Abstract

The theory of molecular nonlinear optics based on the sum-over-states (SOS) model is reviewed. The interaction of radiation with a single wtpisolated molecule is treated by first-order perturbation theory, and expressions are derived for the linear (αij) polarizability and nonlinear (βijk, γijkl) molecular hyperpolarizabilities in terms of the properties of the molecular states and the electric dipole transition moments for light-induced transitions between them. Scale invariance is used to estimate fundamental limits for these polarizabilities. The crucial role of the spatial symmetry of both the single molecules and their ordering in dense media, and the transition from the single molecule to the dense medium case (susceptibilities χij(1), χijk(2), χijkl(3)), is discussed. For example, for βijk, symmetry determines whether a molecule can support second-order nonlinear processes or not. For asymmetric molecules, examples of the frequency dispersion based on a two-level model (ground state and one excited state) are the simplest possible for βijk and examples of the resulting frequency dispersion are given. The third-order susceptibility is too complicated to yield simple results in terms of symmetry properties. It will be shown that whereas a two-level model suffices for asymmetric molecules, symmetric molecules require a minimum of three levels in order to describe effects such as two-photon absorption. The frequency dispersion of the third-order susceptibility will be shown and the importance of one and two-photon transitions will be discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 4th Series 50(332), 337–348 (1875).
  2. J. Kerr, “Electro-optic observations on various liquids,” Philos. Mag. 5th Series 8(47), 85–102, 202–245 (1879).
  3. J. Kerr, “Electro-optic observations on various liquids,” J. Phys. Theor. Appl. 8, 414–418 (1879).
  4. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
    [CrossRef]
  5. F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
    [CrossRef]
  6. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [CrossRef]
  7. N. Bloembergen, Nonlinear Optics (Addison-Wesley, 1965) and references therein.
  8. P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
    [CrossRef]
  9. W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12(3), 416–427 (1995).
    [CrossRef]
  10. J. Giordmaine, “Mixing of light beams in crystals,” Phys. Rev. Lett. 8(1), 19–20 (1962).
    [CrossRef]
  11. G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (Wiley, 2012).
  12. G. Valentin, G. Dmitriev, G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 2010).
  13. M. Di Domenico, “Calculation of the nonlinear optical tensor coefficients in oxygen-octahedra ferroelectrics,” Appl. Phys. Lett. 12(10), 352–355 (1968).
    [CrossRef]
  14. M. Di Domenico, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
    [CrossRef]
  15. B. F. Levine, “Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures,” Phys. Rev. B 7(6), 2600–2626 (1973).
    [CrossRef]
  16. R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17 (1964).
    [CrossRef]
  17. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968).
    [CrossRef]
  18. M. Bass, D. Bua, and R. Mozzi, “Optical second-harmonic generation in crystals of organic dyes,” Appl. Phys. Lett. 15(12), 393–396 (1969).
    [CrossRef]
  19. P. D. Southgate and D. S. Hall, “Second harmonic generation and Miller’s delta parameter in a series of benzene derivatives,” J. Appl. Phys. 43(6), 2765–2770 (1972).
    [CrossRef]
  20. A. F. Garito and K. D. Singer, “Organic crystals and polymers—a new class of nonlinear optical materials,” Laser Focus 18(2), 59–64 (1982).
  21. D. D. Eley, “Phthalocyanines as semiconductors,” Nature 162(4125), 819 (1948).
    [CrossRef]
  22. A. Pochettino, “Sul comportamento foto-elettrico dell’antracene,” Accad. Lincei Rend. 15, 355 (1906).
  23. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford, 1999).
  24. H. Kuhn, “Free electron model for absorption spectra of organic dyes,” J. Chem. Phys. 16(8), 840–841 (1948).
    [CrossRef]
  25. H. Kuhn, “A quantum-mechanical theory of light absorption of organic dyes and similar compounds,” J. Chem. Phys. 17(12), 1198–1212 (1949).
    [CrossRef]
  26. B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].
  27. J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66(6), 2664–2668 (1977).
    [CrossRef]
  28. S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20(3), 1179–1194 (1979).
    [CrossRef]
  29. B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971).
    [CrossRef]
  30. J. F. Ward, “Calculation of nonlinear optical susceptibility using diagrammatic perturbation theory,” Phys. Rev. 37, 1–18 (1965).
  31. B. F. Levine and C. G. Bethea, “Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids,” Appl. Phys. Lett. 24(9), 445–447 (1974).
    [CrossRef]
  32. K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic-generation,” J. Chem. Phys. 75(7), 3572–3580 (1981).
    [CrossRef]
  33. B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63(6), 2666–2682 (1975).
    [CrossRef]
  34. J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67(2), 446–457 (1977).
    [CrossRef]
  35. J. L. Oudar, D. S. Chemla, and E. Batifol, “Optical nonlinearities of various substituted benzene molecules in the liquid state and comparison with solid state nonlinear susceptibilities,” J. Chem. Phys. 67(4), 1626–1635 (1977).
    [CrossRef]
  36. K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66(23), 2980–2983 (1991).
    [CrossRef]
  37. J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94(1), 77–105 (1994).
    [CrossRef]
  38. T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116(20), 9320–9323 (1994).
    [CrossRef]
  39. S. F. Hubbard, R. G. Petschek, K. D. Singer, N. D’Sidocky, C. Hudson, L. C. Chien, and P. A. Cahill, “Measurements of Kleinman-disallowed hyperpolarizability in conjugated chiral molecules,” J. Opt. Soc. Am. B 15(1), 289–301 (1998).
    [CrossRef]
  40. V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor using hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 17(9), 1531–1542 (2000).
    [CrossRef]
  41. J. Oudar and J. Zyss, “Structural dependence of nonlinear optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26(4), 2016–2027 (1982).
    [CrossRef]
  42. J. Zyss and J. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one-or two-dimensional units,” Phys. Rev. A 26(4), 2028–2048 (1982).
    [CrossRef]
  43. K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49(5), 248–250 (1986).
    [CrossRef]
  44. M. G. Kuzyk, K. D. Singer, and R. J. Twieg, eds., feature issue on “Organic and Polymeric Nonlinear Optical Materials,” J. Opt. Soc. Am. B 15(1–2) 1–932 (1998).
  45. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4(6), 968–976 (1987).
    [CrossRef]
  46. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
    [CrossRef]
  47. M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59(8), 902–903 (1991).
    [CrossRef]
  48. D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
    [CrossRef]
  49. J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52(13), 1031–1033 (1988).
    [CrossRef]
  50. G. F. Lipscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic-solid MNA,” J. Chem. Phys. 75(3), 1509–1516 (1981).
    [CrossRef]
  51. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
    [CrossRef]
  52. C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976).
    [CrossRef]
  53. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
    [CrossRef]
  54. P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
    [CrossRef]
  55. P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
    [CrossRef]
  56. T. F. Heinz, H. W. K. Tom, and Y. R. Shen, “Determination of molecular-orientation of monolayer adsorbates by optical second-harmonic generation,” Phys. Rev. A 28(3), 1883–1885 (1983).
    [CrossRef]
  57. C. Anceau, S. Brasselet, and J. Zyss, “Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
    [CrossRef]
  58. F. Zaera, “Probing liquid/solid interfaces at the molecular level,” Chem. Rev. 112(5), 2920–2986 (2012).
    [CrossRef]
  59. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
    [CrossRef]
  60. S. Yue, M. M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photon. Rev. 5(4), 496–512 (2011).
    [CrossRef]
  61. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
    [CrossRef]
  62. L. Loew, A. Millard, and P. Campagnola, “Second harmonic imaging microscopy,” Microsc. Microanal. 9(Suppl. S02), 170–171 (2003).
  63. K. L. Wustholz, D. R. B. Sluss, B. Kahr, and P. J. Reid, “Applications of single-molecule microscopy to problems in dyed composite materials,” Int. Rev. Phys. Chem. 27(2), 167–200 (2008).
    [CrossRef]
  64. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
    [CrossRef]
  65. A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev. 14(1), 119–131 (2008).
    [CrossRef]
  66. G. C. R. Ellis-Davies, “Two-photon microscopy for chemical neuroscience,” ACS Chem. Neurosci. 2(4), 185–197 (2011).
    [CrossRef]
  67. S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photon. Rev. 3(1–2), 1–11 (2009).
    [CrossRef]
  68. M. G. Kuzyk and C. W. Dirk, Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (Marcel Dekker, 1998).
  69. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2009).
  70. W. Thomas, “Über die zahl der dispersionselektronen, die einem station aren zustande zugeordnet sind (vorlaufige mitteilung),” Naturwissenschaften 13(28), 627 (1925).
    [CrossRef]
  71. W. Kuhn, “Über die gesamtstarke der von einem zustande ausgehenden absorptionslinien,” Z. Phys. A Hadrons Nuclei 33, 408–412 (1925).
  72. F. Reiche and U. W. Thomas, “Über die zahl der dispersionselektronen, die einem stationären Zustand zugeordnet sind,” Z. Phys. 34(1), 510–525 (1925).
    [CrossRef]
  73. M. G. Kuzyk, “Quantum limits of the hyper-Rayleigh scattering susceptibility,” IEEE J. Sel. Top. Quantum Electron. 7(5), 774–780 (2001).
    [CrossRef]
  74. J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76(5), 053831 (2007).
    [CrossRef]
  75. J. Pérez-Moreno, K. Clays, and M. G. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128(8), 084109 (2008).
    [CrossRef]
  76. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85(6), 1218–1221 (2000).
    [CrossRef]
  77. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25(16), 1183–1185 (2000).
    [CrossRef]
  78. M. G. Kuzyk, “Erratum: Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 90(3), 039902 (2003).
    [CrossRef]
  79. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities: erratum,” Opt. Lett. 28(2), 135 (2003).
    [CrossRef]
  80. Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
    [CrossRef]
  81. J. Zhou, M. G. Kuzyk, and D. S. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31(19), 2891–2893 (2006).
    [CrossRef]
  82. H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
    [CrossRef]
  83. A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120(15), 6807–6810 (2004).
    [CrossRef]
  84. J. C. May, J. H. Lim, I. Biaggio, N. N. P. Moonen, T. Michinobu, and F. Diederich, “Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules,” Opt. Lett. 30(22), 3057–3059(2005).
    [CrossRef]
  85. J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90(25), 251106 (2007).
    [CrossRef]
  86. S. R. Marder, C. B. Gorman, B. G. Tiemann, J. W. Perry, G. Bourhill, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261(5118), 186–189 (1993).
    [CrossRef]
  87. F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, “Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alteration,” J. Am. Chem. Soc. 116(23), 10703–10714 (1994).
    [CrossRef]
  88. K. C. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974).
    [CrossRef]
  89. B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, “Nonlinear optical response of excitons confined to one dimension,” Phys. Rev. Lett. 58(26), 2750–2753 (1987).
