H.

J. I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.-I. Cho, and K.-S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett. 78, 901–903 (2001).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Spinelli, P.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Srimath Kandada, A. R.

F. Scotognella, G. Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86, 154 (2013).
[Crossref]

Stakenborg, T.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Stanley, C.

A. Mojiri, C. Stanley, and G. Rosengarten, “A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators,” Proc. SPIE 9559, 95590D (2015).
[Crossref]

Stanton, A. L. D.

J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5, 976–985 (2014).
[Crossref]

Stefancich, M.

Steglich, M.

Stéphan, O.

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

Stevenson, P. C.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Stokes, N.

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

Strekal, N.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
[Crossref]

Strümpel, C.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[Crossref]

Su, J.

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Subramanian, V.

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128, 2385–2393 (2006).
[Crossref]

Sugiyama, T.

T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
[Crossref]

Summers, C. J.

R. A. Gilstrap, C. J. Capozzi, C. G. Carson, R. A. Gerhardt, and C. J. Summers, “Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion,” Adv. Mater. 20, 4163–4166 (2008).

Sun, H.

Sun, L.-D.

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47, 1001–1009 (2014).
[Crossref]

Sun, T.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2016).

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

Sun, Y.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587–1595 (2008).
[Crossref]

Sureshkumar, R.

B. Estime, D. Ren, and R. Sureshkumar, “Effects of plasmonic film filters on microalgal growth and biomass composition,” Algal Res. 11, 85–89 (2015).
[Crossref]

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97, 043703 (2010).
[Crossref]

Surjadi, D.

F. Crisostomo, R. A. Taylor, D. Surjadi, A. Mojiri, G. Rosengarten, and E. R. Hawkes, “Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector,” Appl. Energy 141, 238–246 (2015).
[Crossref]

Suzuki, D.

D. Suzuki and H. Kawaguchi, “Hybrid microgels with reversibly changeable multiple brilliant color,” Langmuir 22, 3818–3822 (2006).
[Crossref]

Suzuki, F.

T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki, “Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics,” J. Cosmet. Sci. 55, 219–220 (2004).

Švrcek, V.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[Crossref]

Swaminathan, R.

C. Telang, T. Otanicar, L. Dai, P. Phelan, R. Swaminathan, and M. Zhang, “Controllable optical properties of polystyrene/PNIPAM-gold composite nanoparticles,” Plasmonics 10, 17–25 (2015).
[Crossref]

T. P. Otanicar, R. Smith, L. Dai, P. E. Phelan, and R. Swaminathan, “Applicability of controllable nanoparticle radiative properties for spacecraft heat rejection,” J. Thermophys. Heat Transfer 29, 869–874 (2015).
[Crossref]

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021004 (2013).

Tabata, H.

H. Matsui, S. Furuta, and H. Tabata, “Role of electron carriers on local surface plasmon resonances in doped oxide semiconductor nanocrystals,” Appl. Phys. Lett. 104, 211903 (2014).
[Crossref]

Taghavinia, N.

A. Dabirian and N. Taghavinia, “Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles,” ACS Appl. Mater. Interface 7, 14926–14932 (2015).

Takahashi, H.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
[Crossref]

Takeda, H.

H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91, 2897–2902 (2008).
[Crossref]

H. Takeda and K. Adachi, “Near infrared absorption of tungsten oxide nanoparticle dispersions,” J. Am. Ceram. Soc. 4061, 4059–4061 (2007).
[Crossref]

Tan, H.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref]

Tanaka, S.

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

Tang, Y. J.

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97, 043703 (2010).
[Crossref]

Tassone, F.

F. Scotognella, G. Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86, 154 (2013).
[Crossref]

Tavakoli, A.

A. Tavakoli, M. Sohrabi, and A. Kargari, “A review of methods for synthesis of nanostructured metals with emphasis on iron compounds,” Chem. Pap. 61, 151–170 (2007).
[Crossref]

Taylor, B.

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asén, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[Crossref]

Taylor, R.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—a review,” Renew. Sust. Energy Rev. 28, 654–663 (2013).
[Crossref]

Taylor, R. A.

N. E. Hjerrild, S. Mesgari, F. Crisostomo, J. A. Scott, R. Amal, and R. A. Taylor, “Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids,” Sol. Energy Mater. Sol. Cells 147, 281–287 (2016).
[Crossref]

R. A. Taylor, T. P. Otanicar, Y. L. Hewakuruppu, and D. DeJarnette, “Comparison of selective transmitters for solar thermal applications,” Appl. Opt. 55, 3829–3839 (2016).

F. Crisostomo, R. A. Taylor, D. Surjadi, A. Mojiri, G. Rosengarten, and E. R. Hawkes, “Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector,” Appl. Energy 141, 238–246 (2015).
[Crossref]

F. Crisostomo, R. A. Taylor, T. Zhang, I. Perez-Wurfl, G. Rosengarten, V. Everett, and E. R. Hawkes, “Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector,” Renew. Energy 72, 79–87 (2014).
[Crossref]

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021004 (2013).

R. A. Taylor, T. P. Otanicar, Y. Herukerrupu, F. Bremond, G. Rosengarten, E. R. Hawkes, X. Jiang, and S. Coulombe, “Feasibility of nanofluid-based optical filters,” Appl. Opt. 52, 1413–1422 (2013).
[Crossref]

T. P. Otanicar, R. A. Taylor, and C. Telang, “Photovoltaic/thermal system performance utilizing thin film and nanoparticle dispersion based optical filters,” J. Renewable Sustainable Energy 5, 033124 (2013).
[Crossref]

R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, e34 (2012).
[Crossref]

Telang, C.

C. Telang, T. Otanicar, L. Dai, P. Phelan, R. Swaminathan, and M. Zhang, “Controllable optical properties of polystyrene/PNIPAM-gold composite nanoparticles,” Plasmonics 10, 17–25 (2015).
[Crossref]

T. P. Otanicar, R. A. Taylor, and C. Telang, “Photovoltaic/thermal system performance utilizing thin film and nanoparticle dispersion based optical filters,” J. Renewable Sustainable Energy 5, 033124 (2013).
[Crossref]

Temple, T. L.

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[Crossref]

Teranishi, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

Thomas, P.

B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
[Crossref]

Thomsen, E.

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—a review,” Renew. Sust. Energy Rev. 28, 654–663 (2013).
[Crossref]

Tien, C. L.

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112, 178–185 (1990).
[Crossref]

Tobias, I.

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[Crossref]

Tokonami, S.

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

Y. Nishimura, K. Nishida, Y. Yamamoto, S. Ito, S. Tokonami, and T. Iida, “Control of submillimeter phase transition by collective photothermal effect,” J. Phys. Chem. C 118, 18799–18804 (2014).
[Crossref]

S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, and T. Iida, “Multipole superradiance from densely assembled metallic nanoparticles,” J. Phys. Chem. B 117, 15247–15252 (2013).

Tomita, N.

H. Ishihara, K. Cho, K. Akiyama, N. Tomita, Y. Nomura, and T. Isu, “Large four-wave mixing of spatially extended excitonic states in thin GaAs layers,” Phys. Rev. Lett. 89, 017402 (2002).
[Crossref]

Torkamani, S.

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97, 043703 (2010).
[Crossref]

Toscano, A.

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

Toyabe, S.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27, 8605–8610 (2011).
[Crossref]

Tsai, C.-Y.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref]

Tsai, D. P.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14, 114009 (2012).
[Crossref]

Tsai, M.-T.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Tschikin, M.

