Abstract

Infrared (IR) fibers offer a versatile approach to guiding and manipulating light in the IR spectrum, which is becoming increasingly more prominent in a variety of scientific disciplines and technological applications. Despite well-established efforts on the fabrication of IR fibers in past decades, a number of remarkable breakthroughs have recently rejuvenated the field—just as related areas in IR optical technology are reaching maturation. In this review, we describe both the history and recent developments in the design and fabrication of IR fibers, including IR glass and single-crystal fibers, multimaterial fibers, and fibers that exploit the transparency window of traditional crystalline semiconductors. This interdisciplinary review will be of interest to researchers in optics and photonics, materials science, and electrical engineering.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

19 February 2016: A correction was made to the funding section.


OSA Recommended Articles
Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers

Guangming Tao, Soroush Shabahang, Shixun Dai, and Ayman F. Abouraddy
Opt. Mater. Express 4(10) 2143-2149 (2014)

Fabrication and characterization of step-index tellurite fibers with varying numerical aperture for near- and mid-infrared nonlinear optics

Clément Strutynski, Jérémy Picot-Clémente, Arnaud Lemiere, Paul Froidevaux, Frédéric Désévédavy, Grégory Gadret, Jean-Charles Jules, Bertrand Kibler, and Frédéric Smektala
J. Opt. Soc. Am. B 33(11) D12-D18 (2016)

Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications

H. Tilanka Munasinghe, Anja Winterstein-Beckmann, Christian Schiele, Danilo Manzani, Lothar Wondraczek, Shahraam Afshar V., Tanya M. Monro, and Heike Ebendorff-Heidepriem
Opt. Mater. Express 3(9) 1488-1503 (2013)