    [CrossRef]
  90. N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Classical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043406 (2011).
    [CrossRef]
  91. M. Joffre, D. Yaron, J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97(8), 5607–5615(1992).
    [CrossRef]
  92. For an introduction to the subject including examples, see: R. C. Powell, Symmetry, Group Theory, and the Physical Properties of Crystals(Springer, 2010).
  93. J. Jerphagnon, D. S. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys. 27(4), 609–650 (1978).
    [CrossRef]
  94. V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000).
    [CrossRef]
  95. V. P. Ostroverkhov, “Chiral second order nonlinear optics,” Ph.D. dissertation (Case Western Reserve University, 2001).
  96. K. D. Singer, R. G. Petschek, V. Ostroverkhov, R. J. Twieg, and L. Sukhomlinova, “Non-polar second-order nonlinear and electro-optic materials: axially ordered chiral polymers and liquid crystals,” J. Polym. Sci. B Polym. Phys. 41(21), 2744–2754 (2003).
    [CrossRef]
  97. V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001).
    [CrossRef]
  98. J. F. Nye, Physical Properties of Crystals (Oxford University, 1985).
  99. G. Heesink, A. Ruiter, N. van Hulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering,” Phys. Rev. Lett. 71(7), 999–1002 (1993).
    [CrossRef]
  100. Y. Wu, G. Mao, H. Li, R. G. Petschek, and K. D. Singer, “Control of multiphoton excited emission and phase retardation in Kleinman-disallowed hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 25(4), 495–503 (2008).
    [CrossRef]
  101. C. A. Dailey, B. J. Burke, and G. J. Simpson, “The general failure of Kleinman symmetry in practical nonlinear optical applications,” Chem. Phys. Lett. 390(1–3), 8–13 (2004).
    [CrossRef]
  102. M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
    [CrossRef]
  103. V. Ostroverkhov, R. G. Petschek, K. D. Singer, and R. J. Twieg, “Λ-like chromophores for chiral non-linear optical materials,” Chem. Phys. Lett. 340(1–2), 109–115 (2001).
    [CrossRef]
  104. L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).
  105. L. Sanguinet, R. J. Twieg, G. Wiggers, G. Mao, K. D. Singer, and R. G. Petschek, “Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations,” Tetrahedron Lett. 46(31), 5121–5125 (2005).
    [CrossRef]
  106. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]
  107. C. W. Dirk, L. T. Cheng, and M. G. Kuzyk, “A simplified three-level model for describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43(1), 27–36 (1992).
    [CrossRef]
  108. G. I. Stegeman, M. G. Kuzyk, D. G. Papazoglou, and S. Tzortzakis, “Off-resonance and non-resonant dispersion of Kerr nonlinearity for symmetric molecules [Invited],” Opt. Express 19(23), 22486–22495 (2011).
    [CrossRef]
  109. M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electrooptic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7(5), 842–858 (1990).
    [CrossRef]
  110. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudess,” Adv. Opt. Photon. 2(1), 60–200 (2010).
    [CrossRef]
  111. G. Stegeman and H. Hu, “Refractive nonlinearity of linear symmetric molecules and polymers revisited,” Photon. Lett. Poland 1, 148–150 (2009).
    [CrossRef]
  112. G. I. Stegeman, “Nonlinear optics of conjugated polymers and linear molecules,” Nonlinear Opt. Quantum Opt. 43(1), 143158 (2012).
  113. D. Jacquemin, B. Champagne, and B. Kirtman, “Ab initio static polarizability and first hyperpolarizability of model polymethineimine chains. II. Effects of conformation and of substitution by donor/acceptor end groups,” J. Chem. Phys. 107(13), 5076–5087 (1997).
    [CrossRef]
  114. J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Characterization of excited states of centrosymmetric and noncentrosymmetric squaraines by third-harmonic spectral dispersion,” J. Opt. Soc. Am. B 12(12), 2360–2371 (1995).
    [CrossRef]
  115. W. E. Torruellas, B. L. Lawrence, G. I. Stegeman, and G. Baker, “Two-photon saturation in the band gap of a molecular quantum wire,” Opt. Lett. 21(21), 1777–1779 (1996).
    [CrossRef]
  116. D. M. Bishop, B. Kirtman, and B. Champagne, “Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities,” J. Chem. Phys. 107(15), 5780–5784 (1997).
    [CrossRef]
  117. P. McWilliams, P. Hayden, and Z. Soos, “Theory of even-parity state and two-photon spectra of conjugated polymers,” Phys. Rev. B 43(12), 9777–9791 (1991).
    [CrossRef]
  118. For example, J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1996).
  119. V. Ostroverkhov, K. D. Singer, and R. G. Petschek, “Second-harmonic generation in nonpolar chiral materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 18(12), 1858–1865 (2001).
    [CrossRef]
  120. D. Wanapun, V. J. Hall, N. J. Begue, J. G. Grote, and G. J. Simpson, “DNA-based polymers as chiral templates for second-order nonlinear optical materials,” Chem. Phys. Chem. 10(15), 2674–2678 (2009).
    [CrossRef]
  121. M. G. Kuzyk, “Third order nonlinear optical processes in organic liquids,” Ph.D. dissertation (University of Pennsylvania, 1985).
  122. J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).
    [CrossRef]
  123. J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Molecular orientation, pair correlations and cascading in nonlinear optical susceptibilties,” Mol. Cryst. Liq. Cryst. 223(1), 143–150 (1992).
    [CrossRef]
  124. A. Baev, J. Autschbach, R. W. Boyd, and P. N. Prasad, “Microscopic cascading of second-order molecular nonlinearity: new design principles for enhancing third-order nonlinearity,” Opt. Express 18(8), 8713–8721 (2010).
    [CrossRef]
  125. G. R. Meredith, “Local field cascading in third-order non-linear optical phenomena of liquids,” Chem. Phys. Lett. 92(2), 165–171 (1982).
    [CrossRef]
  126. G. R. Meredith, “Second-order cascading in third-order nonlinear optical processes,” J. Chem. Phys. 77(12), 5863–5871 (1982).
    [CrossRef]
  127. N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043407 (2011).
    [CrossRef]
  128. G. R. Meredith, “Cascading in optical third-harmonic generation by crystalline quartz,” Phys. Rev. B 24(10), 5522–5532 (1981).
    [CrossRef]
  129. G. I. Stegeman, D. J. Hagan, and L. Torner, “Cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
    [CrossRef]
  130. M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency-generation and difference-frequency-generation processes in periodically poled LiNbO3,” Opt. Lett. 22(5), 274–276 (1997).
    [CrossRef]
  131. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
    [CrossRef]
  132. M. Canva and G. I. Stegeman, “Parametric interactions in organic waveguides,” Adv. Polym. Sci. 158, 87–121 (2002).
    [CrossRef]
  133. F. Ghebremichael, M. G. Kuzyk, K. D. Singer, and J. H. Andrews, “Relationship between the second-order microscopic and macroscopic nonlinear optical susceptibilities of poled dye-doped polymers,” J. Opt. Soc. Am. B 15(8), 2294–2297 (1998).
    [CrossRef]
  134. M. G. Kuzyk, K. D. Singer, H. E. Zahn, and L. A. King, “Second order nonlinear optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6(4), 742–752 (1989).
    [CrossRef]
  135. C. P. J. M. van der Vorst and S. J. Picken, “Electric field poling of acceptor–donor molecules,” J. Opt. Soc. Am. B 7(3), 320–325 (1990).
    [CrossRef]
  136. W. Maier, and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).
  137. W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).
  138. W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).
  139. I. R. Girling, N. A. Cade, P. V. Kolinsky, and C. M. Montgomery, “Observation of second-harmonic generation from a Langmuir-Blodgett monolayer of merocyanine dye,” Electron. Lett. 21(5), 169–170 (1985).
    [CrossRef]
  140. I. R. Girling, P. V. Kolinsky, N. A. Cade, J. D. Earls, and I. R. Peterson, “Second harmonic generation from alternating Langmuir-Blodgett films,” Opt. Commun. 55(4), 289–292 (1985).
    [CrossRef]
  141. G. J. Ashwell, T. Handa, and R. Ranjan, “Improved second-harmonic generation from homomolecular Langmuir-Blodgett films of a transparent dye,” J. Opt. Soc. Am. B 15(1), 466–470 (1998).
    [CrossRef]
  142. I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
    [CrossRef]
  143. A. Painelli, “Vibronic contribution to static NLO properties: exact results for the DA dimer,” Chem. Phys. Lett. 285(5–6), 352–358 (1998).
    [CrossRef]
  144. S. Polyakov, F. Yoshino, M. Liu, and G. I. Stegeman, “Nonlinear refraction and multi-photon absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
    [CrossRef]
  145. D. M. Bishop, B. Champagne, and B. Kirtman, “Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push-pull molecules within the two-state valence-bond charge-transfer model,” J. Chem. Phys. 109(22), 9987–9994 (1998).
    [CrossRef]
  146. V. Chernyak, S. Tretiak, and S. Mukamel, “Electronic versus vibrational optical nonlinearities of push-pull polymers,” Chem. Phys. Lett. 319(3–4), 261–264 (2000).
    [CrossRef]
  147. D. M. Bishop, B. Champagne, and B. Kirtman, “Comment on ‘Electronic versus vibrational optical nonlinearities of push–pull polymers,’” Chem. Phys. Lett. 329(3–4), 329–330 (2000).
    [CrossRef]
  148. G. P. Das, A. T. Yeates, and D. Dudis, “Vibronic contribution to static molecular hyperpolarizabilties,” Chem. Phys. Lett. 212(6), 671–676 (1993).
    [CrossRef]
  149. B. Kirtman and B. Champagne, “Nonlinear optical properties of quasilinear conjugated oligomers, polymers and organic molecules,” Int. Rev. Phys. Chem. 16(4), 389–420 (1997).
    [CrossRef]
  150. H. Hui, S. Webster, D. Hagan, and E. Van Stryland, CREOL, University of Central Florida, are working on a manuscript, title and journal to be determined.
  151. S. J. Lalama, K. D. Singer, A. F. Garito, and K. N. Desai, “Exceptional second-order non-linear optical susceptibilities of quinoid systems,” Appl. Phys. Lett. 39(12), 940–942 (1981).
    [CrossRef]
  152. J. W. Wu, J. R. Heflin, R. A. Norwood, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, P. Kalyanaraman, and J. Sounik, “Nonlinear optical processes in lower-dimensional conjugated structures,” J. Opt. Soc. Am. B 6(4), 707–720 (1989).
    [CrossRef]
  153. J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field-induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8(10), 2132–2147 (1991).
    [CrossRef]
  154. D. C. Rodenberger, J. R. Heflin, and A. F. Garito, “Excited-state enhancement of third-order nonlinear optical responses in conjugated organic chains,” Phys. Rev. A 51(4), 3234–3245 (1995).
    [CrossRef]
  155. J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Symmetry-controlled electron correlation mechanism for third order nonlinear optical properties of conjugated linear chains,” Mol. Cryst. Liq. Cryst. 160, 37–51 (1988).
  156. J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38(2), 1573–1576 (1988).
    [CrossRef]
  157. M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41(9), 5098–5109 (1990).
    [CrossRef]
  158. S. Shafei and M. G. Kuzyk, “Critical role of the energy spectrum in determining the nonlinear optical response of a quantum system,” J. Opt. Soc. Am. B 28(4), 882–891 (2011).
    [CrossRef]
  159. M. G. Kuzyk, “A bird’s-eye view of nonlinear optical processes: unification through scale invariance,” Nonlinear Opt. Quantum Opt. 40, 1–13 (2010).
  160. J. Pérez-Moreno and M. G. Kuzyk, “Comment on ‘Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers’—Increasing the nonlinear optical response by two orders of magnitude,” Adv. Mater. 23(12), 1428–1432 (2011).
    [CrossRef]
  161. M. G. Kuzyk, “Using fundamental principles to understand and optimize nonlinear optical materials,” J. Mater. Chem. 19(40), 7444–7465 (2009).
    [CrossRef]
  162. J. Pérez-Moreno, S.-T. Hung, M. G. Kuzyk, J. Zhou, S. K. Ramini, and K. Clays, “Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response,” Phys. Rev. A 84(3), 033837 (2011).
    [CrossRef]