M. Tschikin, S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Radiative cooling of nanoparticles close to a surface,” Eur. Phys. J. B 85, 233 (2012).
[Crossref]

Tseng, H.-Y.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Tsuji, T.

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).
[Crossref]

Tsuzuki, T.

T. Tsuzuki and P. G. McCormick, “Mechanochemical synthesis of nanoparticles,” J. Mater. Sci. 39, 5143–5146 (2004).
[Crossref]

Tunkara, E.

D. DeJarnette, E. Tunkara, N. Brekke, T. Otanicar, K. Roberts, B. Gao, and A. E. Saunders, “Nanoparticle enhanced spectral filtration of insolation from trough concentrators,” Sol. Energy Mater. Sol. Cells 149, 145–153 (2016).
[Crossref]

D. DeJarnette, N. Brekke, E. Tunkara, H. Parameswar, K. Roberts, and T. Otanicar, “Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power,” Proc. SPIE 9559, 95590C (2015).
[Crossref]

Turkevich, J.

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

Tyystjärvi, E.

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2, 1500218 (2015).
[Crossref]

Ullah, S.

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Usman, A.

T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
[Crossref]

Uwada, T.

T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
[Crossref]

Valenzuela, S. M.

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
[Crossref]

Valle, G.

F. Scotognella, G. Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86, 154 (2013).
[Crossref]

van de Groep, J.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

van der Stap, C.

W. De Rooij and C. van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]

Van Lare, C.

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).

van Lare, M.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

van Roosmalen, J. A. M.

R. Kinderman, L. H. Slooff, A. R. Burgers, N. J. Bakker, A. Büchtemann, R. Danz, and J. A. M. van Roosmalen, “I-V performance and stability study of dyes for luminescent plate concentrators,” J. Sol. Energy Eng. 129, 277–282 (2007).
[Crossref]

Van Sark, W.

W. Van Sark, “Luminescent solar concentrators—a low cost photovoltaics alternative,” in EPJ Web of Conferences (2012), Vol. 33, paper 02003–1.

van Sark, W. G.

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8, 81 (2013).
[Crossref]

Venermo, J.

J. Venermo and A. Sihvola, “Dielectric polarizability of circular cylinder,” J. Electrost. 63, 101–117 (2005).
[Crossref]

Verschuuren, M. A.

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

Vijayaraghavan, S.

S. Vijayaraghavan, S. Ganapathisubbu, and C. Santosh Kumar, “Performance analysis of a spectrally selective concentrating direct absorption collector,” Sol. Energy 97, 418–425 (2013).
[Crossref]

Vivar, M.

R. Looser, M. Vivar, and V. Everett, “Spectral characterisation and long-term performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications,” Appl. Energy 113, 1496–1511 (2014).
[Crossref]

Wang, A.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[Crossref]

Wang, C.

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

Wang, C. R. C.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Wang, E. N.

Wang, G. T.

J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
[Crossref]

Wang, H.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235-242 (2015).
[Crossref]

Wang, J.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

Q. Huang, J. Wang, B. Quan, Q. Zhang, D. Zhang, D. Li, Q. Meng, L. Pan, Y. Wang, and G. Yang, “Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells,” Appl. Opt. 52, 2312–2319 (2013).
[Crossref]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Wang, J.-Y.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Wang, L.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235-242 (2015).
[Crossref]

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb, Er–SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115, 3291–3296 (2011).
[Crossref]

Wang, L.-Y.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

Wang, M.

M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, “Upconversion nanoparticles: synthesis, surface modification and biological applications,” Nanomedicine 7, 710–729 (2011).

Wang, Q.-Q.

Wang, S.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Wang, T.

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

Wang, Y.

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref]

Q. Huang, J. Wang, B. Quan, Q. Zhang, D. Zhang, D. Li, Q. Meng, L. Pan, Y. Wang, and G. Yang, “Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells,” Appl. Opt. 52, 2312–2319 (2013).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

Wang, Y.-F.

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47, 1001–1009 (2014).
[Crossref]

Wang, Z.

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb, Er–SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115, 3291–3296 (2011).
[Crossref]

Wani, S. N.

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97, 043703 (2010).
[Crossref]

Watanabe, M.

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15, 1755–1759 (2005).
[Crossref]

Watanabe, Y.

C. Kojima, Y. Watanabe, H. Hattori, and T. Iida, “Design of photosensitive gold nanoparticles for biomedical applications based on self-consistent optical response theory,” J. Phys. Chem. C 115, 19091–19095 (2011).
[Crossref]

Watt, A. A. R.

A. W. Powell, M. B. Wincott, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” J. Appl. Phys. 113, 184311 (2013).
[Crossref]

Weber, D.

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

M. Wegener, “Photonic metamaterials and transformation optics: a very brief introduction and review,” in Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale: Plasmonics, Photonic Materials and Sub-Wavelength Resolution (Springer, 2013), pp. 23–28.

Wei, J.

D. Jing, Y. Hu, M. Liu, J. Wei, and L. Guo, “Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system,” Sol. Energy 112, 30–40 (2015).
[Crossref]

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Wei, W.

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

Wei, X.

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4, 20894–20901 (2014).
[Crossref]

Welsher, K.

K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
[Crossref]

Wheelwright, B. M.

Z. J. Yu, K. C. Fisher, B. M. Wheelwright, R. P. Angel, and Z. C. Holman, “PVMirror: a new concept for tandem solar cells and hybrid solar converters,” IEEE J. Photovolt. 5, 1791–1799 (2015).
[Crossref]

Widyolar, B. K.

R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
[Crossref]

Wierer, J. J.

J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
[Crossref]

Wilson, B. C.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[Crossref]

Wincott, M. B.

A. W. Powell, M. B. Wincott, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” J. Appl. Phys. 113, 184311 (2013).
[Crossref]

Winslade, M.

E. Eroglu, P. K. Eggers, M. Winslade, S. M. Smith, and C. L. Raston, “Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices,” Green Chem. 15, 3155–3159 (2013).
[Crossref]

Winston, R.

R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
[Crossref]

Woggon, U.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
[Crossref]

Wolf, R.

R. Wolf, H. Matz, E. Orion, and J. Lipozencić, “Sunscreens—the ultimate cosmetic,” Acta Dermatovenerol. Croat. 11, 158–162 (2003).

Wondraczek, L.

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2, 1500218 (2015).
[Crossref]

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref]

Wong, L.

N. Chong and L. Wong, “Algal purification system with efficient solar light utilization,” U.S. patent7,985,338 B1 (July26, 2011).

Wu, C.

L. Chen, H. Yu, J. Zhong, C. Wu, L. Hu, and T. Zhang, “Effectively improved field emission properties of multiwalled carbon nanotubes/graphenes composite field emitter by covering on the Si pyramidal structure,” IEEE Trans. Electron Devices 62, 4305–4312 (2015).

Wu, J. L.

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 2012–2015 (2009).

Wu, S.-Y.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Wu, X.

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

Wu, Y.-C.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Xia, Y.

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587–1595 (2008).
[Crossref]

Xiang, Y.

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

Xie, S.

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

Xie, Y.

Y. Xie, L. Carbone, C. Nobile, and V. Grillo, “Metallic-like stoichiometric copper sulfide nanocrystals: phase-and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7, 7352–7369 (2013).
[Crossref]

Xiong, Y.

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb, Er–SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115, 3291–3296 (2011).
[Crossref]

Xu, H.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref]

Xu, S.

M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, “Upconversion nanoparticles: synthesis, surface modification and biological applications,” Nanomedicine 7, 710–729 (2011).