References

  • View by:
  • |
  • |
  • |

  1. http://eilv.cie.co.at/term/580 , retrieved April1, 2015.
  2. “Optics and photonics—spectral bands,” (2010).
  3. J. S. Byrnes, Unexploded Ordnance Detection and Mitigation (Springer, 2009).
  4. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2015).
  5. http://www.ipac.caltech.edu/outreach/Edu/Regions/irregions.html , retrieved April1, 2015.
  6. J. L. Miller, E. Friedman, and E. Friedman, Photonics Rules of Thumb (McGraw-Hill, 2003).
  7. G. Tao, S. Shabahang, H. Ren, Z. Yang, X. Wang, and A. F. Abouraddy, “Multimaterial rod-in-tube coextrusion for robust mid-infrared chalcogenide fibers,” Proc. SPIE 8982, 898223 (2014).
  8. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
    [Crossref]
  9. N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5, 69–80 (1965).
    [Crossref]
  10. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3, 349–368 (2012).
  11. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
    [Crossref]
  12. J. Toulouse, A. Lin, A. Ryaznyanskiy, A. Belwalkar, C. Guintrand, C. Lafontaine, W. Misiolek, and I. Biaggio, “Development of new tellurite fibers for mid-IR applications,” in Winter Topicals (WTM) (IEEE, 2011), pp. 185–186.
  13. G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
    [Crossref]
  14. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
    [Crossref]
  15. T. Cheng, W. Gao, H. Kawashima, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber,” Opt. Lett. 39, 2145–2147 (2014).
    [Crossref]
  16. J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III–V semiconductor core optical fiber,” Opt. Express 18, 4972–4979 (2010).
    [Crossref]
  17. J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23, 1647–1651 (2011).
    [Crossref]
  18. Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21, 1804–1806 (2009).
    [Crossref]
  19. J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.
  20. F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32, 1532–1539 (2010).
  21. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
    [Crossref]
  22. www.thorlabs.com , retrieved April1, 2015.
  23. www.npphotonics.com , retrieved April1, 2015.
  24. www.irflex.com , retrieved April1, 2015.
  25. www.coractive.com , retrieved April1, 2015.
  26. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
    [Crossref]
  27. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 629–635 (2012).
    [Crossref]
  28. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17, 2646–2657 (2009).
    [Crossref]
  29. M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2  μm,” Opt. Lett. 36, 2859–2861 (2011).
    [Crossref]
  30. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
    [Crossref]
  31. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
    [Crossref]
  32. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [Crossref]
  33. www.omni-guide.com , retrieved April1, 2015.
  34. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
    [Crossref]
  35. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
    [Crossref]
  36. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref]
  37. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
    [Crossref]
  38. J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).
  39. T. Li, Optical Fiber Communications: Fiber Fabrication (Academic, 1985).
  40. C. Emslie, “Polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
    [Crossref]
  41. M. Poulain, M. Poulain, and J. Lucas, “Verres fluores au tetrafluorure de zirconium proprietes optiques d’un verre dope au Nd3+,” Mater. Res. Bull. 10, 243–246 (1975).
    [Crossref]
  42. http://www.amorphousmaterials.com/ , retrieved April1, 2015.
  43. S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31, 450–457 (2014).
    [Crossref]
  44. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
    [Crossref]
  45. S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242, 313–319 (2004).
    [Crossref]
  46. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  47. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
    [Crossref]
  48. S. Fujino and K. Morinaga, “Material dispersion and its compositional parameter of oxide glasses,” J. Non-Cryst. Solids 222, 316–320 (1997).
    [Crossref]
  49. P. France, S. Carter, M. Moore, and C. Day, “Progress in fluoride fibres for optical communications,” British Telecommun. Technol. J. 5, 28–44 (1987).
  50. R. Wang, Laser Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2600, Australia (personal communication, 2015).
  51. H. Bach and N. Neuroth, The Properties of Optical Glass (Springer, 1998).
  52. J. Lægsgaard and H. Tu, “How long wavelengths can one extract from silica-core fibers?” Opt. Lett. 38, 4518–4521 (2013).
    [Crossref]
  53. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
    [Crossref]
  54. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
    [Crossref]
  55. http://www.newport.com/Optical-Materials/144943/1033/content.aspx , retrieved April1, 2015.
  56. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9  μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38, 2588–2591 (2013).
    [Crossref]
  57. M. R. Oermann, H. Ebendorff-Heidepriem, Y. Li, T.-C. Foo, and T. M. Monro, “Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass,” Opt. Express 17, 15578–15584 (2009).
    [Crossref]
  58. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer, 2009).
  59. Y. Shen, L. Tong, and S. Chen, “Performance stability of the sapphire fiber and cladding under high temperature,” Proc. SPIE 3852, 134 (1999).
  60. H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
    [Crossref]
  61. R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).
  62. H. J. Kim, G. E. Fair, S. A. Potticary, M. J. O’Malley, and N. G. Usechak, “Processing and characterization of polycrystalline YAG (yttrium aluminum garnet) core-clad fibers,” Proc. SPIE 9081, 908103 (2014).
  63. J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).
  64. M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N (2009).
  65. M. Poulain, M. Matecki, J.-L. Mouric, and M. Poulain, “Cadmium halide glasses. II. Chloride glasses,” Mater. Res. Bull. 18, 631–636 (1983).
    [Crossref]
  66. J.-L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead, 2014).
  67. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer, 2007).
  68. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
    [Crossref]
  69. J. Orava, A. Greer, B. Gholipour, D. Hewak, and C. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11, 279–283 (2012).
    [Crossref]
  70. J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).
  71. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
    [Crossref]
  72. A. R. Hilton, Chalcogenide Glasses for Infrared Optics (McGraw-Hill, 2009).
  73. J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43, 527–557 (2013).
    [Crossref]
  74. P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
    [Crossref]
  75. www.rmico.com , retrieved April1, 2015.
  76. G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  77. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  78. V. Raghunathan, R. Shori, O. M. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” Phys. Status Solidi A 203, R38–R40 (2006).
  79. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17, 8029–8035 (2009).
    [Crossref]
  80. J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16, 399–408 (2010).
    [Crossref]
  81. S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, J. Ballato, and R. Rice, “Reactive in-situ processing of silicon optical fiber,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper STu3F.4.
  82. K. Shahzad, D. J. Olego, and D. A. Cammack, “Optical transitions in ultra-high-purity zinc selenide,” Phys. Rev. B 39, 13016 (1989).
  83. M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-green laser diodes,” Appl. Phys. Lett. 59, 1272–1274 (1991).
    [Crossref]
  84. J. Ren, K. A. Bowers, B. Sneed, F. E. Reed, J. W. Cook, and J. F. Schetzina, “Blue (ZnSe) and green (ZnSe0.9Te0.1) light emitting diodes,” J. Cryst. Growth 111, 829–832 (1991).
    [Crossref]
  85. http://www.kayelaby.npl.co.uk/general_physics/2_5/2_5_8.html , retrieved April1, 2015.
  86. E. Gavrushchuk, “Polycrystalline zinc selenide for IR optical applications,” Inorg. Mater. 39, 883–899 (2003).
    [Crossref]
  87. A. Gallian, V. V. Fedorov, J. Kernal, S. B. Mirov, and V. V. Badikov, “Laser oscillation at 2.4  μm from Cr2+ in ZnSe optically pumped over Cr ionization transitions,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 241.
  88. N. D. Orf, O. Shapira, F. Sorin, S. Danto, M. A. Baldo, J. D. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. USA 108, 4743–4747 (2011).
  89. C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13, 975–979 (2013).
  90. G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15, 13805–13816 (2007).
    [Crossref]
  91. P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
    [Crossref]
  92. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4, 29–40 (2014).
    [Crossref]
  93. S. Rosenberg, H. Papamichael, and I. Miaoulis, “A two-dimensional analysis of the viscous problem of a glass preform during the optical fibre drawing process,” Glass Technol. 35, 260–264 (1994).
  94. A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
    [Crossref]
  95. A. Mawardi and R. Pitchumani, “Optical fiber drawing process model using an analytical neck-down profile,” IEEE Photon. Technol. Lett. 2, 620–629 (2010).
    [Crossref]
  96. G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol. 28, 1882–1888 (2010).
    [Crossref]
  97. S. Lee and Y. Jaluria, “Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber,” Int. J. Heat Mass Transfer 40, 843–856 (1997).
    [Crossref]
  98. U. Paek and R. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys. 49, 4417–4422 (1978).
    [Crossref]
  99. E. Pone, C. Dubois, N. Guo, S. Lacroix, and M. Skorobogatiy, “Newtonian and non-Newtonian models of the hollow all-polymer Bragg fiber drawing,” J. Lightwave Technol. 24, 4991–4999 (2006).
    [Crossref]
  100. R. M. Wynne, “A fabrication process for microstructured optical fibers,” J. Lightwave Technol. 24, 4304–4313 (2006).
    [Crossref]
  101. R. M. Wynne, “Manufacturing conditions for microstructured and nanostructured optical fibers,” J. Lightwave Technol. 29, 104–108 (2011).
    [Crossref]
  102. http://www.matweb.com/ , retrieved April1, 2015.
  103. http://www.goodfellowusa.com/A/Polyethersulfone-Polymer.html , retrieved April1, 2015.
  104. http://www.plasticoptics.com/optical-plastic-materials.html , retrieved April1, 2015.
  105. http://en.wikipedia.org/wiki/Poly(methyl_methacrylate) , retrieved April1, 2015.
  106. http://www.makeitfrom.com/compare/Polymethylmethacrylate-PMMA-Acrylic/Soda-Lime-Float-Glass/ , retrieved April1, 2015.
  107. http://hyperphysics.phy-astr.gsu.edu/hbase/tables/thrcn.html , retrieved April1, 2015.
  108. http://www.schott.com/advanced_optics/us/abbe_datasheets/schott_datasheet_all_us.pdf , retrieved April1, 2015.
  109. Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, “Bend sensors based on periodically tapered soft glass fibers,” Proc. SPIE 7753, 77534J (2011).
  110. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express 3, 318–328 (2013).
    [Crossref]
  111. H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V., T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications,” Opt. Mater. Express 3, 1488–1503 (2013).
    [Crossref]
  112. J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
    [Crossref]
  113. J. J. Kaufman, R. Ottman, G. Tao, S. Shabahang, E.-H. Banaei, X. Liang, S. G. Johnson, Y. Fink, R. Chakrabarti, and A. F. Abouraddy, “In-fiber production of polymeric particles for biosensing and encapsulation,” Proc. Natl. Acad. Sci. USA 110, 15549–15554 (2013).
  114. S. Shabahang, J. Kaufman, D. Deng, and A. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
    [Crossref]
  115. D. Deng, N. Orf, A. Abouraddy, A. Stolyarov, J. Joannopoulos, H. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8, 4265–4269 (2008).
  116. D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
    [Crossref]
  117. H. Tokiwa, Y. Mimura, T. Nakai, and O. Shinbori, “Fabrication of long single-mode and multimode fluoride glass fibres by the double-crucible technique,” Electron. Lett. 21, 1131–1132 (1985).
    [Crossref]
  118. M. Kimura, S. Kachi, and K. Shiroyama, “Characteristics of KRS-5 fiber with crystalline cladding,” Proc. SPIE 0618, 85–88 (1986).
  119. J. A. Harrington, “Infrared alkali halide fibers,” Appl. Opt. 27, 3097–3101 (1988).
    [Crossref]
  120. M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
    [Crossref]
  121. S. Danto, M. Dubernet, B. Giroire, J. D. Musgraves, P. Wachtel, T. Hawkins, J. Ballato, and K. Richardson, “Correlation between native As2Se3 preform purity and glass optical fiber mechanical strength,” Mater. Res. Bull. 49, 250–258 (2014).
    [Crossref]
  122. G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39, 4009–4012 (2014).
    [Crossref]
  123. G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4, 2143–2149 (2014).
    [Crossref]
  124. A. Méndez and T. F. Morse, Specialty Optical Fibers Handbook (Academic, 2011).
  125. D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256, 232–236 (1999).
    [Crossref]
  126. Y. Ohishi, S. Mitachi, and S. Takahashi, “Fabrication of fluoride glass single-mode fibers,” J. Lightwave Technol. 2, 593–596 (1984).
    [Crossref]
  127. I. Savelii, J. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, and J. Dudley, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater. 33, 1661–1666 (2011).
  128. G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
    [Crossref]
  129. A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210, 2016–2022 (2010).
    [Crossref]
  130. D. C. Tran, C. F. Fisher, and G. H. Sigel, “Fluoride glass preforms prepared by a rotational casting process,” Electron. Lett. 18, 657–658 (1982).
    [Crossref]
  131. J. Massera, A. Haldeman, D. Milanese, H. Gebavi, M. Ferraris, P. Foy, W. Hawkins, J. Ballato, R. Stolen, and L. Petit, “Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting,” Opt. Mater. 32, 582–588 (2010).
  132. E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5, 377–388 (1971).
    [Crossref]
  133. E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7, 203–220 (1972).
    [Crossref]
  134. L. Butvina, A. Butvina, E. Dianov, N. Lichkova, and V. Zagorodnev, “New mid-infrared extruded single and multi component metal halides crystalline fibers,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper ITh1B.4.
  135. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
    [Crossref]
  136. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
    [Crossref]
  137. G. Tao, S. Shabahang, X. Wang, and A. F. Abouraddy, “Efficient disc-to-fiber multimaterial stacked coextrusion for robust infrared optical fibers,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FTu4B.3.
  138. D. Furniss and A. B. Seddon, “Extrusion of gallium lanthanum sulfide glasses for fiber-optic preforms,” J. Mater. Sci. Lett. 17, 1541–1542 (1998).
    [Crossref]
  139. K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167, 112–116 (1994).
    [Crossref]
  140. M. Zhu, X. Wang, Z. Pan, C. Cheng, Q. Zhu, C. Jiang, Q. Nie, P. Zhang, Y. Wu, and S. Dai, “Fabrication of an IR hollow-core Bragg fiber based on chalcogenide glass extrusion,” Appl. Phys. A, doi: 10.1007/s00339-015-9017-3 (to be published).
  141. D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95, 3895–3900 (2004).
    [Crossref]
  142. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87, 081110 (2005).
    [Crossref]
  143. Y. West, T. Schweizer, D. Brady, and D. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
    [Crossref]
  144. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354, 3418–3427 (2008).
    [Crossref]
  145. D. Le Coq, C. Boussard-Plédel, G. Fonteneau, T. Pain, B. Bureau, and J. Adam, “Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor,” Mater. Res. Bull. 38, 1745–1754 (2003).
    [Crossref]
  146. H. T. Bookey, S. Dasgupta, N. Bezawada, B. P. Pal, A. Sysoliatin, J. E. McCarthy, M. Salganskii, V. Khopin, and A. K. Kar, “Experimental demonstration of spectral broadening in an all-silica Bragg fiber,” Opt. Express 17, 17130–17135 (2009).
    [Crossref]
  147. M. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 2046–2054 (2005).
    [Crossref]
  148. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Mechin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Troles, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
    [Crossref]
  149. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [Crossref]
  150. P. Kaiser, E. Marcatili, and S. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).
    [Crossref]
  151. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
    [Crossref]
  152. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
    [Crossref]
  153. M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).
  154. J. Sanghera, L. Shaw, L. Busse, V. Nguyen, P. Pureza, B. Cole, B. Harrison, I. Aggarwal, R. Mossadegh, and F. Kung, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
    [Crossref]
  155. J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres—preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
    [Crossref]
  156. J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).
  157. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
    [Crossref]
  158. A. Vasilyev, G. G. Devyatykh, E. M. Dianov, A. N. Gur’yanov, A. Y. Laptev, V. G. e. Plotnichenko, Y. N. Pyrkov, G. E. Snopatin, I. V. Skripachev, and M. F. Churbanov, “Two-layer chalcogenide-glass optical fibers with optical losses below 30  dB/km,” Quantum Electron. 23, 89–90 (1993).
    [Crossref]
  159. F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, and A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” Proc. SPIE 1228, 128–139 (1990).
  160. G. N. Merberg and J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
    [Crossref]
  161. G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, Springer Handbook of Crystal Growth (Springer, 2010).
  162. J. E. Stanworth, “Tellurite glasses,” Nature 169, 581–582 (1952).
    [Crossref]
  163. A. Jha, B. D. O. Richards, G. Jose, T. T. Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57, 357–382 (2012).
    [Crossref]
  164. X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, W. H. Loh, L. Calvez, X. Zhang, and L. Brilland, “Halo-tellurite glass fiber with low OH content for 2–5  μm mid-infrared nonlinear applications,” Opt. Express 21, 18949–18954 (2013).
    [Crossref]
  165. C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2–ZnO–Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34, 1549–1552 (2012).
  166. D. Manzani, Y. Ledemi, I. Skripachev, Y. Messaddeq, S. J. L. Ribeiro, R. E. P. de Oliveira, and C. J. S. de Matos, “Yb3+, Tm3+ and Ho3+ triply-doped tellurite core-cladding optical fiber for white light generation,” Opt. Mater. Express 1, 1515–1526 (2011).
    [Crossref]
  167. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
    [Crossref]
  168. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1, 74–86 (2010).
  169. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
    [Crossref]
  170. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
    [Crossref]
  171. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).
  172. C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3  μm,” Opt. Express 21, 29488–29504 (2013).
    [Crossref]
  173. A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116, 1040–1051 (2008).
    [Crossref]
  174. A. N. Moiseev, V. V. Dorofeev, A. V. Chilyasov, I. A. Kraev, M. F. Churbanov, T. V. Kotereva, V. G. Pimenov, G. E. Snopatin, A. A. Pushkin, V. V. Gerasimenko, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses,” Opt. Mater. 33, 1858–1861 (2011).
  175. I. Savelii, F. Desevedavy, J.-C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35, 1595–1599 (2013).
  176. H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2, 432–442 (2012).
    [Crossref]
  177. M. Churbanov, A. Moiseev, A. Chilyasov, V. Dorofeev, I. Kraev, M. Lipatova, T. Kotereva, E. Dianov, V. Plotnichenko, and E. Kryukova, “Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. Mater. 9, 3229–3234 (2007).
  178. M. D. O’Donnell, C. A. Miller, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Fluorotellurite glasses with improved mid-infrared transmission,” J. Non-Cryst. Solids 331, 48–57 (2003).
    [Crossref]
  179. V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
    [Crossref]
  180. X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281, 48–54 (2001).
    [Crossref]
  181. G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonics application,” J. Non-Cryst. Solids 355, 447–452 (2009).
    [Crossref]
  182. A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17, 16716–16721 (2009).
    [Crossref]
  183. A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett. 36, 740–742 (2011).
    [Crossref]
  184. J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94, 130–136 (2011).
    [Crossref]
  185. S. N. Xu, P. F. Wang, R. L. Zheng, W. Wei, and B. Peng, “Effects of alkaline-earth fluorides and OH- on spectroscopic properties of Yb3+ doped TeO2-ZnO-B2O3 based glasses,” J. Lumin. 140, 26–29 (2013).
    [Crossref]
  186. M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett. 24, 578–580 (2012).
    [Crossref]
  187. X. Jiang, J. Lousteau, and A. Jha, “The structural, thermal, and optical analyses of multicomponent germanium oxide glasses for engineering mid-infrared fiber chemical sensing,” J. Am. Ceram. Soc. 93, 3259–3266 (2010).
    [Crossref]
  188. S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Ternary tellurite glasses for the fabrication of nonlinear optical fibres,” Opt. Mater. Express 2, 140–152 (2012).
    [Crossref]
  189. K. Li, G. Zhang, and L. Hu, “Watt-level ∼2  μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35, 4136–4138 (2010).
    [Crossref]
  190. L. Ke-Feng, W. Guo-Nian, H. Li-Li, Z. Jun-Jie, and H. Jun-Jiang, “Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses,” J. Inorg. Mater. 25, 429–434 (2010).
  191. X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31, 1701–1706 (2009).
  192. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Efficient ∼2  μm emission and energy transfer mechanism of Ho3+ doped barium gallium germanate glass sensitized by Tm3+ ions,” Appl. Phys. B 108, 597–602 (2012).
    [Crossref]
  193. S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14, 11687–11693 (2006).
    [Crossref]
  194. M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).
    [Crossref]
  195. G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35, 58–60 (2010).
    [Crossref]
  196. F. Fusari, S. Vetter, A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. Dawson, W. Sibbett, and C. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2  μm pumped by a 1211  nm semiconductor disk laser,” Opt. Mater. 32, 1007–1010 (2010).
  197. F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2  μm glass lasers,” Opt. Express 18, 22090–22098 (2010).
    [Crossref]
  198. B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177 (2010).
    [Crossref]
  199. K. Li, G. Zhang, X. Wang, L. Hu, P. Kuan, D. Chen, and M. Wang, “Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express 20, 10115–10121 (2012).
    [Crossref]
  200. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32, 638–640 (2007).
    [Crossref]
  201. D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2, 566–586 (1984).
    [Crossref]
  202. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express 3, 1285–1301 (2013).
    [Crossref]
  203. J.-L. Adam, “Fluoride glass research in France: fundamentals and applications,” J. Fluorine Chem. 107, 265–270 (2001).
    [Crossref]
  204. P. W. France, Fluoride Glass Optical Fibres (Blackie, 1990).
  205. S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibres,” Electron. Lett. 17, 775–777 (1981).
    [Crossref]
  206. T. Kanamori and S. Sakaguchi, “Preparation of elevated NA fluoride optical fibers,” Jpn. J. Appl. Phys. 25, L468 (1986).
  207. S. F. Carter, J. R. Williams, M. W. Moore, D. Szebesta, and S. T. Davey, “Prospects for ultra-low-loss fluoride fibres at BTRL,” J. Non-Cryst. Solids 140, 153–158 (1992).
    [Crossref]
  208. W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94, 2896–2901 (2011).
    [Crossref]
  209. G. F. West and W. Höfle, “Spectral attenuation of fluoride glass fibers,” J. Non-Cryst. Solids 213–214, 189–192 (1997).
    [Crossref]
  210. H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett. 33, 2861–2863 (2008).
    [Crossref]
  211. X. Jiang, F. Babic, T. G. Euser, T. Weiss, A. Abdolvand, M. Finger, N. Joly, M. H. Frosz, and P. S. Russell, “Recent advances in soft-glass photonic crystal fibres,” in Workshop on Specialty Optical Fibers and their Applications (Optical Society of America, 2013), paper W2.4.
  212. S. D. Jackson and D. G. Lancaster, “Fiber lasers that bridge the shortwave to midwave regions of the infrared spectrum,” in Fiber Lasers (Wiley-VCH, 2012).
  213. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1 (2010).
    [Crossref]
  214. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5  μm using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
    [Crossref]
  215. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
    [Crossref]
  216. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
    [Crossref]
  217. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
    [Crossref]
  218. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5  μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
    [Crossref]
  219. J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39, 910–913 (2014).
    [Crossref]
  220. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
    [Crossref]
  221. W.-Q. Yang, B. Zhang, J. Hou, K. Yin, and Z.-J. Liu, “A novel 2-μm pulsed fiber laser based on a supercontinuum source and its application to mid-infrared supercontinuum generation,” Chin. Phys. B. 23, 054208 (2014).
  222. I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
    [Crossref]
  223. P. P. Fedorov, R. M. Zakalyukin, L. N. Ignat’eva, and V. M. Bouznik, “Fluoroindate glasses,” Russ. Chem. Rev. 69, 705–716 (2000).
  224. F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38, 4683–4685 (2013).
    [Crossref]
  225. http://www.chgsouthampton.com/ , retrieved April1, 2015.
  226. P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529–12538 (2007).
    [Crossref]
  227. S. Hocdé, C. Boussard-Plédel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
    [Crossref]
  228. J. Sanghera, I. Aggarwal, L. Shaw, L. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).
  229. J. Sanghera, L. Busse, and I. Aggarwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885–4891 (1994).
    [Crossref]
  230. R. C. Frye and D. Adler, “Field effect in chalcogenide glasses,” Phys. Rev. B 24, 5812 (1981).
  231. A. G. Steventon, “The switching mechanisms in amorphous chalcogenide memory devices,” J. Non-Cryst. Solids 21, 319–329 (1976).
    [Crossref]
  232. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
    [Crossref]
  233. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
    [Crossref]
  234. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
    [Crossref]
  235. S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23, 1300–1307 (2015).
    [Crossref]
  236. A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20, 18836–18845 (2012).
    [Crossref]
  237. K. Yan, K. Vu, and S. Madden, “Internal gain in Er-doped As2S3 chalcogenide planar waveguides,” Opt. Lett. 40, 796–799 (2015).
    [Crossref]
  238. T. Sabapathy, A. Ayiriveetil, A. K. Kar, S. Asokan, and S. J. Beecher, “Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass,” Opt. Mater. Express 2, 1556–1561 (2012).
    [Crossref]
  239. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  240. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
    [Crossref]
  241. R. J. Curry, A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88, 2451–2455 (2005).
    [Crossref]
  242. C. C. Huang, D. Hewak, and J. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express 12, 2501–2506 (2004).
    [Crossref]
  243. B. F. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66–72 (2005).
  244. S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers,” J. Opt. Soc. Am. B 30, 2498–2506 (2013).
    [Crossref]
  245. J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).
  246. R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
    [Crossref]
  247. B. Ung and M. Skorobogatiy, “Giant nonlinear optical enhancement in chalcogenide glass fibers with deep-subwavelength metallic nanowires,” in Conference on Lasers and Electro-Optics—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JTuI44.
  248. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  249. P. Yang, P. Zhang, S. Dai, Y. Wu, X. Wang, G. Tao, and Q. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62, 729–737 (2015).
    [Crossref]
  250. U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
    [Crossref]
  251. F. Z. Cao, P. Q. Zhang, S. X. Dai, X. S. Wang, T. F. Xu, and Q. H. Nie, “Mid-infrared second-harmonic generation in chalcogenide photonic crystal fiber,” Opt. Commun. 335, 257–261 (2015).
    [Crossref]
  252. W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116, 847–853 (2014).
    [Crossref]
  253. W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
    [Crossref]
  254. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3  μm,” Opt. Express 20, 24218–24225 (2012).
    [Crossref]
  255. J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–399 (2011).
    [Crossref]
  256. J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
    [Crossref]
  257. J. F. Li, Y. Chen, M. Chen, H. Chen, X. B. Jin, Y. Yang, Z. Y. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).
    [Crossref]
  258. S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
    [Crossref]
  259. P. Thielen, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of a mid-IR chalcogenide fiber Raman laser,” Opt. Express 11, 3248–3253 (2003).
    [Crossref]
  260. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “Small-core As-Se fiber for Raman amplification,” Opt. Lett. 28, 1406–1408 (2003).
    [Crossref]
  261. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
    [Crossref]
  262. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77  μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39, 2052–2055 (2014).
    [Crossref]
  263. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38, 127–129 (2013).
    [Crossref]
  264. J. Heo, “Rare-earth doped chalcogenide glasses for fiber-optic amplifiers,” J. Non-Cryst. Solids 326–327, 410–415 (2003).
    [Crossref]
  265. Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33, 2293–2295 (2008).
    [Crossref]
  266. H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express 17, 15350–15358 (2009).
    [Crossref]
  267. L. Feng, H. Guo, G. Tao, M. Lu, W. Wei, and B. Peng, “Dy3+-doped Ge-In-S-CsI chalcohalide glasses for 1.3  μm optical fiber amplifier,” J. Optoelectron. Adv. Mater. 11, 924–928 (2009).
  268. B. N. Samson, T. Schweizer, D. W. Hewak, and R. I. Laming, “Properties of dysprosium-doped gallium lanthanum sulfide fiber amplifiers operating at 1.3  μm,” Opt. Lett. 22, 703–705 (1997).
    [Crossref]
  269. J. R. Hector, D. W. Hewak, J. Wang, R. C. Moore, and W. S. Brocklesby, “Quantum-efficiency measurements in oxygen-containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photon. Technol. Lett. 9, 443–445 (1997).
    [Crossref]
  270. V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).
  271. F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
    [Crossref]
  272. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
    [Crossref]
  273. G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
    [Crossref]
  274. W. Xu, J. Ren, Z. Zhang, G. Chen, D. Kong, C. Gu, C. Chen, and L. Kong, “Enhanced photoluminescence of Eu2+-Pr3+ ions in Ga2S3 nanocrystals embedded chalcohalide glasses ceramics,” J. Non-Cryst. Solids 381, 65–67 (2013).
    [Crossref]
  275. J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
    [Crossref]
  276. I. D. Aggarwal, L. B. Shaw, and J. S. Sanghera, “Chalcogenide glass fiber-based Mid-IR sources and applications,” Proc. SPIE 6453, 645312 (2007).
  277. J. A. Medeiros Neto, E. R. Taylor, B. N. Samson, J. Wang, D. W. Hewak, R. I. Laming, D. N. Payne, E. Tarbox, P. D. Maton, G. M. Roba, B. E. Kinsman, and R. Hanney, “The application of Ga:La:S-based glass for optical amplification at 1.3  μm,” J. Non-Cryst. Solids 184, 292–296 (1995).
    [Crossref]
  278. D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384 (1996).
    [Crossref]
  279. J. Wang, J. R. Hector, D. Brady, D. Hewak, B. Brocklesby, M. Kluth, R. Moore, and D. N. Payne, “Halide-modified Ga–La sulfide glasses with improved fiber-drawing and optical properties for Pr3+-doped fiber amplifiers at 1.3  μm,” Appl. Phys. Lett. 71, 1753–1755 (1997).
    [Crossref]
  280. T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
    [Crossref]
  281. T. Schweizer, F. Goutaland, E. Martins, D. W. Hewak, and W. S. Brocklesby, “Site-selective spectroscopy in dysprosium-doped chalcogenide glasses for 1.3-μm optical-fiber amplifiers,” J. Opt. Soc. Am. B 18, 1436–1442 (2001).
    [Crossref]
  282. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
    [Crossref]
  283. T. Schweizer, B. Samson, R. Moore, D. Hewak, and D. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett 33, 414–416 (1997).
    [Crossref]
  284. H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997).
    [Crossref]
  285. S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42, 69–79 (2010).
    [Crossref]
  286. O. G. Pompilian, G. Dascalu, I. Mihaila, S. Gurlui, M. Olivier, P. Nemec, V. Nazabal, N. Cimpoesu, and C. Focsa, “Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films,” Appl. Phys. A 117, 197–205 (2014).
    [Crossref]
  287. Y. G. Choi, “Enhancing emission properties of rare earth ions in chalcogenide glass via minute compositional adjustments,” J. Nonlinear Opt. Phys. Mater. 19, 663–671 (2010).
    [Crossref]
  288. Y. G. Choi and J. H. Song, “Local structural environment and intra-4f transition of rare-earth ion in chalcogenide glass: comparison between Dy-doped Ge-As-S and Ge-Ga-S glasses,” J. Non-Cryst. Solids 355, 2396–2399 (2009).
    [Crossref]
  289. K. Hachiya and H. Ohashi, “Annealing process dependence of the photoluminescence in rare-earth-ion-doped chalcogenide glass,” Electrochim. Acta 53, 7–10 (2007).
    [Crossref]
  290. Y. S. Tver’yanovich and A. Tverjanovich, “Rare-earth doped chalcogenide glass,” in Semiconducting Chalcogenide Glass III, Vol. 80 of Semiconducters and Semimetals (Elsevier, 2004), pp. 169–207.
  291. R. S. Quimby and B. G. Aitken, “Multiphonon energy gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320, 100–112 (2003).
    [Crossref]
  292. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
    [Crossref]
  293. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
    [Crossref]
  294. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
    [Crossref]
  295. B. R. Marx, “Rare-earth-doped chalcogenide glass laser,” Laser Focus World 32, 25–26 (1996).
  296. D. T. Schaafsma, L. B. Shaw, B. Cole, J. S. Sanghera, and D. Aggarwal, “Modeling of Dy3+-doped GeAsSe glass 1.3-μm optical fiber amplifiers,” IEEE Photon. Technol. Lett. 10, 1548–1550 (1998).
    [Crossref]
  297. B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
    [Crossref]
  298. B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20, 465–467 (2001).
    [Crossref]
  299. L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
    [Crossref]
  300. D. V. Martyshkin, J. T. Goldstein, V. V. Fedorov, and S. B. Mirov, “Crystalline Cr2+:ZnSe/chalcogenide glass composites as active mid-IR materials,” Opt. Lett. 36, 1530–1532 (2011).
    [Crossref]
  301. E. Karaksina, V. Plotnichenko, R. Mironov, R. Shaposhnikov, and L. Ketkova, “The composite materials on the basis of As2S3 glass containing crystals ZnS and ZnS doped with Cr2+,” J. Optoelectron. Adv. Mater. 13, 1433 (2011).
  302. E. V. Karaksina, L. A. Ketkova, M. F. Churbanov, and E. M. Dianov, “Preparation of mid-IR-active As2S3/ZnS(ZnSe):Cr2+ composites,” Inorg. Mater. 49, 223–229 (2013).
    [Crossref]
  303. D. Lezal, M. Poulain, and J. Zavadil, “Sulphide glasses doped with rare earth elements,” Ceramics 45, 105–110 (2001).
  304. Y.-S. Xu, F. Huang, B. Fan, C.-G. Lin, S.-X. Dai, L.-Y. Chen, Q.-H. Nie, H.-L. Ma, and X.-H. Zhang, “Quantum cutting in Pr3+-Yb3+ codoped chalcohalide glasses for high-efficiency c-Si solar cells,” Opt. Lett. 39, 2225–2228 (2014).
    [Crossref]
  305. S. Bhosle, K. Gunasekera, P. Boolchand, and M. Micoulaut, “Melt homogenization and self-organization in chalcogenides-part I,” Int. J. Appl. Glass Sci. 3, 189–204 (2012).
  306. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).
  307. V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
    [Crossref]
  308. F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, C. Boussard-Plédel, V. Nazabal, N. Thibaud, and K. Le Pierres, “CO2 detection using microstructured chalcogenide fibers,” Sens. Lett. 7, 745–749 (2009).
  309. J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Solids 326–327, 430–433 (2003).
    [Crossref]
  310. M.-L. Anne, C. Le Lan, V. Monbet, C. Boussard-Plédel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, and J. L. Adam, “Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans,” J. Biomed. Opt. 14, 054033 (2009).
    [Crossref]
  311. S. Hocde, O. Lore, O. Sire, C. Boussard-Ple, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
    [Crossref]
  312. J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc 32, 23–32 (2003).
  313. P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
    [Crossref]
  314. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2, 177–191 (2011).
  315. K. Michel, B. Bureau, C. Pouvreau, J. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, and H. Steinner, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids 326, 434–438 (2003).
    [Crossref]
  316. J. S. Sanghera, F. H. Kung, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers,” Appl. Opt. 33, 6315–6322 (1994).
    [Crossref]
  317. J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
    [Crossref]
  318. S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847–1852 (2006).
    [Crossref]
  319. C. Conseil, V. S. Shiryaev, S. Cui, C. Boussard-Pledel, J. Troles, A. P. Velmuzhov, A. M. Potapov, A. I. Suchkov, M. F. Churbanov, and B. Bureau, “Preparation of high purity Te-rich Ge-Te-Se fibers for 5–15  μm infrared range,” J. Lightwave Technol. 31, 1703–1707 (2013).
    [Crossref]
  320. H. J. Xu, Y. J. He, X. S. Wang, Q. H. Nie, P. Q. Zhang, T. F. Xu, S. X. Dai, X. H. Zhang, and G. M. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65, 77–82 (2014).
    [Crossref]
  321. R. Frerichs, “New optical glasses with good transparency in the infrared,” J. Opt. Soc. Am. 43, 1153–1157 (1953).
    [Crossref]
  322. N. Kapany and R. Simms, “Fiber optics. XI. Performance in the infrared region,” J. Opt. Soc. Am. 55, 963–967 (1965).
  323. S. Shibata, Y. Terunuma, and T. Manabe, “Ge-P-S chalcogenide glass fibers,” Jpn. J. Appl. Phys. 19, L603 (1980).
  324. T. Miyashita and Y. Terunuma, “Optical transmission loss of As–S glass fiber in 1.0–5.5  μm wavelength region,” Jpn. J. Appl. Phys. 21, L75 (1982).
  325. T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45, 925–927 (1984).
    [Crossref]
  326. T. Katsuyama and H. Matsumura, “Low-loss Te-based chalcogenide glass optical fibers,” Appl. Phys. Lett. 49, 22–23 (1986).
    [Crossref]
  327. T. Katsuyama, S. Satoh, and H. Matsumura, “Scattering loss characteristics of selenide-based chalcogenide glass optical fibers,” J. Appl. Phys. 71, 4132–4135 (1992).
    [Crossref]
  328. T. Katsuyama and H. Matsumura, “Light transmission characteristics of telluride-based chalcogenide glass for infrared fiber application,” J. Appl. Phys. 75, 2743–2748 (1994).
    [Crossref]
  329. M. Saito, M. Takizawa, S. Sakuragi, and F. Tanei, “Infrared image guide with bundled As-S glass fibers,” Appl. Opt. 24, 2304–2308 (1985).
    [Crossref]
  330. M. Saito, “Optical loss increase in an As-S glass infrared fiber due to water diffusion,” Appl. Opt. 26, 202–203 (1987).
    [Crossref]
  331. J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28, 5122–5127 (1989).
    [Crossref]
  332. I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229 (1997).
  333. K. Itoh and H. Tawarayama, “Method for drawing a chalcogenide-containing glass fiber,” European patentEP0850889 B1 (May10, 2000).
  334. H. Suto, “Chalcogenide fiber bundle for 3D spectroscopy,” Infrared Phys. Technol. 38, 93–99 (1997).
    [Crossref]
  335. K. S. Abedin, “Brillouin amplification and lasing in a single-mode As2Se3 chalcogenide fiber,” Opt. Lett. 31, 1615–1617 (2006).
    [Crossref]
  336. J. Nishii, T. Yamashita, and T. Yamagishi, “Low-loss chalcogenide glass fiber with core-cladding structure,” Appl. Phys. Lett. 53, 553–554 (1988).
    [Crossref]
  337. J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59, 2639–2641 (1991).
    [Crossref]
  338. M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
    [Crossref]
  339. M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
    [Crossref]
  340. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
    [Crossref]
  341. H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
    [Crossref]
  342. G. Tao and A. F. Abouraddy, “Drawing robust infrared optical fibers from preforms produced by efficient multimaterial stacked coextrusion,” Proc. SPIE 8982, 89820F (2014).
  343. M. Churbanov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
    [Crossref]
  344. D. Thompson, S. Danto, J. Musgraves, P. Wachtel, B. Giroire, and K. Richardson, “Microwave assisted synthesis of high purity As2Se3 chalcogenide glasses,” Phys. Chem. Glasses B 54, 27–34 (2013).
  345. K. Sivakumaran and C. S. Nair, “Rapid synthesis of chalcogenide glasses of Se–Te–Sb system by microwave irradiation,” J. Phys. D 38, 2476 (2005).
  346. N. Prasad and A. Seddon, “First-time microwave-synthesis of As40Se60 chalcogenide glass: With potential for mid-infrared photonics,” in 12th International Conference on Transparent Optical Networks (ICTON) (IEEE, 2010).
  347. T. Katsuyama, S. Satoh, and H. Matsumura, “Fabrication of high-purity chalcogenide glasses by chemical vapor deposition,” J. Appl. Phys. 59, 1446–1449 (1986).
    [Crossref]
  348. M. Lines, “Scattering losses in optic fiber materials. II. Numerical estimates,” J. Appl. Phys. 55, 4058–4063 (1984).
    [Crossref]
  349. M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
    [Crossref]
  350. M. Churbanov, V. Shiryaev, I. Scripachev, G. Snopatin, V. Gerasimenko, S. Smetanin, I. Fadin, and V. Plotnichenko, “Optical fibers based on As–S–Se glass system,” J. Non-Cryst. Solids 284, 146–152 (2001).
    [Crossref]
  351. M. Churbanov, I. Scripachev, G. Snopatin, V. Shiryaev, and V. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–350 (2001).
  352. M. Vlasov, G. Devyatykh, E. M. Dianov, V. Plotnichenko, I. Skripachev, V. Sysoev, and M. Churbanov, “Glassy As2Se3 with optical absorption of 60  dB/km,” Quantum Electron. 12, 932–933 (1982).
  353. V. Shiryaev, L. Ketkova, M. Churbanov, A. Potapov, J. Troles, P. Houizot, J.-L. Adam, and A. Sibirkin, “Heterophase inclusions and dissolved impurities in Ge25Sb10S65 glass,” J. Non-Cryst. Solids 355, 2640–2646 (2009).
    [Crossref]
  354. V. Shiryaev, J. Troles, P. Houizot, L. Ketkova, M. Churbanov, J.-L. Adam, and A. Sibirkin, “Preparation of optical fibers based on Ge–Sb–S glass system,” Opt. Mater. 32, 362–367 (2009).
  355. V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
    [Crossref]
  356. E. Dianov, V. Plotnichenko, G. Devyatykh, M. Churbanov, and I. Scripachev, “Middle-infrared chalcogenide glass fibers with losses lower than 100  db km−1,” Infrared Phys. 29, 303–307 (1989).
    [Crossref]
  357. M. Churbanov, V. Shiryaev, A. Suchkov, A. Pushkin, V. Gerasimenko, R. Shaposhnikov, E. Dianov, V. Plotnichenko, V. Koltashev, and Y. N. Pyrkov, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43, 441–447 (2007).
    [Crossref]
  358. I. Chiaruttini, G. Fonteneau, X. Zhang, and J. Lucas, “Characteristics of tellurium-bromide-based glass for IR fibers optics,” J. Non-Cryst. Solids 111, 77–81 (1989).
    [Crossref]
  359. X. Zhang, H. Ma, G. Fonteneau, and J. Lucas, “Improvement of tellurium halide glasses for IR fiber optics,” J. Non-Cryst. Solids 140, 47–51 (1992).
    [Crossref]
  360. C. Blanchetiere, K. Le Foulgoc, H. Ma, X. Zhang, and J. Lucas, “Tellurium halide glass fibers: preparation and applications,” J. Non-Cryst. Solids 184, 200–203 (1995).
    [Crossref]
  361. X. Zhang, H. Ma, C. Blanchetiere, and J. Lucas, “Low loss optical fibres of the tellurium halide-based glasses, the TeX glasses,” J. Non-Cryst. Solids 161, 327–330 (1993).
    [Crossref]
  362. L. Le Neindre, F. Smektala, K. Le Foulgoc, X. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99–103 (1998).
    [Crossref]
  363. F. Smektala, K. Le Foulgoc, L. Le Neindre, C. Blanchetiere, X. Zhang, and J. Lucas, “TeX-glass infrared optical fibers delivering medium power from a CO2 laser,” Opt. Mater. 13, 271–276 (1999).
  364. X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater 5, 1327–1333 (2003).
  365. B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, and V. Monbet, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
    [Crossref]
  366. S. Maurugeon, B. Bureau, C. Boussard-Plédel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33, 660–663 (2011).
  367. V. S. Shiryaev, C. Boussard-Pledel, P. Houizot, T. Jouan, J. L. Adam, and J. Lucas, “Single-mode infrared fibers based on Te-As-Se glass system,” Mat. Sci. Eng. B 127, 138–143 (2006).
  368. S. Maurugeon, C. Boussard-Pledel, J. Troles, A. J. Faber, P. Lucas, X. H. Zhang, J. Lucas, and B. Bureau, “Telluride glass step index fiber for the far infrared,” J. Lightwave Technol. 28, 3358–3363 (2010).
  369. L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Chalcogenide fibers enable delivery of mid-infrared laser radiation,” Laser Focus World 32, 143–150 (1996).
  370. V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, and I. D. Aggarwal, “Effect of heating on the optical loss in the As-Se glass fiber,” J. Lightwave Technol. 21, 122–126 (2003).
    [Crossref]
  371. J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213, 63–67 (1997).
    [Crossref]
  372. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass-fibers,” J. Lightwave Technol. 12, 737–741 (1994).
    [Crossref]
  373. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
    [Crossref]
  374. R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, P. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16, 214–217 (1998).
    [Crossref]
  375. G. M. Camilo, “Mechanical properties of chalcogenide glasses: a review,” Proc. SPIE 4940, 222–229 (2003).
  376. G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, A. Pushkin, Y. N. Pyrkov, I. Skripachev, G. Snopatin, M. F. Churbanov, and V. Shiryaev, “Low-loss infrared arsenic-chalcogenide glass optical fibers,” Proc. SPIE 4083, 229–237 (2000).
  377. S. Mitachi, S. Shibata, and T. Manabe, “Teflon FEP-clad fluoride glass fibre,” Electron. Lett. 17, 128–129 (1981).
    [Crossref]
  378. G. Tao and A. F. Abouraddy, “Multimaterial fibers: a new concept in infrared fiber optics,” Proc. SPIE 9098, 90980V (2014).
  379. G. Delaizir, J. C. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibres,” J. Phys. D 42, 095405 (2009).
  380. http://spie.org/x110821.xml , retrieved April1, 2015.
  381. J. J. Kaufman, G. M. Tao, S. Shabahang, D. S. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).
  382. J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, and J.-L. Adam, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28, 11–26 (2009).
    [Crossref]
  383. P. Toupin, L. Brilland, J. Trolès, and J.-L. Adam, “Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express 2, 1359–1366 (2012).
    [Crossref]
  384. T. Cheng, Y. Kanou, D. Deng, X. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe2-As2S5 microstructured optical fiber with a large refractive index difference,” Opt. Express 22, 13322–13329 (2014).
    [Crossref]
  385. L. Shaw, J. Sanghera, I. Aggarwal, and F. Hung, “As-S and As-Se based photonic band gap fiber for IR laser transmission,” Opt. Express 11, 3455–3460 (2003).
    [Crossref]
  386. O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
    [Crossref]
  387. W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
    [Crossref]
  388. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
    [Crossref]
  389. B. L. Scott, K. Wang, and G. Pickrell, “Fabrication of n-type silicon optical fibers,” IEEE Photon. Technol. Lett. 21, 1798–1800 (2009).
    [Crossref]
  390. E. Snitzer and R. Tumminelli, “SiO2-clad fibers with selectively volatilized soft-glass cores,” Opt. Lett. 14, 757–759 (1989).
    [Crossref]
  391. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. Rao, and M. Daw, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
    [Crossref]
  392. J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II–VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2013).
    [Crossref]
  393. N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
    [Crossref]
  394. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039 (1999).
    [Crossref]
  395. K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12, 1510–1517 (2004).
    [Crossref]
  396. Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18, 15697–15703 (2010).
    [Crossref]
  397. D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express 20, 6029–6035 (2012).
    [Crossref]
  398. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
    [Crossref]
  399. M. Ibanescu, S. G. Johnson, M. Soljačić, J. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, “Analysis of mode structure in hollow dielectric waveguide fibers,” Phys. Rev. E 67, 046608 (2003).
    [Crossref]
  400. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94, 143902 (2005).
    [Crossref]
  401. O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18, 12622–12629 (2010).
    [Crossref]
  402. D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira, “Asymmetric wave propagation in planar chiral fibers,” Opt. Express 21, 1465–1472 (2013).
    [Crossref]
  403. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).
    [Crossref]
  404. A. M. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell, F. Sorin, K. Kuriki, G. Benoit, A. Rose, and J. D. Joannopoulos, “Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers,” Opt. Express 20, 12407–12415 (2012).
    [Crossref]
  405. A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. 23, 1263–1267 (2011).
    [Crossref]
  406. A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
    [Crossref]
  407. S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22, 4162–4166 (2010).
    [Crossref]
  408. F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).
  409. F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
    [Crossref]
  410. M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
    [Crossref]
  411. D. Graham-Rowe, “Fibres get functional,” Nat. Photonics 5, 66–67 (2011).
    [Crossref]
  412. R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2, 1–6 (2010).
  413. A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photon. Rev. 8, 53–72 (2014).
  414. A. Gumennik, L. Wei, G. Lestoquoy, A. M. Stolyarov, X. Jia, P. H. Rekemeyer, M. J. Smith, X. Liang, B. J.-B. Grena, and S. G. Johnson, “Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities,” Nat. Commun. 4, 2216 (2013).
    [Crossref]
  415. R. He, T. D. Day, M. Krishnamurthi, J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Silicon p-i-n junction fibers,” Adv. Mater. 25, 1461–1467 (2013).
    [Crossref]
  416. J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
    [Crossref]
  417. S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fibers,” Opt. Mater. Express 2, 1511–1519 (2012).
    [Crossref]
  418. N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express 18, 7596–7601 (2010).
    [Crossref]
  419. S. Morris, T. Hawkins, P. Foy, J. Ballato, S. W. Martin, and R. Rice, “Cladding glass development for semiconductor core optical fibers,” Int. J. Appl. Glass Sci. 3, 144–153 (2012).
  420. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
    [Crossref]
  421. A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, and T. Hashimoto, “Transmission of kilowatt-class CO2-laser light through dielectric-coated metallic hollow wave-guides for material processing,” Appl. Opt. 31, 5114–5120 (1992).
    [Crossref]
  422. D. N. Su, S. Somkuarnpanit, D. R. Hall, and J. D. C. Jones, “Thermal effects in a hollow waveguide beam launch for CO2 laser power delivery,” Appl. Opt. 35, 4787–4789 (1996).
    [Crossref]
  423. J. D. Shephard, W. N. MacPherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13, 7139–7144 (2005).
    [Crossref]
  424. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
    [Crossref]
  425. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23, 1289–1299 (2015).
    [Crossref]
  426. M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2=-i multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [Crossref]
  427. I. Garcés, F. Villuendas, J. A. Valles, C. Domínguez, and M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
    [Crossref]
  428. N. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [Crossref]
  429. D. Yin, H. Schmidt, J. Barber, and A. Hawkins, “Integrated ARROW waveguides with hollow cores,” Opt. Express 12, 2710–2715 (2004).
    [Crossref]
  430. E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16, 20981–20986 (2008).
    [Crossref]
  431. D. O. Carvalho and M. I. Alayo, “a-SiC:H anti-resonant layer ARROW waveguides,” J. Opt. A Pure Appl. Opt. 10, 104002 (2008).
    [Crossref]
  432. V. Balan, C. Vigreux, A. Pradel, A. Llobera, C. Dominguez, M. Alonso, and M. Garriga, “Chalcogenide glass-based rib ARROW waveguide,” J. Non-Cryst. Solids 326, 455–459 (2003).
    [Crossref]
  433. D. Yin, J. Barber, A. Hawkins, and H. Schmidt, “Waveguide loss optimization in hollow-core ARROW waveguides,” Opt. Express 13, 9331–9336 (2005).
    [Crossref]
  434. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
    [Crossref]
  435. T. Lewi, J. Ofek, and A. Katzir, “Antiresonant reflecting microstructured optical fibers for the mid-infrared,” Appl. Phys. Lett. 102, 101104 (2013).
    [Crossref]
  436. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
    [Crossref]
  437. P. Steinvurzel, B. Kuhlmey, T. White, M. Steel, C. de Sterke, and B. Eggleton, “Long wavelength anti-resonant guidance in high index inclusion microstructured fibers,” Opt. Express 12, 5424–5433 (2004).
    [Crossref]
  438. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16, 5642–5648 (2008).
    [Crossref]
  439. K. J. Rowland, S. Afshar V., and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
    [Crossref]
  440. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5  μm,” Opt. Express 19, 1441–1448 (2011).
    [Crossref]
  441. N. Healy, J. Sparks, R. He, P. Sazio, J. Badding, and A. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express 19, 10979–10985 (2011).
    [Crossref]
  442. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
    [Crossref]
  443. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
    [Crossref]
  444. P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
    [Crossref]
  445. A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber—guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22, 19131–19140 (2014).
    [Crossref]
  446. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4  μm spectral region,” Opt. Express 20, 11153–11158 (2012).
    [Crossref]
  447. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
    [Crossref]
  448. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
    [Crossref]
  449. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
    [Crossref]
  450. K. D. Laakmann and M. B. Levy, “Hollow lightpipe and lightpipe tip using a low refractive index inner layer,” U.S. patent5,005,944 A (April9, 1991).
  451. M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
    [Crossref]
  452. P. Bhardwaj, O. Gregory, C. Morrow, G. Gu, and K. Burbank, “Performance of a dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
    [Crossref]
  453. Y. Matsuura and M. Miyagi, “Er: YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [Crossref]
  454. H. Machida, Y. Matsuura, H. Ishikawa, and M. Miyagi, “Transmission properties of rectangular hollow waveguides for CO2 laser light,” Appl. Opt. 31, 7617–7622 (1992).
    [Crossref]
  455. S. J. Saggese, J. A. Harrington, and G. H. Sigel, “Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides,” Opt. Lett. 16, 27–29 (1991).
    [Crossref]
  456. M. Saito, Y. Matsuura, M. Kawamura, and M. Miyagi, “Bending losses of incoherent light in circular hollow waveguides,” J. Opt. Soc. Am. A 7, 2063–2068 (1990).
    [Crossref]
  457. A. Hongo, S. Sato, A. Hattori, K. Iwai, T. Hiroyuki, and M. Miyagi, “AgI-coated silver-clad stainless steel hollow waveguides for infrared lightwave transmission and their applications,” Appl. Opt. 51, 1–7 (2012).
    [Crossref]
  458. D. J. Haan and J. A. Harrington, “Hollow waveguides for gas sensing and near-IR applications,” Proc. SPIE 3596, 43–49 (1999).
  459. D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical-waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28–29 (1978).
    [Crossref]
  460. E. Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, “Silver halide photonic crystal fibers for the middle infrared,” Appl. Opt. 43, 2236–2241 (2004).
    [Crossref]
  461. S. Sakuragi, T. Morikawa, J. Shimada, M. Saito, Y. Kubo, K. Imagawa, and H. Kotani, “KRS-5 optical fibers capable of transmitting high-power CO2 laser beam,” Opt. Lett. 6, 629–631 (1981).
    [Crossref]
  462. T. Lewi, A. Tsun, A. Katzir, J. Kaster, and F. Fuchs, “Silver halide single mode fibers for broadband middle infrared stellar interferometry,” Appl. Phys. Lett. 94, 261105 (2009).
    [Crossref]
  463. V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1–18  μm range,” Opt. Photon. 9, 35–39 (2014).
    [Crossref]
  464. N. Granzow, M. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. Lee, and M. Fermann, “Mid-infrared supercontinuum generation in As2S3-silica ‘nano-spike’ step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
    [Crossref]
  465. S. R. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
    [Crossref]
  466. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34, 1946–1948 (2009).
    [Crossref]
  467. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Bandgap guidance in hybrid chalcogenide–silica photonic crystal fibers,” Opt. Lett. 36, 2432–2434 (2011).
    [Crossref]
  468. M. Karim, B. Rahman, and G. P. Agrawal, “Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide,” Opt. Express 23, 6903–6914 (2015).
    [Crossref]
  469. T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2  μm,” Opt. Express 23, 4125–4134 (2015).
    [Crossref]
  470. C. Kneis, B. Donelan, A. Berrou, I. Manek-Hönninger, B. Cadier, T. Robin, M. Poulain, F. Joulain, M. Eichhorn, and C. Kieleck, “4.5  W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser,” Proc. SPIE 9342, 93420B (2015).
  471. B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. (to be published).
  472. W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, and G. Chin, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).
  473. H. Saghaei, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers,” Appl. Opt. 54, 2072–2079 (2015).
    [Crossref]
  474. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  475. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
    [Crossref]
  476. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
    [Crossref]
  477. J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
    [Crossref]
  478. M. Karlowatz, M. Kraft, E. Eitenberger, B. Mizaikoff, and A. Katzir, “Chemically tapered silver halide fibers: an approach for increasing the sensitivity of mid-infrared evanescent wave sensors,” Appl. Spectrosc. 54, 1629–1633 (2000).
    [Crossref]
  479. D. T. Schaafsma, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Fused taper infrared optical fiber couplers in chalcogenide glass,” J. Lightwave Technol. 15, 2242–2245 (1997).
    [Crossref]
  480. Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
    [Crossref]
  481. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref]

2015 (10)

P. Yang, P. Zhang, S. Dai, Y. Wu, X. Wang, G. Tao, and Q. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62, 729–737 (2015).
[Crossref]

F. Z. Cao, P. Q. Zhang, S. X. Dai, X. S. Wang, T. F. Xu, and Q. H. Nie, “Mid-infrared second-harmonic generation in chalcogenide photonic crystal fiber,” Opt. Commun. 335, 257–261 (2015).
[Crossref]

C. Kneis, B. Donelan, A. Berrou, I. Manek-Hönninger, B. Cadier, T. Robin, M. Poulain, F. Joulain, M. Eichhorn, and C. Kieleck, “4.5  W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser,” Proc. SPIE 9342, 93420B (2015).