2012 (4)

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

F. Zaera, “Probing liquid/solid interfaces at the molecular level,” Chem. Rev. 112(5), 2920–2986 (2012).
[CrossRef]

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

G. I. Stegeman, “Nonlinear optics of conjugated polymers and linear molecules,” Nonlinear Opt. Quantum Opt. 43(1), 143158 (2012).

2011 (10)

G. I. Stegeman, M. G. Kuzyk, D. G. Papazoglou, and S. Tzortzakis, “Off-resonance and non-resonant dispersion of Kerr nonlinearity for symmetric molecules [Invited],” Opt. Express 19(23), 22486–22495 (2011).
[CrossRef]

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Classical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043406 (2011).
[CrossRef]

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043407 (2011).
[CrossRef]

S. Yue, M. M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photon. Rev. 5(4), 496–512 (2011).
[CrossRef]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[CrossRef]

G. C. R. Ellis-Davies, “Two-photon microscopy for chemical neuroscience,” ACS Chem. Neurosci. 2(4), 185–197 (2011).
[CrossRef]

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

S. Shafei and M. G. Kuzyk, “Critical role of the energy spectrum in determining the nonlinear optical response of a quantum system,” J. Opt. Soc. Am. B 28(4), 882–891 (2011).
[CrossRef]

J. Pérez-Moreno and M. G. Kuzyk, “Comment on ‘Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers’—Increasing the nonlinear optical response by two orders of magnitude,” Adv. Mater. 23(12), 1428–1432 (2011).
[CrossRef]

J. Pérez-Moreno, S.-T. Hung, M. G. Kuzyk, J. Zhou, S. K. Ramini, and K. Clays, “Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response,” Phys. Rev. A 84(3), 033837 (2011).
[CrossRef]

2010 (5)

M. G. Kuzyk, “A bird’s-eye view of nonlinear optical processes: unification through scale invariance,” Nonlinear Opt. Quantum Opt. 40, 1–13 (2010).

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[CrossRef]

A. Baev, J. Autschbach, R. W. Boyd, and P. N. Prasad, “Microscopic cascading of second-order molecular nonlinearity: new design principles for enhancing third-order nonlinearity,” Opt. Express 18(8), 8713–8721 (2010).
[CrossRef]

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudess,” Adv. Opt. Photon. 2(1), 60–200 (2010).
[CrossRef]

2009 (5)

G. Stegeman and H. Hu, “Refractive nonlinearity of linear symmetric molecules and polymers revisited,” Photon. Lett. Poland 1, 148–150 (2009).
[CrossRef]

D. Wanapun, V. J. Hall, N. J. Begue, J. G. Grote, and G. J. Simpson, “DNA-based polymers as chiral templates for second-order nonlinear optical materials,” Chem. Phys. Chem. 10(15), 2674–2678 (2009).
[CrossRef]

S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photon. Rev. 3(1–2), 1–11 (2009).
[CrossRef]

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef]

M. G. Kuzyk, “Using fundamental principles to understand and optimize nonlinear optical materials,” J. Mater. Chem. 19(40), 7444–7465 (2009).
[CrossRef]

2008 (4)

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev. 14(1), 119–131 (2008).
[CrossRef]

K. L. Wustholz, D. R. B. Sluss, B. Kahr, and P. J. Reid, “Applications of single-molecule microscopy to problems in dyed composite materials,” Int. Rev. Phys. Chem. 27(2), 167–200 (2008).
[CrossRef]

J. Pérez-Moreno, K. Clays, and M. G. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128(8), 084109 (2008).
[CrossRef]

Y. Wu, G. Mao, H. Li, R. G. Petschek, and K. D. Singer, “Control of multiphoton excited emission and phase retardation in Kleinman-disallowed hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 25(4), 495–503 (2008).
[CrossRef]

2007 (3)

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76(5), 053831 (2007).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90(25), 251106 (2007).
[CrossRef]

2006 (1)

2005 (5)

J. C. May, J. H. Lim, I. Biaggio, N. N. P. Moonen, T. Michinobu, and F. Diederich, “Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules,” Opt. Lett. 30(22), 3057–3059(2005).
[CrossRef]

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).

L. Sanguinet, R. J. Twieg, G. Wiggers, G. Mao, K. D. Singer, and R. G. Petschek, “Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations,” Tetrahedron Lett. 46(31), 5121–5125 (2005).
[CrossRef]

C. Anceau, S. Brasselet, and J. Zyss, “Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
[CrossRef]

2004 (3)

C. A. Dailey, B. J. Burke, and G. J. Simpson, “The general failure of Kleinman symmetry in practical nonlinear optical applications,” Chem. Phys. Lett. 390(1–3), 8–13 (2004).
[CrossRef]

A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120(15), 6807–6810 (2004).
[CrossRef]

S. Polyakov, F. Yoshino, M. Liu, and G. I. Stegeman, “Nonlinear refraction and multi-photon absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

2003 (4)

K. D. Singer, R. G. Petschek, V. Ostroverkhov, R. J. Twieg, and L. Sukhomlinova, “Non-polar second-order nonlinear and electro-optic materials: axially ordered chiral polymers and liquid crystals,” J. Polym. Sci. B Polym. Phys. 41(21), 2744–2754 (2003).
[CrossRef]

M. G. Kuzyk, “Erratum: Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 90(3), 039902 (2003).
[CrossRef]

M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities: erratum,” Opt. Lett. 28(2), 135 (2003).
[CrossRef]

L. Loew, A. Millard, and P. Campagnola, “Second harmonic imaging microscopy,” Microsc. Microanal. 9(Suppl. S02), 170–171 (2003).

2002 (1)

M. Canva and G. I. Stegeman, “Parametric interactions in organic waveguides,” Adv. Polym. Sci. 158, 87–121 (2002).
[CrossRef]

2001 (4)

V. Ostroverkhov, K. D. Singer, and R. G. Petschek, “Second-harmonic generation in nonpolar chiral materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 18(12), 1858–1865 (2001).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, and R. J. Twieg, “Λ-like chromophores for chiral non-linear optical materials,” Chem. Phys. Lett. 340(1–2), 109–115 (2001).
[CrossRef]

M. G. Kuzyk, “Quantum limits of the hyper-Rayleigh scattering susceptibility,” IEEE J. Sel. Top. Quantum Electron. 7(5), 774–780 (2001).
[CrossRef]

2000 (6)

M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85(6), 1218–1221 (2000).
[CrossRef]

M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25(16), 1183–1185 (2000).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor using hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 17(9), 1531–1542 (2000).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000).
[CrossRef]

V. Chernyak, S. Tretiak, and S. Mukamel, “Electronic versus vibrational optical nonlinearities of push-pull polymers,” Chem. Phys. Lett. 319(3–4), 261–264 (2000).
[CrossRef]

D. M. Bishop, B. Champagne, and B. Kirtman, “Comment on ‘Electronic versus vibrational optical nonlinearities of push–pull polymers,’” Chem. Phys. Lett. 329(3–4), 329–330 (2000).
[CrossRef]

1999 (1)

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

1998 (7)

S. F. Hubbard, R. G. Petschek, K. D. Singer, N. D’Sidocky, C. Hudson, L. C. Chien, and P. A. Cahill, “Measurements of Kleinman-disallowed hyperpolarizability in conjugated chiral molecules,” J. Opt. Soc. Am. B 15(1), 289–301 (1998).
[CrossRef]

M. G. Kuzyk, K. D. Singer, and R. J. Twieg, eds., feature issue on “Organic and Polymeric Nonlinear Optical Materials,” J. Opt. Soc. Am. B 15(1–2) 1–932 (1998).

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
[CrossRef]

D. M. Bishop, B. Champagne, and B. Kirtman, “Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push-pull molecules within the two-state valence-bond charge-transfer model,” J. Chem. Phys. 109(22), 9987–9994 (1998).
[CrossRef]

A. Painelli, “Vibronic contribution to static NLO properties: exact results for the DA dimer,” Chem. Phys. Lett. 285(5–6), 352–358 (1998).
[CrossRef]

G. J. Ashwell, T. Handa, and R. Ranjan, “Improved second-harmonic generation from homomolecular Langmuir-Blodgett films of a transparent dye,” J. Opt. Soc. Am. B 15(1), 466–470 (1998).
[CrossRef]

F. Ghebremichael, M. G. Kuzyk, K. D. Singer, and J. H. Andrews, “Relationship between the second-order microscopic and macroscopic nonlinear optical susceptibilities of poled dye-doped polymers,” J. Opt. Soc. Am. B 15(8), 2294–2297 (1998).
[CrossRef]

1997 (4)

M. Asobe, I. Yokohama, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency-generation and difference-frequency-generation processes in periodically poled LiNbO3,” Opt. Lett. 22(5), 274–276 (1997).
[CrossRef]

B. Kirtman and B. Champagne, “Nonlinear optical properties of quasilinear conjugated oligomers, polymers and organic molecules,” Int. Rev. Phys. Chem. 16(4), 389–420 (1997).
[CrossRef]

D. Jacquemin, B. Champagne, and B. Kirtman, “Ab initio static polarizability and first hyperpolarizability of model polymethineimine chains. II. Effects of conformation and of substitution by donor/acceptor end groups,” J. Chem. Phys. 107(13), 5076–5087 (1997).
[CrossRef]

D. M. Bishop, B. Kirtman, and B. Champagne, “Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities,” J. Chem. Phys. 107(15), 5780–5784 (1997).
[CrossRef]