Xu, X.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2, 1661–1670 (2008).
[Crossref]

Xu, Z.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[Crossref]

Yablonovitch, E.

R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
[Crossref]

Yablonovitch, E. L. I.

E. L. I. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices 29, 300–305 (1982).
[Crossref]

Yamagata, M.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
[Crossref]

Yamamoto, K.

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

Yamamoto, Y.

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

Y. Nishimura, K. Nishida, Y. Yamamoto, S. Ito, S. Tokonami, and T. Iida, “Control of submillimeter phase transition by collective photothermal effect,” J. Phys. Chem. C 118, 18799–18804 (2014).
[Crossref]

S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, and T. Iida, “Multipole superradiance from densely assembled metallic nanoparticles,” J. Phys. Chem. B 117, 15247–15252 (2013).

Yamashita, S.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27, 14621–14626 (2011).
[Crossref]

Yan, C.-H.

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47, 1001–1009 (2014).
[Crossref]

Yan, M.

C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, and T. Sato, “Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties,” Inorg. Chem. 51, 4763–4771 (2012).
[Crossref]

C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, and T. Sato, “Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process,” J. Mater. Chem. 20, 8227–8229 (2010).
[Crossref]

Yang, C. C.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Yang, D.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[Crossref]

Yang, G.

Yang, K.-M.

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Yang, L.

C. Guo, S. Yin, L. Huang, L. Yang, and T. Sato, “Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods,” Chem. Commun. 47, 8853–8855 (2011).
[Crossref]

Yang, S.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Yang, Y.

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

Yang, Z.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Yang, Z.-J.

Yaroshevich, A.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
[Crossref]

Ye, J.

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

Yeng, Y. X.

Yin, S.

C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, and T. Sato, “Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties,” Inorg. Chem. 51, 4763–4771 (2012).
[Crossref]

C. Guo, S. Yin, L. Huang, and T. Sato, “Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property,” ACS Appl. Mater. Interfaces 3, 2794–2799 (2011).
[Crossref]

C. Guo, S. Yin, L. Huang, L. Yang, and T. Sato, “Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods,” Chem. Commun. 47, 8853–8855 (2011).
[Crossref]

C. Guo, S. Yin, Y. Huang, Q. Dong, and T. Sato, “Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties,” Langmuir 27, 12172–12178 (2011).
[Crossref]

C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, and T. Sato, “Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process,” J. Mater. Chem. 20, 8227–8229 (2010).
[Crossref]

Yoshinaga, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

You, G.

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

Yu, H.

L. Chen, H. Yu, J. Zhong, C. Wu, L. Hu, and T. Zhang, “Effectively improved field emission properties of multiwalled carbon nanotubes/graphenes composite field emitter by covering on the Si pyramidal structure,” IEEE Trans. Electron Devices 62, 4305–4312 (2015).

Yu, P.

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
[Crossref]

Yu, Y.-Y.

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

Yu, Z. J.

Z. J. Yu, K. C. Fisher, B. M. Wheelwright, R. P. Angel, and Z. C. Holman, “PVMirror: a new concept for tandem solar cells and hybrid solar converters,” IEEE J. Photovolt. 5, 1791–1799 (2015).
[Crossref]

Yuan, L.

X. Hua, Z. Zhou, L. Yuan, and S. Liu, “Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes,” Anal. Chim. Acta 788, 135–140 (2013).
[Crossref]

Yun, M. J.

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

Yurkin, M.

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

Zavelani-Rossi, M.

F. Scotognella, G. Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86, 154 (2013).
[Crossref]

Zayan, A.

Zeman, M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref]

Zeng, H.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2, 1661–1670 (2008).
[Crossref]

Zhang, C.

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[Crossref]

Zhang, D.

Zhang, J.

W. An, J. Zhang, T. Zhu, and N. Gao, “Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: preliminary test,” Renew. Energy 86, 633–642 (2016).
[Crossref]

Zhang, K.

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

Zhang, M.

C. Telang, T. Otanicar, L. Dai, P. Phelan, R. Swaminathan, and M. Zhang, “Controllable optical properties of polystyrene/PNIPAM-gold composite nanoparticles,” Plasmonics 10, 17–25 (2015).
[Crossref]

Zhang, P.

C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, and T. Sato, “Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process,” J. Mater. Chem. 20, 8227–8229 (2010).
[Crossref]

Zhang, Q.

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2, 1500218 (2015).
[Crossref]

Q. Huang, J. Wang, B. Quan, Q. Zhang, D. Zhang, D. Li, Q. Meng, L. Pan, Y. Wang, and G. Yang, “Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells,” Appl. Opt. 52, 2312–2319 (2013).
[Crossref]

Zhang, T.

L. Chen, H. Yu, J. Zhong, C. Wu, L. Hu, and T. Zhang, “Effectively improved field emission properties of multiwalled carbon nanotubes/graphenes composite field emitter by covering on the Si pyramidal structure,” IEEE Trans. Electron Devices 62, 4305–4312 (2015).

F. Crisostomo, R. A. Taylor, T. Zhang, I. Perez-Wurfl, G. Rosengarten, V. Everett, and E. R. Hawkes, “Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector,” Renew. Energy 72, 79–87 (2014).
[Crossref]

Zhang, W.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Zhang, X.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

Zhang, Y.

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Zhao, J.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[Crossref]

Zhao, J. X.

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors 12, 2414–2435 (2012).
[Crossref]

Zhao, L.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[Crossref]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Zhao, P.

P. Zhao, N. Li, and D. Astruc, “State of the art in gold nanoparticle synthesis,” Coord. Chem. Rev. 257, 638–665 (2013).
[Crossref]

Zheludev, N. I.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14, 114009 (2012).
[Crossref]

Zheng, Y.

Zhong, J.

L. Chen, H. Yu, J. Zhong, C. Wu, L. Hu, and T. Zhang, “Effectively improved field emission properties of multiwalled carbon nanotubes/graphenes composite field emitter by covering on the Si pyramidal structure,” IEEE Trans. Electron Devices 62, 4305–4312 (2015).

Zhou, H.

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2, 1661–1670 (2008).
[Crossref]

Zhou, W.

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

Zhou, Z.

X. Hua, Z. Zhou, L. Yuan, and S. Liu, “Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes,” Anal. Chim. Acta 788, 135–140 (2013).
[Crossref]

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

Zhu, T.

W. An, J. Zhang, T. Zhu, and N. Gao, “Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: preliminary test,” Renew. Energy 86, 633–642 (2016).
[Crossref]

Zhu, W. M.

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14, 114009 (2012).
[Crossref]

Acc. Chem. Res. (2)

S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, “Gold nanocages: synthesis, properties, and applications,” Acc. Chem. Res. 41, 1587–1595 (2008).
[Crossref]

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47, 1001–1009 (2014).
[Crossref]

ACS Appl. Mater. Interface (1)

A. Dabirian and N. Taghavinia, “Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles,” ACS Appl. Mater. Interface 7, 14926–14932 (2015).