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23, 1289–1299 (2015).
[Crossref]

S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23, 1300–1307 (2015).
[Crossref]

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2  μm,” Opt. Express 23, 4125–4134 (2015).
[Crossref]

K. Yan, K. Vu, and S. Madden, “Internal gain in Er-doped As2S3 chalcogenide planar waveguides,” Opt. Lett. 40, 796–799 (2015).
[Crossref]

M. Karim, B. Rahman, and G. P. Agrawal, “Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide,” Opt. Express 23, 6903–6914 (2015).
[Crossref]

H. Saghaei, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers,” Appl. Opt. 54, 2072–2079 (2015).
[Crossref]

2014 (34)

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4, 29–40 (2014).
[Crossref]

J.-C. Beugnot, R. Ahmad, M. Rochette, V. Laude, H. Maillotte, and T. Sylvestre, “Reduction and control of stimulated Brillouin scattering in polymer-coated chalcogenide optical microwires,” Opt. Lett. 39, 482–485 (2014).
[Crossref]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5  μm using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39, 910–913 (2014).
[Crossref]

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31, 450–457 (2014).
[Crossref]

I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
[Crossref]

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77  μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39, 2052–2055 (2014).
[Crossref]

T. Cheng, W. Gao, H. Kawashima, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber,” Opt. Lett. 39, 2145–2147 (2014).
[Crossref]

Y.-S. Xu, F. Huang, B. Fan, C.-G. Lin, S.-X. Dai, L.-Y. Chen, Q.-H. Nie, H.-L. Ma, and X.-H. Zhang, “Quantum cutting in Pr3+-Yb3+ codoped chalcohalide glasses for high-efficiency c-Si solar cells,” Opt. Lett. 39, 2225–2228 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
[Crossref]

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref]

T. Cheng, Y. Kanou, D. Deng, X. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe2-As2S5 microstructured optical fiber with a large refractive index difference,” Opt. Express 22, 13322–13329 (2014).
[Crossref]

G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39, 4009–4012 (2014).
[Crossref]

A. Hartung, J. Kobelke, A. Schwuchow, K. Wondraczek, J. Bierlich, J. Popp, T. Frosch, and M. A. Schmidt, “Double antiresonant hollow core fiber—guidance in the deep ultraviolet by modified tunneling leaky modes,” Opt. Express 22, 19131–19140 (2014).
[Crossref]

S. R. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As2S3-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39, 5216–5219 (2014).
[Crossref]

G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4, 2143–2149 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
[Crossref]

V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1–18  μm range,” Opt. Photon. 9, 35–39 (2014).
[Crossref]

H. J. Xu, Y. J. He, X. S. Wang, Q. H. Nie, P. Q. Zhang, T. F. Xu, S. X. Dai, X. H. Zhang, and G. M. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65, 77–82 (2014).
[Crossref]

G. Tao and A. F. Abouraddy, “Multimaterial fibers: a new concept in infrared fiber optics,” Proc. SPIE 9098, 90980V (2014).

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref]

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photon. Rev. 8, 53–72 (2014).

O. G. Pompilian, G. Dascalu, I. Mihaila, S. Gurlui, M. Olivier, P. Nemec, V. Nazabal, N. Cimpoesu, and C. Focsa, “Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films,” Appl. Phys. A 117, 197–205 (2014).
[Crossref]

G. Tao and A. F. Abouraddy, “Drawing robust infrared optical fibers from preforms produced by efficient multimaterial stacked coextrusion,” Proc. SPIE 8982, 89820F (2014).

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, and V. Monbet, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116, 847–853 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

W.-Q. Yang, B. Zhang, J. Hou, K. Yin, and Z.-J. Liu, “A novel 2-μm pulsed fiber laser based on a supercontinuum source and its application to mid-infrared supercontinuum generation,” Chin. Phys. B. 23, 054208 (2014).

G. Tao, S. Shabahang, H. Ren, Z. Yang, X. Wang, and A. F. Abouraddy, “Multimaterial rod-in-tube coextrusion for robust mid-infrared chalcogenide fibers,” Proc. SPIE 8982, 898223 (2014).

H. J. Kim, G. E. Fair, S. A. Potticary, M. J. O’Malley, and N. G. Usechak, “Processing and characterization of polycrystalline YAG (yttrium aluminum garnet) core-clad fibers,” Proc. SPIE 9081, 908103 (2014).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

S. Danto, M. Dubernet, B. Giroire, J. D. Musgraves, P. Wachtel, T. Hawkins, J. Ballato, and K. Richardson, “Correlation between native As2Se3 preform purity and glass optical fiber mechanical strength,” Mater. Res. Bull. 49, 250–258 (2014).
[Crossref]

2013 (40)

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13, 975–979 (2013).

J. J. Kaufman, R. Ottman, G. Tao, S. Shabahang, E.-H. Banaei, X. Liang, S. G. Johnson, Y. Fink, R. Chakrabarti, and A. F. Abouraddy, “In-fiber production of polymeric particles for biosensing and encapsulation,” Proc. Natl. Acad. Sci. USA 110, 15549–15554 (2013).

J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43, 527–557 (2013).
[Crossref]

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

W. Xu, J. Ren, Z. Zhang, G. Chen, D. Kong, C. Gu, C. Chen, and L. Kong, “Enhanced photoluminescence of Eu2+-Pr3+ ions in Ga2S3 nanocrystals embedded chalcohalide glasses ceramics,” J. Non-Cryst. Solids 381, 65–67 (2013).
[Crossref]

I. Savelii, F. Desevedavy, J.-C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35, 1595–1599 (2013).

S. N. Xu, P. F. Wang, R. L. Zheng, W. Wei, and B. Peng, “Effects of alkaline-earth fluorides and OH- on spectroscopic properties of Yb3+ doped TeO2-ZnO-B2O3 based glasses,” J. Lumin. 140, 26–29 (2013).
[Crossref]

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).

D. Thompson, S. Danto, J. Musgraves, P. Wachtel, B. Giroire, and K. Richardson, “Microwave assisted synthesis of high purity As2Se3 chalcogenide glasses,” Phys. Chem. Glasses B 54, 27–34 (2013).

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

E. V. Karaksina, L. A. Ketkova, M. F. Churbanov, and E. M. Dianov, “Preparation of mid-IR-active As2S3/ZnS(ZnSe):Cr2+ composites,” Inorg. Mater. 49, 223–229 (2013).
[Crossref]

A. Gumennik, L. Wei, G. Lestoquoy, A. M. Stolyarov, X. Jia, P. H. Rekemeyer, M. J. Smith, X. Liang, B. J.-B. Grena, and S. G. Johnson, “Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities,” Nat. Commun. 4, 2216 (2013).
[Crossref]

R. He, T. D. Day, M. Krishnamurthi, J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Silicon p-i-n junction fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[Crossref]

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II–VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

T. Lewi, J. Ofek, and A. Katzir, “Antiresonant reflecting microstructured optical fibers for the mid-infrared,” Appl. Phys. Lett. 102, 101104 (2013).
[Crossref]

M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38, 127–129 (2013).
[Crossref]

D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira, “Asymmetric wave propagation in planar chiral fibers,” Opt. Express 21, 1465–1472 (2013).
[Crossref]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express 3, 318–328 (2013).
[Crossref]

J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

N. Granzow, M. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. Lee, and M. Fermann, “Mid-infrared supercontinuum generation in As2S3-silica ‘nano-spike’ step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
[Crossref]

C. Conseil, V. S. Shiryaev, S. Cui, C. Boussard-Pledel, J. Troles, A. P. Velmuzhov, A. M. Potapov, A. I. Suchkov, M. F. Churbanov, and B. Bureau, “Preparation of high purity Te-rich Ge-Te-Se fibers for 5–15  μm infrared range,” J. Lightwave Technol. 31, 1703–1707 (2013).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9  μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38, 2588–2591 (2013).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 1075–1086 (2013).
[Crossref]

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, W. H. Loh, L. Calvez, X. Zhang, and L. Brilland, “Halo-tellurite glass fiber with low OH content for 2–5  μm mid-infrared nonlinear applications,” Opt. Express 21, 18949–18954 (2013).
[Crossref]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express 3, 1285–1301 (2013).
[Crossref]

S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers,” J. Opt. Soc. Am. B 30, 2498–2506 (2013).
[Crossref]

H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V., T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications,” Opt. Mater. Express 3, 1488–1503 (2013).
[Crossref]

P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref]

J. Lægsgaard and H. Tu, “How long wavelengths can one extract from silica-core fibers?” Opt. Lett. 38, 4518–4521 (2013).
[Crossref]

F. Théberge, J.-F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thiré, and F. Légaré, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38, 4683–4685 (2013).
[Crossref]

C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3  μm,” Opt. Express 21, 29488–29504 (2013).
[Crossref]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013).
[Crossref]

2012 (33)

A. Hongo, S. Sato, A. Hattori, K. Iwai, T. Hiroyuki, and M. Miyagi, “AgI-coated silver-clad stainless steel hollow waveguides for infrared lightwave transmission and their applications,” Appl. Opt. 51, 1–7 (2012).
[Crossref]

M. Liao, W. Gao, Z. Duan, X. Yan, T. Suzuki, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).
[Crossref]

S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Ternary tellurite glasses for the fabrication of nonlinear optical fibres,” Opt. Mater. Express 2, 140–152 (2012).
[Crossref]

D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express 20, 6029–6035 (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2, 432–442 (2012).
[Crossref]

K. Li, G. Zhang, X. Wang, L. Hu, P. Kuan, D. Chen, and M. Wang, “Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser,” Opt. Express 20, 10115–10121 (2012).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4  μm spectral region,” Opt. Express 20, 11153–11158 (2012).
[Crossref]

A. M. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell, F. Sorin, K. Kuriki, G. Benoit, A. Rose, and J. D. Joannopoulos, “Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers,” Opt. Express 20, 12407–12415 (2012).
[Crossref]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[Crossref]

A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20, 18836–18845 (2012).
[Crossref]

P. Toupin, L. Brilland, J. Trolès, and J.-L. Adam, “Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express 2, 1359–1366 (2012).
[Crossref]

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fibers,” Opt. Mater. Express 2, 1511–1519 (2012).
[Crossref]

T. Sabapathy, A. Ayiriveetil, A. K. Kar, S. Asokan, and S. J. Beecher, “Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass,” Opt. Mater. Express 2, 1556–1561 (2012).
[Crossref]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3  μm,” Opt. Express 20, 24218–24225 (2012).
[Crossref]

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

S. Morris, T. Hawkins, P. Foy, J. Ballato, S. W. Martin, and R. Rice, “Cladding glass development for semiconductor core optical fibers,” Int. J. Appl. Glass Sci. 3, 144–153 (2012).

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref]

S. Bhosle, K. Gunasekera, P. Boolchand, and M. Micoulaut, “Melt homogenization and self-organization in chalcogenides-part I,” Int. J. Appl. Glass Sci. 3, 189–204 (2012).

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Efficient ∼2  μm emission and energy transfer mechanism of Ho3+ doped barium gallium germanate glass sensitized by Tm3+ ions,” Appl. Phys. B 108, 597–602 (2012).
[Crossref]

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett. 24, 578–580 (2012).
[Crossref]

A. Jha, B. D. O. Richards, G. Jose, T. T. Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57, 357–382 (2012).
[Crossref]

C. Wang, P. Wang, R. Zheng, S. Xu, W. Wei, and B. Peng, “Spectroscopic properties of new Yb3+-doped TeO2–ZnO–Nb2O5 based tellurite glasses with high emission cross-section,” Opt. Mater. 34, 1549–1552 (2012).

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

J. Orava, A. Greer, B. Gholipour, D. Hewak, and C. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11, 279–283 (2012).
[Crossref]

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 629–635 (2012).
[Crossref]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3, 349–368 (2012).

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref]

2011 (29)

S. Shabahang, J. Kaufman, D. Deng, and A. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[Crossref]

N. D. Orf, O. Shapira, F. Sorin, S. Danto, M. A. Baldo, J. D. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. USA 108, 4743–4747 (2011).

I. Savelii, J. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, and J. Dudley, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater. 33, 1661–1666 (2011).

Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, “Bend sensors based on periodically tapered soft glass fibers,” Proc. SPIE 7753, 77534J (2011).

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94, 2896–2901 (2011).
[Crossref]

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–399 (2011).
[Crossref]

J. F. Li, Y. Chen, M. Chen, H. Chen, X. B. Jin, Y. Yang, Z. Y. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).
[Crossref]

A. N. Moiseev, V. V. Dorofeev, A. V. Chilyasov, I. A. Kraev, M. F. Churbanov, T. V. Kotereva, V. G. Pimenov, G. E. Snopatin, A. A. Pushkin, V. V. Gerasimenko, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses,” Opt. Mater. 33, 1858–1861 (2011).

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94, 130–136 (2011).
[Crossref]

V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
[Crossref]

E. Karaksina, V. Plotnichenko, R. Mironov, R. Shaposhnikov, and L. Ketkova, “The composite materials on the basis of As2S3 glass containing crystals ZnS and ZnS doped with Cr2+,” J. Optoelectron. Adv. Mater. 13, 1433 (2011).

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2, 177–191 (2011).

S. Maurugeon, B. Bureau, C. Boussard-Plédel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33, 660–663 (2011).

A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. 23, 1263–1267 (2011).
[Crossref]

D. Graham-Rowe, “Fibres get functional,” Nat. Photonics 5, 66–67 (2011).
[Crossref]

J. J. Kaufman, G. M. Tao, S. Shabahang, D. S. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5  μm,” Opt. Express 19, 1441–1448 (2011).
[Crossref]

R. M. Wynne, “Manufacturing conditions for microstructured and nanostructured optical fibers,” J. Lightwave Technol. 29, 104–108 (2011).
[Crossref]

A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett. 36, 740–742 (2011).
[Crossref]

D. V. Martyshkin, J. T. Goldstein, V. V. Fedorov, and S. B. Mirov, “Crystalline Cr2+:ZnSe/chalcogenide glass composites as active mid-IR materials,” Opt. Lett. 36, 1530–1532 (2011).
[Crossref]

N. Healy, J. Sparks, R. He, P. Sazio, J. Badding, and A. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express 19, 10979–10985 (2011).
[Crossref]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Bandgap guidance in hybrid chalcogenide–silica photonic crystal fibers,” Opt. Lett. 36, 2432–2434 (2011).
[Crossref]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2  μm,” Opt. Lett. 36, 2859–2861 (2011).
[Crossref]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
[Crossref]

D. Manzani, Y. Ledemi, I. Skripachev, Y. Messaddeq, S. J. L. Ribeiro, R. E. P. de Oliveira, and C. J. S. de Matos, “Yb3+, Tm3+ and Ho3+ triply-doped tellurite core-cladding optical fiber for white light generation,” Opt. Mater. Express 1, 1515–1526 (2011).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

2010 (35)

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[Crossref]

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35, 58–60 (2010).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III–V semiconductor core optical fiber,” Opt. Express 18, 4972–4979 (2010).
[Crossref]

N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express 18, 7596–7601 (2010).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Mechin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Troles, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
[Crossref]

O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18, 12622–12629 (2010).
[Crossref]

Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18, 15697–15703 (2010).
[Crossref]

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol. 28, 1882–1888 (2010).
[Crossref]

F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2  μm glass lasers,” Opt. Express 18, 22090–22098 (2010).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
[Crossref]

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18, 26728–26743 (2010).
[Crossref]

K. Li, G. Zhang, and L. Hu, “Watt-level ∼2  μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35, 4136–4138 (2010).
[Crossref]

S. Maurugeon, C. Boussard-Pledel, J. Troles, A. J. Faber, P. Lucas, X. H. Zhang, J. Lucas, and B. Bureau, “Telluride glass step index fiber for the far infrared,” J. Lightwave Technol. 28, 3358–3363 (2010).

R. Soref, “Silicon photonics: a review of recent literature,” Silicon 2, 1–6 (2010).

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22, 4162–4166 (2010).
[Crossref]

Y. G. Choi, “Enhancing emission properties of rare earth ions in chalcogenide glass via minute compositional adjustments,” J. Nonlinear Opt. Phys. Mater. 19, 663–671 (2010).
[Crossref]

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42, 69–79 (2010).
[Crossref]

X. Jiang, J. Lousteau, and A. Jha, “The structural, thermal, and optical analyses of multicomponent germanium oxide glasses for engineering mid-infrared fiber chemical sensing,” J. Am. Ceram. Soc. 93, 3259–3266 (2010).
[Crossref]

F. Fusari, S. Vetter, A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. Dawson, W. Sibbett, and C. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2  μm pumped by a 1211  nm semiconductor disk laser,” Opt. Mater. 32, 1007–1010 (2010).

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177 (2010).
[Crossref]

L. Ke-Feng, W. Guo-Nian, H. Li-Li, Z. Jun-Jie, and H. Jun-Jiang, “Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses,” J. Inorg. Mater. 25, 429–434 (2010).

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1, 74–86 (2010).

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1 (2010).
[Crossref]

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32, 1532–1539 (2010).

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
[Crossref]

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[Crossref]

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210, 2016–2022 (2010).
[Crossref]

J. Massera, A. Haldeman, D. Milanese, H. Gebavi, M. Ferraris, P. Foy, W. Hawkins, J. Ballato, R. Stolen, and L. Petit, “Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting,” Opt. Mater. 32, 582–588 (2010).

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16, 399–408 (2010).
[Crossref]

A. Mawardi and R. Pitchumani, “Optical fiber drawing process model using an analytical neck-down profile,” IEEE Photon. Technol. Lett. 2, 620–629 (2010).
[Crossref]

2009 (27)

Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21, 1804–1806 (2009).
[Crossref]

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N (2009).

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
[Crossref]

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31, 1701–1706 (2009).

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonics application,” J. Non-Cryst. Solids 355, 447–452 (2009).
[Crossref]

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[Crossref]

L. Feng, H. Guo, G. Tao, M. Lu, W. Wei, and B. Peng, “Dy3+-doped Ge-In-S-CsI chalcohalide glasses for 1.3  μm optical fiber amplifier,” J. Optoelectron. Adv. Mater. 11, 924–928 (2009).

Y. G. Choi and J. H. Song, “Local structural environment and intra-4f transition of rare-earth ion in chalcogenide glass: comparison between Dy-doped Ge-As-S and Ge-Ga-S glasses,” J. Non-Cryst. Solids 355, 2396–2399 (2009).
[Crossref]

M.-L. Anne, C. Le Lan, V. Monbet, C. Boussard-Plédel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, and J. L. Adam, “Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans,” J. Biomed. Opt. 14, 054033 (2009).
[Crossref]

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, C. Boussard-Plédel, V. Nazabal, N. Thibaud, and K. Le Pierres, “CO2 detection using microstructured chalcogenide fibers,” Sens. Lett. 7, 745–749 (2009).

V. Shiryaev, L. Ketkova, M. Churbanov, A. Potapov, J. Troles, P. Houizot, J.-L. Adam, and A. Sibirkin, “Heterophase inclusions and dissolved impurities in Ge25Sb10S65 glass,” J. Non-Cryst. Solids 355, 2640–2646 (2009).
[Crossref]

V. Shiryaev, J. Troles, P. Houizot, L. Ketkova, M. Churbanov, J.-L. Adam, and A. Sibirkin, “Preparation of optical fibers based on Ge–Sb–S glass system,” Opt. Mater. 32, 362–367 (2009).

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, and J.-L. Adam, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28, 11–26 (2009).
[Crossref]

B. L. Scott, K. Wang, and G. Pickrell, “Fabrication of n-type silicon optical fibers,” IEEE Photon. Technol. Lett. 21, 1798–1800 (2009).
[Crossref]

G. Delaizir, J. C. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibres,” J. Phys. D 42, 095405 (2009).

T. Lewi, A. Tsun, A. Katzir, J. Kaster, and F. Fuchs, “Silver halide single mode fibers for broadband middle infrared stellar interferometry,” Appl. Phys. Lett. 94, 261105 (2009).
[Crossref]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17, 2646–2657 (2009).
[Crossref]

Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17, 8029–8035 (2009).
[Crossref]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett. 34, 1946–1948 (2009).
[Crossref]

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express 17, 15350–15358 (2009).
[Crossref]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[Crossref]

M. R. Oermann, H. Ebendorff-Heidepriem, Y. Li, T.-C. Foo, and T. M. Monro, “Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass,” Opt. Express 17, 15578–15584 (2009).
[Crossref]

A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17, 16716–16721 (2009).
[Crossref]

H. T. Bookey, S. Dasgupta, N. Bezawada, B. P. Pal, A. Sysoliatin, J. E. McCarthy, M. Salganskii, V. Khopin, and A. K. Kar, “Experimental demonstration of spectral broadening in an all-silica Bragg fiber,” Opt. Express 17, 17130–17135 (2009).
[Crossref]

2008 (13)

Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33, 2293–2295 (2008).
[Crossref]

K. J. Rowland, S. Afshar V., and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. Rao, and M. Daw, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
[Crossref]

H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett. 33, 2861–2863 (2008).
[Crossref]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16, 20981–20986 (2008).
[Crossref]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16, 5642–5648 (2008).
[Crossref]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[Crossref]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

D. O. Carvalho and M. I. Alayo, “a-SiC:H anti-resonant layer ARROW waveguides,” J. Opt. A Pure Appl. Opt. 10, 104002 (2008).
[Crossref]

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116, 1040–1051 (2008).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354, 3418–3427 (2008).
[Crossref]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).

D. Deng, N. Orf, A. Abouraddy, A. Stolyarov, J. Joannopoulos, H. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8, 4265–4269 (2008).

2007 (13)

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6, 824–832 (2007).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

I. D. Aggarwal, L. B. Shaw, and J. S. Sanghera, “Chalcogenide glass fiber-based Mid-IR sources and applications,” Proc. SPIE 6453, 645312 (2007).

M. Churbanov, A. Moiseev, A. Chilyasov, V. Dorofeev, I. Kraev, M. Lipatova, T. Kotereva, E. Dianov, V. Plotnichenko, and E. Kryukova, “Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. Mater. 9, 3229–3234 (2007).

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

M. Churbanov, V. Shiryaev, A. Suchkov, A. Pushkin, V. Gerasimenko, R. Shaposhnikov, E. Dianov, V. Plotnichenko, V. Koltashev, and Y. N. Pyrkov, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43, 441–447 (2007).
[Crossref]

K. Hachiya and H. Ohashi, “Annealing process dependence of the photoluminescence in rare-earth-ion-doped chalcogenide glass,” Electrochim. Acta 53, 7–10 (2007).
[Crossref]

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32, 638–640 (2007).
[Crossref]

V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[Crossref]

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529–12538 (2007).
[Crossref]

G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15, 13805–13816 (2007).
[Crossref]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
[Crossref]

R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46, 8118–8133 (2007).
[Crossref]

2006 (13)

E. Pone, C. Dubois, N. Guo, S. Lacroix, and M. Skorobogatiy, “Newtonian and non-Newtonian models of the hollow all-polymer Bragg fiber drawing,” J. Lightwave Technol. 24, 4991–4999 (2006).
[Crossref]

K. S. Abedin, “Brillouin amplification and lasing in a single-mode As2Se3 chalcogenide fiber,” Opt. Lett. 31, 1615–1617 (2006).
[Crossref]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5  μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[Crossref]

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14, 11687–11693 (2006).
[Crossref]

R. M. Wynne, “A fabrication process for microstructured optical fibers,” J. Lightwave Technol. 24, 4304–4313 (2006).
[Crossref]

P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
[Crossref]

V. S. Shiryaev, C. Boussard-Pledel, P. Houizot, T. Jouan, J. L. Adam, and J. Lucas, “Single-mode infrared fibers based on Te-As-Se glass system,” Mat. Sci. Eng. B 127, 138–143 (2006).

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847–1852 (2006).
[Crossref]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[Crossref]

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
[Crossref]

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

V. Raghunathan, R. Shori, O. M. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” Phys. Status Solidi A 203, R38–R40 (2006).

2005 (9)

R. J. Curry, A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88, 2451–2455 (2005).
[Crossref]

B. F. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66–72 (2005).

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87, 081110 (2005).
[Crossref]

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94, 143902 (2005).
[Crossref]

K. Sivakumaran and C. S. Nair, “Rapid synthesis of chalcogenide glasses of Se–Te–Sb system by microwave irradiation,” J. Phys. D 38, 2476 (2005).

M. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 2046–2054 (2005).
[Crossref]

J. D. Shephard, W. N. MacPherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13, 7139–7144 (2005).
[Crossref]

P. Roberts, F. Couny, H. Sabert, B. Mangan, T. Birks, J. Knight, and P. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13, 7779–7793 (2005).
[Crossref]

D. Yin, J. Barber, A. Hawkins, and H. Schmidt, “Waveguide loss optimization in hollow-core ARROW waveguides,” Opt. Express 13, 9331–9336 (2005).
[Crossref]

2004 (13)

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
[Crossref]

E. Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, “Silver halide photonic crystal fibers for the middle infrared,” Appl. Opt. 43, 2236–2241 (2004).
[Crossref]

K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12, 1510–1517 (2004).
[Crossref]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[Crossref]

C. C. Huang, D. Hewak, and J. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express 12, 2501–2506 (2004).
[Crossref]

D. Yin, H. Schmidt, J. Barber, and A. Hawkins, “Integrated ARROW waveguides with hollow cores,” Opt. Express 12, 2710–2715 (2004).
[Crossref]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[Crossref]

P. Steinvurzel, B. Kuhlmey, T. White, M. Steel, C. de Sterke, and B. Eggleton, “Long wavelength anti-resonant guidance in high index inclusion microstructured fibers,” Opt. Express 12, 5424–5433 (2004).
[Crossref]

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[Crossref]

S. Hocde, O. Lore, O. Sire, C. Boussard-Ple, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95, 3895–3900 (2004).
[Crossref]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
[Crossref]

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242, 313–319 (2004).
[Crossref]

2003 (20)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref]

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]

E. Gavrushchuk, “Polycrystalline zinc selenide for IR optical applications,” Inorg. Mater. 39, 883–899 (2003).
[Crossref]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

D. Le Coq, C. Boussard-Plédel, G. Fonteneau, T. Pain, B. Bureau, and J. Adam, “Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor,” Mater. Res. Bull. 38, 1745–1754 (2003).
[Crossref]

M. D. O’Donnell, C. A. Miller, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Fluorotellurite glasses with improved mid-infrared transmission,” J. Non-Cryst. Solids 331, 48–57 (2003).
[Crossref]

J. Heo, “Rare-earth doped chalcogenide glasses for fiber-optic amplifiers,” J. Non-Cryst. Solids 326–327, 410–415 (2003).
[Crossref]

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc 32, 23–32 (2003).

K. Michel, B. Bureau, C. Pouvreau, J. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, and H. Steinner, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids 326, 434–438 (2003).
[Crossref]

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Solids 326–327, 430–433 (2003).
[Crossref]

R. S. Quimby and B. G. Aitken, “Multiphonon energy gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320, 100–112 (2003).
[Crossref]

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater 5, 1327–1333 (2003).

M. Ibanescu, S. G. Johnson, M. Soljačić, J. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, “Analysis of mode structure in hollow dielectric waveguide fibers,” Phys. Rev. E 67, 046608 (2003).
[Crossref]

G. M. Camilo, “Mechanical properties of chalcogenide glasses: a review,” Proc. SPIE 4940, 222–229 (2003).

V. Balan, C. Vigreux, A. Pradel, A. Llobera, C. Dominguez, M. Alonso, and M. Garriga, “Chalcogenide glass-based rib ARROW waveguide,” J. Non-Cryst. Solids 326, 455–459 (2003).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, and I. D. Aggarwal, “Effect of heating on the optical loss in the As-Se glass fiber,” J. Lightwave Technol. 21, 122–126 (2003).
[Crossref]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
[Crossref]

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “Small-core As-Se fiber for Raman amplification,” Opt. Lett. 28, 1406–1408 (2003).
[Crossref]

P. Thielen, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of a mid-IR chalcogenide fiber Raman laser,” Opt. Express 11, 3248–3253 (2003).
[Crossref]

L. Shaw, J. Sanghera, I. Aggarwal, and F. Hung, “As-S and As-Se based photonic band gap fiber for IR laser transmission,” Opt. Express 11, 3455–3460 (2003).
[Crossref]

2002 (6)

N. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[Crossref]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]

2001 (11)

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281, 48–54 (2001).
[Crossref]

J.-L. Adam, “Fluoride glass research in France: fundamentals and applications,” J. Fluorine Chem. 107, 265–270 (2001).
[Crossref]

S. Hocdé, C. Boussard-Plédel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
[Crossref]

J. Sanghera, I. Aggarwal, L. Shaw, L. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20, 465–467 (2001).
[Crossref]

D. Lezal, M. Poulain, and J. Zavadil, “Sulphide glasses doped with rare earth elements,” Ceramics 45, 105–110 (2001).

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
[Crossref]

M. Churbanov, V. Shiryaev, I. Scripachev, G. Snopatin, V. Gerasimenko, S. Smetanin, I. Fadin, and V. Plotnichenko, “Optical fibers based on As–S–Se glass system,” J. Non-Cryst. Solids 284, 146–152 (2001).
[Crossref]

M. Churbanov, I. Scripachev, G. Snopatin, V. Shiryaev, and V. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–350 (2001).

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

T. Schweizer, F. Goutaland, E. Martins, D. W. Hewak, and W. S. Brocklesby, “Site-selective spectroscopy in dysprosium-doped chalcogenide glasses for 1.3-μm optical-fiber amplifiers,” J. Opt. Soc. Am. B 18, 1436–1442 (2001).
[Crossref]

2000 (6)

M. Karlowatz, M. Kraft, E. Eitenberger, B. Mizaikoff, and A. Katzir, “Chemically tapered silver halide fibers: an approach for increasing the sensitivity of mid-infrared evanescent wave sensors,” Appl. Spectrosc. 54, 1629–1633 (2000).
[Crossref]

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, A. Pushkin, Y. N. Pyrkov, I. Skripachev, G. Snopatin, M. F. Churbanov, and V. Shiryaev, “Low-loss infrared arsenic-chalcogenide glass optical fibers,” Proc. SPIE 4083, 229–237 (2000).

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[Crossref]

P. P. Fedorov, R. M. Zakalyukin, L. N. Ignat’eva, and V. M. Bouznik, “Fluoroindate glasses,” Russ. Chem. Rev. 69, 705–716 (2000).

J. Sanghera, L. Shaw, L. Busse, V. Nguyen, P. Pureza, B. Cole, B. Harrison, I. Aggarwal, R. Mossadegh, and F. Kung, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[Crossref]

Y. West, T. Schweizer, D. Brady, and D. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
[Crossref]

1999 (9)

J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres—preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[Crossref]

Y. Shen, L. Tong, and S. Chen, “Performance stability of the sapphire fiber and cladding under high temperature,” Proc. SPIE 3852, 134 (1999).

D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256, 232–236 (1999).
[Crossref]

D. J. Haan and J. A. Harrington, “Hollow waveguides for gas sensing and near-IR applications,” Proc. SPIE 3596, 43–49 (1999).

F. Smektala, K. Le Foulgoc, L. Le Neindre, C. Blanchetiere, X. Zhang, and J. Lucas, “TeX-glass infrared optical fibers delivering medium power from a CO2 laser,” Opt. Mater. 13, 271–276 (1999).

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039 (1999).
[Crossref]

1998 (6)

R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, P. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16, 214–217 (1998).
[Crossref]

D. T. Schaafsma, L. B. Shaw, B. Cole, J. S. Sanghera, and D. Aggarwal, “Modeling of Dy3+-doped GeAsSe glass 1.3-μm optical fiber amplifiers,” IEEE Photon. Technol. Lett. 10, 1548–1550 (1998).
[Crossref]

L. Le Neindre, F. Smektala, K. Le Foulgoc, X. Zhang, and J. Lucas, “Tellurium halide optical fibers,” J. Non-Cryst. Solids 242, 99–103 (1998).
[Crossref]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
[Crossref]

D. Furniss and A. B. Seddon, “Extrusion of gallium lanthanum sulfide glasses for fiber-optic preforms,” J. Mater. Sci. Lett. 17, 1541–1542 (1998).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

1997 (16)

S. Fujino and K. Morinaga, “Material dispersion and its compositional parameter of oxide glasses,” J. Non-Cryst. Solids 222, 316–320 (1997).
[Crossref]

S. Lee and Y. Jaluria, “Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber,” Int. J. Heat Mass Transfer 40, 843–856 (1997).
[Crossref]

J. R. Hector, D. W. Hewak, J. Wang, R. C. Moore, and W. S. Brocklesby, “Quantum-efficiency measurements in oxygen-containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photon. Technol. Lett. 9, 443–445 (1997).
[Crossref]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
[Crossref]

G. F. West and W. Höfle, “Spectral attenuation of fluoride glass fibers,” J. Non-Cryst. Solids 213–214, 189–192 (1997).
[Crossref]

B. N. Samson, T. Schweizer, D. W. Hewak, and R. I. Laming, “Properties of dysprosium-doped gallium lanthanum sulfide fiber amplifiers operating at 1.3  μm,” Opt. Lett. 22, 703–705 (1997).
[Crossref]

H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997).
[Crossref]

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
[Crossref]

D. T. Schaafsma, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Fused taper infrared optical fiber couplers in chalcogenide glass,” J. Lightwave Technol. 15, 2242–2245 (1997).
[Crossref]

I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229 (1997).

H. Suto, “Chalcogenide fiber bundle for 3D spectroscopy,” Infrared Phys. Technol. 38, 93–99 (1997).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213, 63–67 (1997).
[Crossref]

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[Crossref]

T. Schweizer, B. Samson, R. Moore, D. Hewak, and D. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett 33, 414–416 (1997).
[Crossref]

J. Wang, J. R. Hector, D. Brady, D. Hewak, B. Brocklesby, M. Kluth, R. Moore, and D. N. Payne, “Halide-modified Ga–La sulfide glasses with improved fiber-drawing and optical properties for Pr3+-doped fiber amplifiers at 1.3  μm,” Appl. Phys. Lett. 71, 1753–1755 (1997).
[Crossref]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[Crossref]

1996 (7)

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[Crossref]

B. R. Marx, “Rare-earth-doped chalcogenide glass laser,” Laser Focus World 32, 25–26 (1996).

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384 (1996).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Chalcogenide fibers enable delivery of mid-infrared laser radiation,” Laser Focus World 32, 143–150 (1996).

I. Garcés, F. Villuendas, J. A. Valles, C. Domínguez, and M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
[Crossref]

D. N. Su, S. Somkuarnpanit, D. R. Hall, and J. D. C. Jones, “Thermal effects in a hollow waveguide beam launch for CO2 laser power delivery,” Appl. Opt. 35, 4787–4789 (1996).
[Crossref]

1995 (6)

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[Crossref]

M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

C. Blanchetiere, K. Le Foulgoc, H. Ma, X. Zhang, and J. Lucas, “Tellurium halide glass fibers: preparation and applications,” J. Non-Cryst. Solids 184, 200–203 (1995).
[Crossref]

J. A. Medeiros Neto, E. R. Taylor, B. N. Samson, J. Wang, D. W. Hewak, R. I. Laming, D. N. Payne, E. Tarbox, P. D. Maton, G. M. Roba, B. E. Kinsman, and R. Hanney, “The application of Ga:La:S-based glass for optical amplification at 1.3  μm,” J. Non-Cryst. Solids 184, 292–296 (1995).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

1994 (8)

R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187–203 (1994).

S. Rosenberg, H. Papamichael, and I. Miaoulis, “A two-dimensional analysis of the viscous problem of a glass preform during the optical fibre drawing process,” Glass Technol. 35, 260–264 (1994).

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167, 112–116 (1994).
[Crossref]

J. Sanghera, L. Busse, and I. Aggarwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885–4891 (1994).
[Crossref]

T. Katsuyama and H. Matsumura, “Light transmission characteristics of telluride-based chalcogenide glass for infrared fiber application,” J. Appl. Phys. 75, 2743–2748 (1994).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass-fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[Crossref]

J. S. Sanghera, F. H. Kung, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers,” Appl. Opt. 33, 6315–6322 (1994).
[Crossref]

1993 (7)

G. N. Merberg and J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
[Crossref]

Y. Matsuura and M. Miyagi, “Er: YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[Crossref]

P. Bhardwaj, O. Gregory, C. Morrow, G. Gu, and K. Burbank, “Performance of a dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

X. Zhang, H. Ma, C. Blanchetiere, and J. Lucas, “Low loss optical fibres of the tellurium halide-based glasses, the TeX glasses,” J. Non-Cryst. Solids 161, 327–330 (1993).
[Crossref]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
[Crossref]

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

A. Vasilyev, G. G. Devyatykh, E. M. Dianov, A. N. Gur’yanov, A. Y. Laptev, V. G. e. Plotnichenko, Y. N. Pyrkov, G. E. Snopatin, I. V. Skripachev, and M. F. Churbanov, “Two-layer chalcogenide-glass optical fibers with optical losses below 30  dB/km,” Quantum Electron. 23, 89–90 (1993).
[Crossref]

1992 (7)

S. F. Carter, J. R. Williams, M. W. Moore, D. Szebesta, and S. T. Davey, “Prospects for ultra-low-loss fluoride fibres at BTRL,” J. Non-Cryst. Solids 140, 153–158 (1992).
[Crossref]

M. Churbanov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
[Crossref]

X. Zhang, H. Ma, G. Fonteneau, and J. Lucas, “Improvement of tellurium halide glasses for IR fiber optics,” J. Non-Cryst. Solids 140, 47–51 (1992).
[Crossref]

T. Katsuyama, S. Satoh, and H. Matsumura, “Scattering loss characteristics of selenide-based chalcogenide glass optical fibers,” J. Appl. Phys. 71, 4132–4135 (1992).
[Crossref]

M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[Crossref]

A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, and T. Hashimoto, “Transmission of kilowatt-class CO2-laser light through dielectric-coated metallic hollow wave-guides for material processing,” Appl. Opt. 31, 5114–5120 (1992).
[Crossref]

H. Machida, Y. Matsuura, H. Ishikawa, and M. Miyagi, “Transmission properties of rectangular hollow waveguides for CO2 laser light,” Appl. Opt. 31, 7617–7622 (1992).
[Crossref]

1991 (4)

S. J. Saggese, J. A. Harrington, and G. H. Sigel, “Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides,” Opt. Lett. 16, 27–29 (1991).
[Crossref]

J. Nishii, T. Yamashita, T. Yamagishi, C. Tanaka, and H. Sone, “Coherent infrared fiber image bundle,” Appl. Phys. Lett. 59, 2639–2641 (1991).
[Crossref]

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-green laser diodes,” Appl. Phys. Lett. 59, 1272–1274 (1991).
[Crossref]

J. Ren, K. A. Bowers, B. Sneed, F. E. Reed, J. W. Cook, and J. F. Schetzina, “Blue (ZnSe) and green (ZnSe0.9Te0.1) light emitting diodes,” J. Cryst. Growth 111, 829–832 (1991).
[Crossref]

1990 (2)

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, and A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” Proc. SPIE 1228, 128–139 (1990).

M. Saito, Y. Matsuura, M. Kawamura, and M. Miyagi, “Bending losses of incoherent light in circular hollow waveguides,” J. Opt. Soc. Am. A 7, 2063–2068 (1990).
[Crossref]

1989 (5)

E. Snitzer and R. Tumminelli, “SiO2-clad fibers with selectively volatilized soft-glass cores,” Opt. Lett. 14, 757–759 (1989).
[Crossref]

J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28, 5122–5127 (1989).
[Crossref]

I. Chiaruttini, G. Fonteneau, X. Zhang, and J. Lucas, “Characteristics of tellurium-bromide-based glass for IR fibers optics,” J. Non-Cryst. Solids 111, 77–81 (1989).
[Crossref]

E. Dianov, V. Plotnichenko, G. Devyatykh, M. Churbanov, and I. Scripachev, “Middle-infrared chalcogenide glass fibers with losses lower than 100  db km−1,” Infrared Phys. 29, 303–307 (1989).
[Crossref]

K. Shahzad, D. J. Olego, and D. A. Cammack, “Optical transitions in ultra-high-purity zinc selenide,” Phys. Rev. B 39, 13016 (1989).

1988 (3)

C. Emslie, “Polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
[Crossref]

J. Nishii, T. Yamashita, and T. Yamagishi, “Low-loss chalcogenide glass fiber with core-cladding structure,” Appl. Phys. Lett. 53, 553–554 (1988).
[Crossref]

J. A. Harrington, “Infrared alkali halide fibers,” Appl. Opt. 27, 3097–3101 (1988).
[Crossref]

1987 (2)

P. France, S. Carter, M. Moore, and C. Day, “Progress in fluoride fibres for optical communications,” British Telecommun. Technol. J. 5, 28–44 (1987).

M. Saito, “Optical loss increase in an As-S glass infrared fiber due to water diffusion,” Appl. Opt. 26, 202–203 (1987).
[Crossref]

1986 (5)

M. Kimura, S. Kachi, and K. Shiroyama, “Characteristics of KRS-5 fiber with crystalline cladding,” Proc. SPIE 0618, 85–88 (1986).

T. Kanamori and S. Sakaguchi, “Preparation of elevated NA fluoride optical fibers,” Jpn. J. Appl. Phys. 25, L468 (1986).

M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2=-i multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

T. Katsuyama, S. Satoh, and H. Matsumura, “Fabrication of high-purity chalcogenide glasses by chemical vapor deposition,” J. Appl. Phys. 59, 1446–1449 (1986).
[Crossref]

T. Katsuyama and H. Matsumura, “Low-loss Te-based chalcogenide glass optical fibers,” Appl. Phys. Lett. 49, 22–23 (1986).
[Crossref]

1985 (2)

M. Saito, M. Takizawa, S. Sakuragi, and F. Tanei, “Infrared image guide with bundled As-S glass fibers,” Appl. Opt. 24, 2304–2308 (1985).
[Crossref]

H. Tokiwa, Y. Mimura, T. Nakai, and O. Shinbori, “Fabrication of long single-mode and multimode fluoride glass fibres by the double-crucible technique,” Electron. Lett. 21, 1131–1132 (1985).
[Crossref]

1984 (5)

Y. Ohishi, S. Mitachi, and S. Takahashi, “Fabrication of fluoride glass single-mode fibers,” J. Lightwave Technol. 2, 593–596 (1984).
[Crossref]

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[Crossref]

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2, 566–586 (1984).
[Crossref]

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45, 925–927 (1984).
[Crossref]

M. Lines, “Scattering losses in optic fiber materials. II. Numerical estimates,” J. Appl. Phys. 55, 4058–4063 (1984).
[Crossref]

1983 (2)

M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[Crossref]

M. Poulain, M. Matecki, J.-L. Mouric, and M. Poulain, “Cadmium halide glasses. II. Chloride glasses,” Mater. Res. Bull. 18, 631–636 (1983).
[Crossref]

1982 (3)

D. C. Tran, C. F. Fisher, and G. H. Sigel, “Fluoride glass preforms prepared by a rotational casting process,” Electron. Lett. 18, 657–658 (1982).
[Crossref]

M. Vlasov, G. Devyatykh, E. M. Dianov, V. Plotnichenko, I. Skripachev, V. Sysoev, and M. Churbanov, “Glassy As2Se3 with optical absorption of 60  dB/km,” Quantum Electron. 12, 932–933 (1982).

T. Miyashita and Y. Terunuma, “Optical transmission loss of As–S glass fiber in 1.0–5.5  μm wavelength region,” Jpn. J. Appl. Phys. 21, L75 (1982).

1981 (4)

S. Sakuragi, T. Morikawa, J. Shimada, M. Saito, Y. Kubo, K. Imagawa, and H. Kotani, “KRS-5 optical fibers capable of transmitting high-power CO2 laser beam,” Opt. Lett. 6, 629–631 (1981).
[Crossref]

S. Mitachi, S. Shibata, and T. Manabe, “Teflon FEP-clad fluoride glass fibre,” Electron. Lett. 17, 128–129 (1981).
[Crossref]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibres,” Electron. Lett. 17, 775–777 (1981).
[Crossref]

R. C. Frye and D. Adler, “Field effect in chalcogenide glasses,” Phys. Rev. B 24, 5812 (1981).

1980 (1)

S. Shibata, Y. Terunuma, and T. Manabe, “Ge-P-S chalcogenide glass fibers,” Jpn. J. Appl. Phys. 19, L603 (1980).

1978 (3)

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical-waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28–29 (1978).
[Crossref]

U. Paek and R. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys. 49, 4417–4422 (1978).
[Crossref]

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).
[Crossref]

1976 (1)

A. G. Steventon, “The switching mechanisms in amorphous chalcogenide memory devices,” J. Non-Cryst. Solids 21, 319–329 (1976).
[Crossref]

1975 (1)

M. Poulain, M. Poulain, and J. Lucas, “Verres fluores au tetrafluorure de zirconium proprietes optiques d’un verre dope au Nd3+,” Mater. Res. Bull. 10, 243–246 (1975).
[Crossref]

1973 (1)

P. Kaiser, E. Marcatili, and S. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).
[Crossref]

1972 (1)

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7, 203–220 (1972).
[Crossref]

1971 (1)

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5, 377–388 (1971).
[Crossref]

1965 (2)

N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5, 69–80 (1965).
[Crossref]

N. Kapany and R. Simms, “Fiber optics. XI. Performance in the infrared region,” J. Opt. Soc. Am. 55, 963–967 (1965).

1953 (1)

1952 (1)

J. E. Stanworth, “Tellurite glasses,” Nature 169, 581–582 (1952).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Abdolvand, A.

X. Jiang, F. Babic, T. G. Euser, T. Weiss, A. Abdolvand, M. Finger, N. Joly, M. H. Frosz, and P. S. Russell, “Recent advances in soft-glass photonic crystal fibres,” in Workshop on Specialty Optical Fibers and their Applications (Optical Society of America, 2013), paper W2.4.

Abedin, K. S.

Abeeluck, A.

Abokhamis, M. S.

Abouraddy, A.

S. Shabahang, J. Kaufman, D. Deng, and A. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[Crossref]

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[Crossref]

D. Deng, N. Orf, A. Abouraddy, A. Stolyarov, J. Joannopoulos, H. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8, 4265–4269 (2008).

Abouraddy, A. F.

G. Tao, S. Shabahang, H. Ren, Z. Yang, X. Wang, and A. F. Abouraddy, “Multimaterial rod-in-tube coextrusion for robust mid-infrared chalcogenide fibers,” Proc. SPIE 8982, 898223 (2014).

G. Tao and A. F. Abouraddy, “Drawing robust infrared optical fibers from preforms produced by efficient multimaterial stacked coextrusion,” Proc. SPIE 8982, 89820F (2014).

G. Tao and A. F. Abouraddy, “Multimaterial fibers: a new concept in infrared fiber optics,” Proc. SPIE 9098, 90980V (2014).

G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4, 2143–2149 (2014).
[Crossref]

G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39, 4009–4012 (2014).
[Crossref]

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31, 450–457 (2014).
[Crossref]

S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers,” J. Opt. Soc. Am. B 30, 2498–2506 (2013).
[Crossref]

J. J. Kaufman, R. Ottman, G. Tao, S. Shabahang, E.-H. Banaei, X. Liang, S. G. Johnson, Y. Fink, R. Chakrabarti, and A. F. Abouraddy, “In-fiber production of polymeric particles for biosensing and encapsulation,” Proc. Natl. Acad. Sci. USA 110, 15549–15554 (2013).

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3, 349–368 (2012).

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[Crossref]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37, 4639–4641 (2012).
[Crossref]

J. J. Kaufman, G. M. Tao, S. Shabahang, D. S. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).

O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18, 12622–12629 (2010).
[Crossref]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94, 143902 (2005).
[Crossref]

G. Tao, S. Shabahang, X. Wang, and A. F. Abouraddy, “Efficient disc-to-fiber multimaterial stacked coextrusion for robust infrared optical fibers,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FTu4B.3.

Adam, J.

D. Le Coq, C. Boussard-Plédel, G. Fonteneau, T. Pain, B. Bureau, and J. Adam, “Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor,” Mater. Res. Bull. 38, 1745–1754 (2003).
[Crossref]

Adam, J. L.

M.-L. Anne, C. Le Lan, V. Monbet, C. Boussard-Plédel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, and J. L. Adam, “Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans,” J. Biomed. Opt. 14, 054033 (2009).
[Crossref]

V. S. Shiryaev, C. Boussard-Pledel, P. Houizot, T. Jouan, J. L. Adam, and J. Lucas, “Single-mode infrared fibers based on Te-As-Se glass system,” Mat. Sci. Eng. B 127, 138–143 (2006).

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[Crossref]

Adam, J.-L.

P. Toupin, L. Brilland, J. Trolès, and J.-L. Adam, “Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express 2, 1359–1366 (2012).
[Crossref]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32, 1532–1539 (2010).

V. Shiryaev, L. Ketkova, M. Churbanov, A. Potapov, J. Troles, P. Houizot, J.-L. Adam, and A. Sibirkin, “Heterophase inclusions and dissolved impurities in Ge25Sb10S65 glass,” J. Non-Cryst. Solids 355, 2640–2646 (2009).
[Crossref]

V. Shiryaev, J. Troles, P. Houizot, L. Ketkova, M. Churbanov, J.-L. Adam, and A. Sibirkin, “Preparation of optical fibers based on Ge–Sb–S glass system,” Opt. Mater. 32, 362–367 (2009).

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, and J.-L. Adam, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28, 11–26 (2009).
[Crossref]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).

K. Michel, B. Bureau, C. Pouvreau, J. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, and H. Steinner, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids 326, 434–438 (2003).
[Crossref]

J.-L. Adam, “Fluoride glass research in France: fundamentals and applications,” J. Fluorine Chem. 107, 265–270 (2001).
[Crossref]

J.-L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead, 2014).

Adler, D.

R. C. Frye and D. Adler, “Field effect in chalcogenide glasses,” Phys. Rev. B 24, 5812 (1981).

Afshar V., S.

Agarwal, A.

Aggarwal, D.

D. T. Schaafsma, L. B. Shaw, B. Cole, J. S. Sanghera, and D. Aggarwal, “Modeling of Dy3+-doped GeAsSe glass 1.3-μm optical fiber amplifiers,” IEEE Photon. Technol. Lett. 10, 1548–1550 (1998).
[Crossref]

Aggarwal, I.

P. Thielen, L. Shaw, J. Sanghera, and I. Aggarwal, “Modeling of a mid-IR chalcogenide fiber Raman laser,” Opt. Express 11, 3248–3253 (2003).
[Crossref]

L. Shaw, J. Sanghera, I. Aggarwal, and F. Hung, “As-S and As-Se based photonic band gap fiber for IR laser transmission,” Opt. Express 11, 3455–3460 (2003).
[Crossref]

J. Sanghera, I. Aggarwal, L. Shaw, L. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

J. Sanghera, L. Shaw, L. Busse, V. Nguyen, P. Pureza, B. Cole, B. Harrison, I. Aggarwal, R. Mossadegh, and F. Kung, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[Crossref]

L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Chalcogenide fibers enable delivery of mid-infrared laser radiation,” Laser Focus World 32, 143–150 (1996).

J. Sanghera, L. Busse, and I. Aggarwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885–4891 (1994).
[Crossref]

J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.

Aggarwal, I. D.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
[Crossref]

I. D. Aggarwal, L. B. Shaw, and J. S. Sanghera, “Chalcogenide glass fiber-based Mid-IR sources and applications,” Proc. SPIE 6453, 645312 (2007).

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14, 11687–11693 (2006).
[Crossref]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004).
[Crossref]

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “Small-core As-Se fiber for Raman amplification,” Opt. Lett. 28, 1406–1408 (2003).
[Crossref]

V. Q. Nguyen, J. S. Sanghera, P. C. Pureza, and I. D. Aggarwal, “Effect of heating on the optical loss in the As-Se glass fiber,” J. Lightwave Technol. 21, 122–126 (2003).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20, 465–467 (2001).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” J. Non-Cryst. Solids 256–257, 6–16 (1999).
[Crossref]

R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, P. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16, 214–217 (1998).
[Crossref]

D. T. Schaafsma, J. A. Moon, J. S. Sanghera, and I. D. Aggarwal, “Fused taper infrared optical fiber couplers in chalcogenide glass,” J. Lightwave Technol. 15, 2242–2245 (1997).
[Crossref]

J. S. Sanghera and I. D. Aggarwal, “Development of chalcogenide glass fiber optics at NRL,” J. Non-Cryst. Solids 213, 63–67 (1997).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass-fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[Crossref]

J. S. Sanghera, F. H. Kung, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers,” Appl. Opt. 33, 6315–6322 (1994).
[Crossref]

Agger, C.

Agrawal, G. P.

Ahmad, R.

Aitken, B. G.

R. S. Quimby and B. G. Aitken, “Multiphonon energy gap law in rare-earth doped chalcogenide glass,” J. Non-Cryst. Solids 320, 100–112 (2003).
[Crossref]

Aizawa, Y.

M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[Crossref]

Alayo, M. I.

D. O. Carvalho and M. I. Alayo, “a-SiC:H anti-resonant layer ARROW waveguides,” J. Opt. A Pure Appl. Opt. 10, 104002 (2008).
[Crossref]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Alonso, M.