1996 (2)

G. I. Stegeman, D. J. Hagan, and L. Torner, “Cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[CrossRef]

W. E. Torruellas, B. L. Lawrence, G. I. Stegeman, and G. Baker, “Two-photon saturation in the band gap of a molecular quantum wire,” Opt. Lett. 21(21), 1777–1779 (1996).
[CrossRef]

1995 (3)

1994 (3)

J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94(1), 77–105 (1994).
[CrossRef]

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116(20), 9320–9323 (1994).
[CrossRef]

F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, “Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alteration,” J. Am. Chem. Soc. 116(23), 10703–10714 (1994).
[CrossRef]

1993 (3)

G. Heesink, A. Ruiter, N. van Hulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering,” Phys. Rev. Lett. 71(7), 999–1002 (1993).
[CrossRef]

S. R. Marder, C. B. Gorman, B. G. Tiemann, J. W. Perry, G. Bourhill, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261(5118), 186–189 (1993).
[CrossRef]

G. P. Das, A. T. Yeates, and D. Dudis, “Vibronic contribution to static molecular hyperpolarizabilties,” Chem. Phys. Lett. 212(6), 671–676 (1993).
[CrossRef]

1992 (5)

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).
[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Molecular orientation, pair correlations and cascading in nonlinear optical susceptibilties,” Mol. Cryst. Liq. Cryst. 223(1), 143–150 (1992).
[CrossRef]

M. Joffre, D. Yaron, J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97(8), 5607–5615(1992).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

C. W. Dirk, L. T. Cheng, and M. G. Kuzyk, “A simplified three-level model for describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43(1), 27–36 (1992).
[CrossRef]

1991 (4)

P. McWilliams, P. Hayden, and Z. Soos, “Theory of even-parity state and two-photon spectra of conjugated polymers,” Phys. Rev. B 43(12), 9777–9791 (1991).
[CrossRef]

J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field-induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8(10), 2132–2147 (1991).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66(23), 2980–2983 (1991).
[CrossRef]

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59(8), 902–903 (1991).
[CrossRef]

1990 (3)

1989 (2)

1988 (4)

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Symmetry-controlled electron correlation mechanism for third order nonlinear optical properties of conjugated linear chains,” Mol. Cryst. Liq. Cryst. 160, 37–51 (1988).

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38(2), 1573–1576 (1988).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
[CrossRef]

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52(13), 1031–1033 (1988).
[CrossRef]

1987 (3)

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4(6), 968–976 (1987).
[CrossRef]

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, “Nonlinear optical response of excitons confined to one dimension,” Phys. Rev. Lett. 58(26), 2750–2753 (1987).
[CrossRef]

1986 (1)

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49(5), 248–250 (1986).
[CrossRef]

1985 (2)

I. R. Girling, N. A. Cade, P. V. Kolinsky, and C. M. Montgomery, “Observation of second-harmonic generation from a Langmuir-Blodgett monolayer of merocyanine dye,” Electron. Lett. 21(5), 169–170 (1985).
[CrossRef]

I. R. Girling, P. V. Kolinsky, N. A. Cade, J. D. Earls, and I. R. Peterson, “Second harmonic generation from alternating Langmuir-Blodgett films,” Opt. Commun. 55(4), 289–292 (1985).
[CrossRef]

1983 (1)

T. F. Heinz, H. W. K. Tom, and Y. R. Shen, “Determination of molecular-orientation of monolayer adsorbates by optical second-harmonic generation,” Phys. Rev. A 28(3), 1883–1885 (1983).
[CrossRef]

1982 (5)

J. Oudar and J. Zyss, “Structural dependence of nonlinear optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26(4), 2016–2027 (1982).
[CrossRef]

J. Zyss and J. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one-or two-dimensional units,” Phys. Rev. A 26(4), 2028–2048 (1982).
[CrossRef]

A. F. Garito and K. D. Singer, “Organic crystals and polymers—a new class of nonlinear optical materials,” Laser Focus 18(2), 59–64 (1982).

G. R. Meredith, “Local field cascading in third-order non-linear optical phenomena of liquids,” Chem. Phys. Lett. 92(2), 165–171 (1982).
[CrossRef]

G. R. Meredith, “Second-order cascading in third-order nonlinear optical processes,” J. Chem. Phys. 77(12), 5863–5871 (1982).
[CrossRef]

1981 (4)

G. R. Meredith, “Cascading in optical third-harmonic generation by crystalline quartz,” Phys. Rev. B 24(10), 5522–5532 (1981).
[CrossRef]

S. J. Lalama, K. D. Singer, A. F. Garito, and K. N. Desai, “Exceptional second-order non-linear optical susceptibilities of quinoid systems,” Appl. Phys. Lett. 39(12), 940–942 (1981).
[CrossRef]

K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic-generation,” J. Chem. Phys. 75(7), 3572–3580 (1981).
[CrossRef]

G. F. Lipscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic-solid MNA,” J. Chem. Phys. 75(3), 1509–1516 (1981).
[CrossRef]

1979 (1)

S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20(3), 1179–1194 (1979).
[CrossRef]

1978 (1)

J. Jerphagnon, D. S. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys. 27(4), 609–650 (1978).
[CrossRef]

1977 (3)

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66(6), 2664–2668 (1977).
[CrossRef]

J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67(2), 446–457 (1977).
[CrossRef]

J. L. Oudar, D. S. Chemla, and E. Batifol, “Optical nonlinearities of various substituted benzene molecules in the liquid state and comparison with solid state nonlinear susceptibilities,” J. Chem. Phys. 67(4), 1626–1635 (1977).
[CrossRef]

1976 (1)

C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976).
[CrossRef]

1975 (1)

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63(6), 2666–2682 (1975).
[CrossRef]

1974 (2)

B. F. Levine and C. G. Bethea, “Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids,” Appl. Phys. Lett. 24(9), 445–447 (1974).
[CrossRef]

K. C. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974).
[CrossRef]

1973 (1)

B. F. Levine, “Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures,” Phys. Rev. B 7(6), 2600–2626 (1973).
[CrossRef]

1972 (1)

P. D. Southgate and D. S. Hall, “Second harmonic generation and Miller’s delta parameter in a series of benzene derivatives,” J. Appl. Phys. 43(6), 2765–2770 (1972).
[CrossRef]

1971 (1)

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971).
[CrossRef]

1970 (2)

B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[CrossRef]

1969 (2)

M. Bass, D. Bua, and R. Mozzi, “Optical second-harmonic generation in crystals of organic dyes,” Appl. Phys. Lett. 15(12), 393–396 (1969).
[CrossRef]

M. Di Domenico, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[CrossRef]

1968 (2)

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968).
[CrossRef]

M. Di Domenico, “Calculation of the nonlinear optical tensor coefficients in oxygen-octahedra ferroelectrics,” Appl. Phys. Lett. 12(10), 352–355 (1968).
[CrossRef]

1965 (1)

J. F. Ward, “Calculation of nonlinear optical susceptibility using diagrammatic perturbation theory,” Phys. Rev. 37, 1–18 (1965).

1964 (1)

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17 (1964).
[CrossRef]

1962 (3)

P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

J. Giordmaine, “Mixing of light beams in crystals,” Phys. Rev. Lett. 8(1), 19–20 (1962).
[CrossRef]

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[CrossRef]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

1960 (2)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[CrossRef]

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).

1959 (1)

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).

1958 (1)

W. Maier, and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).

1949 (1)

H. Kuhn, “A quantum-mechanical theory of light absorption of organic dyes and similar compounds,” J. Chem. Phys. 17(12), 1198–1212 (1949).
[CrossRef]

1948 (2)

H. Kuhn, “Free electron model for absorption spectra of organic dyes,” J. Chem. Phys. 16(8), 840–841 (1948).
[CrossRef]

D. D. Eley, “Phthalocyanines as semiconductors,” Nature 162(4125), 819 (1948).
[CrossRef]

1925 (3)

W. Thomas, “Über die zahl der dispersionselektronen, die einem station aren zustande zugeordnet sind (vorlaufige mitteilung),” Naturwissenschaften 13(28), 627 (1925).
[CrossRef]

W. Kuhn, “Über die gesamtstarke der von einem zustande ausgehenden absorptionslinien,” Z. Phys. A Hadrons Nuclei 33, 408–412 (1925).

F. Reiche and U. W. Thomas, “Über die zahl der dispersionselektronen, die einem stationären Zustand zugeordnet sind,” Z. Phys. 34(1), 510–525 (1925).
[CrossRef]

1906 (1)

A. Pochettino, “Sul comportamento foto-elettrico dell’antracene,” Accad. Lincei Rend. 15, 355 (1906).

1879 (2)

J. Kerr, “Electro-optic observations on various liquids,” Philos. Mag. 5th Series 8(47), 85–102, 202–245 (1879).

J. Kerr, “Electro-optic observations on various liquids,” J. Phys. Theor. Appl. 8, 414–418 (1879).

1875 (1)

J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 4th Series 50(332), 337–348 (1875).

Ahsen, V.

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

Allen, S.

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Anceau, C.

C. Anceau, S. Brasselet, and J. Zyss, “Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
[CrossRef]

Anderson, B. R.

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Classical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043406 (2011).
[CrossRef]

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043407 (2011).
[CrossRef]

Andraud, C.

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

Andrews, J. H.

F. Ghebremichael, M. G. Kuzyk, K. D. Singer, and J. H. Andrews, “Relationship between the second-order microscopic and macroscopic nonlinear optical susceptibilities of poled dye-doped polymers,” J. Opt. Soc. Am. B 15(8), 2294–2297 (1998).
[CrossRef]

J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Characterization of excited states of centrosymmetric and noncentrosymmetric squaraines by third-harmonic spectral dispersion,” J. Opt. Soc. Am. B 12(12), 2360–2371 (1995).
[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).
[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Molecular orientation, pair correlations and cascading in nonlinear optical susceptibilties,” Mol. Cryst. Liq. Cryst. 223(1), 143–150 (1992).
[CrossRef]

Ashwell, G. J.

Asobe, M.

Autschbach, J.

Ayhan, M. M.

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

Baek, I.-H.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Baev, A.

Baker, G.

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[CrossRef]

Barlow, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef]

Barzda, V.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef]

Bass, M.

M. Bass, D. Bua, and R. Mozzi, “Optical second-harmonic generation in crystals of organic dyes,” Appl. Phys. Lett. 15(12), 393–396 (1969).
[CrossRef]

Batifol, E.

J. L. Oudar, D. S. Chemla, and E. Batifol, “Optical nonlinearities of various substituted benzene molecules in the liquid state and comparison with solid state nonlinear susceptibilities,” J. Chem. Phys. 67(4), 1626–1635 (1977).
[CrossRef]

Baughman, R. H.