ACS Appl. Mater. Interfaces (1)

C. Guo, S. Yin, L. Huang, and T. Sato, “Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property,” ACS Appl. Mater. Interfaces 3, 2794–2799 (2011).
[Crossref]

ACS Nano (5)

H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, and H. Kalt, “ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis,” ACS Nano 2, 1661–1670 (2008).
[Crossref]

A. Hoggard, L.-Y. Wang, L. Ma, Y. Fang, G. You, J. Olson, Z. Liu, W.-S. Chang, P. M. Ajayan, and S. Link, “Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene,” ACS Nano 7, 11209–11217 (2013).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Y. Xie, L. Carbone, C. Nobile, and V. Grillo, “Metallic-like stoichiometric copper sulfide nanocrystals: phase-and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7, 7352–7369 (2013).
[Crossref]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

ACS Photon. (1)

F. B. Arango, T. Coenen, and A. Koenderink, “Underpinning hybridization intuition for complex nanoantennas by magnetoelectric quadrupolar polarizability retrieval,” ACS Photon. 1, 444–453 (2014).
[Crossref]

Acta Dermatovenerol. Croat. (1)

R. Wolf, H. Matz, E. Orion, and J. Lipozencić, “Sunscreens—the ultimate cosmetic,” Acta Dermatovenerol. Croat. 11, 158–162 (2003).

Adv. Funct. Mater. (2)

J. R. C. Smirnov, M. E. Calvo, and H. Míguez, “Selective UV reflecting mirrors based on nanoparticle multilayers,” Adv. Funct. Mater. 23, 2805–2811 (2013).
[Crossref]

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Adv. Mater. (2)

R. A. Gilstrap, C. J. Capozzi, C. G. Carson, R. A. Gerhardt, and C. J. Summers, “Synthesis of a nonagglomerated indium tin oxide nanoparticle dispersion,” Adv. Mater. 20, 4163–4166 (2008).

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26, 5274–5309 (2014).
[Crossref]

Adv. Sci. (1)

L. Wondraczek, E. Tyystjärvi, J. Méndez-Ramos, F. A. Müller, and Q. Zhang, “Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis,” Adv. Sci. 2, 1500218 (2015).
[Crossref]

Algal Res. (1)

B. Estime, D. Ren, and R. Sureshkumar, “Effects of plasmonic film filters on microalgal growth and biomass composition,” Algal Res. 11, 85–89 (2015).
[Crossref]

Anal. Chim. Acta (1)

X. Hua, Z. Zhou, L. Yuan, and S. Liu, “Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes,” Anal. Chim. Acta 788, 135–140 (2013).
[Crossref]

Angew. Chem. Int. Ed. (2)

M. Haase and H. Schäfer, “Upconverting nanoparticles,” Angew. Chem. Int. Ed. 50, 5808–5829 (2011).
[Crossref]

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
[Crossref]

Ann. Chim. Phys. (1)

C. Fabry and A. Perot, “Theorie et applications d’une nouvelle methode de spectroscopie interferentielle,” Ann. Chim. Phys. 16, 115 (1899).

Ann. Phys. (1)

G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Appl. Catal. B (1)

S. Ullah, E. P. Ferreira-Neto, A. A. Pasa, C. C. J. Alcantara, J. J. S. Acuna, S. A. Bilmes, M. L. M. Ricci, R. Landers, T. Z. Fermino, and U. P. Rodrigues-Filho, “Enhanced photocatalytic properties of core–shell SiO2–TiO2 nanoparticles,” Appl. Catal. B 179, 333–343 (2015).
[Crossref]

Appl. Energy (3)

C. Shou, Z. Luo, T. Wang, W. Shen, G. Rosengarten, W. Wei, C. Wang, M. Ni, and K. Cen, “Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems,” Appl. Energy 92, 298–306 (2012).
[Crossref]

F. Crisostomo, R. A. Taylor, D. Surjadi, A. Mojiri, G. Rosengarten, and E. R. Hawkes, “Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector,” Appl. Energy 141, 238–246 (2015).
[Crossref]

R. Looser, M. Vivar, and V. Everett, “Spectral characterisation and long-term performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications,” Appl. Energy 113, 1496–1511 (2014).
[Crossref]

Appl. Mater. Interfaces (1)

T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka, and M. Haga, “Glycine crystallization in solution by cw laser-induced microbubble on gold thin film surface,” Appl. Mater. Interfaces 4, 1158–1163 (2012).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (12)

W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, and N. S. Lee, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Appl. Phys. Lett. 1547, 41–44 (2012).

J. I. Sohn, S. Lee, Y.-H. Song, S.-Y. Choi, K.-I. Cho, and K.-S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett. 78, 901–903 (2001).
[Crossref]

M. D. Ooms, Y. Jeyaram, and D. Sinton, “Wavelength-selective plasmonics for enhanced cultivation of microalgae,” Appl. Phys. Lett. 106, 063902 (2015).
[Crossref]

S. Torkamani, S. N. Wani, Y. J. Tang, and R. Sureshkumar, “Plasmon-enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett. 97, 043703 (2010).
[Crossref]

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[Crossref]

Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[Crossref]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient ‘honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[Crossref]

F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” Appl. Phys. Lett. 95, 2012–2015 (2009).

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
[Crossref]

D. DeJarnette, J. Norman, and D. K. Roper, “Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry,” Appl. Phys. Lett. 101, 183104 (2012).
[Crossref]

C. Huang, J. Ye, S. Wang, T. Stakenborg, and L. Lagae, “Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection,” Appl. Phys. Lett. 100, 173114 (2012).
[Crossref]

H. Matsui, S. Furuta, and H. Tabata, “Role of electron carriers on local surface plasmon resonances in doped oxide semiconductor nanocrystals,” Appl. Phys. Lett. 104, 211903 (2014).
[Crossref]

Astron. Astrophys. (1)

W. De Rooij and C. van der Stap, “Expansion of Mie scattering matrices in generalized spherical functions,” Astron. Astrophys. 131, 237–248 (1984).

Astrophys. J. (1)

E. Purcell and C. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Build. Environ. (1)

N. DeForest, A. Shehabi, J. O’Donnell, G. Garcia, J. Greenblatt, E. S. Lee, S. Selkowitz, and D. J. Milliron, “United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings,” Build. Environ. 89, 107–117 (2015).
[Crossref]

Chem. Commun. (2)

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. 50, 10555–10572 (2014).
[Crossref]

C. Guo, S. Yin, L. Huang, L. Yang, and T. Sato, “Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods,” Chem. Commun. 47, 8853–8855 (2011).
[Crossref]

Chem. Mater. (2)

A. Gole and C. Murphy, “Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed,” Chem. Mater. 16, 3633–3640 (2004).
[Crossref]

B. Pietrobon and V. Kitaev, “Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties,” Chem. Mater. 20, 5186–5190 (2008).
[Crossref]

Chem. Pap. (1)

A. Tavakoli, M. Sohrabi, and A. Kargari, “A review of methods for synthesis of nanostructured metals with emphasis on iron compounds,” Chem. Pap. 61, 151–170 (2007).
[Crossref]

Chem. Phys. Lett. (1)

A. V. Goncharenko, “Optical properties of core-shell particle composites. I. Linear response,” Chem. Phys. Lett. 386, 25–31 (2004).
[Crossref]

Chem. Rev. (3)

M. B. Cortie and A. M. McDonagh, “Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles,” Chem. Rev. 111, 3713–3735 (2011).
[Crossref]

R. G. Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev. 112, 2373–2433 (2012).
[Crossref]

R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108, 845–910 (2008).
[Crossref]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[Crossref]

Coord. Chem. Rev. (1)

P. Zhao, N. Li, and D. Astruc, “State of the art in gold nanoparticle synthesis,” Coord. Chem. Rev. 257, 638–665 (2013).
[Crossref]

Cryst. Growth Des. (1)

Y. Masuda, N. Kinoshita, F. Sato, and K. Koumoto, “Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals,” Cryst. Growth Des. 6, 75–78 (2006).
[Crossref]

Diam. Relat. Mater. (1)