V. Balan, C. Vigreux, A. Pradel, A. Llobera, C. Dominguez, M. Alonso, and M. Garriga, “Chalcogenide glass-based rib ARROW waveguide,” J. Non-Cryst. Solids 326, 455–459 (2003).
[Crossref]

Amezcua-Correa, A.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Amrani, F.

Anne, M. L.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, and V. Monbet, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Anne, M.-L.

M.-L. Anne, C. Le Lan, V. Monbet, C. Boussard-Plédel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, and J. L. Adam, “Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans,” J. Biomed. Opt. 14, 054033 (2009).
[Crossref]

Anzueto-Sánchez, G.

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
[Crossref]

Argyros, A.

Arnold, J.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

Artyushenko, V.

V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1–18  μm range,” Opt. Photon. 9, 35–39 (2014).
[Crossref]

Asano, K.

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116, 847–853 (2014).
[Crossref]

Asobe, M.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997).
[Crossref]

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
[Crossref]

M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[Crossref]

Asokan, S.

Astapovich, M. S.

Ayiriveetil, A.

Babic, F.

X. Jiang, F. Babic, T. G. Euser, T. Weiss, A. Abdolvand, M. Finger, N. Joly, M. H. Frosz, and P. S. Russell, “Recent advances in soft-glass photonic crystal fibres,” in Workshop on Specialty Optical Fibers and their Applications (Optical Society of America, 2013), paper W2.4.

Bach, H.

H. Bach and N. Neuroth, The Properties of Optical Glass (Springer, 1998).

Baddela, N. K.

Badding, J.

Badding, J. V.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref]

R. He, T. D. Day, M. Krishnamurthi, J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Silicon p-i-n junction fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II–VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2013).
[Crossref]

J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43, 527–557 (2013).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref]

N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express 18, 7596–7601 (2010).
[Crossref]

R. J. Curry, A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88, 2451–2455 (2005).
[Crossref]

Badikov, V. V.

A. Gallian, V. V. Fedorov, J. Kernal, S. B. Mirov, and V. V. Badikov, “Laser oscillation at 2.4  μm from Cr2+ in ZnSe optically pumped over Cr ionization transitions,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 241.

Baker, C.

J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.

Baker, N. J.

Balan, V.

V. Balan, C. Vigreux, A. Pradel, A. Llobera, C. Dominguez, M. Alonso, and M. Garriga, “Chalcogenide glass-based rib ARROW waveguide,” J. Non-Cryst. Solids 326, 455–459 (2003).
[Crossref]

Baldo, M. A.

N. D. Orf, O. Shapira, F. Sorin, S. Danto, M. A. Baldo, J. D. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. USA 108, 4743–4747 (2011).

Ballato, J.

S. Danto, M. Dubernet, B. Giroire, J. D. Musgraves, P. Wachtel, T. Hawkins, J. Ballato, and K. Richardson, “Correlation between native As2Se3 preform purity and glass optical fiber mechanical strength,” Mater. Res. Bull. 49, 250–258 (2014).
[Crossref]

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[Crossref]

S. Morris, T. Hawkins, P. Foy, J. Ballato, S. W. Martin, and R. Rice, “Cladding glass development for semiconductor core optical fibers,” Int. J. Appl. Glass Sci. 3, 144–153 (2012).

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fibers,” Opt. Mater. Express 2, 1511–1519 (2012).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 629–635 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16, 399–408 (2010).
[Crossref]

J. Massera, A. Haldeman, D. Milanese, H. Gebavi, M. Ferraris, P. Foy, W. Hawkins, J. Ballato, R. Stolen, and L. Petit, “Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting,” Opt. Mater. 32, 582–588 (2010).

J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III–V semiconductor core optical fiber,” Opt. Express 18, 4972–4979 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17, 8029–8035 (2009).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. Rao, and M. Daw, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
[Crossref]

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, J. Ballato, and R. Rice, “Reactive in-situ processing of silicon optical fiber,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper STu3F.4.

Banaei, E.-H.

J. J. Kaufman, R. Ottman, G. Tao, S. Shabahang, E.-H. Banaei, X. Liang, S. G. Johnson, Y. Fink, R. Chakrabarti, and A. F. Abouraddy, “In-fiber production of polymeric particles for biosensing and encapsulation,” Proc. Natl. Acad. Sci. USA 110, 15549–15554 (2013).

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[Crossref]

Bang, O.

Barber, J.

Baril, N. F.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Barkay, N.

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, and A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” Proc. SPIE 1228, 128–139 (1990).

Barton, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
[Crossref]

M. Large, L. Poladian, G. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibres (Springer, 2007).

Bayindir, M.

A. Yildirim, M. Vural, M. Yaman, and M. Bayindir, “Bioinspired optoelectronic nose with nanostructured wavelength-scalable hollow-core infrared fibers,” Adv. Mater. 23, 1263–1267 (2011).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12, 1510–1517 (2004).
[Crossref]

Bayya, S.

J. Sanghera, I. Aggarwal, L. Shaw, L. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, and G. Chin, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Bayya, S. S.

Beecher, S. J.

Bei, J.

Belardi, W.

Belin, S.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Belwalkar, A.

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210, 2016–2022 (2010).
[Crossref]

J. Toulouse, A. Lin, A. Ryaznyanskiy, A. Belwalkar, C. Guintrand, C. Lafontaine, W. Misiolek, and I. Biaggio, “Development of new tellurite fibers for mid-IR applications,” in Winter Topicals (WTM) (IEEE, 2011), pp. 185–186.

Bendow, B.

D. Tran, G. Sigel, and B. Bendow, “Heavy metal fluoride glasses and fibers: a review,” J. Lightwave Technol. 2, 566–586 (1984).
[Crossref]

Benoit, G.

A. M. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell, F. Sorin, K. Kuriki, G. Benoit, A. Rose, and J. D. Joannopoulos, “Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers,” Opt. Express 20, 12407–12415 (2012).
[Crossref]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12, 1510–1517 (2004).
[Crossref]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

Benson, T. M.

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
[Crossref]

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42, 69–79 (2010).
[Crossref]

Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21, 1804–1806 (2009).
[Crossref]

Beres-Pawlik, E.

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42, 69–79 (2010).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Bernier, M.

Berrou, A.

C. Kneis, B. Donelan, A. Berrou, I. Manek-Hönninger, B. Cadier, T. Robin, M. Poulain, F. Joulain, M. Eichhorn, and C. Kieleck, “4.5  W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser,” Proc. SPIE 9342, 93420B (2015).

Beugnot, J.-C.

Bezawada, N.

Bhardwaj, P.

P. Bhardwaj, O. Gregory, C. Morrow, G. Gu, and K. Burbank, “Performance of a dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

Bhosle, S.

S. Bhosle, K. Gunasekera, P. Boolchand, and M. Micoulaut, “Melt homogenization and self-organization in chalcogenides-part I,” Int. J. Appl. Glass Sci. 3, 189–204 (2012).

Biaggio, I.

J. Toulouse, A. Lin, A. Ryaznyanskiy, A. Belwalkar, C. Guintrand, C. Lafontaine, W. Misiolek, and I. Biaggio, “Development of new tellurite fibers for mid-IR applications,” in Winter Topicals (WTM) (IEEE, 2011), pp. 185–186.

Bierlich, J.

Binks, D.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177 (2010).
[Crossref]

Bird, D. M.

Biriukov, A. S.

Birks, T.

Blanchetiere, C.

F. Smektala, K. Le Foulgoc, L. Le Neindre, C. Blanchetiere, X. Zhang, and J. Lucas, “TeX-glass infrared optical fibers delivering medium power from a CO2 laser,” Opt. Mater. 13, 271–276 (1999).

C. Blanchetiere, K. Le Foulgoc, H. Ma, X. Zhang, and J. Lucas, “Tellurium halide glass fibers: preparation and applications,” J. Non-Cryst. Solids 184, 200–203 (1995).
[Crossref]

X. Zhang, H. Ma, C. Blanchetiere, and J. Lucas, “Low loss optical fibres of the tellurium halide-based glasses, the TeX glasses,” J. Non-Cryst. Solids 161, 327–330 (1993).
[Crossref]

Bocharnikov, A.

V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1–18  μm range,” Opt. Photon. 9, 35–39 (2014).
[Crossref]

Bony, P. Y.

Bookey, H. T.

Boolchand, P.

S. Bhosle, K. Gunasekera, P. Boolchand, and M. Micoulaut, “Melt homogenization and self-organization in chalcogenides-part I,” Int. J. Appl. Glass Sci. 3, 189–204 (2012).

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Boudebs, G.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242, 313–319 (2004).
[Crossref]

Bourdon, P.

Boussard, C.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, and V. Monbet, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Boussard-Ple, C.

S. Hocde, O. Lore, O. Sire, C. Boussard-Ple, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Boussard-Pledel, C.

C. Conseil, V. S. Shiryaev, S. Cui, C. Boussard-Pledel, J. Troles, A. P. Velmuzhov, A. M. Potapov, A. I. Suchkov, M. F. Churbanov, and B. Bureau, “Preparation of high purity Te-rich Ge-Te-Se fibers for 5–15  μm infrared range,” J. Lightwave Technol. 31, 1703–1707 (2013).
[Crossref]

S. Maurugeon, C. Boussard-Pledel, J. Troles, A. J. Faber, P. Lucas, X. H. Zhang, J. Lucas, and B. Bureau, “Telluride glass step index fiber for the far infrared,” J. Lightwave Technol. 28, 3358–3363 (2010).

G. Delaizir, J. C. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibres,” J. Phys. D 42, 095405 (2009).

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847–1852 (2006).
[Crossref]

V. S. Shiryaev, C. Boussard-Pledel, P. Houizot, T. Jouan, J. L. Adam, and J. Lucas, “Single-mode infrared fibers based on Te-As-Se glass system,” Mat. Sci. Eng. B 127, 138–143 (2006).

Boussard-Plédel, C.

S. Maurugeon, B. Bureau, C. Boussard-Plédel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33, 660–663 (2011).

M.-L. Anne, C. Le Lan, V. Monbet, C. Boussard-Plédel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, and J. L. Adam, “Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans,” J. Biomed. Opt. 14, 054033 (2009).
[Crossref]

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, C. Boussard-Plédel, V. Nazabal, N. Thibaud, and K. Le Pierres, “CO2 detection using microstructured chalcogenide fibers,” Sens. Lett. 7, 745–749 (2009).

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529–12538 (2007).
[Crossref]

P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
[Crossref]

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[Crossref]

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Solids 326–327, 430–433 (2003).
[Crossref]

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc 32, 23–32 (2003).

K. Michel, B. Bureau, C. Pouvreau, J. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, and H. Steinner, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids 326, 434–438 (2003).
[Crossref]

D. Le Coq, C. Boussard-Plédel, G. Fonteneau, T. Pain, B. Bureau, and J. Adam, “Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor,” Mater. Res. Bull. 38, 1745–1754 (2003).
[Crossref]

S. Hocdé, C. Boussard-Plédel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
[Crossref]

Bouznik, V. M.

P. P. Fedorov, R. M. Zakalyukin, L. N. Ignat’eva, and V. M. Bouznik, “Fluoroindate glasses,” Russ. Chem. Rev. 69, 705–716 (2000).

Bowden, B. F.

B. F. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66–72 (2005).

Bowers, K. A.

J. Ren, K. A. Bowers, B. Sneed, F. E. Reed, J. W. Cook, and J. F. Schetzina, “Blue (ZnSe) and green (ZnSe0.9Te0.1) light emitting diodes,” J. Cryst. Growth 111, 829–832 (1991).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Brady, D.

Y. West, T. Schweizer, D. Brady, and D. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
[Crossref]

J. Wang, J. R. Hector, D. Brady, D. Hewak, B. Brocklesby, M. Kluth, R. Moore, and D. N. Payne, “Halide-modified Ga–La sulfide glasses with improved fiber-drawing and optical properties for Pr3+-doped fiber amplifiers at 1.3  μm,” Appl. Phys. Lett. 71, 1753–1755 (1997).
[Crossref]

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
[Crossref]

Brambilla, G.

Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, “Bend sensors based on periodically tapered soft glass fibers,” Proc. SPIE 7753, 77534J (2011).

Brandily, M.-L.

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).

Brandon Shaw, L.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based Mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009).
[Crossref]

Brilland, L.

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 3282–3291 (2015).
[Crossref]

I. Kubat, C. Rosenberg Petersen, U. V. Møller, A. Seddon, T. Benson, L. Brilland, D. Méchin, P. M. Moselund, and O. Bang, “Thulium pumped mid-infrared 0.9–9  μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers,” Opt. Express 22, 3959–3967 (2014).
[Crossref]

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, W. H. Loh, L. Calvez, X. Zhang, and L. Brilland, “Halo-tellurite glass fiber with low OH content for 2–5  μm mid-infrared nonlinear applications,” Opt. Express 21, 18949–18954 (2013).
[Crossref]

P. Toupin, L. Brilland, J. Trolès, and J.-L. Adam, “Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses,” Opt. Mater. Express 2, 1359–1366 (2012).
[Crossref]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2  μm,” Opt. Lett. 36, 2859–2861 (2011).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Mechin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Troles, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
[Crossref]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32, 1532–1539 (2010).

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, C. Boussard-Plédel, V. Nazabal, N. Thibaud, and K. Le Pierres, “CO2 detection using microstructured chalcogenide fibers,” Sens. Lett. 7, 745–749 (2009).

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, and J.-L. Adam, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28, 11–26 (2009).
[Crossref]

Brocklesby, B.

J. Wang, J. R. Hector, D. Brady, D. Hewak, B. Brocklesby, M. Kluth, R. Moore, and D. N. Payne, “Halide-modified Ga–La sulfide glasses with improved fiber-drawing and optical properties for Pr3+-doped fiber amplifiers at 1.3  μm,” Appl. Phys. Lett. 71, 1753–1755 (1997).
[Crossref]

Brocklesby, W. S.

T. Schweizer, F. Goutaland, E. Martins, D. W. Hewak, and W. S. Brocklesby, “Site-selective spectroscopy in dysprosium-doped chalcogenide glasses for 1.3-μm optical-fiber amplifiers,” J. Opt. Soc. Am. B 18, 1436–1442 (2001).
[Crossref]

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[Crossref]

J. R. Hector, D. W. Hewak, J. Wang, R. C. Moore, and W. S. Brocklesby, “Quantum-efficiency measurements in oxygen-containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photon. Technol. Lett. 9, 443–445 (1997).
[Crossref]

H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997).
[Crossref]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384 (1996).
[Crossref]

Brown, C.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177 (2010).
[Crossref]

F. Fusari, S. Vetter, A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. Dawson, W. Sibbett, and C. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2  μm pumped by a 1211  nm semiconductor disk laser,” Opt. Mater. 32, 1007–1010 (2010).

Brown, C. T. A.

Bulgakova, N. M.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref]

Burbank, K.

P. Bhardwaj, O. Gregory, C. Morrow, G. Gu, and K. Burbank, “Performance of a dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

Bureau, B.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, and V. Monbet, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

C. Conseil, V. S. Shiryaev, S. Cui, C. Boussard-Pledel, J. Troles, A. P. Velmuzhov, A. M. Potapov, A. I. Suchkov, M. F. Churbanov, and B. Bureau, “Preparation of high purity Te-rich Ge-Te-Se fibers for 5–15  μm infrared range,” J. Lightwave Technol. 31, 1703–1707 (2013).
[Crossref]

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).

S. Maurugeon, B. Bureau, C. Boussard-Plédel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33, 660–663 (2011).

S. Maurugeon, C. Boussard-Pledel, J. Troles, A. J. Faber, P. Lucas, X. H. Zhang, J. Lucas, and B. Bureau, “Telluride glass step index fiber for the far infrared,” J. Lightwave Technol. 28, 3358–3363 (2010).

G. Delaizir, J. C. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibres,” J. Phys. D 42, 095405 (2009).

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529–12538 (2007).
[Crossref]

P. Lucas, M. R. Riley, C. Boussard-Plédel, and B. Bureau, “Advances in chalcogenide fiber evanescent wave biochemical sensing,” Anal. Biochem. 351, 1–10 (2006).
[Crossref]

S. Hocde, O. Lore, O. Sire, C. Boussard-Ple, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc 32, 23–32 (2003).

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Solids 326–327, 430–433 (2003).
[Crossref]

K. Michel, B. Bureau, C. Pouvreau, J. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, and H. Steinner, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids 326, 434–438 (2003).
[Crossref]

D. Le Coq, C. Boussard-Plédel, G. Fonteneau, T. Pain, B. Bureau, and J. Adam, “Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor,” Mater. Res. Bull. 38, 1745–1754 (2003).
[Crossref]

Burka, L.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16, 399–408 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III–V semiconductor core optical fiber,” Opt. Express 18, 4972–4979 (2010).
[Crossref]

Bushong, E. J.

Busse, L.

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).

J. Sanghera, I. Aggarwal, L. Shaw, L. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

J. Sanghera, L. Shaw, L. Busse, V. Nguyen, P. Pureza, B. Cole, B. Harrison, I. Aggarwal, R. Mossadegh, and F. Kung, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[Crossref]

L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Chalcogenide fibers enable delivery of mid-infrared laser radiation,” Laser Focus World 32, 143–150 (1996).

J. Sanghera, L. Busse, and I. Aggarwal, “Effect of scattering centers on the optical loss of As2S3 glass fibers in the infrared,” J. Appl. Phys. 75, 4885–4891 (1994).
[Crossref]

J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, and G. Chin, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Busse, L. E.

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).

Butvina, A.

L. Butvina, A. Butvina, E. Dianov, N. Lichkova, and V. Zagorodnev, “New mid-infrared extruded single and multi component metal halides crystalline fibers,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper ITh1B.4.

Butvina, L.

L. Butvina, A. Butvina, E. Dianov, N. Lichkova, and V. Zagorodnev, “New mid-infrared extruded single and multi component metal halides crystalline fibers,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper ITh1B.4.

Byer, R. L.

Byrappa, K.

G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, Springer Handbook of Crystal Growth (Springer, 2010).

Byrnes, A.

Byrnes, J. S.

J. S. Byrnes, Unexploded Ordnance Detection and Mitigation (Springer, 2009).

Cadier, B.

C. Kneis, B. Donelan, A. Berrou, I. Manek-Hönninger, B. Cadier, T. Robin, M. Poulain, F. Joulain, M. Eichhorn, and C. Kieleck, “4.5  W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser,” Proc. SPIE 9342, 93420B (2015).

Caillaud, C.

Calvez, L.

Calvez, S.

F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2  μm glass lasers,” Opt. Express 18, 22090–22098 (2010).
[Crossref]

F. Fusari, S. Vetter, A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. Dawson, W. Sibbett, and C. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2  μm pumped by a 1211  nm semiconductor disk laser,” Opt. Mater. 32, 1007–1010 (2010).

Camilo, G. M.

G. M. Camilo, “Mechanical properties of chalcogenide glasses: a review,” Proc. SPIE 4940, 222–229 (2003).

Cammack, D. A.

K. Shahzad, D. J. Olego, and D. A. Cammack, “Optical transitions in ultra-high-purity zinc selenide,” Phys. Rev. B 39, 13016 (1989).

Camy, P.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Canat, G.

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2  μm,” Opt. Lett. 36, 2859–2861 (2011).
[Crossref]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).

Canciamilla, A.

Cao, F. Z.

F. Z. Cao, P. Q. Zhang, S. X. Dai, X. S. Wang, T. F. Xu, and Q. H. Nie, “Mid-infrared second-harmonic generation in chalcogenide photonic crystal fiber,” Opt. Commun. 335, 257–261 (2015).
[Crossref]

Cao, Z.

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

Capasso, F.

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49, 111102 (2010).
[Crossref]

Carlie, N.

Caron, N.

Carter, S.

P. France, S. Carter, M. Moore, and C. Day, “Progress in fluoride fibres for optical communications,” British Telecommun. Technol. J. 5, 28–44 (1987).

Carter, S. F.

S. F. Carter, J. R. Williams, M. W. Moore, D. Szebesta, and S. T. Davey, “Prospects for ultra-low-loss fluoride fibres at BTRL,” J. Non-Cryst. Solids 140, 153–158 (1992).
[Crossref]

Carvalho, D. O.

D. O. Carvalho and M. I. Alayo, “a-SiC:H anti-resonant layer ARROW waveguides,” J. Opt. A Pure Appl. Opt. 10, 104002 (2008).
[Crossref]

Chahal, R.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, and V. Monbet, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

Chakrabarti, R.

J. J. Kaufman, R. Ottman, G. Tao, S. Shabahang, E.-H. Banaei, X. Liang, S. G. Johnson, Y. Fink, R. Chakrabarti, and A. F. Abouraddy, “In-fiber production of polymeric particles for biosensing and encapsulation,” Proc. Natl. Acad. Sci. USA 110, 15549–15554 (2013).

Chang, H.-C.

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[Crossref]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Chang, W.

Charpentier, F.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, C. Boussard-Plédel, V. Nazabal, N. Thibaud, and K. Le Pierres, “CO2 detection using microstructured chalcogenide fibers,” Sens. Lett. 7, 745–749 (2009).

Charrier, J.

J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B 173, 468–476 (2012).

Chartier, T.

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Mechin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Troles, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
[Crossref]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, and J.-L. Adam, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28, 11–26 (2009).
[Crossref]

Chaudhari, C.

Chaudhuri, S.

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II–VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2013).
[Crossref]

Chavez-Pirson, A.

R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm,” Proc. SPIE 8898, 889808 (2013).

Chen, C.

W. Xu, J. Ren, Z. Zhang, G. Chen, D. Kong, C. Gu, C. Chen, and L. Kong, “Enhanced photoluminescence of Eu2+-Pr3+ ions in Ga2S3 nanocrystals embedded chalcohalide glasses ceramics,” J. Non-Cryst. Solids 381, 65–67 (2013).
[Crossref]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039 (1999).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Chen, D.

Chen, F.

Chen, G.

W. Xu, J. Ren, Z. Zhang, G. Chen, D. Kong, C. Gu, C. Chen, and L. Kong, “Enhanced photoluminescence of Eu2+-Pr3+ ions in Ga2S3 nanocrystals embedded chalcohalide glasses ceramics,” J. Non-Cryst. Solids 381, 65–67 (2013).
[Crossref]

Y. Xu, D. Chen, W. Wang, Q. Zhang, H. Zeng, C. Shen, and G. Chen, “Broadband near-infrared emission in Er3+-Tm3+ codoped chalcohalide glasses,” Opt. Lett. 33, 2293–2295 (2008).
[Crossref]

Chen, H.

J. F. Li, Y. Chen, M. Chen, H. Chen, X. B. Jin, Y. Yang, Z. Y. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).
[Crossref]

Chen, H.-W.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Chen, L.-Y.

Chen, M.

J. F. Li, Y. Chen, M. Chen, H. Chen, X. B. Jin, Y. Yang, Z. Y. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).
[Crossref]

Chen, Q.

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonics application,” J. Non-Cryst. Solids 355, 447–452 (2009).
[Crossref]

Chen, S.

Y. Shen, L. Tong, and S. Chen, “Performance stability of the sapphire fiber and cladding under high temperature,” Proc. SPIE 3852, 134 (1999).

Chen, Y.

J. F. Li, Y. Chen, M. Chen, H. Chen, X. B. Jin, Y. Yang, Z. Y. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).
[Crossref]

Chen, Z.

Cheng, C.

M. Zhu, X. Wang, Z. Pan, C. Cheng, Q. Zhu, C. Jiang, Q. Nie, P. Zhang, Y. Wu, and S. Dai, “Fabrication of an IR hollow-core Bragg fiber based on chalcogenide glass extrusion,” Appl. Phys. A, doi: 10.1007/s00339-015-9017-3 (to be published).

Cheng, H.

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-green laser diodes,” Appl. Phys. Lett. 59, 1272–1274 (1991).
[Crossref]

Cheng, H. Y.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref]

Cheng, L. K.

Cheng, T.

Cheng, T. L.

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116, 847–853 (2014).
[Crossref]

W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

Cherukulappurath, S.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242, 313–319 (2004).
[Crossref]

Chiaruttini, I.

I. Chiaruttini, G. Fonteneau, X. Zhang, and J. Lucas, “Characteristics of tellurium-bromide-based glass for IR fibers optics,” J. Non-Cryst. Solids 111, 77–81 (1989).
[Crossref]

Chilyasov, A.

M. Churbanov, A. Moiseev, A. Chilyasov, V. Dorofeev, I. Kraev, M. Lipatova, T. Kotereva, E. Dianov, V. Plotnichenko, and E. Kryukova, “Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. Mater. 9, 3229–3234 (2007).

Chilyasov, A. V.

V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
[Crossref]

A. N. Moiseev, V. V. Dorofeev, A. V. Chilyasov, I. A. Kraev, M. F. Churbanov, T. V. Kotereva, V. G. Pimenov, G. E. Snopatin, A. A. Pushkin, V. V. Gerasimenko, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses,” Opt. Mater. 33, 1858–1861 (2011).

Chin, G.

J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, and G. Chin, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Chin, G. D.

Choi, D.-Y.

Choi, Y. G.

Y. G. Choi, “Enhancing emission properties of rare earth ions in chalcogenide glass via minute compositional adjustments,” J. Nonlinear Opt. Phys. Mater. 19, 663–671 (2010).
[Crossref]

Y. G. Choi and J. H. Song, “Local structural environment and intra-4f transition of rare-earth ion in chalcogenide glass: comparison between Dy-doped Ge-As-S and Ge-Ga-S glasses,” J. Non-Cryst. Solids 355, 2396–2399 (2009).
[Crossref]

Churbanov, M.

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[Crossref]

V. Shiryaev, J. Troles, P. Houizot, L. Ketkova, M. Churbanov, J.-L. Adam, and A. Sibirkin, “Preparation of optical fibers based on Ge–Sb–S glass system,” Opt. Mater. 32, 362–367 (2009).

V. Shiryaev, L. Ketkova, M. Churbanov, A. Potapov, J. Troles, P. Houizot, J.-L. Adam, and A. Sibirkin, “Heterophase inclusions and dissolved impurities in Ge25Sb10S65 glass,” J. Non-Cryst. Solids 355, 2640–2646 (2009).
[Crossref]

M. Churbanov, V. Shiryaev, A. Suchkov, A. Pushkin, V. Gerasimenko, R. Shaposhnikov, E. Dianov, V. Plotnichenko, V. Koltashev, and Y. N. Pyrkov, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43, 441–447 (2007).
[Crossref]

M. Churbanov, A. Moiseev, A. Chilyasov, V. Dorofeev, I. Kraev, M. Lipatova, T. Kotereva, E. Dianov, V. Plotnichenko, and E. Kryukova, “Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. Mater. 9, 3229–3234 (2007).

M. Churbanov, I. Scripachev, G. Snopatin, V. Shiryaev, and V. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–350 (2001).

M. Churbanov, V. Shiryaev, I. Scripachev, G. Snopatin, V. Gerasimenko, S. Smetanin, I. Fadin, and V. Plotnichenko, “Optical fibers based on As–S–Se glass system,” J. Non-Cryst. Solids 284, 146–152 (2001).
[Crossref]

M. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

M. Churbanov, “Recent advances in preparation of high-purity chalcogenide glasses in the USSR,” J. Non-Cryst. Solids 140, 324–330 (1992).
[Crossref]

E. Dianov, V. Plotnichenko, G. Devyatykh, M. Churbanov, and I. Scripachev, “Middle-infrared chalcogenide glass fibers with losses lower than 100  db km−1,” Infrared Phys. 29, 303–307 (1989).
[Crossref]

M. Vlasov, G. Devyatykh, E. M. Dianov, V. Plotnichenko, I. Skripachev, V. Sysoev, and M. Churbanov, “Glassy As2Se3 with optical absorption of 60  dB/km,” Quantum Electron. 12, 932–933 (1982).

Churbanov, M. F.