C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976).
[CrossRef]

Begue, N. J.

D. Wanapun, V. J. Hall, N. J. Begue, J. G. Grote, and G. J. Simpson, “DNA-based polymers as chiral templates for second-order nonlinear optical materials,” Chem. Phys. Chem. 10(15), 2674–2678 (2009).
[CrossRef]

Benedict, J. B.

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Bethea, C. G.

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63(6), 2666–2682 (1975).
[CrossRef]

B. F. Levine and C. G. Bethea, “Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids,” Appl. Phys. Lett. 24(9), 445–447 (1974).
[CrossRef]

Biaggio, I.

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90(25), 251106 (2007).
[CrossRef]

J. C. May, J. H. Lim, I. Biaggio, N. N. P. Moonen, T. Michinobu, and F. Diederich, “Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules,” Opt. Lett. 30(22), 3057–3059(2005).
[CrossRef]

Bishop, D. M.

D. M. Bishop, B. Champagne, and B. Kirtman, “Comment on ‘Electronic versus vibrational optical nonlinearities of push–pull polymers,’” Chem. Phys. Lett. 329(3–4), 329–330 (2000).
[CrossRef]

D. M. Bishop, B. Champagne, and B. Kirtman, “Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push-pull molecules within the two-state valence-bond charge-transfer model,” J. Chem. Phys. 109(22), 9987–9994 (1998).
[CrossRef]

D. M. Bishop, B. Kirtman, and B. Champagne, “Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities,” J. Chem. Phys. 107(15), 5780–5784 (1997).
[CrossRef]

Bloembergen, N.

N. Bloembergen, Nonlinear Optics (Addison-Wesley, 1965) and references therein.

Bölger, B.

G. Heesink, A. Ruiter, N. van Hulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering,” Phys. Rev. Lett. 71(7), 999–1002 (1993).
[CrossRef]

Bonneville, R.

J. Jerphagnon, D. S. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys. 27(4), 609–650 (1978).
[CrossRef]

Bothwell, B. D.

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Bourhill, G.

S. R. Marder, C. B. Gorman, B. G. Tiemann, J. W. Perry, G. Bourhill, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261(5118), 186–189 (1993).
[CrossRef]

Boyd, R. W.

Brasselet, S.

C. Anceau, S. Brasselet, and J. Zyss, “Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
[CrossRef]

Bredas, J. L.

F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, “Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alteration,” J. Am. Chem. Soc. 116(23), 10703–10714 (1994).
[CrossRef]

Brédas, J.-L.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef]

Bretonnière, Y.

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

Brown, E. C.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Bua, D.

M. Bass, D. Bua, and R. Mozzi, “Optical second-harmonic generation in crystals of organic dyes,” Appl. Phys. Lett. 15(12), 393–396 (1969).
[CrossRef]

Bures, F.

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90(25), 251106 (2007).
[CrossRef]

Burke, B. J.

C. A. Dailey, B. J. Burke, and G. J. Simpson, “The general failure of Kleinman symmetry in practical nonlinear optical applications,” Chem. Phys. Lett. 390(1–3), 8–13 (2004).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Cade, N. A.

I. R. Girling, P. V. Kolinsky, N. A. Cade, J. D. Earls, and I. R. Peterson, “Second harmonic generation from alternating Langmuir-Blodgett films,” Opt. Commun. 55(4), 289–292 (1985).
[CrossRef]

I. R. Girling, N. A. Cade, P. V. Kolinsky, and C. M. Montgomery, “Observation of second-harmonic generation from a Langmuir-Blodgett monolayer of merocyanine dye,” Electron. Lett. 21(5), 169–170 (1985).
[CrossRef]

Cahill, P. A.

Cai, Y. M.

Campagnola, P.

L. Loew, A. Millard, and P. Campagnola, “Second harmonic imaging microscopy,” Microsc. Microanal. 9(Suppl. S02), 170–171 (2003).

Canfield, B. K.

Canva, M.

M. Canva and G. I. Stegeman, “Parametric interactions in organic waveguides,” Adv. Polym. Sci. 158, 87–121 (2002).
[CrossRef]

Cariati, E.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Carriles, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef]

Champagne, B.

D. M. Bishop, B. Champagne, and B. Kirtman, “Comment on ‘Electronic versus vibrational optical nonlinearities of push–pull polymers,’” Chem. Phys. Lett. 329(3–4), 329–330 (2000).
[CrossRef]

D. M. Bishop, B. Champagne, and B. Kirtman, “Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push-pull molecules within the two-state valence-bond charge-transfer model,” J. Chem. Phys. 109(22), 9987–9994 (1998).
[CrossRef]

B. Kirtman and B. Champagne, “Nonlinear optical properties of quasilinear conjugated oligomers, polymers and organic molecules,” Int. Rev. Phys. Chem. 16(4), 389–420 (1997).
[CrossRef]

D. M. Bishop, B. Kirtman, and B. Champagne, “Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities,” J. Chem. Phys. 107(15), 5780–5784 (1997).
[CrossRef]

D. Jacquemin, B. Champagne, and B. Kirtman, “Ab initio static polarizability and first hyperpolarizability of model polymethineimine chains. II. Effects of conformation and of substitution by donor/acceptor end groups,” J. Chem. Phys. 107(13), 5076–5087 (1997).
[CrossRef]

Chance, R. R.

C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976).
[CrossRef]

Chastaing, E.

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Chemla, D. S.

J. Jerphagnon, D. S. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys. 27(4), 609–650 (1978).
[CrossRef]

J. L. Oudar, D. S. Chemla, and E. Batifol, “Optical nonlinearities of various substituted benzene molecules in the liquid state and comparison with solid state nonlinear susceptibilities,” J. Chem. Phys. 67(4), 1626–1635 (1977).
[CrossRef]

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66(6), 2664–2668 (1977).
[CrossRef]

Cheng, J.-X.

S. Yue, M. M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photon. Rev. 5(4), 496–512 (2011).
[CrossRef]

Cheng, L. T.

C. W. Dirk, L. T. Cheng, and M. G. Kuzyk, “A simplified three-level model for describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43(1), 27–36 (1992).
[CrossRef]

Chernyak, V.

V. Chernyak, S. Tretiak, and S. Mukamel, “Electronic versus vibrational optical nonlinearities of push-pull polymers,” Chem. Phys. Lett. 319(3–4), 261–264 (2000).
[CrossRef]

Chien, L. C.

Choi, S.-B.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Christodoulides, D. N.

Chuang, K. C.

Cisek, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef]

Clays, K.

J. Pérez-Moreno, S.-T. Hung, M. G. Kuzyk, J. Zhou, S. K. Ramini, and K. Clays, “Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response,” Phys. Rev. A 84(3), 033837 (2011).
[CrossRef]

J. Pérez-Moreno, K. Clays, and M. G. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128(8), 084109 (2008).
[CrossRef]

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116(20), 9320–9323 (1994).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66(23), 2980–2983 (1991).
[CrossRef]

Comizzoli, R. B.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
[CrossRef]

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

D’Sidocky, N.

Dadap, J. I.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Dailey, C. A.

C. A. Dailey, B. J. Burke, and G. J. Simpson, “The general failure of Kleinman symmetry in practical nonlinear optical applications,” Chem. Phys. Lett. 390(1–3), 8–13 (2004).
[CrossRef]

Dalton, L. R.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[CrossRef]

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Das, G. P.

G. P. Das, A. T. Yeates, and D. Dudis, “Vibronic contribution to static molecular hyperpolarizabilties,” Chem. Phys. Lett. 212(6), 671–676 (1993).
[CrossRef]

Davydov, B. L.

B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].

Dawson, N. J.

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043407 (2011).
[CrossRef]

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Classical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043406 (2011).
[CrossRef]

Derkacheva, L. D.

B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].

Desai, K. N.

S. J. Lalama, K. D. Singer, A. F. Garito, and K. N. Desai, “Exceptional second-order non-linear optical susceptibilities of quinoid systems,” Appl. Phys. Lett. 39(12), 940–942 (1981).
[CrossRef]

Di Domenico, M.

M. Di Domenico, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[CrossRef]

M. Di Domenico, “Calculation of the nonlinear optical tensor coefficients in oxygen-octahedra ferroelectrics,” Appl. Phys. Lett. 12(10), 352–355 (1968).
[CrossRef]

Diederich, F.

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90(25), 251106 (2007).
[CrossRef]

J. C. May, J. H. Lim, I. Biaggio, N. N. P. Moonen, T. Michinobu, and F. Diederich, “Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules,” Opt. Lett. 30(22), 3057–3059(2005).
[CrossRef]

Dirk, C. W.

C. W. Dirk, L. T. Cheng, and M. G. Kuzyk, “A simplified three-level model for describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43(1), 27–36 (1992).
[CrossRef]

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59(8), 902–903 (1991).
[CrossRef]

M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electrooptic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7(5), 842–858 (1990).
[CrossRef]

M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41(9), 5098–5109 (1990).
[CrossRef]

M. G. Kuzyk and C. W. Dirk, Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (Marcel Dekker, 1998).

Dmitriev, G.

G. Valentin, G. Dmitriev, G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 2010).

Dubois, J. C.

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Ducuing, J.

C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976).
[CrossRef]

K. C. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974).
[CrossRef]

Dudis, D.

G. P. Das, A. T. Yeates, and D. Dudis, “Vibronic contribution to static molecular hyperpolarizabilties,” Chem. Phys. Lett. 212(6), 671–676 (1993).
[CrossRef]

Dunina, V. V.

B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].

Earls, J. D.

I. R. Girling, P. V. Kolinsky, N. A. Cade, J. D. Earls, and I. R. Peterson, “Second harmonic generation from alternating Langmuir-Blodgett films,” Opt. Commun. 55(4), 289–292 (1985).
[CrossRef]

Eichinger, B. E.

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Eisenthal, K. B.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Eisler, S.

A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120(15), 6807–6810 (2004).
[CrossRef]

Eley, D. D.

D. D. Eley, “Phthalocyanines as semiconductors,” Nature 162(4125), 819 (1948).
[CrossRef]

Elliott, E.

A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120(15), 6807–6810 (2004).
[CrossRef]

Ellis-Davies, G. C. R.

G. C. R. Ellis-Davies, “Two-photon microscopy for chemical neuroscience,” ACS Chem. Neurosci. 2(4), 185–197 (2011).
[CrossRef]

Facchetti, A.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Field, J. J.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef]

Firestone, K. A.

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Freudiger, C. W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[CrossRef]

Frey, R.

C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976).
[CrossRef]

Garito, A. F.