D. Nawn, D. Banerjee, and K. K. Chattopadhyay, “Zinc oxide nanostructure decorated amorphous carbon nanotubes: an improved field emitter,” Diam. Relat. Mater. 34, 50–59 (2013).
[Crossref]

Discuss. Faraday Soc. (1)

J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discuss. Faraday Soc. 11, 55–75 (1951).
[Crossref]

Energy Convers. Manag. (1)

W. A. M. Al-Shohani, A. Sabouri, R. Al-Dadah, S. Mahmoud, and H. Butt, “Experimental investigation of an optical water filter for photovoltaic/thermal conversion module,” Energy Convers. Manag. 111, 431–442 (2016).
[Crossref]

Eur. Phys. J. B (2)

F. Scotognella, G. Valle, A. R. Srimath Kandada, M. Zavelani-Rossi, S. Longhi, G. Lanzani, and F. Tassone, “Plasmonics in heavily-doped semiconductor nanocrystals,” Eur. Phys. J. B 86, 154 (2013).
[Crossref]

M. Tschikin, S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Radiative cooling of nanoparticles close to a surface,” Eur. Phys. J. B 85, 233 (2012).
[Crossref]

Green Chem. (1)

E. Eroglu, P. K. Eggers, M. Winslade, S. M. Smith, and C. L. Raston, “Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices,” Green Chem. 15, 3155–3159 (2013).
[Crossref]

IEEE J. Photovolt. (1)

Z. J. Yu, K. C. Fisher, B. M. Wheelwright, R. P. Angel, and Z. C. Holman, “PVMirror: a new concept for tandem solar cells and hybrid solar converters,” IEEE J. Photovolt. 5, 1791–1799 (2015).
[Crossref]

IEEE Sens. J. (1)

D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asén, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[Crossref]

IEEE Trans. Electron Devices (2)

L. Chen, H. Yu, J. Zhong, C. Wu, L. Hu, and T. Zhang, “Effectively improved field emission properties of multiwalled carbon nanotubes/graphenes composite field emitter by covering on the Si pyramidal structure,” IEEE Trans. Electron Devices 62, 4305–4312 (2015).

E. L. I. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices 29, 300–305 (1982).
[Crossref]

Inorg. Chem. (2)

C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, and T. Sato, “Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties,” Inorg. Chem. 51, 4763–4771 (2012).
[Crossref]

Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, “Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties,” Inorg. Chem. 49, 6706–6715 (2010).
[Crossref]

J. Am. Ceram. Soc. (2)

H. Takeda and K. Adachi, “Near infrared absorption of tungsten oxide nanoparticle dispersions,” J. Am. Ceram. Soc. 4061, 4059–4061 (2007).
[Crossref]

H. Takeda, H. Kuno, and K. Adachi, “Solar control dispersions and coatings with rare-earth hexaboride nanoparticles,” J. Am. Ceram. Soc. 91, 2897–2902 (2008).
[Crossref]

J. Am. Chem. Soc. (7)

D. Dorfs, T. Härtling, K. Miszta, N. C. Bigall, M. R. Kim, A. Genovese, A. Falqui, M. Povia, and L. Manna, “Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals,” J. Am. Chem. Soc. 133, 11175–11180 (2011).
[Crossref]

S. D. Lounis, E. L. Runnerstrom, A. Bergerud, D. Nordlund, and D. J. Milliron, “Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals,” J. Am. Chem. Soc. 136, 7110–7116 (2014).
[Crossref]

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

J. M. Dubach, D. I. Harjes, and H. A. Clark, “Ion-selective nano-optodes incorporating quantum dots,” J. Am. Chem. Soc. 129, 8418–8419 (2007).
[Crossref]

I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128, 2385–2393 (2006).
[Crossref]

I. Robel, M. Kuno, and P. V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles,” J. Am. Chem. Soc. 129, 4136–4137 (2007).
[Crossref]

K. Manthiram and A. P. Alivisatos, “Tunable localized surface plasmon resonances in tungsten oxide nanocrystals,” J. Am. Chem. Soc. 134, 3995–3998 (2012).
[Crossref]

J. Appl. Phycol. (1)

H. Delavari Amrei, R. Ranjbar, S. Rastegar, B. Nasernejad, and A. Nejadebrahim, “Using fluorescent material for enhancing microalgae growth rate in photobioreactors,” J. Appl. Phycol. 27, 67–74 (2015).
[Crossref]

J. Appl. Phys. (8)

S.-Y. Li, G. A. Niklasson, and C. G. Granqvist, “Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation,” J. Appl. Phys. 108, 063525 (2010).
[Crossref]

F. J. Beck, A. Polman, K. R. Catchpole, F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[Crossref]

P. Campbell, M. A. Green, P. Campbell, and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987).
[Crossref]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009).

A. W. Powell, M. B. Wincott, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer,” J. Appl. Phys. 113, 184311 (2013).
[Crossref]

D. DeJarnette, P. Blake, G. T. Forcherio, and D. Keith Roper, “Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115, 024306 (2014).
[Crossref]

A. Monti, A. Alù, A. Toscano, and F. Bilotti, “Optical invisibility through metasurfaces made of plasmonic nanoparticles,” J. Appl. Phys. 117, 123103 (2015).
[Crossref]

D. DeJarnette and D. K. Roper, “Electron energy loss spectroscopy of gold nanoparticles on graphene,” J. Appl. Phys. 116, 054313 (2014).
[Crossref]

J. Cluster Sci. (1)

T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[Crossref]

J. Control. Release (1)

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114, 343–347 (2006).
[Crossref]

J. Cosmet. Sci. (1)

T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki, “Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics,” J. Cosmet. Sci. 55, 219–220 (2004).

J. Electrost. (1)

J. Venermo and A. Sihvola, “Dielectric polarizability of circular cylinder,” J. Electrost. 63, 101–117 (2005).
[Crossref]

J. Heat Transfer (1)

S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” J. Heat Transfer 112, 178–185 (1990).
[Crossref]

J. Mater. Chem. (2)

B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. Liz-Marzán, “Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties,” J. Mater. Chem. 15, 1755–1759 (2005).
[Crossref]

C. Guo, S. Yin, P. Zhang, M. Yan, K. Adachi, T. Chonan, and T. Sato, “Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process,” J. Mater. Chem. 20, 8227–8229 (2010).
[Crossref]

J. Mater. Res. (1)

K. Adachi and T. Asahi, “Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles,” J. Mater. Res. 27, 965–970 (2012).
[Crossref]

J. Mater. Sci. (1)

T. Tsuzuki and P. G. McCormick, “Mechanochemical synthesis of nanoparticles,” J. Mater. Sci. 39, 5143–5146 (2004).
[Crossref]

J. Opt. (3)

D. DeJarnette, G. G. Jang, P. Blake, and D. K. Roper, “Polarization angle affects energy of plasmonic features in Fano resonant regular lattices,” J. Opt. 16, 105006 (2014).
[Crossref]

A. Q. Liu, W. M. Zhu, D. P. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14, 114009 (2012).
[Crossref]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14, 024002 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Photon. Energy (1)

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, and K. Roberts, “Selective spectral filtration with nanoparticles for concentrating solar collectors,” J. Photon. Energy 5, 057008 (2015).
[Crossref]

J. Phys. Chem. B (7)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

S. Link and M. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[Crossref]

S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, and T. Iida, “Multipole superradiance from densely assembled metallic nanoparticles,” J. Phys. Chem. B 117, 15247–15252 (2013).