C. Conseil, V. S. Shiryaev, S. Cui, C. Boussard-Pledel, J. Troles, A. P. Velmuzhov, A. M. Potapov, A. I. Suchkov, M. F. Churbanov, and B. Bureau, “Preparation of high purity Te-rich Ge-Te-Se fibers for 5–15  μm infrared range,” J. Lightwave Technol. 31, 1703–1707 (2013).
[Crossref]

E. V. Karaksina, L. A. Ketkova, M. F. Churbanov, and E. M. Dianov, “Preparation of mid-IR-active As2S3/ZnS(ZnSe):Cr2+ composites,” Inorg. Mater. 49, 223–229 (2013).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
[Crossref]

A. N. Moiseev, V. V. Dorofeev, A. V. Chilyasov, I. A. Kraev, M. F. Churbanov, T. V. Kotereva, V. G. Pimenov, G. E. Snopatin, A. A. Pushkin, V. V. Gerasimenko, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses,” Opt. Mater. 33, 1858–1861 (2011).

V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, and M. F. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336, 113–119 (2004).
[Crossref]

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, A. Pushkin, Y. N. Pyrkov, I. Skripachev, G. Snopatin, M. F. Churbanov, and V. Shiryaev, “Low-loss infrared arsenic-chalcogenide glass optical fibers,” Proc. SPIE 4083, 229–237 (2000).

A. Vasilyev, G. G. Devyatykh, E. M. Dianov, A. N. Gur’yanov, A. Y. Laptev, V. G. e. Plotnichenko, Y. N. Pyrkov, G. E. Snopatin, I. V. Skripachev, and M. F. Churbanov, “Two-layer chalcogenide-glass optical fibers with optical losses below 30  dB/km,” Quantum Electron. 23, 89–90 (1993).
[Crossref]

Cimpoesu, N.

O. G. Pompilian, G. Dascalu, I. Mihaila, S. Gurlui, M. Olivier, P. Nemec, V. Nazabal, N. Cimpoesu, and C. Focsa, “Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films,” Appl. Phys. A 117, 197–205 (2014).
[Crossref]

Cole, B.

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active mid-IR applications,” J. Mater. Sci. Lett. 20, 465–467 (2001).
[Crossref]

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001).
[Crossref]

J. Sanghera, L. Shaw, L. Busse, V. Nguyen, P. Pureza, B. Cole, B. Harrison, I. Aggarwal, R. Mossadegh, and F. Kung, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR,” J. Non-Cryst. Solids 256–257, 253–259 (1999).
[Crossref]

D. T. Schaafsma, L. B. Shaw, B. Cole, J. S. Sanghera, and D. Aggarwal, “Modeling of Dy3+-doped GeAsSe glass 1.3-μm optical fiber amplifiers,” IEEE Photon. Technol. Lett. 10, 1548–1550 (1998).
[Crossref]

Cole, B. J.

Conseil, C.

Cook, J. W.

J. Ren, K. A. Bowers, B. Sneed, F. E. Reed, J. W. Cook, and J. F. Schetzina, “Blue (ZnSe) and green (ZnSe0.9Te0.1) light emitting diodes,” J. Cryst. Growth 111, 829–832 (1991).
[Crossref]

Cordeiro, C. M. B.

Coulombier, Q.

N. Granzow, M. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. Lee, and M. Fermann, “Mid-infrared supercontinuum generation in As2S3-silica ‘nano-spike’ step-index waveguide,” Opt. Express 21, 10969–10977 (2013).
[Crossref]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2  μm,” Opt. Lett. 36, 2859–2861 (2011).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Mechin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Troles, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
[Crossref]

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32, 1532–1539 (2010).

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, C. Boussard-Plédel, V. Nazabal, N. Thibaud, and K. Le Pierres, “CO2 detection using microstructured chalcogenide fibers,” Sens. Lett. 7, 745–749 (2009).

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, and J.-L. Adam, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28, 11–26 (2009).
[Crossref]

Couny, F.

Cronin-Golomb, M.

Cui, S.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne, V. Nazabal, O. Sire, O. Loréal, P. Lucas, and V. Monbet, “Chalcogenide optical fibers for mid-infrared sensing,” Opt. Eng. 53, 027101 (2014).
[Crossref]

C. Conseil, V. S. Shiryaev, S. Cui, C. Boussard-Pledel, J. Troles, A. P. Velmuzhov, A. M. Potapov, A. I. Suchkov, M. F. Churbanov, and B. Bureau, “Preparation of high purity Te-rich Ge-Te-Se fibers for 5–15  μm infrared range,” J. Lightwave Technol. 31, 1703–1707 (2013).
[Crossref]

Curry, R. J.

R. J. Curry, A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88, 2451–2455 (2005).
[Crossref]

Cutrera, J. L.

B. F. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66–72 (2005).

Da, N.

Dai, S.

P. Yang, P. Zhang, S. Dai, Y. Wu, X. Wang, G. Tao, and Q. Nie, “Tapered chalcogenide–tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation,” J. Mod. Opt. 62, 729–737 (2015).
[Crossref]

S. Dai, F. Chen, Y. Xu, Z. Xu, X. Shen, T. Xu, R. Wang, and W. Ji, “Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system,” Opt. Express 23, 1300–1307 (2015).
[Crossref]

G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4, 2143–2149 (2014).
[Crossref]

M. Zhu, X. Wang, Z. Pan, C. Cheng, Q. Zhu, C. Jiang, Q. Nie, P. Zhang, Y. Wu, and S. Dai, “Fabrication of an IR hollow-core Bragg fiber based on chalcogenide glass extrusion,” Appl. Phys. A, doi: 10.1007/s00339-015-9017-3 (to be published).

Dai, S. X.

F. Z. Cao, P. Q. Zhang, S. X. Dai, X. S. Wang, T. F. Xu, and Q. H. Nie, “Mid-infrared second-harmonic generation in chalcogenide photonic crystal fiber,” Opt. Commun. 335, 257–261 (2015).
[Crossref]

H. J. Xu, Y. J. He, X. S. Wang, Q. H. Nie, P. Q. Zhang, T. F. Xu, S. X. Dai, X. H. Zhang, and G. M. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65, 77–82 (2014).
[Crossref]

Dai, S.-X.

Dai, Z. Y.

J. F. Li, Y. Chen, M. Chen, H. Chen, X. B. Jin, Y. Yang, Z. Y. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).
[Crossref]

Daigle, J.-F.

Danto, S.

S. Danto, M. Dubernet, B. Giroire, J. D. Musgraves, P. Wachtel, T. Hawkins, J. Ballato, and K. Richardson, “Correlation between native As2Se3 preform purity and glass optical fiber mechanical strength,” Mater. Res. Bull. 49, 250–258 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

D. Thompson, S. Danto, J. Musgraves, P. Wachtel, B. Giroire, and K. Richardson, “Microwave assisted synthesis of high purity As2Se3 chalcogenide glasses,” Phys. Chem. Glasses B 54, 27–34 (2013).

N. D. Orf, O. Shapira, F. Sorin, S. Danto, M. A. Baldo, J. D. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. USA 108, 4743–4747 (2011).

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[Crossref]

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22, 4162–4166 (2010).
[Crossref]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847–1852 (2006).
[Crossref]

Dascalu, G.

O. G. Pompilian, G. Dascalu, I. Mihaila, S. Gurlui, M. Olivier, P. Nemec, V. Nazabal, N. Cimpoesu, and C. Focsa, “Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films,” Appl. Phys. A 117, 197–205 (2014).
[Crossref]

Dasgupta, S.

Davey, S. T.

S. F. Carter, J. R. Williams, M. W. Moore, D. Szebesta, and S. T. Davey, “Prospects for ultra-low-loss fluoride fibres at BTRL,” J. Non-Cryst. Solids 140, 153–158 (1992).
[Crossref]

Daw, M.

Dawson, M.

F. Fusari, S. Vetter, A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. Dawson, W. Sibbett, and C. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2  μm pumped by a 1211  nm semiconductor disk laser,” Opt. Mater. 32, 1007–1010 (2010).

Dawson, M. D.

Day, C.

P. France, S. Carter, M. Moore, and C. Day, “Progress in fluoride fibres for optical communications,” British Telecommun. Technol. J. 5, 28–44 (1987).

Day, T. D.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref]

R. He, T. D. Day, M. Krishnamurthi, J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Silicon p-i-n junction fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

de Matos, C. J. S.

de Oliveira, R. E. P.

de Sterke, C.

de Sterke, C. M.

Debbarma, S.

Delaizir, G.

G. Delaizir, J. C. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibres,” J. Phys. D 42, 095405 (2009).

Delfyett, P. J.

Delgado, A.

Deng, D.

T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2  μm,” Opt. Express 23, 4125–4134 (2015).
[Crossref]

T. Cheng, W. Gao, H. Kawashima, D. Deng, M. Liao, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Widely tunable second-harmonic generation in a chalcogenide-tellurite hybrid optical fiber,” Opt. Lett. 39, 2145–2147 (2014).
[Crossref]

T. Cheng, Y. Kanou, D. Deng, X. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe2-As2S5 microstructured optical fiber with a large refractive index difference,” Opt. Express 22, 13322–13329 (2014).
[Crossref]

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref]

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

S. Shabahang, J. Kaufman, D. Deng, and A. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[Crossref]

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[Crossref]

D. Deng, N. Orf, A. Abouraddy, A. Stolyarov, J. Joannopoulos, H. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8, 4265–4269 (2008).

Deng, D. H.

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116, 847–853 (2014).
[Crossref]

W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

Deng, D. S.

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref]

Deng, D. S. S.

J. J. Kaufman, G. M. Tao, S. Shabahang, D. S. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).

DePuydt, J. M.

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-green laser diodes,” Appl. Phys. Lett. 59, 1272–1274 (1991).
[Crossref]

Desevedavy, F.

I. Savelii, F. Desevedavy, J.-C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35, 1595–1599 (2013).

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–399 (2011).
[Crossref]

Désévédavy, F.

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

I. Savelii, J. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, and J. Dudley, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater. 33, 1661–1666 (2011).

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32, 1532–1539 (2010).

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[Crossref]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, and J.-L. Adam, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28, 11–26 (2009).
[Crossref]

Devyatykh, G.

E. Dianov, V. Plotnichenko, G. Devyatykh, M. Churbanov, and I. Scripachev, “Middle-infrared chalcogenide glass fibers with losses lower than 100  db km−1,” Infrared Phys. 29, 303–307 (1989).
[Crossref]

M. Vlasov, G. Devyatykh, E. M. Dianov, V. Plotnichenko, I. Skripachev, V. Sysoev, and M. Churbanov, “Glassy As2Se3 with optical absorption of 60  dB/km,” Quantum Electron. 12, 932–933 (1982).

Devyatykh, G. G.

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, A. Pushkin, Y. N. Pyrkov, I. Skripachev, G. Snopatin, M. F. Churbanov, and V. Shiryaev, “Low-loss infrared arsenic-chalcogenide glass optical fibers,” Proc. SPIE 4083, 229–237 (2000).

A. Vasilyev, G. G. Devyatykh, E. M. Dianov, A. N. Gur’yanov, A. Y. Laptev, V. G. e. Plotnichenko, Y. N. Pyrkov, G. E. Snopatin, I. V. Skripachev, and M. F. Churbanov, “Two-layer chalcogenide-glass optical fibers with optical losses below 30  dB/km,” Quantum Electron. 23, 89–90 (1993).
[Crossref]

Dhanaraj, G.

G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, Springer Handbook of Crystal Growth (Springer, 2010).

Dianov, E.

M. Churbanov, G. Snopatin, V. Shiryaev, V. Plotnichenko, and E. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357, 2352–2357 (2011).
[Crossref]

M. Churbanov, A. Moiseev, A. Chilyasov, V. Dorofeev, I. Kraev, M. Lipatova, T. Kotereva, E. Dianov, V. Plotnichenko, and E. Kryukova, “Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. Mater. 9, 3229–3234 (2007).

M. Churbanov, V. Shiryaev, A. Suchkov, A. Pushkin, V. Gerasimenko, R. Shaposhnikov, E. Dianov, V. Plotnichenko, V. Koltashev, and Y. N. Pyrkov, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43, 441–447 (2007).
[Crossref]

E. Dianov, V. Plotnichenko, G. Devyatykh, M. Churbanov, and I. Scripachev, “Middle-infrared chalcogenide glass fibers with losses lower than 100  db km−1,” Infrared Phys. 29, 303–307 (1989).
[Crossref]

L. Butvina, A. Butvina, E. Dianov, N. Lichkova, and V. Zagorodnev, “New mid-infrared extruded single and multi component metal halides crystalline fibers,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper ITh1B.4.

Dianov, E. M.

E. V. Karaksina, L. A. Ketkova, M. F. Churbanov, and E. M. Dianov, “Preparation of mid-IR-active As2S3/ZnS(ZnSe):Cr2+ composites,” Inorg. Mater. 49, 223–229 (2013).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3  μm,” Opt. Express 20, 24218–24225 (2012).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5  μm,” Opt. Express 19, 1441–1448 (2011).
[Crossref]

V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
[Crossref]

A. N. Moiseev, V. V. Dorofeev, A. V. Chilyasov, I. A. Kraev, M. F. Churbanov, T. V. Kotereva, V. G. Pimenov, G. E. Snopatin, A. A. Pushkin, V. V. Gerasimenko, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses,” Opt. Mater. 33, 1858–1861 (2011).

G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, A. Pushkin, Y. N. Pyrkov, I. Skripachev, G. Snopatin, M. F. Churbanov, and V. Shiryaev, “Low-loss infrared arsenic-chalcogenide glass optical fibers,” Proc. SPIE 4083, 229–237 (2000).

A. Vasilyev, G. G. Devyatykh, E. M. Dianov, A. N. Gur’yanov, A. Y. Laptev, V. G. e. Plotnichenko, Y. N. Pyrkov, G. E. Snopatin, I. V. Skripachev, and M. F. Churbanov, “Two-layer chalcogenide-glass optical fibers with optical losses below 30  dB/km,” Quantum Electron. 23, 89–90 (1993).
[Crossref]

M. Vlasov, G. Devyatykh, E. M. Dianov, V. Plotnichenko, I. Skripachev, V. Sysoev, and M. Churbanov, “Glassy As2Se3 with optical absorption of 60  dB/km,” Quantum Electron. 12, 932–933 (1982).

Diddams, S. A.

Ding, M.

Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, “Bend sensors based on periodically tapered soft glass fibers,” Proc. SPIE 7753, 77534J (2011).

Dobrovinskaya, E. R.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer, 2009).

Docherty, A.

Domachuk, P.

Dominguez, C.

V. Balan, C. Vigreux, A. Pradel, A. Llobera, C. Dominguez, M. Alonso, and M. Garriga, “Chalcogenide glass-based rib ARROW waveguide,” J. Non-Cryst. Solids 326, 455–459 (2003).
[Crossref]

Domínguez, C.

I. Garcés, F. Villuendas, J. A. Valles, C. Domínguez, and M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
[Crossref]

Donelan, B.

C. Kneis, B. Donelan, A. Berrou, I. Manek-Hönninger, B. Cadier, T. Robin, M. Poulain, F. Joulain, M. Eichhorn, and C. Kieleck, “4.5  W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser,” Proc. SPIE 9342, 93420B (2015).

Dong, J.

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

Dorofeev, V.

M. Churbanov, A. Moiseev, A. Chilyasov, V. Dorofeev, I. Kraev, M. Lipatova, T. Kotereva, E. Dianov, V. Plotnichenko, and E. Kryukova, “Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. Mater. 9, 3229–3234 (2007).

Dorofeev, V. V.

V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
[Crossref]

A. N. Moiseev, V. V. Dorofeev, A. V. Chilyasov, I. A. Kraev, M. F. Churbanov, T. V. Kotereva, V. G. Pimenov, G. E. Snopatin, A. A. Pushkin, V. V. Gerasimenko, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses,” Opt. Mater. 33, 1858–1861 (2011).

Doualan, J. L.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Doualan, J.-L.

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).

Dragic, P.

J. Ballato and P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 629–635 (2012).
[Crossref]

Duan, Z.

Duan, Z. C.

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116, 847–853 (2014).
[Crossref]

W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

Dubernet, M.

S. Danto, M. Dubernet, B. Giroire, J. D. Musgraves, P. Wachtel, T. Hawkins, J. Ballato, and K. Richardson, “Correlation between native As2Se3 preform purity and glass optical fiber mechanical strength,” Mater. Res. Bull. 49, 250–258 (2014).
[Crossref]

Dubois, C.

Dudley, J.

I. Savelii, J. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, and J. Dudley, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater. 33, 1661–1666 (2011).

Dudley, M.

G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley, Springer Handbook of Crystal Growth (Springer, 2010).

Duguay, M.

M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2=-i multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Duhant, M.

Dunn, S. C.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012).
[Crossref]

Eason, R. W.

R. J. Curry, A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88, 2451–2455 (2005).
[Crossref]

Ebendorff-Heidepriem, H.

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4, 29–40 (2014).
[Crossref]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express 3, 318–328 (2013).
[Crossref]

H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V., T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications,” Opt. Mater. Express 3, 1488–1503 (2013).
[Crossref]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express 3, 1285–1301 (2013).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9  μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38, 2588–2591 (2013).
[Crossref]

H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2, 432–442 (2012).
[Crossref]

S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Ternary tellurite glasses for the fabrication of nonlinear optical fibres,” Opt. Mater. Express 2, 140–152 (2012).
[Crossref]

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett. 24, 578–580 (2012).
[Crossref]

M. R. Oermann, H. Ebendorff-Heidepriem, Y. Li, T.-C. Foo, and T. M. Monro, “Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass,” Opt. Express 17, 15578–15584 (2009).
[Crossref]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17, 2646–2657 (2009).
[Crossref]

H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett. 33, 2861–2863 (2008).
[Crossref]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
[Crossref]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[Crossref]

Ebnali-Heidari, M.

Efimov, A.

Eggleton, B.

Eggleton, B. J.

Eichhorn, M.

C. Kneis, B. Donelan, A. Berrou, I. Manek-Hönninger, B. Cadier, T. Robin, M. Poulain, F. Joulain, M. Eichhorn, and C. Kieleck, “4.5  W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser,” Proc. SPIE 9342, 93420B (2015).

Eitenberger, E.

El Amraoui, M.

El-Amraoui, M.

M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77  μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39, 2052–2055 (2014).
[Crossref]

M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38, 127–129 (2013).
[Crossref]

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–399 (2011).
[Crossref]

I. Savelii, J. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, and J. Dudley, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater. 33, 1661–1666 (2011).

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[Crossref]

Elliott, S. R.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer, 2007).

Ellison, M.

Emslie, C.

C. Emslie, “Polymer optical fibres,” J. Mater. Sci. 23, 2281–2293 (1988).
[Crossref]

Engeness, T.

Engeness, T. D.

M. Ibanescu, S. G. Johnson, M. Soljačić, J. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, “Analysis of mode structure in hollow dielectric waveguide fibers,” Phys. Rev. E 67, 046608 (2003).
[Crossref]

Ensley, T. R.

Ephrat, P.

Epple, P.

Euser, T. G.

X. Jiang, F. Babic, T. G. Euser, T. Weiss, A. Abdolvand, M. Finger, N. Joly, M. H. Frosz, and P. S. Russell, “Recent advances in soft-glass photonic crystal fibres,” in Workshop on Specialty Optical Fibers and their Applications (Optical Society of America, 2013), paper W2.4.

Ewing, K.

J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.

Faber, A.

S. Maurugeon, B. Bureau, C. Boussard-Plédel, A. Faber, P. Lucas, X. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater. 33, 660–663 (2011).

Faber, A. J.

Fadin, I.

M. Churbanov, V. Shiryaev, I. Scripachev, G. Snopatin, V. Gerasimenko, S. Smetanin, I. Fadin, and V. Plotnichenko, “Optical fibers based on As–S–Se glass system,” J. Non-Cryst. Solids 284, 146–152 (2001).
[Crossref]

Fair, G. E.

H. J. Kim, G. E. Fair, S. A. Potticary, M. J. O’Malley, and N. G. Usechak, “Processing and characterization of polycrystalline YAG (yttrium aluminum garnet) core-clad fibers,” Proc. SPIE 9081, 908103 (2014).

Fan, B.

Fan, J.

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, J. Ballato, and R. Rice, “Reactive in-situ processing of silicon optical fiber,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper STu3F.4.

Fan, S.

Fatome, J.

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref]

I. Savelii, F. Desevedavy, J.-C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35, 1595–1599 (2013).

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

I. Savelii, J. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, and J. Dudley, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater. 33, 1661–1666 (2011).

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–399 (2011).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[Crossref]

Fedorov, P. P.

P. P. Fedorov, R. M. Zakalyukin, L. N. Ignat’eva, and V. M. Bouznik, “Fluoroindate glasses,” Russ. Chem. Rev. 69, 705–716 (2000).

Fedorov, V. V.

D. V. Martyshkin, J. T. Goldstein, V. V. Fedorov, and S. B. Mirov, “Crystalline Cr2+:ZnSe/chalcogenide glass composites as active mid-IR materials,” Opt. Lett. 36, 1530–1532 (2011).
[Crossref]

A. Gallian, V. V. Fedorov, J. Kernal, S. B. Mirov, and V. V. Badikov, “Laser oscillation at 2.4  μm from Cr2+ in ZnSe optically pumped over Cr ionization transitions,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 241.

Feng, L.

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[Crossref]

L. Feng, H. Guo, G. Tao, M. Lu, W. Wei, and B. Peng, “Dy3+-doped Ge-In-S-CsI chalcohalide glasses for 1.3  μm optical fiber amplifier,” J. Optoelectron. Adv. Mater. 11, 924–928 (2009).

Feng, M.

Feng, X.

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, W. H. Loh, L. Calvez, X. Zhang, and L. Brilland, “Halo-tellurite glass fiber with low OH content for 2–5  μm mid-infrared nonlinear applications,” Opt. Express 21, 18949–18954 (2013).
[Crossref]

Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, “Bend sensors based on periodically tapered soft glass fibers,” Proc. SPIE 7753, 77534J (2011).

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87, 081110 (2005).
[Crossref]

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281, 48–54 (2001).
[Crossref]

Fermann, M.

Fernandez, T. T.

A. Jha, B. D. O. Richards, G. Jose, T. T. Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57, 357–382 (2012).
[Crossref]

Ferraris, M.

J. Massera, A. Haldeman, D. Milanese, H. Gebavi, M. Ferraris, P. Foy, W. Hawkins, J. Ballato, R. Stolen, and L. Petit, “Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting,” Opt. Mater. 32, 582–588 (2010).

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonics application,” J. Non-Cryst. Solids 355, 447–452 (2009).
[Crossref]

Finazzi, V.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87, 081110 (2005).
[Crossref]

Finger, M.

X. Jiang, F. Babic, T. G. Euser, T. Weiss, A. Abdolvand, M. Finger, N. Joly, M. H. Frosz, and P. S. Russell, “Recent advances in soft-glass photonic crystal fibres,” in Workshop on Specialty Optical Fibers and their Applications (Optical Society of America, 2013), paper W2.4.

Fink, Y.

J. J. Kaufman, R. Ottman, G. Tao, S. Shabahang, E.-H. Banaei, X. Liang, S. G. Johnson, Y. Fink, R. Chakrabarti, and A. F. Abouraddy, “In-fiber production of polymeric particles for biosensing and encapsulation,” Proc. Natl. Acad. Sci. USA 110, 15549–15554 (2013).

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13, 975–979 (2013).

D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira, “Asymmetric wave propagation in planar chiral fibers,” Opt. Express 21, 1465–1472 (2013).
[Crossref]

D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express 20, 6029–6035 (2012).
[Crossref]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref]

N. D. Orf, O. Shapira, F. Sorin, S. Danto, M. A. Baldo, J. D. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. USA 108, 4743–4747 (2011).

J. J. Kaufman, G. M. Tao, S. Shabahang, D. S. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22, 4162–4166 (2010).
[Crossref]

Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express 18, 15697–15703 (2010).
[Crossref]

O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18, 12622–12629 (2010).
[Crossref]

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[Crossref]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).

D. Deng, N. Orf, A. Abouraddy, A. Stolyarov, J. Joannopoulos, H. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8, 4265–4269 (2008).

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94, 143902 (2005).
[Crossref]

K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12, 1510–1517 (2004).
[Crossref]

M. Ibanescu, S. G. Johnson, M. Soljačić, J. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, “Analysis of mode structure in hollow dielectric waveguide fibers,” Phys. Rev. E 67, 046608 (2003).
[Crossref]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039 (1999).
[Crossref]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Finlayson, C. E.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Finsterbusch, K.

Fisher, C. F.

D. C. Tran, C. F. Fisher, and G. H. Sigel, “Fluoride glass preforms prepared by a rotational casting process,” Electron. Lett. 18, 657–658 (1982).
[Crossref]

Fitt, A.

A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[Crossref]

Fitzgibbons, T. C.

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II–VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2013).
[Crossref]

Florea, C.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, and G. Chin, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Florea, C. M.

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).

Focsa, C.

O. G. Pompilian, G. Dascalu, I. Mihaila, S. Gurlui, M. Olivier, P. Nemec, V. Nazabal, N. Cimpoesu, and C. Focsa, “Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films,” Appl. Phys. A 117, 197–205 (2014).
[Crossref]

Fokine, M.

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonics application,” J. Non-Cryst. Solids 355, 447–452 (2009).
[Crossref]

Fonteneau, G.

D. Le Coq, C. Boussard-Plédel, G. Fonteneau, T. Pain, B. Bureau, and J. Adam, “Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor,” Mater. Res. Bull. 38, 1745–1754 (2003).
[Crossref]

S. Hocdé, C. Boussard-Plédel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
[Crossref]

X. Zhang, H. Ma, G. Fonteneau, and J. Lucas, “Improvement of tellurium halide glasses for IR fiber optics,” J. Non-Cryst. Solids 140, 47–51 (1992).
[Crossref]

I. Chiaruttini, G. Fonteneau, X. Zhang, and J. Lucas, “Characteristics of tellurium-bromide-based glass for IR fibers optics,” J. Non-Cryst. Solids 111, 77–81 (1989).
[Crossref]

Foo, T.-C.

Fortier, C.

Fortin, J.

Fortin, V.

Foy, P.

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fibers,” Opt. Mater. Express 2, 1511–1519 (2012).
[Crossref]

S. Morris, T. Hawkins, P. Foy, J. Ballato, S. W. Martin, and R. Rice, “Cladding glass development for semiconductor core optical fibers,” Int. J. Appl. Glass Sci. 3, 144–153 (2012).

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 629–635 (2012).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16, 399–408 (2010).
[Crossref]

J. Massera, A. Haldeman, D. Milanese, H. Gebavi, M. Ferraris, P. Foy, W. Hawkins, J. Ballato, R. Stolen, and L. Petit, “Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting,” Opt. Mater. 32, 582–588 (2010).

J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III–V semiconductor core optical fiber,” Opt. Express 18, 4972–4979 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17, 8029–8035 (2009).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. Rao, and M. Daw, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
[Crossref]

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, J. Ballato, and R. Rice, “Reactive in-situ processing of silicon optical fiber,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper STu3F.4.

Frampton, K.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

France, P.

P. France, S. Carter, M. Moore, and C. Day, “Progress in fluoride fibres for optical communications,” British Telecommun. Technol. J. 5, 28–44 (1987).

France, P. W.

P. W. France, Fluoride Glass Optical Fibres (Blackie, 1990).

Freeman, M. J.

Frerichs, R.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Friedman, E.

J. L. Miller, E. Friedman, and E. Friedman, Photonics Rules of Thumb (McGraw-Hill, 2003).

J. L. Miller, E. Friedman, and E. Friedman, Photonics Rules of Thumb (McGraw-Hill, 2003).

Frosch, T.

Frosz, M. H.

X. Jiang, F. Babic, T. G. Euser, T. Weiss, A. Abdolvand, M. Finger, N. Joly, M. H. Frosz, and P. S. Russell, “Recent advances in soft-glass photonic crystal fibres,” in Workshop on Specialty Optical Fibers and their Applications (Optical Society of America, 2013), paper W2.4.