D. C. Rodenberger, J. R. Heflin, and A. F. Garito, “Excited-state enhancement of third-order nonlinear optical responses in conjugated organic chains,” Phys. Rev. A 51(4), 3234–3245 (1995).
[CrossRef]

J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field-induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8(10), 2132–2147 (1991).
[CrossRef]

J. W. Wu, J. R. Heflin, R. A. Norwood, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, P. Kalyanaraman, and J. Sounik, “Nonlinear optical processes in lower-dimensional conjugated structures,” J. Opt. Soc. Am. B 6(4), 707–720 (1989).
[CrossRef]

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Symmetry-controlled electron correlation mechanism for third order nonlinear optical properties of conjugated linear chains,” Mol. Cryst. Liq. Cryst. 160, 37–51 (1988).

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38(2), 1573–1576 (1988).
[CrossRef]

A. F. Garito and K. D. Singer, “Organic crystals and polymers—a new class of nonlinear optical materials,” Laser Focus 18(2), 59–64 (1982).

K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic-generation,” J. Chem. Phys. 75(7), 3572–3580 (1981).
[CrossRef]

G. F. Lipscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic-solid MNA,” J. Chem. Phys. 75(3), 1509–1516 (1981).
[CrossRef]

S. J. Lalama, K. D. Singer, A. F. Garito, and K. N. Desai, “Exceptional second-order non-linear optical susceptibilities of quinoid systems,” Appl. Phys. Lett. 39(12), 940–942 (1981).
[CrossRef]

S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20(3), 1179–1194 (1979).
[CrossRef]

Garvey, D. W.

Ghebremichael, F.

Gibbs, H.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev. 14(1), 119–131 (2008).
[CrossRef]

Giordmaine, J.

J. Giordmaine, “Mixing of light beams in crystals,” Phys. Rev. Lett. 8(1), 19–20 (1962).
[CrossRef]

Girling, I. R.

I. R. Girling, P. V. Kolinsky, N. A. Cade, J. D. Earls, and I. R. Peterson, “Second harmonic generation from alternating Langmuir-Blodgett films,” Opt. Commun. 55(4), 289–292 (1985).
[CrossRef]

I. R. Girling, N. A. Cade, P. V. Kolinsky, and C. M. Montgomery, “Observation of second-harmonic generation from a Langmuir-Blodgett monolayer of merocyanine dye,” Electron. Lett. 21(5), 169–170 (1985).
[CrossRef]

Gordon, P. F.

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Gorman, C. B.

S. R. Marder, C. B. Gorman, B. G. Tiemann, J. W. Perry, G. Bourhill, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261(5118), 186–189 (1993).
[CrossRef]

Greene, B. I.

B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, “Nonlinear optical response of excitons confined to one dimension,” Phys. Rev. Lett. 58(26), 2750–2753 (1987).
[CrossRef]

Grote, J. G.

D. Wanapun, V. J. Hall, N. J. Begue, J. G. Grote, and G. J. Simpson, “DNA-based polymers as chiral templates for second-order nonlinear optical materials,” Chem. Phys. Chem. 10(15), 2674–2678 (2009).
[CrossRef]

Günter, P.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Gupta, S. K.

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Gürek, A. G.

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

Gurzadyan, G.

G. Valentin, G. Dmitriev, G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 2010).

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, “Cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[CrossRef]

Hales, J. M.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef]

Hall, D. S.

P. D. Southgate and D. S. Hall, “Second harmonic generation and Miller’s delta parameter in a series of benzene derivatives,” J. Appl. Phys. 43(6), 2765–2770 (1972).
[CrossRef]

Hall, V. J.

D. Wanapun, V. J. Hall, N. J. Begue, J. G. Grote, and G. J. Simpson, “DNA-based polymers as chiral templates for second-order nonlinear optical materials,” Chem. Phys. Chem. 10(15), 2674–2678 (2009).
[CrossRef]

Haller, M.

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Handa, T.

Hann, R. A.

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Hayden, L. M.

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12(3), 416–427 (1995).
[CrossRef]

Hayden, P.

P. McWilliams, P. Hayden, and Z. Soos, “Theory of even-parity state and two-photon spectra of conjugated polymers,” Phys. Rev. B 43(12), 9777–9791 (1991).
[CrossRef]

Heesink, G.

G. Heesink, A. Ruiter, N. van Hulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering,” Phys. Rev. Lett. 71(7), 999–1002 (1993).
[CrossRef]

Heflin, J. R.

D. C. Rodenberger, J. R. Heflin, and A. F. Garito, “Excited-state enhancement of third-order nonlinear optical responses in conjugated organic chains,” Phys. Rev. A 51(4), 3234–3245 (1995).
[CrossRef]

J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field-induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8(10), 2132–2147 (1991).
[CrossRef]

J. W. Wu, J. R. Heflin, R. A. Norwood, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, P. Kalyanaraman, and J. Sounik, “Nonlinear optical processes in lower-dimensional conjugated structures,” J. Opt. Soc. Am. B 6(4), 707–720 (1989).
[CrossRef]

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38(2), 1573–1576 (1988).
[CrossRef]

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Symmetry-controlled electron correlation mechanism for third order nonlinear optical properties of conjugated linear chains,” Mol. Cryst. Liq. Cryst. 160, 37–51 (1988).

Hegmann, F. A.

A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120(15), 6807–6810 (2004).
[CrossRef]

Heinz, T. F.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

T. F. Heinz, H. W. K. Tom, and Y. R. Shen, “Determination of molecular-orientation of monolayer adsorbates by optical second-harmonic generation,” Phys. Rev. A 28(3), 1883–1885 (1983).
[CrossRef]

Hellwarth, R. W.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[CrossRef]

Herman, W. N.

Hermann, J. P.

C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976).
[CrossRef]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Hirel, C.

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

Ho, S. T.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Holland, W. R.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
[CrossRef]

Hu, H.

G. Stegeman and H. Hu, “Refractive nonlinearity of linear symmetric molecules and polymers revisited,” Photon. Lett. Poland 1, 148–150 (2009).
[CrossRef]

Hu, J.-J.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev. 14(1), 119–131 (2008).
[CrossRef]

Hubbard, S. F.

Hudson, C.

Hull, D. L.

Hung, S.-T.

J. Pérez-Moreno, S.-T. Hung, M. G. Kuzyk, J. Zhou, S. K. Ramini, and K. Clays, “Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response,” Phys. Rev. A 84(3), 033837 (2011).
[CrossRef]

Itoh, H.

Jackson, J. D.

For example, J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1996).

Jacquemin, D.

D. Jacquemin, B. Champagne, and B. Kirtman, “Ab initio static polarizability and first hyperpolarizability of model polymethineimine chains. II. Effects of conformation and of substitution by donor/acceptor end groups,” J. Chem. Phys. 107(13), 5076–5087 (1997).
[CrossRef]

Jazbinsek, M.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Jeanneau, E.

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

Jen, A. K.

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Jen, A. K.-Y.

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Jeong, J.-H.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon, D. S. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys. 27(4), 609–650 (1978).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[CrossRef]

Jiang, H.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Joffre, M.

M. Joffre, D. Yaron, J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97(8), 5607–5615(1992).
[CrossRef]

Josse, D.

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Kahr, B.

K. L. Wustholz, D. R. B. Sluss, B. Kahr, and P. J. Reid, “Applications of single-molecule microscopy to problems in dyed composite materials,” Int. Rev. Phys. Chem. 27(2), 167–200 (2008).
[CrossRef]

Kaino, T.

Kalyanaraman, P.

Kaminsky, W.

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Kang, H.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Katz, H. E.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
[CrossRef]

Kerr, J.

J. Kerr, “Electro-optic observations on various liquids,” Philos. Mag. 5th Series 8(47), 85–102, 202–245 (1879).

J. Kerr, “Electro-optic observations on various liquids,” J. Phys. Theor. Appl. 8, 414–418 (1879).

J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 4th Series 50(332), 337–348 (1875).

Khaydarov, J. D. V.

Khoo, I. C.

Kim, J.-T.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Kim, P.-J.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

King, L. A.

Kirtman, B.

D. M. Bishop, B. Champagne, and B. Kirtman, “Comment on ‘Electronic versus vibrational optical nonlinearities of push–pull polymers,’” Chem. Phys. Lett. 329(3–4), 329–330 (2000).
[CrossRef]

D. M. Bishop, B. Champagne, and B. Kirtman, “Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push-pull molecules within the two-state valence-bond charge-transfer model,” J. Chem. Phys. 109(22), 9987–9994 (1998).
[CrossRef]

B. Kirtman and B. Champagne, “Nonlinear optical properties of quasilinear conjugated oligomers, polymers and organic molecules,” Int. Rev. Phys. Chem. 16(4), 389–420 (1997).
[CrossRef]

D. Jacquemin, B. Champagne, and B. Kirtman, “Ab initio static polarizability and first hyperpolarizability of model polymethineimine chains. II. Effects of conformation and of substitution by donor/acceptor end groups,” J. Chem. Phys. 107(13), 5076–5087 (1997).
[CrossRef]

D. M. Bishop, B. Kirtman, and B. Champagne, “Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities,” J. Chem. Phys. 107(15), 5780–5784 (1997).
[CrossRef]

Kolinsky, P. V.

I. R. Girling, P. V. Kolinsky, N. A. Cade, J. D. Earls, and I. R. Peterson, “Second harmonic generation from alternating Langmuir-Blodgett films,” Opt. Commun. 55(4), 289–292 (1985).
[CrossRef]

I. R. Girling, N. A. Cade, P. V. Kolinsky, and C. M. Montgomery, “Observation of second-harmonic generation from a Langmuir-Blodgett monolayer of merocyanine dye,” Electron. Lett. 21(5), 169–170 (1985).
[CrossRef]

Koreneva, L. G.

B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].

Kowalski, K. L.

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Molecular orientation, pair correlations and cascading in nonlinear optical susceptibilties,” Mol. Cryst. Liq. Cryst. 223(1), 143–150 (1992).
[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).
[CrossRef]

Kuhn, H.

H. Kuhn, “A quantum-mechanical theory of light absorption of organic dyes and similar compounds,” J. Chem. Phys. 17(12), 1198–1212 (1949).
[CrossRef]

H. Kuhn, “Free electron model for absorption spectra of organic dyes,” J. Chem. Phys. 16(8), 840–841 (1948).
[CrossRef]

Kuhn, W.

W. Kuhn, “Über die gesamtstarke der von einem zustande ausgehenden absorptionslinien,” Z. Phys. A Hadrons Nuclei 33, 408–412 (1925).

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[CrossRef]

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968).
[CrossRef]

Kuzyk, M. G.