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, and G. C. Schatz, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]

Y.-Y. Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[Crossref]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107, 7343–7350 (2003).
[Crossref]

J. Phys. Chem. C (5)

A. Agrawal, I. Kriegel, and D. J. Milliron, “Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals,” J. Phys. Chem. C 119, 6227–6238 (2015).
[Crossref]

Z. Li, L. Wang, Z. Wang, X. Liu, and Y. Xiong, “Modification of NaYF4:Yb, Er–SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions,” J. Phys. Chem. C 115, 3291–3296 (2011).
[Crossref]

C. David and F. J. García de Abajo, “Spatial nonlocality in the optical response of metal nanoparticles,” J. Phys. Chem. C 115, 19470–19475 (2011).
[Crossref]

Y. Nishimura, K. Nishida, Y. Yamamoto, S. Ito, S. Tokonami, and T. Iida, “Control of submillimeter phase transition by collective photothermal effect,” J. Phys. Chem. C 118, 18799–18804 (2014).
[Crossref]

C. Kojima, Y. Watanabe, H. Hattori, and T. Iida, “Design of photosensitive gold nanoparticles for biomedical applications based on self-consistent optical response theory,” J. Phys. Chem. C 115, 19091–19095 (2011).
[Crossref]

J. Phys. Chem. Lett. (3)

J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, “Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities,” J. Phys. Chem. Lett. 5, 976–985 (2014).
[Crossref]

T. Iida, “Control of plasmonic superradiance in metallic nanoparticle assembly by light-induced force and fluctuations,” J. Phys. Chem. Lett. 3, 332–336 (2012).
[Crossref]

S. D. Lounis, E. L. Runnerstrom, A. Llordes, and D. J. Milliron, “Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals,” J. Phys. Chem. Lett. 5, 1564–1574 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. Yurkin and A. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

J. Renewable Sustainable Energy (1)

T. P. Otanicar, R. A. Taylor, and C. Telang, “Photovoltaic/thermal system performance utilizing thin film and nanoparticle dispersion based optical filters,” J. Renewable Sustainable Energy 5, 033124 (2013).
[Crossref]

J. Sol. Energy Eng. (5)

N. Brekke, T. Otanicar, D. DeJarnette, and P. Harikumar, “A parametric investigation of a concentrating PV/T system with spectral filtering utilizing a 2-D heat transfer model,” J. Sol. Energy Eng. 138, 021007 (2016).
[Crossref]

T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011).
[Crossref]

R. Kinderman, L. H. Slooff, A. R. Burgers, N. J. Bakker, A. Büchtemann, R. Danz, and J. A. M. van Roosmalen, “I-V performance and stability study of dyes for luminescent plate concentrators,” J. Sol. Energy Eng. 129, 277–282 (2007).
[Crossref]

S. S. Joshi, A. S. Dhoble, and P. R. Jiwanapurkar, “Investigations of different liquid based spectrum beam splitters for combined solar photovoltaic thermal systems,” J. Sol. Energy Eng. 138, 021003 (2016).
[Crossref]

W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021004 (2013).

J. Thermophys. Heat Transfer (1)

T. P. Otanicar, R. Smith, L. Dai, P. E. Phelan, and R. Swaminathan, “Applicability of controllable nanoparticle radiative properties for spacecraft heat rejection,” J. Thermophys. Heat Transfer 29, 869–874 (2015).
[Crossref]

Kodaikanal Obs. Bull. Ser. A (1)

G. A. Shah, “Numerical methods for Mie theory of scattering by a sphere,” Kodaikanal Obs. Bull. Ser. A 2, 42–63 (1977).

Langmuir (7)

C. Guo, S. Yin, Y. Huang, Q. Dong, and T. Sato, “Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties,” Langmuir 27, 12172–12178 (2011).
[Crossref]

D. Suzuki and H. Kawaguchi, “Hybrid microgels with reversibly changeable multiple brilliant color,” Langmuir 22, 3818–3822 (2006).
[Crossref]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24, 5233–5237 (2008).
[Crossref]

Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou, and S. Xie, “Gold nanorod-seeded growth of silver nanostructures: from homogeneous coating to anisotropic coating,” Langmuir 24, 3465–3470 (2008).
[Crossref]

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir 27, 8605–8610 (2011).
[Crossref]

B. Roy, M. Arya, P. Thomas, J. K. Jurgschat, K. V. Rao, A. Banerjee, C. M. Reddy, and S. Roy, “Self-assembly of mesoscopic materials to form controlled and continuous patterns by thermo-optically manipulated laser induced microbubbles,” Langmuir 29, 14733–14742 (2013).
[Crossref]

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27, 14621–14626 (2011).
[Crossref]

Light Sci. Appl. (4)

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2014).
[Crossref]

R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, e34 (2012).
[Crossref]

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. 2, e92 (2013).
[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3, e161 (2016).

Nano Lett. (21)

C. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Dielectric scattering patterns for efficient light trapping in thin-film solar cells,” Nano Lett. 15, 4846–4852 (2015).

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[Crossref]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the Earth using surface phonon resonant nanoparticles,” Nano Lett. 10, 373–379 (2010).
[Crossref]

K. Welsher, Z. Liu, D. Daranciang, and H. Dai, “Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules,” Nano Lett. 8, 586–590 (2008).
[Crossref]

R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, “Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals,” Nano Lett. 11, 4706–4710 (2011).
[Crossref]

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
[Crossref]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett. 11, 2835–2840 (2011).
[Crossref]

J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, “Three-dimensional mapping of quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array,” Nano Lett. 13, 4317–4325 (2013).
[Crossref]

M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett. 7, 2506–2512 (2007).
[Crossref]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref]

L. R. Bradshaw, K. E. Knowles, S. McDowall, and D. R. Gamelin, “Nanocrystals for luminescent solar concentrators,” Nano Lett. 15, 1315–1323 (2015).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett. 13, 1457–1461 (2013).

J. B. Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[Crossref]

C. Ayala-Orozco, J. G. Liu, M. W. Knight, Y. Wang, J. K. Day, P. Nordlander, and N. J. Halas, “Fluorescence enhancement of molecules inside a gold nanomatryoshka,” Nano Lett. 14, 2926–2933 (2014).
[Crossref]

J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10, 902–907 (2010).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

H. Mertens, J. S. Biteen, H. A. Atwater, and A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[Crossref]

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449–1452 (2002).
[Crossref]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004).
[Crossref]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003).
[Crossref]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 683–688 (2006).
[Crossref]

Nano Today (2)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2(1), 30–38 (2007).
[Crossref]

J. G. Smith, J. A. Faucheaux, and P. K. Jain, “Plasmon resonances for solar energy harvesting: a mechanistic outlook,” Nano Today 10(1), 67–80 (2015).
[Crossref]

Nanomedicine (1)

M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, “Upconversion nanoparticles: synthesis, surface modification and biological applications,” Nanomedicine 7, 710–729 (2011).