Frye, R. C.

R. C. Frye and D. Adler, “Field effect in chalcogenide glasses,” Phys. Rev. B 24, 5812 (1981).

Fu, L.

Fuchs, F.

T. Lewi, A. Tsun, A. Katzir, J. Kaster, and F. Fuchs, “Silver halide single mode fibers for broadband middle infrared stellar interferometry,” Appl. Phys. Lett. 94, 261105 (2009).
[Crossref]

Fujimoto, K.

Fujino, S.

S. Fujino and K. Morinaga, “Material dispersion and its compositional parameter of oxide glasses,” J. Non-Cryst. Solids 222, 316–320 (1997).
[Crossref]

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2, 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18, 26704–26719 (2010).
[Crossref]

S. Sujecki, L. Sójka, E. Bereś-Pawlik, Z. Tang, D. Furniss, A. B. Seddon, and T. M. Benson, “Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation,” Opt. Quantum Electron. 42, 69–79 (2010).
[Crossref]

Z. Lian, Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett. 21, 1804–1806 (2009).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354, 3418–3427 (2008).
[Crossref]

M. D. O’Donnell, C. A. Miller, D. Furniss, V. K. Tikhomirov, and A. B. Seddon, “Fluorotellurite glasses with improved mid-infrared transmission,” J. Non-Cryst. Solids 331, 48–57 (2003).
[Crossref]

D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256, 232–236 (1999).
[Crossref]

D. Furniss and A. B. Seddon, “Extrusion of gallium lanthanum sulfide glasses for fiber-optic preforms,” J. Mater. Sci. Lett. 17, 1541–1542 (1998).
[Crossref]

Furusawa, K.

A. Fitt, K. Furusawa, T. Monro, C. Please, and D. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[Crossref]

Fusari, F.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177 (2010).
[Crossref]

F. Fusari, S. Vetter, A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. Dawson, W. Sibbett, and C. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2  μm pumped by a 1211  nm semiconductor disk laser,” Opt. Mater. 32, 1007–1010 (2010).

F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2  μm glass lasers,” Opt. Express 18, 22090–22098 (2010).
[Crossref]

Gadret, G.

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref]

I. Savelii, F. Desevedavy, J.-C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35, 1595–1599 (2013).

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

I. Savelii, J. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, and J. Dudley, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater. 33, 1661–1666 (2011).

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–399 (2011).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).

Gai, X.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Gallian, A.

A. Gallian, V. V. Fedorov, J. Kernal, S. B. Mirov, and V. V. Badikov, “Laser oscillation at 2.4  μm from Cr2+ in ZnSe optically pumped over Cr ionization transitions,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 241.

Gan, F.

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

Gao, W.

Gao, W. Q.

W. Q. Gao, Z. C. Duan, K. Asano, T. L. Cheng, D. H. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B 116, 847–853 (2014).
[Crossref]

W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21, 9573–9583 (2013).
[Crossref]

Garcés, I.

I. Garcés, F. Villuendas, J. A. Valles, C. Domínguez, and M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
[Crossref]

Gardes, F.

G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Garriga, M.

V. Balan, C. Vigreux, A. Pradel, A. Llobera, C. Dominguez, M. Alonso, and M. Garriga, “Chalcogenide glass-based rib ARROW waveguide,” J. Non-Cryst. Solids 326, 455–459 (2003).
[Crossref]

Gattass, R.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, and G. Chin, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.

Gattass, R. R.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[Crossref]

Gavrushchuk, E.

E. Gavrushchuk, “Polycrystalline zinc selenide for IR optical applications,” Inorg. Mater. 39, 883–899 (2003).
[Crossref]

Gebavi, H.

J. Massera, A. Haldeman, D. Milanese, H. Gebavi, M. Ferraris, P. Foy, W. Hawkins, J. Ballato, R. Stolen, and L. Petit, “Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting,” Opt. Mater. 32, 582–588 (2010).

G. Liao, Q. Chen, J. Xing, H. Gebavi, D. Milanese, M. Fokine, and M. Ferraris, “Preparation and characterization of new fluorotellurite glasses for photonics application,” J. Non-Cryst. Solids 355, 447–452 (2009).
[Crossref]

Gentile, A. L.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical-waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28–29 (1978).
[Crossref]

George, A. K.

Gerasimenko, V.

M. Churbanov, V. Shiryaev, A. Suchkov, A. Pushkin, V. Gerasimenko, R. Shaposhnikov, E. Dianov, V. Plotnichenko, V. Koltashev, and Y. N. Pyrkov, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43, 441–447 (2007).
[Crossref]

M. Churbanov, V. Shiryaev, I. Scripachev, G. Snopatin, V. Gerasimenko, S. Smetanin, I. Fadin, and V. Plotnichenko, “Optical fibers based on As–S–Se glass system,” J. Non-Cryst. Solids 284, 146–152 (2001).
[Crossref]

Gerasimenko, V. V.

A. N. Moiseev, V. V. Dorofeev, A. V. Chilyasov, I. A. Kraev, M. F. Churbanov, T. V. Kotereva, V. G. Pimenov, G. E. Snopatin, A. A. Pushkin, V. V. Gerasimenko, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses,” Opt. Mater. 33, 1858–1861 (2011).

Gholipour, B.

J. Orava, A. Greer, B. Gholipour, D. Hewak, and C. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11, 279–283 (2012).
[Crossref]

Gibson, D.

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).

J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, and G. Chin, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Gibson, D. J.

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95, 3895–3900 (2004).
[Crossref]

Gielesen, W. L. M.

Giroire, B.

S. Danto, M. Dubernet, B. Giroire, J. D. Musgraves, P. Wachtel, T. Hawkins, J. Ballato, and K. Richardson, “Correlation between native As2Se3 preform purity and glass optical fiber mechanical strength,” Mater. Res. Bull. 49, 250–258 (2014).
[Crossref]

D. Thompson, S. Danto, J. Musgraves, P. Wachtel, B. Giroire, and K. Richardson, “Microwave assisted synthesis of high purity As2Se3 chalcogenide glasses,” Phys. Chem. Glasses B 54, 27–34 (2013).

Goldberg, M.

Goldstein, J. T.

Gopalan, V.

R. He, T. D. Day, M. Krishnamurthi, J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Silicon p-i-n junction fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Templated chemically deposited semiconductor optical fiber materials,” Annu. Rev. Mater. Res. 43, 527–557 (2013).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref]

Goutaland, F.

Graham-Rowe, D.

D. Graham-Rowe, “Fibres get functional,” Nat. Photonics 5, 66–67 (2011).
[Crossref]

Granzow, N.

Greer, A.

J. Orava, A. Greer, B. Gholipour, D. Hewak, and C. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11, 279–283 (2012).
[Crossref]

Gregory, O.

P. Bhardwaj, O. Gregory, C. Morrow, G. Gu, and K. Burbank, “Performance of a dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

Grena, B. J.-B.

A. Gumennik, L. Wei, G. Lestoquoy, A. M. Stolyarov, X. Jia, P. H. Rekemeyer, M. J. Smith, X. Liang, B. J.-B. Grena, and S. G. Johnson, “Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities,” Nat. Commun. 4, 2216 (2013).
[Crossref]

Grivas, C.

R. J. Curry, A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88, 2451–2455 (2005).
[Crossref]

Gross, S.

Gu, C.

W. Xu, J. Ren, Z. Zhang, G. Chen, D. Kong, C. Gu, C. Chen, and L. Kong, “Enhanced photoluminescence of Eu2+-Pr3+ ions in Ga2S3 nanocrystals embedded chalcohalide glasses ceramics,” J. Non-Cryst. Solids 381, 65–67 (2013).
[Crossref]

Gu, G.

P. Bhardwaj, O. Gregory, C. Morrow, G. Gu, and K. Burbank, “Performance of a dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[Crossref]

Gueguen, Y.

G. Delaizir, J. C. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibres,” J. Phys. D 42, 095405 (2009).

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Guignard, M.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242, 313–319 (2004).
[Crossref]

Guintrand, C.

J. Toulouse, A. Lin, A. Ryaznyanskiy, A. Belwalkar, C. Guintrand, C. Lafontaine, W. Misiolek, and I. Biaggio, “Development of new tellurite fibers for mid-IR applications,” in Winter Topicals (WTM) (IEEE, 2011), pp. 185–186.

Gumennik, A.

A. Gumennik, L. Wei, G. Lestoquoy, A. M. Stolyarov, X. Jia, P. H. Rekemeyer, M. J. Smith, X. Liang, B. J.-B. Grena, and S. G. Johnson, “Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities,” Nat. Commun. 4, 2216 (2013).
[Crossref]

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref]

A. M. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell, F. Sorin, K. Kuriki, G. Benoit, A. Rose, and J. D. Joannopoulos, “Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers,” Opt. Express 20, 12407–12415 (2012).
[Crossref]

Gunasekera, K.

S. Bhosle, K. Gunasekera, P. Boolchand, and M. Micoulaut, “Melt homogenization and self-organization in chalcogenides-part I,” Int. J. Appl. Glass Sci. 3, 189–204 (2012).

Guo, H.

L. Feng, H. Guo, G. Tao, M. Lu, W. Wei, and B. Peng, “Dy3+-doped Ge-In-S-CsI chalcohalide glasses for 1.3  μm optical fiber amplifier,” J. Optoelectron. Adv. Mater. 11, 924–928 (2009).

G. Tao, H. Guo, L. Feng, M. Lu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92, 2226–2229 (2009).
[Crossref]

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express 17, 15350–15358 (2009).
[Crossref]

Guo, N.

Guo, W.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. (to be published).

Guo-Nian, W.

L. Ke-Feng, W. Guo-Nian, H. Li-Li, Z. Jun-Jie, and H. Jun-Jiang, “Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses,” J. Inorg. Mater. 25, 429–434 (2010).

Gupta, J. A.

Gur’yanov, A. N.

A. Vasilyev, G. G. Devyatykh, E. M. Dianov, A. N. Gur’yanov, A. Y. Laptev, V. G. e. Plotnichenko, Y. N. Pyrkov, G. E. Snopatin, I. V. Skripachev, and M. F. Churbanov, “Two-layer chalcogenide-glass optical fibers with optical losses below 30  dB/km,” Quantum Electron. 23, 89–90 (1993).
[Crossref]

Gurlui, S.

O. G. Pompilian, G. Dascalu, I. Mihaila, S. Gurlui, M. Olivier, P. Nemec, V. Nazabal, N. Cimpoesu, and C. Focsa, “Pulsed laser deposition of rare-earth-doped gallium lanthanum sulphide chalcogenide glass thin films,” Appl. Phys. A 117, 197–205 (2014).
[Crossref]

Haan, D. J.

D. J. Haan and J. A. Harrington, “Hollow waveguides for gas sensing and near-IR applications,” Proc. SPIE 3596, 43–49 (1999).

Haase, M. A.

M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, “Blue-green laser diodes,” Appl. Phys. Lett. 59, 1272–1274 (1991).
[Crossref]

Hachiya, K.

K. Hachiya and H. Ohashi, “Annealing process dependence of the photoluminescence in rare-earth-ion-doped chalcogenide glass,” Electrochim. Acta 53, 7–10 (2007).
[Crossref]

Haldeman, A.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94, 130–136 (2011).
[Crossref]

J. Massera, A. Haldeman, D. Milanese, H. Gebavi, M. Ferraris, P. Foy, W. Hawkins, J. Ballato, R. Stolen, and L. Petit, “Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting,” Opt. Mater. 32, 582–588 (2010).

Hall, D. R.

Hanada, T.

X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non-Cryst. Solids 281, 48–54 (2001).
[Crossref]

Hand, D. P.

Hanney, R.

J. A. Medeiros Neto, E. R. Taylor, B. N. Samson, J. Wang, D. W. Hewak, R. I. Laming, D. N. Payne, E. Tarbox, P. D. Maton, G. M. Roba, B. E. Kinsman, and R. Hanney, “The application of Ga:La:S-based glass for optical amplification at 1.3  μm,” J. Non-Cryst. Solids 184, 292–296 (1995).
[Crossref]

Hansch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Harrington, J. A.

B. F. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66–72 (2005).

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95, 3895–3900 (2004).
[Crossref]

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–227 (2000).
[Crossref]

D. J. Haan and J. A. Harrington, “Hollow waveguides for gas sensing and near-IR applications,” Proc. SPIE 3596, 43–49 (1999).

R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).

G. N. Merberg and J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993).
[Crossref]

S. J. Saggese, J. A. Harrington, and G. H. Sigel, “Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides,” Opt. Lett. 16, 27–29 (1991).
[Crossref]

J. A. Harrington, “Infrared alkali halide fibers,” Appl. Opt. 27, 3097–3101 (1988).
[Crossref]

J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).

Harrison, B.

J. Sanghera, L. Shaw, L. Busse, V. Nguyen, P. Pureza, B. Cole, B. Harrison, I. Aggarwal, R. Mossadegh, and F. Kung, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[Crossref]

Hart, S.

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6, 336–347 (2007).
[Crossref]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]

Hartl, I.

Hartung, A.

Hashimoto, T.

Hattori, A.

Hawkins, A.

Hawkins, A. R.

Hawkins, T.

S. Danto, M. Dubernet, B. Giroire, J. D. Musgraves, P. Wachtel, T. Hawkins, J. Ballato, and K. Richardson, “Correlation between native As2Se3 preform purity and glass optical fiber mechanical strength,” Mater. Res. Bull. 49, 250–258 (2014).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6, 629–635 (2012).
[Crossref]

S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, “On loss in silicon core optical fibers,” Opt. Mater. Express 2, 1511–1519 (2012).
[Crossref]

S. Morris, T. Hawkins, P. Foy, J. Ballato, S. W. Martin, and R. Rice, “Cladding glass development for semiconductor core optical fibers,” Int. J. Appl. Glass Sci. 3, 144–153 (2012).

J. Ballato, T. Hawkins, P. Foy, C. McMillen, L. Burka, J. Reppert, R. Podila, A. M. Rao, and R. R. Rice, “Binary III–V semiconductor core optical fiber,” Opt. Express 18, 4972–4979 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, C. McMillen, L. Burka, S. Morris, R. Stolen, and R. Rice, “Advancements in semiconductor core optical fiber,” Opt. Fiber Technol. 16, 399–408 (2010).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17, 8029–8035 (2009).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. Rao, and M. Daw, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
[Crossref]

S. Morris, T. Hawkins, P. Foy, C. McMillen, J. Fan, L. Zhu, R. Stolen, J. Ballato, and R. Rice, “Reactive in-situ processing of silicon optical fiber,” in Advanced Photonics Congress, OSA Technical Digest (online) (Optical Society of America, 2012), paper STu3F.4.

Hawkins, W.

J. Massera, A. Haldeman, D. Milanese, H. Gebavi, M. Ferraris, P. Foy, W. Hawkins, J. Ballato, R. Stolen, and L. Petit, “Processing and characterization of core–clad tellurite glass preforms and fibers fabricated by rotational casting,” Opt. Mater. 32, 582–588 (2010).

Hayes, J. R.

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23, 1289–1299 (2015).
[Crossref]

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Haynes, W. M.

W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, 2015).

He, R.

R. He, T. D. Day, M. Krishnamurthi, J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Silicon p-i-n junction fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II–VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2013).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref]

N. Healy, J. Sparks, R. He, P. Sazio, J. Badding, and A. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express 19, 10979–10985 (2011).
[Crossref]

He, Y. J.

H. J. Xu, Y. J. He, X. S. Wang, Q. H. Nie, P. Q. Zhang, T. F. Xu, S. X. Dai, X. H. Zhang, and G. M. Tao, “Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications,” Infrared Phys. Technol. 65, 77–82 (2014).
[Crossref]

Headley, C.

Healy, N.

N. Healy, S. Mailis, N. M. Bulgakova, P. J. Sazio, T. D. Day, J. R. Sparks, H. Y. Cheng, J. V. Badding, and A. C. Peacock, “Extreme electronic bandgap modification in laser-crystallized silicon optical fibres,” Nat. Mater. 13, 1122–1127 (2014).
[Crossref]

A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser Photon. Rev. 8, 53–72 (2014).

J. R. Sparks, R. He, N. Healy, S. Chaudhuri, T. C. Fitzgibbons, A. C. Peacock, P. J. Sazio, and J. V. Badding, “Conformal coating by high pressure chemical deposition for patterned microwires of II–VI semiconductors,” Adv. Funct. Mater. 23, 1647–1654 (2013).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref]

N. Healy, J. Sparks, R. He, P. Sazio, J. Badding, and A. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express 19, 10979–10985 (2011).
[Crossref]

N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express 18, 7596–7601 (2010).
[Crossref]

Hector, J.

Hector, J. R.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[Crossref]

J. Wang, J. R. Hector, D. Brady, D. Hewak, B. Brocklesby, M. Kluth, R. Moore, and D. N. Payne, “Halide-modified Ga–La sulfide glasses with improved fiber-drawing and optical properties for Pr3+-doped fiber amplifiers at 1.3  μm,” Appl. Phys. Lett. 71, 1753–1755 (1997).
[Crossref]

J. R. Hector, D. W. Hewak, J. Wang, R. C. Moore, and W. S. Brocklesby, “Quantum-efficiency measurements in oxygen-containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photon. Technol. Lett. 9, 443–445 (1997).
[Crossref]

Hedley, T. D.

Hehlen, M. P.

W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, and M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94, 2896–2901 (2011).
[Crossref]

Hemming, A.

Henderson-Sapir, O.

Henry, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
[Crossref]

Heo, J.

J. Heo, “Rare-earth doped chalcogenide glasses for fiber-optic amplifiers,” J. Non-Cryst. Solids 326–327, 410–415 (2003).
[Crossref]

Hewak, D.

J. Orava, A. Greer, B. Gholipour, D. Hewak, and C. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater. 11, 279–283 (2012).
[Crossref]

C. C. Huang, D. Hewak, and J. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express 12, 2501–2506 (2004).
[Crossref]

Y. West, T. Schweizer, D. Brady, and D. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229–250 (2000).
[Crossref]

J. Wang, J. R. Hector, D. Brady, D. Hewak, B. Brocklesby, M. Kluth, R. Moore, and D. N. Payne, “Halide-modified Ga–La sulfide glasses with improved fiber-drawing and optical properties for Pr3+-doped fiber amplifiers at 1.3  μm,” Appl. Phys. Lett. 71, 1753–1755 (1997).
[Crossref]

T. Schweizer, B. Samson, R. Moore, D. Hewak, and D. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett 33, 414–416 (1997).
[Crossref]

Hewak, D. W.

R. J. Curry, A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88, 2451–2455 (2005).
[Crossref]

M. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 2046–2054 (2005).
[Crossref]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

T. Schweizer, F. Goutaland, E. Martins, D. W. Hewak, and W. S. Brocklesby, “Site-selective spectroscopy in dysprosium-doped chalcogenide glasses for 1.3-μm optical-fiber amplifiers,” J. Opt. Soc. Am. B 18, 1436–1442 (2001).
[Crossref]

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[Crossref]

T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997).
[Crossref]

J. R. Hector, D. W. Hewak, J. Wang, R. C. Moore, and W. S. Brocklesby, “Quantum-efficiency measurements in oxygen-containing gallium lanthanum sulphide glasses and fibers doped with Pr3+,” IEEE Photon. Technol. Lett. 9, 443–445 (1997).
[Crossref]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997).
[Crossref]

H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997).
[Crossref]

T. Schweizer, D. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997).
[Crossref]

B. N. Samson, T. Schweizer, D. W. Hewak, and R. I. Laming, “Properties of dysprosium-doped gallium lanthanum sulfide fiber amplifiers operating at 1.3  μm,” Opt. Lett. 22, 703–705 (1997).
[Crossref]

D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384 (1996).
[Crossref]

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[Crossref]

J. A. Medeiros Neto, E. R. Taylor, B. N. Samson, J. Wang, D. W. Hewak, R. I. Laming, D. N. Payne, E. Tarbox, P. D. Maton, G. M. Roba, B. E. Kinsman, and R. Hanney, “The application of Ga:La:S-based glass for optical amplification at 1.3  μm,” J. Non-Cryst. Solids 184, 292–296 (1995).
[Crossref]

Hill, C. J.

A. Jha, B. D. O. Richards, G. Jose, T. T. Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57, 357–382 (2012).
[Crossref]

Hilton, A. R.

A. R. Hilton, Chalcogenide Glasses for Infrared Optics (McGraw-Hill, 2009).

Hirao, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1, 74–86 (2010).

Hiroyuki, T.

Hobrock, L. M.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, and L. M. Hobrock, “Polycrystalline fiber optical-waveguides for infrared transmission,” Appl. Phys. Lett. 33, 28–29 (1978).
[Crossref]

Hocde, S.

S. Hocde, O. Lore, O. Sire, C. Boussard-Ple, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

Hocdé, S.

S. Hocdé, C. Boussard-Plédel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci. 3, 279–284 (2001).
[Crossref]

Hodelin, J.

Höfle, W.

G. F. West and W. Höfle, “Spectral attenuation of fluoride glass fibers,” J. Non-Cryst. Solids 213–214, 189–192 (1997).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hon, N.

Hongo, A.

Horiguchi, M.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibres,” Electron. Lett. 17, 775–777 (1981).
[Crossref]

Hou, C.

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13, 975–979 (2013).

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref]

H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, and B. Peng, “Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses,” Opt. Express 17, 15350–15358 (2009).
[Crossref]

Hou, J.

W.-Q. Yang, B. Zhang, J. Hou, K. Yin, and Z.-J. Liu, “A novel 2-μm pulsed fiber laser based on a supercontinuum source and its application to mid-infrared supercontinuum generation,” Chin. Phys. B. 23, 054208 (2014).

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system,” Opt. Lett. 39, 1849–1852 (2014).
[Crossref]

Houizot, P.

F. Désévédavy, G. Renversez, J. Troles, P. Houizot, L. Brilland, I. Vasilief, Q. Coulombier, N. Traynor, F. Smektala, and J.-L. Adam, “Chalcogenide glass hollow core photonic crystal fibers,” Opt. Mater. 32, 1532–1539 (2010).

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Mechin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Troles, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
[Crossref]

J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, and J.-L. Adam, “Chalcogenide microstructured fibers for infrared systems, elaboration modelization, and characterization,” Fiber Integr. Opt. 28, 11–26 (2009).
[Crossref]

F. Charpentier, J. Troles, Q. Coulombier, L. Brilland, P. Houizot, F. Smektala, C. Boussard-Plédel, V. Nazabal, N. Thibaud, and K. Le Pierres, “CO2 detection using microstructured chalcogenide fibers,” Sens. Lett. 7, 745–749 (2009).

V. Shiryaev, L. Ketkova, M. Churbanov, A. Potapov, J. Troles, P. Houizot, J.-L. Adam, and A. Sibirkin, “Heterophase inclusions and dissolved impurities in Ge25Sb10S65 glass,” J. Non-Cryst. Solids 355, 2640–2646 (2009).
[Crossref]

V. Shiryaev, J. Troles, P. Houizot, L. Ketkova, M. Churbanov, J.-L. Adam, and A. Sibirkin, “Preparation of optical fibers based on Ge–Sb–S glass system,” Opt. Mater. 32, 362–367 (2009).

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008).

P. Houizot, C. Boussard-Plédel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. Van Nijnatten, W. L. M. Gielesen, J. Pereira do Carmo, and J. Lucas, “Infrared single mode chalcogenide glass fiber for space,” Opt. Express 15, 12529–12538 (2007).
[Crossref]

V. S. Shiryaev, C. Boussard-Pledel, P. Houizot, T. Jouan, J. L. Adam, and J. Lucas, “Single-mode infrared fibers based on Te-As-Se glass system,” Mat. Sci. Eng. B 127, 138–143 (2006).

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater. 16, 1847–1852 (2006).
[Crossref]

Hu, H.

Hu, J.

Hu, L.

Hu, Q.

Huang, C. C.

R. J. Curry, A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding, “Chalcogenide glass thin films and planar waveguides,” J. Am. Ceram. Soc. 88, 2451–2455 (2005).
[Crossref]

C. C. Huang, D. Hewak, and J. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express 12, 2501–2506 (2004).
[Crossref]

Huang, F.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Huber, G.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[Crossref]

Hudson, J.

Hung, F.

Ibanescu, M.

M. Ibanescu, S. G. Johnson, M. Soljačić, J. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, “Analysis of mode structure in hollow dielectric waveguide fibers,” Phys. Rev. E 67, 046608 (2003).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

Ideguchi, T.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502, 355–358 (2013).
[Crossref]

Ignat’eva, L. N.

P. P. Fedorov, R. M. Zakalyukin, L. N. Ignat’eva, and V. M. Bouznik, “Fluoroindate glasses,” Russ. Chem. Rev. 69, 705–716 (2000).

Imagawa, K.

Inagawa, I.

I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229 (1997).

Ishida, K.

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45, 925–927 (1984).
[Crossref]

Ishikawa, H.

Islam, M. N.

Itoh, H.

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
[Crossref]

Itoh, K.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167, 112–116 (1994).
[Crossref]

K. Itoh and H. Tawarayama, “Method for drawing a chalcogenide-containing glass fiber,” European patentEP0850889 B1 (May10, 2000).

Iwai, K.

Iwakura, M.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167, 112–116 (1994).
[Crossref]

Jackson, B. R.

P. J. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, and E. R. Margine, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[Crossref]

Jackson, J.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardson, “Processing of tellurite-based glass with low OH content,” J. Am. Ceram. Soc. 94, 130–136 (2011).
[Crossref]

Jackson, S. D.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9  μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38, 2588–2591 (2013).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[Crossref]

S. D. Jackson and G. Anzueto-Sánchez, “Chalcogenide glass Raman fiber laser,” Appl. Phys. Lett. 88, 221106 (2006).
[Crossref]

S. D. Jackson and D. G. Lancaster, “Fiber lasers that bridge the shortwave to midwave regions of the infrared spectrum,” in Fiber Lasers (Wiley-VCH, 2012).

Jacobs, S.

Jacobs, S. A.

M. Ibanescu, S. G. Johnson, M. Soljačić, J. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, “Analysis of mode structure in hollow dielectric waveguide fibers,” Phys. Rev. E 67, 046608 (2003).
[Crossref]

Jalali, B.

J. Ballato, T. Hawkins, P. Foy, B. Yazgan-Kokuoz, R. Stolen, C. McMillen, N. Hon, B. Jalali, and R. Rice, “Glass-clad single-crystal germanium optical fiber,” Opt. Express 17, 8029–8035 (2009).
[Crossref]

V. Raghunathan, R. Shori, O. M. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” Phys. Status Solidi A 203, R38–R40 (2006).

Jaluria, Y.

S. Lee and Y. Jaluria, “Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber,” Int. J. Heat Mass Transfer 40, 843–856 (1997).
[Crossref]

Jard, C.

M.-L. Anne, C. Le Lan, V. Monbet, C. Boussard-Plédel, M. Ropert, O. Sire, M. Pouchard, C. Jard, J. Lucas, and J. L. Adam, “Fiber evanescent wave spectroscopy using the mid-infrared provides useful fingerprints for metabolic profiling in humans,” J. Biomed. Opt. 14, 054033 (2009).
[Crossref]

Jaworski, P.

Jensen, T.

T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32, 666–667 (1996).
[Crossref]

Jha, A.

A. Jha, B. D. O. Richards, G. Jose, T. T. Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57, 357–382 (2012).
[Crossref]

X. Jiang, J. Lousteau, and A. Jha, “The structural, thermal, and optical analyses of multicomponent germanium oxide glasses for engineering mid-infrared fiber chemical sensing,” J. Am. Ceram. Soc. 93, 3259–3266 (2010).
[Crossref]

F. Fusari, S. Vetter, A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. Dawson, W. Sibbett, and C. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2  μm pumped by a 1211  nm semiconductor disk laser,” Opt. Mater. 32, 1007–1010 (2010).