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043407 (2011).
[CrossRef]

G. I. Stegeman, M. G. Kuzyk, D. G. Papazoglou, and S. Tzortzakis, “Off-resonance and non-resonant dispersion of Kerr nonlinearity for symmetric molecules [Invited],” Opt. Express 19(23), 22486–22495 (2011).
[CrossRef]

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Classical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043406 (2011).
[CrossRef]

J. Pérez-Moreno, S.-T. Hung, M. G. Kuzyk, J. Zhou, S. K. Ramini, and K. Clays, “Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response,” Phys. Rev. A 84(3), 033837 (2011).
[CrossRef]

J. Pérez-Moreno and M. G. Kuzyk, “Comment on ‘Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers’—Increasing the nonlinear optical response by two orders of magnitude,” Adv. Mater. 23(12), 1428–1432 (2011).
[CrossRef]

S. Shafei and M. G. Kuzyk, “Critical role of the energy spectrum in determining the nonlinear optical response of a quantum system,” J. Opt. Soc. Am. B 28(4), 882–891 (2011).
[CrossRef]

M. G. Kuzyk, “A bird’s-eye view of nonlinear optical processes: unification through scale invariance,” Nonlinear Opt. Quantum Opt. 40, 1–13 (2010).

M. G. Kuzyk, “Using fundamental principles to understand and optimize nonlinear optical materials,” J. Mater. Chem. 19(40), 7444–7465 (2009).
[CrossRef]

J. Pérez-Moreno, K. Clays, and M. G. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128(8), 084109 (2008).
[CrossRef]

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76(5), 053831 (2007).
[CrossRef]

J. Zhou, M. G. Kuzyk, and D. S. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31(19), 2891–2893 (2006).
[CrossRef]

M. G. Kuzyk, “Erratum: Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 90(3), 039902 (2003).
[CrossRef]

M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities: erratum,” Opt. Lett. 28(2), 135 (2003).
[CrossRef]

M. G. Kuzyk, “Quantum limits of the hyper-Rayleigh scattering susceptibility,” IEEE J. Sel. Top. Quantum Electron. 7(5), 774–780 (2001).
[CrossRef]

M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85(6), 1218–1221 (2000).
[CrossRef]

M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25(16), 1183–1185 (2000).
[CrossRef]

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
[CrossRef]

F. Ghebremichael, M. G. Kuzyk, K. D. Singer, and J. H. Andrews, “Relationship between the second-order microscopic and macroscopic nonlinear optical susceptibilities of poled dye-doped polymers,” J. Opt. Soc. Am. B 15(8), 2294–2297 (1998).
[CrossRef]

C. W. Dirk, L. T. Cheng, and M. G. Kuzyk, “A simplified three-level model for describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43(1), 27–36 (1992).
[CrossRef]

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59(8), 902–903 (1991).
[CrossRef]

M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electrooptic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7(5), 842–858 (1990).
[CrossRef]

M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41(9), 5098–5109 (1990).
[CrossRef]

M. G. Kuzyk, K. D. Singer, H. E. Zahn, and L. A. King, “Second order nonlinear optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6(4), 742–752 (1989).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
[CrossRef]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4(6), 968–976 (1987).
[CrossRef]

M. G. Kuzyk and C. W. Dirk, Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (Marcel Dekker, 1998).

M. G. Kuzyk, “Third order nonlinear optical processes in organic liquids,” Ph.D. dissertation (University of Pennsylvania, 1985).

Kwon, O.-P.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Lalama, S. J.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
[CrossRef]

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49(5), 248–250 (1986).
[CrossRef]

S. J. Lalama, K. D. Singer, A. F. Garito, and K. N. Desai, “Exceptional second-order non-linear optical susceptibilities of quinoid systems,” Appl. Phys. Lett. 39(12), 940–942 (1981).
[CrossRef]

S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20(3), 1179–1194 (1979).
[CrossRef]

Larson, A. M.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev. 14(1), 119–131 (2008).
[CrossRef]

Lawrence, B. L.

Ledoux, I.

J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94(1), 77–105 (1994).
[CrossRef]

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Ledoux-Rak, I.

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

Lee, K.-S.

S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photon. Rev. 3(1–2), 1–11 (2009).
[CrossRef]

Lee, Y. S.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Levine, B. F.

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63(6), 2666–2682 (1975).
[CrossRef]

B. F. Levine and C. G. Bethea, “Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids,” Appl. Phys. Lett. 24(9), 445–447 (1974).
[CrossRef]

B. F. Levine, “Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures,” Phys. Rev. B 7(6), 2600–2626 (1973).
[CrossRef]

Li, H.

Liao, Y.

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Lim, J. H.

Lipscomb, G. F.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52(13), 1031–1033 (1988).
[CrossRef]

G. F. Lipscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic-solid MNA,” J. Chem. Phys. 75(3), 1509–1516 (1981).
[CrossRef]

Liu, M.

S. Polyakov, F. Yoshino, M. Liu, and G. I. Stegeman, “Nonlinear refraction and multi-photon absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

Liu, Z.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Loew, L.

L. Loew, A. Millard, and P. Campagnola, “Second harmonic imaging microscopy,” Microsc. Microanal. 9(Suppl. S02), 170–171 (2003).

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[CrossRef]

Luo, J.

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Lytel, R.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52(13), 1031–1033 (1988).
[CrossRef]

Macchioni, A.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Maier, W.

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).

W. Maier, and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

Mansour, K.

S. R. Marder, C. B. Gorman, B. G. Tiemann, J. W. Perry, G. Bourhill, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261(5118), 186–189 (1993).
[CrossRef]

Mao, G.

Y. Wu, G. Mao, H. Li, R. G. Petschek, and K. D. Singer, “Control of multiphoton excited emission and phase retardation in Kleinman-disallowed hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 25(4), 495–503 (2008).
[CrossRef]

L. Sanguinet, R. J. Twieg, G. Wiggers, G. Mao, K. D. Singer, and R. G. Petschek, “Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations,” Tetrahedron Lett. 46(31), 5121–5125 (2005).
[CrossRef]

L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).

Marder, S. R.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef]

F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, “Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alteration,” J. Am. Chem. Soc. 116(23), 10703–10714 (1994).
[CrossRef]

S. R. Marder, C. B. Gorman, B. G. Tiemann, J. W. Perry, G. Bourhill, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261(5118), 186–189 (1993).
[CrossRef]

Marks, T. J.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Matichak, J.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef]

May, J. C.

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90(25), 251106 (2007).
[CrossRef]

J. C. May, J. H. Lim, I. Biaggio, N. N. P. Moonen, T. Michinobu, and F. Diederich, “Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules,” Opt. Lett. 30(22), 3057–3059(2005).
[CrossRef]

McClung, F. J.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[CrossRef]

McWilliams, P.

P. McWilliams, P. Hayden, and Z. Soos, “Theory of even-parity state and two-photon spectra of conjugated polymers,” Phys. Rev. B 43(12), 9777–9791 (1991).
[CrossRef]

Meredith, G. R.

G. R. Meredith, “Local field cascading in third-order non-linear optical phenomena of liquids,” Chem. Phys. Lett. 92(2), 165–171 (1982).
[CrossRef]

G. R. Meredith, “Second-order cascading in third-order nonlinear optical processes,” J. Chem. Phys. 77(12), 5863–5871 (1982).
[CrossRef]

G. R. Meredith, “Cascading in optical third-harmonic generation by crystalline quartz,” Phys. Rev. B 24(10), 5522–5532 (1981).
[CrossRef]

Meyers, F.

F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, “Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alteration,” J. Am. Chem. Soc. 116(23), 10703–10714 (1994).
[CrossRef]

Michinobu, T.

Millard, A.

L. Loew, A. Millard, and P. Campagnola, “Second harmonic imaging microscopy,” Microsc. Microanal. 9(Suppl. S02), 170–171 (2003).

Millard, R. R.

B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, “Nonlinear optical response of excitons confined to one dimension,” Phys. Rev. Lett. 58(26), 2750–2753 (1987).
[CrossRef]

Miller, R. C.

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17 (1964).
[CrossRef]

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[CrossRef]

Montgomery, C. M.

I. R. Girling, N. A. Cade, P. V. Kolinsky, and C. M. Montgomery, “Observation of second-harmonic generation from a Langmuir-Blodgett monolayer of merocyanine dye,” Electron. Lett. 21(5), 169–170 (1985).
[CrossRef]

Moonen, N. N. P.

Mozzi, R.

M. Bass, D. Bua, and R. Mozzi, “Optical second-harmonic generation in crystals of organic dyes,” Appl. Phys. Lett. 15(12), 393–396 (1969).
[CrossRef]

Mukamel, S.

V. Chernyak, S. Tretiak, and S. Mukamel, “Electronic versus vibrational optical nonlinearities of push-pull polymers,” Chem. Phys. Lett. 319(3–4), 261–264 (2000).
[CrossRef]

Narang, R. S.

G. F. Lipscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic-solid MNA,” J. Chem. Phys. 75(3), 1509–1516 (1981).
[CrossRef]

Nikogosyan, D. N.

G. Valentin, G. Dmitriev, G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 2010).

Nisenhoff, M.

P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

Norwood, R. A.

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford University, 1985).

Ohira, S.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef]

Orenstein, J.

B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, “Nonlinear optical response of excitons confined to one dimension,” Phys. Rev. Lett. 58(26), 2750–2753 (1987).
[CrossRef]

Orr, B. J.

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971).
[CrossRef]

Ostroverkhov, V.

K. D. Singer, R. G. Petschek, V. Ostroverkhov, R. J. Twieg, and L. Sukhomlinova, “Non-polar second-order nonlinear and electro-optic materials: axially ordered chiral polymers and liquid crystals,” J. Polym. Sci. B Polym. Phys. 41(21), 2744–2754 (2003).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, and R. J. Twieg, “Λ-like chromophores for chiral non-linear optical materials,” Chem. Phys. Lett. 340(1–2), 109–115 (2001).
[CrossRef]

V. Ostroverkhov, K. D. Singer, and R. G. Petschek, “Second-harmonic generation in nonpolar chiral materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 18(12), 1858–1865 (2001).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor using hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 17(9), 1531–1542 (2000).
[CrossRef]

Ostroverkhov, V. P.

V. P. Ostroverkhov, “Chiral second order nonlinear optics,” Ph.D. dissertation (Case Western Reserve University, 2001).

Ostroverkhova, O.

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000).
[CrossRef]

Oudar, J.

J. Zyss and J. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one-or two-dimensional units,” Phys. Rev. A 26(4), 2028–2048 (1982).
[CrossRef]

J. Oudar and J. Zyss, “Structural dependence of nonlinear optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26(4), 2016–2027 (1982).
[CrossRef]

Oudar, J. L.

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66(6), 2664–2668 (1977).
[CrossRef]

J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67(2), 446–457 (1977).
[CrossRef]

J. L. Oudar, D. S. Chemla, and E. Batifol, “Optical nonlinearities of various substituted benzene molecules in the liquid state and comparison with solid state nonlinear susceptibilities,” J. Chem. Phys. 67(4), 1626–1635 (1977).
[CrossRef]

Paek, U. C.

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59(8), 902–903 (1991).
[CrossRef]

Painelli, A.