Nanoscale (2)

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, and I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

A. Kosuga, Y. Yamamoto, M. Miyai, M. Matsuzawa, Y. Nishimura, S. Hidaka, K. Yamamoto, S. Tanaka, Y. Yamamoto, S. Tokonami, and T. Iida, “A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion,” Nanoscale 7, 7580–7584 (2015).
[Crossref]

Nanoscale Res. Lett. (2)

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

W. G. van Sark, J. de Wild, J. K. Rath, A. Meijerink, and R. E. Schropp, “Upconversion in solar cells,” Nanoscale Res. Lett. 8, 81 (2013).
[Crossref]

Nanotechnol. Sci. Appl. (1)

T. G. Smijs and S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness,” Nanotechnol. Sci. Appl. 4, 95–112 (2011).
[Crossref]

Nanotechnology (2)

M. J. Mendes, S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, “Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids,” Nanotechnology 26, 135202 (2015).
[Crossref]

H.-Y. Tseng, C.-K. Lee, S.-Y. Wu, T.-T. Chi, K.-M. Yang, J.-Y. Wang, Y.-W. Kiang, C. C. Yang, M.-T. Tsai, Y.-C. Wu, H.-Y. E. Chou, and C.-P. Chiang, “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology 21, 295102 (2010).
[Crossref]

Nat. Commun. (1)

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner, B. Seemann, P. Schweizer, and C. J. Brabec, “Solar spectral conversion for improving the photosynthetic activity in algae reactors,” Nat. Commun. 4, 2047 (2013).
[Crossref]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10, 361–366 (2011).
[Crossref]

Nat. Photonics (2)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8, 95–103 (2014).
[Crossref]

Nature (2)

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515, 540–544 (2014).
[Crossref]

New J. Phys. (1)

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[Crossref]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[Crossref]

Opt. Express (9)

G. T. Forcherio, P. Blake, D. DeJarnette, and D. K. Roper, “Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices,” Opt. Express 22, 17791–17804 (2014).
[Crossref]

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express 19, 15047–15061 (2011).
[Crossref]

R. Filter, M. Farhat, M. Steglich, R. Alaee, C. Rockstuhl, and F. Lederer, “Tunable graphene antennas for selective enhancement of THz-emission,” Opt. Express 21, 3737–3745 (2013).
[Crossref]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2014).
[Crossref]

M. Stefancich, A. Zayan, M. Chiesa, S. Rampino, L. Kimerling, and J. Michel, “Single element spectral splitting solar concentrator for multiple cells CPV system,” Opt. Express 20, 9004–9018 (2012).
[Crossref]

M. Arnold, M. Blaber, and M. Ford, “Local plasmon resonances of metal-in-metal core-shells,” Opt. Express 22, 3186–3198 (2014).
[Crossref]

Z.-J. Yang, N.-C. Kim, J.-B. Li, M.-T. Cheng, S.-D. Liu, Z.-H. Hao, and Q.-Q. Wang, “Surface plasmons amplifications in single Ag nanoring,” Opt. Express 18, 4006–4011 (2010).
[Crossref]

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18, 10078–10087 (2010).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23, A1129–A1139 (2015).
[Crossref]

Opt. Lett. (1)

Photon. Res. (1)

Phys. Med. Biol. (1)

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[Crossref]

Phys. Rev. B (5)

W. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[Crossref]

A. Mary, D. Koller, A. Hohenau, J. Krenn, A. Bouhelier, and A. Dereux, “Optical absorption of torus-shaped metal nanoparticles in the visible range,” Phys. Rev. B 76, 245422 (2007).
[Crossref]

H. Ajiki, T. Tsuji, K. Kawano, and K. Cho, “Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal,” Phys. Rev. B 66, 245322 (2002).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[Crossref]

Phys. Rev. E (1)

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizability backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).
[Crossref]

Phys. Rev. Lett. (3)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[Crossref]

H. Ishihara, K. Cho, K. Akiyama, N. Tomita, Y. Nomura, and T. Isu, “Large four-wave mixing of spatially extended excitonic states in thin GaAs layers,” Phys. Rev. Lett. 89, 017402 (2002).
[Crossref]

Plasmonics (1)

C. Telang, T. Otanicar, L. Dai, P. Phelan, R. Swaminathan, and M. Zhang, “Controllable optical properties of polystyrene/PNIPAM-gold composite nanoparticles,” Plasmonics 10, 17–25 (2015).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

A. J. Hallock, P. L. Redmond, and L. E. Brus, “Optical forces between metallic particles,” Proc. Natl. Acad. Sci. USA 102, 1280–1284 (2005).
[Crossref]

Proc. SPIE (7)

A. Mojiri, C. Stanley, and G. Rosengarten, “A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators,” Proc. SPIE 9559, 95590D (2015).
[Crossref]

G. T. Forcherio, D. DeJarnette, P. Blake, and D. K. Roper, “Polarizability extraction for rapid computation of Fano resonance in nanoring lattices,” Proc. SPIE 9163, 91633O (2014).
[Crossref]

D. DeJarnette, N. Brekke, E. Tunkara, H. Parameswar, K. Roberts, and T. Otanicar, “Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power,” Proc. SPIE 9559, 95590C (2015).
[Crossref]

D. DeJarnette, T. Otanicar, N. Brekke, P. Hari, K. Roberts, A. E. Saunders, and R. Morad, “Plasmonic nanoparticle based spectral fluid filters for concentrating PV/T collectors,” Proc. SPIE 9175, 917509 (2014).
[Crossref]

R. Winston, E. Yablonovitch, L. Jiang, B. K. Widyolar, M. Abdelhamid, G. Scranton, D. Cygan, and A. Kozlov, “Hybrid solar collector using nonimaging optics and photovoltaic components,” Proc. SPIE 9572, 957208 (2015).
[Crossref]

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

R. K. Kostuk and G. Rosenberg, “Analysis and design of holographic solar concentrators,” Proc. SPIE 7043, 70430I (2008).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog. Photovolt. Res. Appl. 18, 500–504 (2010).
[Crossref]

Renew. Energy (2)

W. An, J. Zhang, T. Zhu, and N. Gao, “Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: preliminary test,” Renew. Energy 86, 633–642 (2016).
[Crossref]

F. Crisostomo, R. A. Taylor, T. Zhang, I. Perez-Wurfl, G. Rosengarten, V. Everett, and E. R. Hawkes, “Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector,” Renew. Energy 72, 79–87 (2014).
[Crossref]

Renew. Sust. Energy Rev. (1)

A. Mojiri, R. Taylor, E. Thomsen, and G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—a review,” Renew. Sust. Energy Rev. 28, 654–663 (2013).
[Crossref]

RSC Adv. (1)

M. Lisunova, X. Wei, D. DeJarnette, G. T. Forcherio, K. R. Berry, P. Blake, and D. K. Roper, “Photothermal response of the plasmonic nanoconglomerates in films assembled by electroless plating,” RSC Adv. 4, 20894–20901 (2014).
[Crossref]

Sensors (1)

J. Chen and J. X. Zhao, “Upconversion nanomaterials: synthesis, mechanism, and applications in sensing,” Sensors 12, 2414–2435 (2012).
[Crossref]

Sol. Energy (2)

D. Jing, Y. Hu, M. Liu, J. Wei, and L. Guo, “Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system,” Sol. Energy 112, 30–40 (2015).
[Crossref]

S. Vijayaraghavan, S. Ganapathisubbu, and C. Santosh Kumar, “Performance analysis of a spectrally selective concentrating direct absorption collector,” Sol. Energy 97, 418–425 (2013).
[Crossref]

Sol. Energy Mater. Sol. Cells (9)

D. DeJarnette, E. Tunkara, N. Brekke, T. Otanicar, K. Roberts, B. Gao, and A. E. Saunders, “Nanoparticle enhanced spectral filtration of insolation from trough concentrators,” Sol. Energy Mater. Sol. Cells 149, 145–153 (2016).
[Crossref]

A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells 91, 829–842 (2007).
[Crossref]

C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[Crossref]

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235-242 (2015).
[Crossref]

B. Fisher and J. Biddle, “Luminescent spectral splitting: efficient spatial division of solar spectrum at low concentration,” Sol. Energy Mater. Sol. Cells 95, 1741–1755 (2011).
[Crossref]