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177 (2010).
[Crossref]

F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2  μm glass lasers,” Opt. Express 18, 22090–22098 (2010).
[Crossref]

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31, 1701–1706 (2009).

Ji, W.

Jia, X.

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13, 975–979 (2013).

A. Gumennik, L. Wei, G. Lestoquoy, A. M. Stolyarov, X. Jia, P. H. Rekemeyer, M. J. Smith, X. Liang, B. J.-B. Grena, and S. G. Johnson, “Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities,” Nat. Commun. 4, 2216 (2013).
[Crossref]

Jiang, C.

M. Zhu, X. Wang, Z. Pan, C. Cheng, Q. Zhu, C. Jiang, Q. Nie, P. Zhang, Y. Wu, and S. Dai, “Fabrication of an IR hollow-core Bragg fiber based on chalcogenide glass extrusion,” Appl. Phys. A, doi: 10.1007/s00339-015-9017-3 (to be published).

Jiang, H.

H. Jiang, Z. Cao, R. Yang, L. Yuan, H. Xiao, and J. Dong, “Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications,” Thin Solid Films 539, 81–87 (2013).
[Crossref]

Jiang, S.

Jiang, X.

X. Jiang, J. Lousteau, and A. Jha, “The structural, thermal, and optical analyses of multicomponent germanium oxide glasses for engineering mid-infrared fiber chemical sensing,” J. Am. Ceram. Soc. 93, 3259–3266 (2010).
[Crossref]

X. Jiang, J. Lousteau, B. Richards, and A. Jha, “Investigation on germanium oxide-based glasses for infrared optical fibre development,” Opt. Mater. 31, 1701–1706 (2009).

X. Jiang, F. Babic, T. G. Euser, T. Weiss, A. Abdolvand, M. Finger, N. Joly, M. H. Frosz, and P. S. Russell, “Recent advances in soft-glass photonic crystal fibres,” in Workshop on Specialty Optical Fibers and their Applications (Optical Society of America, 2013), paper W2.4.

Jin, X. B.

J. F. Li, Y. Chen, M. Chen, H. Chen, X. B. Jin, Y. Yang, Z. Y. Dai, and Y. Liu, “Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser,” Opt. Commun. 284, 1278–1283 (2011).
[Crossref]

Jinguji, K.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibres,” Electron. Lett. 17, 775–777 (1981).
[Crossref]

Joannopoulos, J.

D. Deng, N. Orf, S. Danto, A. Abouraddy, J. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96, 023102 (2010).
[Crossref]

D. Deng, N. Orf, A. Abouraddy, A. Stolyarov, J. Joannopoulos, H. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8, 4265–4269 (2008).

K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. Viens, M. Bayindir, J. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12, 1510–1517 (2004).
[Crossref]

M. Ibanescu, S. G. Johnson, M. Soljačić, J. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, “Analysis of mode structure in hollow dielectric waveguide fibers,” Phys. Rev. E 67, 046608 (2003).
[Crossref]

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
[Crossref]

Joannopoulos, J. D.

C. Hou, X. Jia, L. Wei, A. M. Stolyarov, O. Shapira, J. D. Joannopoulos, and Y. Fink, “Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing,” Nano Lett. 13, 975–979 (2013).

A. Gumennik, A. M. Stolyarov, B. R. Schell, C. Hou, G. Lestoquoy, F. Sorin, W. McDaniel, A. Rose, J. D. Joannopoulos, and Y. Fink, “All-in-fiber chemical sensing,” Adv. Mater. 24, 6005–6009 (2012).
[Crossref]

A. M. Stolyarov, A. Gumennik, W. McDaniel, O. Shapira, B. Schell, F. Sorin, K. Kuriki, G. Benoit, A. Rose, and J. D. Joannopoulos, “Enhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers,” Opt. Express 20, 12407–12415 (2012).
[Crossref]

N. D. Orf, O. Shapira, F. Sorin, S. Danto, M. A. Baldo, J. D. Joannopoulos, and Y. Fink, “Fiber draw synthesis,” Proc. Natl. Acad. Sci. USA 108, 4743–4747 (2011).

O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express 18, 12622–12629 (2010).
[Crossref]

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22, 4162–4166 (2010).
[Crossref]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf, J. D. Joannopoulos, and Y. Fink, “Exploiting collective effects of multiple optoelectronic devices integrated in a single fiber,” Nano Lett. 9, 2630–2635 (2009).

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial photodetecting fibers: a geometric and structural study,” Adv. Mater. 19, 3872–3877 (2007).
[Crossref]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-sensing fiber devices by multimaterial codrawing,” Adv. Mater. 18, 845–849 (2006).
[Crossref]

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett. 94, 143902 (2005).
[Crossref]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002).
[Crossref]

Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039 (1999).
[Crossref]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[Crossref]

Johnson, S.

Johnson, S. G.

A. Gumennik, L. Wei, G. Lestoquoy, A. M. Stolyarov, X. Jia, P. H. Rekemeyer, M. J. Smith, X. Liang, B. J.-B. Grena, and S. G. Johnson, “Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities,” Nat. Commun. 4, 2216 (2013).
[Crossref]

D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira, “Asymmetric wave propagation in planar chiral fibers,” Opt. Express 21, 1465–1472 (2013).
[Crossref]

J. J. Kaufman, R. Ottman, G. Tao, S. Shabahang, E.-H. Banaei, X. Liang, S. G. Johnson, Y. Fink, R. Chakrabarti, and A. F. Abouraddy, “In-fiber production of polymeric particles for biosensing and encapsulation,” Proc. Natl. Acad. Sci. USA 110, 15549–15554 (2013).

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref]

M. Ibanescu, S. G. Johnson, M. Soljačić, J. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, “Analysis of mode structure in hollow dielectric waveguide fibers,” Phys. Rev. E 67, 046608 (2003).
[Crossref]

Joly, N.

X. Jiang, F. Babic, T. G. Euser, T. Weiss, A. Abdolvand, M. Finger, N. Joly, M. H. Frosz, and P. S. Russell, “Recent advances in soft-glass photonic crystal fibres,” in Workshop on Specialty Optical Fibers and their Applications (Optical Society of America, 2013), paper W2.4.

Jonasz, M.

Jones, J. D. C.

Jose, G.

A. Jha, B. D. O. Richards, G. Jose, T. T. Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57, 357–382 (2012).
[Crossref]

F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, “Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2  μm glass lasers,” Opt. Express 18, 22090–22098 (2010).
[Crossref]

Joshi, P.

A. Jha, B. D. O. Richards, G. Jose, T. T. Fernandez, C. J. Hill, J. Lousteau, and P. Joshi, “Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications,” Int. Mater. Rev. 57, 357–382 (2012).
[Crossref]

Jouan, T.

V. S. Shiryaev, C. Boussard-Pledel, P. Houizot, T. Jouan, J. L. Adam, and J. Lucas, “Single-mode infrared fibers based on Te-As-Se glass system,” Mat. Sci. Eng. B 127, 138–143 (2006).

K. Michel, B. Bureau, C. Pouvreau, J. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J.-L. Adam, K. Staubmann, and H. Steinner, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids 326, 434–438 (2003).
[Crossref]

Joulain, F.

C. Kneis, B. Donelan, A. Berrou, I. Manek-Hönninger, B. Cadier, T. Robin, M. Poulain, F. Joulain, M. Eichhorn, and C. Kieleck, “4.5  W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser,” Proc. SPIE 9342, 93420B (2015).

Jóvári, P.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Jrgensen, C. G.

Jules, J.

I. Savelii, J. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, and J. Dudley, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater. 33, 1661–1666 (2011).

Jules, J. C.

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–399 (2011).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

Jules, J.-C.

I. Savelii, F. Desevedavy, J.-C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35, 1595–1599 (2013).

Jun-Jiang, H.

L. Ke-Feng, W. Guo-Nian, H. Li-Li, Z. Jun-Jie, and H. Jun-Jiang, “Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses,” J. Inorg. Mater. 25, 429–434 (2010).

Jun-Jie, Z.

L. Ke-Feng, W. Guo-Nian, H. Li-Li, Z. Jun-Jie, and H. Jun-Jiang, “Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses,” J. Inorg. Mater. 25, 429–434 (2010).

Kachi, S.

M. Kimura, S. Kachi, and K. Shiroyama, “Characteristics of KRS-5 fiber with crystalline cladding,” Proc. SPIE 0618, 85–88 (1986).

Kaiser, P.

P. Kaiser, E. Marcatili, and S. Miller, “A new optical fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).
[Crossref]

Kanamori, T.

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
[Crossref]

M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[Crossref]

T. Kanamori and S. Sakaguchi, “Preparation of elevated NA fluoride optical fibers,” Jpn. J. Appl. Phys. 25, L468 (1986).

T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, “Chalcogenide glass-fibers for mid-infrared transmission,” J. Lightwave Technol. 2, 607–613 (1984).
[Crossref]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibres,” Electron. Lett. 17, 775–777 (1981).
[Crossref]

Kanbara, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

Kannan, P.

Kanou, Y.

Kapany, N.

Kapany, N. S.

N. S. Kapany and R. J. Simms, “Recent developments in infrared fiber optics,” Infrared Phys. 5, 69–80 (1965).
[Crossref]

Kar, A. K.

Karaksina, E.

E. Karaksina, V. Plotnichenko, R. Mironov, R. Shaposhnikov, and L. Ketkova, “The composite materials on the basis of As2S3 glass containing crystals ZnS and ZnS doped with Cr2+,” J. Optoelectron. Adv. Mater. 13, 1433 (2011).

Karaksina, E. V.

E. V. Karaksina, L. A. Ketkova, M. F. Churbanov, and E. M. Dianov, “Preparation of mid-IR-active As2S3/ZnS(ZnSe):Cr2+ composites,” Inorg. Mater. 49, 223–229 (2013).
[Crossref]

Karim, M.

Karlowatz, M.

Kaster, J.

T. Lewi, A. Tsun, A. Katzir, J. Kaster, and F. Fuchs, “Silver halide single mode fibers for broadband middle infrared stellar interferometry,” Appl. Phys. Lett. 94, 261105 (2009).
[Crossref]

Katsuyama, T.

T. Katsuyama and H. Matsumura, “Light transmission characteristics of telluride-based chalcogenide glass for infrared fiber application,” J. Appl. Phys. 75, 2743–2748 (1994).
[Crossref]

T. Katsuyama, S. Satoh, and H. Matsumura, “Scattering loss characteristics of selenide-based chalcogenide glass optical fibers,” J. Appl. Phys. 71, 4132–4135 (1992).
[Crossref]

T. Katsuyama and H. Matsumura, “Low-loss Te-based chalcogenide glass optical fibers,” Appl. Phys. Lett. 49, 22–23 (1986).
[Crossref]

T. Katsuyama, S. Satoh, and H. Matsumura, “Fabrication of high-purity chalcogenide glasses by chemical vapor deposition,” J. Appl. Phys. 59, 1446–1449 (1986).
[Crossref]

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, “Low loss Ge-Se chalcogenide glass optical fibers,” Appl. Phys. Lett. 45, 925–927 (1984).
[Crossref]

Katzir, A.

T. Lewi, J. Ofek, and A. Katzir, “Antiresonant reflecting microstructured optical fibers for the mid-infrared,” Appl. Phys. Lett. 102, 101104 (2013).
[Crossref]

T. Lewi, A. Tsun, A. Katzir, J. Kaster, and F. Fuchs, “Silver halide single mode fibers for broadband middle infrared stellar interferometry,” Appl. Phys. Lett. 94, 261105 (2009).
[Crossref]

E. Rave, P. Ephrat, M. Goldberg, E. Kedmi, and A. Katzir, “Silver halide photonic crystal fibers for the middle infrared,” Appl. Opt. 43, 2236–2241 (2004).
[Crossref]

M. Karlowatz, M. Kraft, E. Eitenberger, B. Mizaikoff, and A. Katzir, “Chemically tapered silver halide fibers: an approach for increasing the sensitivity of mid-infrared evanescent wave sensors,” Appl. Spectrosc. 54, 1629–1633 (2000).
[Crossref]

F. Moser, N. Barkay, A. Levite, E. Margalit, I. Paiss, A. Sa’ar, I. Schnitzer, A. Zur, and A. Katzir, “Research and development on silver halide fibers at Tel Aviv University,” Proc. SPIE 1228, 128–139 (1990).

Kaufman, J.

S. Shabahang, J. Kaufman, D. Deng, and A. Abouraddy, “Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Appl. Phys. Lett. 99, 161909 (2011).
[Crossref]

Kaufman, J. J.

J. J. Kaufman, R. Ottman, G. Tao, S. Shabahang, E.-H. Banaei, X. Liang, S. G. Johnson, Y. Fink, R. Chakrabarti, and A. F. Abouraddy, “In-fiber production of polymeric particles for biosensing and encapsulation,” Proc. Natl. Acad. Sci. USA 110, 15549–15554 (2013).

S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers,” J. Opt. Soc. Am. B 30, 2498–2506 (2013).
[Crossref]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37, 2751–2753 (2012).
[Crossref]

J. J. Kaufman, G. Tao, S. Shabahang, E.-H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487, 463–467 (2012).
[Crossref]

J. J. Kaufman, G. M. Tao, S. Shabahang, D. S. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11, 4768–4773 (2011).

Kawakami, S.

M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, “Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,” Appl. Phys. Lett. 43, 430–432 (1983).
[Crossref]

Kawamura, M.

Kawashima, H.

Kedmi, E.

Ke-Feng, L.

L. Ke-Feng, W. Guo-Nian, H. Li-Li, Z. Jun-Jie, and H. Jun-Jiang, “Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses,” J. Inorg. Mater. 25, 429–434 (2010).

Keiding, S. R.

Keirsse, J.

S. Hocde, O. Lore, O. Sire, C. Boussard-Ple, B. Bureau, B. Turlin, J. Keirsse, P. Leroyer, and J. Lucas, “Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis,” J. Biomed. Opt. 9, 404–407 (2004).
[Crossref]

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc 32, 23–32 (2003).

J. Keirsse, C. Boussard-Plédel, O. Loreal, O. Sire, B. Bureau, B. Turlin, P. Leroyer, and J. Lucas, “Chalcogenide glass fibers used as biosensors,” J. Non-Cryst. Solids 326–327, 430–433 (2003).
[Crossref]

Kernal, J.

A. Gallian, V. V. Fedorov, J. Kernal, S. B. Mirov, and V. V. Badikov, “Laser oscillation at 2.4  μm from Cr2+ in ZnSe optically pumped over Cr ionization transitions,” in Advanced Solid-State Photonics (TOPS), C. Denman and I. Sorokina, eds., Vol. 98 of OSA Trends in Optics and Photonics (Optical Society of America, 2005), paper 241.

Ketkova, L.

E. Karaksina, V. Plotnichenko, R. Mironov, R. Shaposhnikov, and L. Ketkova, “The composite materials on the basis of As2S3 glass containing crystals ZnS and ZnS doped with Cr2+,” J. Optoelectron. Adv. Mater. 13, 1433 (2011).

V. Shiryaev, J. Troles, P. Houizot, L. Ketkova, M. Churbanov, J.-L. Adam, and A. Sibirkin, “Preparation of optical fibers based on Ge–Sb–S glass system,” Opt. Mater. 32, 362–367 (2009).

V. Shiryaev, L. Ketkova, M. Churbanov, A. Potapov, J. Troles, P. Houizot, J.-L. Adam, and A. Sibirkin, “Heterophase inclusions and dissolved impurities in Ge25Sb10S65 glass,” J. Non-Cryst. Solids 355, 2640–2646 (2009).
[Crossref]

Ketkova, L. A.

E. V. Karaksina, L. A. Ketkova, M. F. Churbanov, and E. M. Dianov, “Preparation of mid-IR-active As2S3/ZnS(ZnSe):Cr2+ composites,” Inorg. Mater. 49, 223–229 (2013).
[Crossref]

V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
[Crossref]

Khalilzadeh-Rezaie, F.

Khopin, V.

Kiang, K. M.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002).
[Crossref]

Kibler, B.

O. Mouawad, J. Picot-Clémente, F. Amrani, C. Strutynski, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, D. Deng, Y. Ohishi, and F. Smektala, “Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers,” Opt. Lett. 39, 2684–2687 (2014).
[Crossref]

I. Savelii, F. Desevedavy, J.-C. Jules, G. Gadret, J. Fatome, B. Kibler, H. Kawashima, Y. Ohishi, and F. Smektala, “Management of OH absorption in tellurite optical fibers and related supercontinuum generation,” Opt. Mater. 35, 1595–1599 (2013).

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 27083–27093 (2012).
[Crossref]

I. Savelii, J. Jules, G. Gadret, B. Kibler, J. Fatome, M. El-Amraoui, N. Manikandan, X. Zheng, F. Désévédavy, and J. Dudley, “Suspended core tellurite glass optical fibers for infrared supercontinuum generation,” Opt. Mater. 33, 1661–1666 (2011).

J. Fatome, B. Kibler, M. El-Amraoui, J. C. Jules, G. Gadret, F. Desevedavy, and F. Smektala, “Mid-infrared extension of supercontinuum in chalcogenide suspended core fibre through soliton gas pumping,” Electron. Lett. 47, 398–399 (2011).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[Crossref]

Kieleck, C.

C. Kneis, B. Donelan, A. Berrou, I. Manek-Hönninger, B. Cadier, T. Robin, M. Poulain, F. Joulain, M. Eichhorn, and C. Kieleck, “4.5  W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser,” Proc. SPIE 9342, 93420B (2015).

Kim, H. J.

H. J. Kim, G. E. Fair, S. A. Potticary, M. J. O’Malley, and N. G. Usechak, “Processing and characterization of polycrystalline YAG (yttrium aluminum garnet) core-clad fibers,” Proc. SPIE 9081, 908103 (2014).

Kim, W.

J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, and G. Chin, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Kimerling, L. C.

Kimura, M.

M. Kimura, S. Kachi, and K. Shiroyama, “Characteristics of KRS-5 fiber with crystalline cladding,” Proc. SPIE 0618, 85–88 (1986).

King, E. A.

G. Delaizir, J. C. Sangleboeuf, E. A. King, Y. Gueguen, X. H. Zhang, C. Boussard-Pledel, B. Bureau, and P. Lucas, “Influence of ageing conditions on the mechanical properties of Te-As-Se fibres,” J. Phys. D 42, 095405 (2009).

Kinsman, B. E.

J. A. Medeiros Neto, E. R. Taylor, B. N. Samson, J. Wang, D. W. Hewak, R. I. Laming, D. N. Payne, E. Tarbox, P. D. Maton, G. M. Roba, B. E. Kinsman, and R. Hanney, “The application of Ga:La:S-based glass for optical amplification at 1.3  μm,” J. Non-Cryst. Solids 184, 292–296 (1995).
[Crossref]

Kirchhof, J.

J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, “Chalcogenide glass single mode fibres—preparation and properties,” J. Non-Cryst. Solids 256–257, 226–231 (1999).
[Crossref]

Kitamura, R.

Kito, C.

G. Qin, M. Liao, C. Chaudhari, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Second and third harmonics and flattened supercontinuum generation in tellurite microstructured fibers,” Opt. Lett. 35, 58–60 (2010).
[Crossref]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28  μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[Crossref]

Kluth, M.

J. Wang, J. R. Hector, D. Brady, D. Hewak, B. Brocklesby, M. Kluth, R. Moore, and D. N. Payne, “Halide-modified Ga–La sulfide glasses with improved fiber-drawing and optical properties for Pr3+-doped fiber amplifiers at 1.3  μm,” Appl. Phys. Lett. 71, 1753–1755 (1997).
[Crossref]

Kneis, C.

C. Kneis, B. Donelan, A. Berrou, I. Manek-Hönninger, B. Cadier, T. Robin, M. Poulain, F. Joulain, M. Eichhorn, and C. Kieleck, “4.5  W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser,” Proc. SPIE 9342, 93420B (2015).

Knight, J.

Knight, J. C.

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014).
[Crossref]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014).
[Crossref]

P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013).
[Crossref]

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Silica hollow core microstructured fibres for mid-infrared surgical applications,” J. Non-Cryst. Solids 377, 236–239 (2013).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4  μm spectral region,” Opt. Express 20, 11153–11158 (2012).
[Crossref]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008).
[Crossref]

J. D. Shephard, W. N. MacPherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13, 7139–7144 (2005).
[Crossref]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[Crossref]

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003).
[Crossref]

Knight, K.

Kobayashi, H.

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

Kobelke, J.

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Koch, T.

M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2=-i multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Koga, M.

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

Kohoutek, T.

Kokubun, Y.

M. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2=-i multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Kokuoz, B.

Koltashev, V.

M. Churbanov, V. Shiryaev, A. Suchkov, A. Pushkin, V. Gerasimenko, R. Shaposhnikov, E. Dianov, V. Plotnichenko, V. Koltashev, and Y. N. Pyrkov, “High-purity As-S-Se and As-Se-Te glasses and optical fibers,” Inorg. Mater. 43, 441–447 (2007).
[Crossref]

Koltashev, V. V.

V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
[Crossref]

Kolyadin, A. N.

Kong, D.

W. Xu, J. Ren, Z. Zhang, G. Chen, D. Kong, C. Gu, C. Chen, and L. Kong, “Enhanced photoluminescence of Eu2+-Pr3+ ions in Ga2S3 nanocrystals embedded chalcohalide glasses ceramics,” J. Non-Cryst. Solids 381, 65–67 (2013).
[Crossref]

Kong, L.

W. Xu, J. Ren, Z. Zhang, G. Chen, D. Kong, C. Gu, C. Chen, and L. Kong, “Enhanced photoluminescence of Eu2+-Pr3+ ions in Ga2S3 nanocrystals embedded chalcohalide glasses ceramics,” J. Non-Cryst. Solids 381, 65–67 (2013).
[Crossref]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Kosolapov, A. F.

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013).
[Crossref]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19, 25723–25728 (2011).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5  μm,” Opt. Express 19, 1441–1448 (2011).
[Crossref]

A. N. Moiseev, V. V. Dorofeev, A. V. Chilyasov, I. A. Kraev, M. F. Churbanov, T. V. Kotereva, V. G. Pimenov, G. E. Snopatin, A. A. Pushkin, V. V. Gerasimenko, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses,” Opt. Mater. 33, 1858–1861 (2011).

V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
[Crossref]

Kostecki, R.

Kotani, H.

Kotereva, T.

M. Churbanov, A. Moiseev, A. Chilyasov, V. Dorofeev, I. Kraev, M. Lipatova, T. Kotereva, E. Dianov, V. Plotnichenko, and E. Kryukova, “Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. Mater. 9, 3229–3234 (2007).

Kotereva, T. V.

V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
[Crossref]

A. N. Moiseev, V. V. Dorofeev, A. V. Chilyasov, I. A. Kraev, M. F. Churbanov, T. V. Kotereva, V. G. Pimenov, G. E. Snopatin, A. A. Pushkin, V. V. Gerasimenko, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses,” Opt. Mater. 33, 1858–1861 (2011).

Kozodoy, R. L.

R. K. Nubling, R. L. Kozodoy, and J. A. Harrington, “Optical properties of clad and unclad sapphire fiber,” Proc. SPIE 2131, 56–61 (1994).

Kraev, I.

M. Churbanov, A. Moiseev, A. Chilyasov, V. Dorofeev, I. Kraev, M. Lipatova, T. Kotereva, E. Dianov, V. Plotnichenko, and E. Kryukova, “Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. Mater. 9, 3229–3234 (2007).

Kraev, I. A.

V. V. Dorofeev, A. N. Moiseev, M. F. Churbanov, T. V. Kotereva, A. V. Chilyasov, I. A. Kraev, V. G. Pimenov, L. A. Ketkova, E. M. Dianov, V. G. Plotnichenko, A. F. Kosolapov, and V. V. Koltashev, “Production and properties of high purity TeO2–WO3–(La2O3, Bi2O3) and TeO2–ZnO–Na2O–Bi2O3 glasses,” J. Non-Cryst. Solids 357, 2366–2370 (2011).
[Crossref]

A. N. Moiseev, V. V. Dorofeev, A. V. Chilyasov, I. A. Kraev, M. F. Churbanov, T. V. Kotereva, V. G. Pimenov, G. E. Snopatin, A. A. Pushkin, V. V. Gerasimenko, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, “Production and properties of high purity TeO2-ZnO-Na2O-Bi2O3 and TeO2-WO3-La2O3-MoO3 glasses,” Opt. Mater. 33, 1858–1861 (2011).

Kraft, M.

Krishnamurthi, M.

R. He, T. D. Day, M. Krishnamurthi, J. R. Sparks, P. J. Sazio, V. Gopalan, and J. V. Badding, “Silicon p-i-n junction fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. 23, 1647–1651 (2011).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Krol, D.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci. 1, 74–86 (2010).

Kryukova, E.

M. Churbanov, A. Moiseev, A. Chilyasov, V. Dorofeev, I. Kraev, M. Lipatova, T. Kotereva, E. Dianov, V. Plotnichenko, and E. Kryukova, “Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of OH-groups,” J. Optoelectron. Adv. Mater. 9, 3229–3234 (2007).

Kuan, K.

Kuan, P.

Kubat, I.

Kubo, Y.

Kubodera, K. I.

H. Kobayashi, H. Kanbara, M. Koga, and K. I. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993).
[Crossref]

M. Asobe, K. I. Suzuki, T. Kanamori, and K. I. Kubodera, “Nonlinear refractive index measurement in chalcogenide-glass fibers by self-phase modulation,” Appl. Phys. Lett. 60, 1153–1154 (1992).
[Crossref]

Kuhlmey, B.

Kühn, S.

Kulkarni, O. P.

Kumar, M.

Kung, F.

J. Sanghera, I. Aggarwal, L. Shaw, L. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).

J. Sanghera, L. Shaw, L. Busse, V. Nguyen, P. Pureza, B. Cole, B. Harrison, I. Aggarwal, R. Mossadegh, and F. Kung, “Development and infrared applications of chalcogenide glass optical fibers,” Fiber Integr. Opt. 19, 251–274 (2000).
[Crossref]

J. S. Sanghera, B. Shaw, R. Gattass, L. Busse, W. Kim, S. Bayya, D. Gibson, V. Nguyen, F. Kung, G. Chin, C. Baker, K. Ewing, and I. Aggarwal, “Infrared optical fibers for sensors,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper T2A.3.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, and G. Chin, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Kung, F. H.

J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, and F. H. Kung, “Nonlinear properties of chalcogenide glass fibers,” Int. J. Appl. Glass Sci. 1, 296–308 (2010).

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[Crossref]

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, and I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[Crossref]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, F. H. Kung, and R. Mossadegh, “Development of low-loss IR transmitting chalcogenide glass fibers,” Proc. SPIE 2396, 71–77 (1995).

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass-fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[Crossref]

J. S. Sanghera, F. H. Kung, P. C. Pureza, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers,” Appl. Opt. 33, 6315–6322 (1994).
[Crossref]

Kuriki, K.

Kuriki, Y.

Laakmann, K. D.

K. D. Laakmann and M. B. Levy, “Hollow lightpipe and lightpipe tip using a low refractive index inner layer,” U.S. patent5,005,944 A (April9, 1991).

Lacroix, S.

Lægsgaard, J.

Lafontaine, C.

J. Toulouse, A. Lin, A. Ryaznyanskiy, A. Belwalkar, C. Guintrand, C. Lafontaine, W. Misiolek, and I. Biaggio, “Development of new tellurite fibers for mid-IR applications,” in Winter Topicals (WTM) (IEEE, 2011), pp. 185–186.

Lagatsky, A.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2  μm,” Laser Phys. Lett. 7, 177 (2010).
[Crossref]

F. Fusari, S. Vetter, A. Lagatsky, B. Richards, S. Calvez, A. Jha, M. Dawson, W. Sibbett, and C. Brown, “Tunable laser operation of a Tm3+-doped tellurite glass laser near 2  μm pumped by a 1211  nm semiconductor disk laser,” Opt. Mater. 32, 1007–1010 (2010).

Lagatsky, A. A.

Lai, C.-H.