N. E. Hjerrild, S. Mesgari, F. Crisostomo, J. A. Scott, R. Amal, and R. A. Taylor, “Hybrid PV/T enhancement using selectively absorbing Ag-SiO2/carbon nanofluids,” Sol. Energy Mater. Sol. Cells 147, 281–287 (2016).
[Crossref]

R. S. A. Sesuraj, T. L. Temple, and D. M. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 111, 23–30 (2013).
[Crossref]

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37, 93–118 (1995).
[Crossref]

P. G. O’Brien, Y. Yang, A. Chutinan, P. Mahtani, K. Leong, D. P. Puzzo, L. D. Bonifacio, C.-W. Lin, G. A. Ozin, and N. P. Kherani, “Selectively transparent and conducting photonic crystal solar spectrum splitters made of alternating sputtered indium-tin oxide and spin-coated silica nanoparticle layers for enhanced photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 173–183 (2012).
[Crossref]

Sol. Wind Technol. (1)

M. A. C. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Sol. Wind Technol. 4, 131–138 (1987).
[Crossref]

Trends Biotechnol. (1)

D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24, 62–67 (2006).
[Crossref]

Other (10)

M. Wegener, “Photonic metamaterials and transformation optics: a very brief introduction and review,” in Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale: Plasmonics, Photonic Materials and Sub-Wavelength Resolution (Springer, 2013), pp. 23–28.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, 1984).

Sigma Aldrich, http://www.sigmaaldrich.com/catalog/search?term=Gold+nanoparticles&interface=ProductName&N=0+&mode=modematchpartialmax&lang=en&region=US&focus=productN=0220003048219853286219853269 .

NanoComposix, http://nanocomposix.com/collections/dried-gold/products/10-nm-gold-nanospheres .

Nanopartz, http://www.nanopartz.com/bare_spherical_gold_nanoparticles.asp .

APMEX, http://www.apmex.com/spotprices/gold-price .

W. Van Sark, “Luminescent solar concentrators—a low cost photovoltaics alternative,” in EPJ Web of Conferences (2012), Vol. 33, paper 02003–1.

T. P. Otanicar, “Enhancing the heat transfer in energy systems from a volumetric approach,” in ASME/JSME 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, 13–17 March2011, paper T30074.

N. Chong and L. Wong, “Algal purification system with efficient solar light utilization,” U.S. patent7,985,338 B1 (July26, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Figure 1
Figure 1 Schematic of optically selective nanoparticles.
Figure 2
Figure 2 Representation of (a) dipole and (b) quadrupole scattering with light polarized along the z (vertical) axis.
Figure 3
Figure 3 Representative absorption spectra calculated for various types of nanoparticles, as labeled in the graph.
Figure 4
Figure 4 Gold nanoparticle with diameter of 100 nm in media with refractive indices of 1.00, 1.33, and 1.45, as labeled in the figure.
Figure 5
Figure 5 Illustrating size effects for a gold nanoparticle with diameter increasing from 50 to 100 to 150 nm.
Figure 6
Figure 6 Simulated spectra of nanorods with short diameter of 10 nm and length of 60, 70, and 80 nm.
Figure 7
Figure 7 Spectra for core–shell particles with a 100 nm diameter silica core and shrinking gold shell size of 10, 5, and 3 nm.
Figure 8
Figure 8 Schematic diagram of nanoparticle filters in CPV/T for (a) flat low concentration of one sun system and (b) concentrating system with an annulus design.
Figure 9
Figure 9 Schematic of a colloidal plasmonic backreflector for enhancement of silicon cell light trapping, developed by Mendes et al. [159]. Reprinted from Mendes et al., Nanotechnology, 26, 135202 (2015) [159]. © IOP Publishing. Reproduced with permission. All rights reserved.
Figure 10
Figure 10 Graphene-nanosheet-based imaging scheme by Sun et al. [161]. Reprinted with permission from Sun et al., Acc. Chem. Res. 47, 1001–1009 (2014) [161]. Copyright (2014) American Chemical Society.
Figure 11
Figure 11 (a) NIR photoluminescence spectrum of a SWCNT conjugate, showing typical SWNT emission peaks. (b) Atomic force microscopy image of the nanoparticles (average diameter 1.6  nm, average length 83  nm) (c) Schematic of photoluminescence (PL) detection of selective B-cell versus T-cell lymphoma [162]. Reprinted with permission from Welsher et al., Nano Lett. 8, 586–590 (2008) [162]. Copyright (2008) American Chemical Society.
Figure 12
Figure 12 (a) Schematic of the polymer-coated quantum dot and (b) photograph of a liquid suspension of the nanoparticles developed by Dubach et al. [163]. Reprinted with permission from Dubach et al., J. Am. Chem. Soc. 129, 8418–8419 (2007) [162]. Copyright (2007) American Chemical Society.
Figure 13
Figure 13 Schematic of proposed size-induced changes in emittance. Shell particles are made of SiC material with high emissivity in the IR and a reversible swelling core polymer.
Figure 14
Figure 14 Window with changing optical properties through turning on and off a voltage, changing the carrier concentration. The figure shows, when voltage is (a) off and (b) on, directing ions in the electrolyte to the ITO.
Figure 15
Figure 15 Illustration of a nanoparticle array with light incident normal to the lattice and polarized along the y direction. Scattering from particles axially along x and diagonally are shown in the figure, illustrating the different wavelengths required for the scattered light to be in phase with incident light.
Figure 16
Figure 16 Calculated transmission through a square array of 80 nm diameter gold nanoparticles with a lattice constant of 700 nm.
Figure 17
Figure 17 Potential PV improvements with embedded nanoparticles. A, scattering at the top surface to increases the path length of light in the cell. B, placing plasmonic nanoparticles at the active layer to enhance electric near fields, and potentially absorbance; C, on the back-side to achieve scattered reflection and/or surface plasmon polaritons [192]. Reprinted from Smith et al., “Plasmon resonances for solar energy harvesting: a mechanistic outlook,” Nano Today 10(1), 67–80. Copyright 2015, with permission from Elsevier.
Figure 18
Figure 18 Luminescent concentrator schematic.
Figure 19
Figure 19 Scanning electron micrographs of a carbon nanotube array, which have been proposed as large area field emitters by Sohn et al. [217]. Reprinted with permission from Sohn et al., Appl. Phys. Lett. 78, 901–903 (2001) [217]. Copyright 2001 AIP Publishing LLC.
Figure 20
Figure 20 Photoluminescence spectra of hollow ZnO nanoparticles with different diameters [220]. Reprinted (adapted) with permission from Zeng et al., ACS Nano 2, 1661–1670 (2008) [220]. Copyright 2008 American Chemical Society.
Figure 21
Figure 21 Proposed system for enhanced algae production using selective emission nanoparticles.

Tables (4)

Tables Icon

Table 1. Selected Polarizability Models for Various Nanoparticle Formulations

Tables Icon

Table 2. Nanoparticles and Their Selectivity in Absorbing Light

Tables Icon

Table 3. Selected Studies of Plasmonic Enhancement in Photovoltaics

Tables Icon

Table 4. Comparison among Selected Applications

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P=αE,
αCM=R3εm1εm+2,
αq=R5εm1εm+3/2,
σsca,dipole=83πk4|α|2,
σsca,quad=83πk4(k4240|αq|2+k4900|εm1|2),
σAbs=4πkIm{α},
ϕNP=ϕstd(GradNPGradstd)(nNP2nstd2).

Metrics