A. Painelli, “Vibronic contribution to static NLO properties: exact results for the DA dimer,” Chem. Phys. Lett. 285(5–6), 352–358 (1998).
[CrossRef]

Papazoglou, D. G.

Park, S.-H.

S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photon. Rev. 3(1–2), 1–11 (2009).
[CrossRef]

Pérez-Moreno, J.

J. Pérez-Moreno and M. G. Kuzyk, “Comment on ‘Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers’—Increasing the nonlinear optical response by two orders of magnitude,” Adv. Mater. 23(12), 1428–1432 (2011).
[CrossRef]

J. Pérez-Moreno, S.-T. Hung, M. G. Kuzyk, J. Zhou, S. K. Ramini, and K. Clays, “Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response,” Phys. Rev. A 84(3), 033837 (2011).
[CrossRef]

J. Pérez-Moreno, K. Clays, and M. G. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128(8), 084109 (2008).
[CrossRef]

Perry, J. W.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef]

S. R. Marder, C. B. Gorman, B. G. Tiemann, J. W. Perry, G. Bourhill, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261(5118), 186–189 (1993).
[CrossRef]

Perry, T. T.

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968).
[CrossRef]

Persoons, A.

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116(20), 9320–9323 (1994).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66(23), 2980–2983 (1991).
[CrossRef]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Peterson, I. R.

I. R. Girling, P. V. Kolinsky, N. A. Cade, J. D. Earls, and I. R. Peterson, “Second harmonic generation from alternating Langmuir-Blodgett films,” Opt. Commun. 55(4), 289–292 (1985).
[CrossRef]

Petschek, R. G.

Y. Wu, G. Mao, H. Li, R. G. Petschek, and K. D. Singer, “Control of multiphoton excited emission and phase retardation in Kleinman-disallowed hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 25(4), 495–503 (2008).
[CrossRef]

L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).

L. Sanguinet, R. J. Twieg, G. Wiggers, G. Mao, K. D. Singer, and R. G. Petschek, “Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations,” Tetrahedron Lett. 46(31), 5121–5125 (2005).
[CrossRef]

K. D. Singer, R. G. Petschek, V. Ostroverkhov, R. J. Twieg, and L. Sukhomlinova, “Non-polar second-order nonlinear and electro-optic materials: axially ordered chiral polymers and liquid crystals,” J. Polym. Sci. B Polym. Phys. 41(21), 2744–2754 (2003).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, and R. J. Twieg, “Λ-like chromophores for chiral non-linear optical materials,” Chem. Phys. Lett. 340(1–2), 109–115 (2001).
[CrossRef]

V. Ostroverkhov, K. D. Singer, and R. G. Petschek, “Second-harmonic generation in nonpolar chiral materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 18(12), 1858–1865 (2001).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor using hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 17(9), 1531–1542 (2000).
[CrossRef]

S. F. Hubbard, R. G. Petschek, K. D. Singer, N. D’Sidocky, C. Hudson, L. C. Chien, and P. A. Cahill, “Measurements of Kleinman-disallowed hyperpolarizability in conjugated chiral molecules,” J. Opt. Soc. Am. B 15(1), 289–301 (1998).
[CrossRef]

Picken, S. J.

Pierce, B. M.

F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, “Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alteration,” J. Am. Chem. Soc. 116(23), 10703–10714 (1994).
[CrossRef]

Pochettino, A.

A. Pochettino, “Sul comportamento foto-elettrico dell’antracene,” Accad. Lincei Rend. 15, 355 (1906).

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Polyakov, S.

S. Polyakov, F. Yoshino, M. Liu, and G. I. Stegeman, “Nonlinear refraction and multi-photon absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

Pope, M.

M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford, 1999).

Powell, R. C.

For an introduction to the subject including examples, see: R. C. Powell, Symmetry, Group Theory, and the Physical Properties of Crystals(Springer, 2010).

Pradere, F.

C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976).
[CrossRef]

Prasad, P. N.

Ramini, S. K.

J. Pérez-Moreno, S.-T. Hung, M. G. Kuzyk, J. Zhou, S. K. Ramini, and K. Clays, “Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response,” Phys. Rev. A 84(3), 033837 (2011).
[CrossRef]

Ranjan, R.

Ratner, M. A.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Reiche, F.

F. Reiche and U. W. Thomas, “Über die zahl der dispersionselektronen, die einem stationären Zustand zugeordnet sind,” Z. Phys. 34(1), 510–525 (1925).
[CrossRef]

Reid, P. J.

K. L. Wustholz, D. R. B. Sluss, B. Kahr, and P. J. Reid, “Applications of single-molecule microscopy to problems in dyed composite materials,” Int. Rev. Phys. Chem. 27(2), 167–200 (2008).
[CrossRef]

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Reinhoudt, D.

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116(20), 9320–9323 (1994).
[CrossRef]

Righetto, S.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Robin, P.

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Robinson, B. H.

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

Rodenberger, D. C.

D. C. Rodenberger, J. R. Heflin, and A. F. Garito, “Excited-state enhancement of third-order nonlinear optical responses in conjugated organic chains,” Phys. Rev. A 51(4), 3234–3245 (1995).
[CrossRef]

Rotermund, F.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Ruiter, A.

G. Heesink, A. Ruiter, N. van Hulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering,” Phys. Rev. Lett. 71(7), 999–1002 (1993).
[CrossRef]

Rustagi, K. C.

K. C. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974).
[CrossRef]

Salamo, G. J.

Samokhina, M. A.

B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].

Samyn, C.

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116(20), 9320–9323 (1994).
[CrossRef]

Sanguinet, L.

L. Sanguinet, R. J. Twieg, G. Wiggers, G. Mao, K. D. Singer, and R. G. Petschek, “Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations,” Tetrahedron Lett. 46(31), 5121–5125 (2005).
[CrossRef]

L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).

Saupe, A.

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).

W. Maier, and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).

Sauteret, C.

C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976).
[CrossRef]

Savage, C. M.

P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

Schafer, D. N.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef]

Schei, J. L.

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Classical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043406 (2011).
[CrossRef]

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043407 (2011).
[CrossRef]

Schilling, M. L.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
[CrossRef]

Shafei, S.

Shan, J.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

Sheetz, K. E.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef]

Shen, Y. R.

T. F. Heinz, H. W. K. Tom, and Y. R. Shen, “Determination of molecular-orientation of monolayer adsorbates by optical second-harmonic generation,” Phys. Rev. A 28(3), 1883–1885 (1983).
[CrossRef]

Silbey, J.

M. Joffre, D. Yaron, J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97(8), 5607–5615(1992).
[CrossRef]

Simpson, G. J.

D. Wanapun, V. J. Hall, N. J. Begue, J. G. Grote, and G. J. Simpson, “DNA-based polymers as chiral templates for second-order nonlinear optical materials,” Chem. Phys. Chem. 10(15), 2674–2678 (2009).
[CrossRef]

C. A. Dailey, B. J. Burke, and G. J. Simpson, “The general failure of Kleinman symmetry in practical nonlinear optical applications,” Chem. Phys. Lett. 390(1–3), 8–13 (2004).
[CrossRef]

Singer, K. D.

Y. Wu, G. Mao, H. Li, R. G. Petschek, and K. D. Singer, “Control of multiphoton excited emission and phase retardation in Kleinman-disallowed hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 25(4), 495–503 (2008).
[CrossRef]

L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).

L. Sanguinet, R. J. Twieg, G. Wiggers, G. Mao, K. D. Singer, and R. G. Petschek, “Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations,” Tetrahedron Lett. 46(31), 5121–5125 (2005).
[CrossRef]

K. D. Singer, R. G. Petschek, V. Ostroverkhov, R. J. Twieg, and L. Sukhomlinova, “Non-polar second-order nonlinear and electro-optic materials: axially ordered chiral polymers and liquid crystals,” J. Polym. Sci. B Polym. Phys. 41(21), 2744–2754 (2003).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, and R. J. Twieg, “Λ-like chromophores for chiral non-linear optical materials,” Chem. Phys. Lett. 340(1–2), 109–115 (2001).
[CrossRef]

V. Ostroverkhov, K. D. Singer, and R. G. Petschek, “Second-harmonic generation in nonpolar chiral materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 18(12), 1858–1865 (2001).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor using hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 17(9), 1531–1542 (2000).
[CrossRef]

S. F. Hubbard, R. G. Petschek, K. D. Singer, N. D’Sidocky, C. Hudson, L. C. Chien, and P. A. Cahill, “Measurements of Kleinman-disallowed hyperpolarizability in conjugated chiral molecules,” J. Opt. Soc. Am. B 15(1), 289–301 (1998).
[CrossRef]

F. Ghebremichael, M. G. Kuzyk, K. D. Singer, and J. H. Andrews, “Relationship between the second-order microscopic and macroscopic nonlinear optical susceptibilities of poled dye-doped polymers,” J. Opt. Soc. Am. B 15(8), 2294–2297 (1998).
[CrossRef]

J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Characterization of excited states of centrosymmetric and noncentrosymmetric squaraines by third-harmonic spectral dispersion,” J. Opt. Soc. Am. B 12(12), 2360–2371 (1995).
[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).
[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Molecular orientation, pair correlations and cascading in nonlinear optical susceptibilties,” Mol. Cryst. Liq. Cryst. 223(1), 143–150 (1992).
[CrossRef]

M. G. Kuzyk, K. D. Singer, H. E. Zahn, and L. A. King, “Second order nonlinear optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6(4), 742–752 (1989).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
[CrossRef]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4(6), 968–976 (1987).
[CrossRef]

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49(5), 248–250 (1986).
[CrossRef]

A. F. Garito and K. D. Singer, “Organic crystals and polymers—a new class of nonlinear optical materials,” Laser Focus 18(2), 59–64 (1982).

K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic-generation,” J. Chem. Phys. 75(7), 3572–3580 (1981).
[CrossRef]

S. J. Lalama, K. D. Singer, A. F. Garito, and K. N. Desai, “Exceptional second-order non-linear optical susceptibilities of quinoid systems,” Appl. Phys. Lett. 39(12), 940–942 (1981).
[CrossRef]

Singh, A.

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

Slepkov, A. D.

A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120(15), 6807–6810 (2004).
[CrossRef]

Slipchenko, M. M. N.

S. Yue, M. M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photon. Rev. 5(4), 496–512 (2011).
[CrossRef]

Sluss, D. R. B.

K. L. Wustholz, D. R. B. Sluss, B. Kahr, and P. J. Reid, “Applications of single-molecule microscopy to problems in dyed composite materials,” Int. Rev. Phys. Chem. 27(2), 167–200 (2008).
[CrossRef]

Sohn, J. E.

M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electrooptic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7(5), 842–858 (1990).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
[CrossRef]

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4(6), 968–976 (1987).
[CrossRef]

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49(5), 248–250 (1986).
[CrossRef]

Soos, Z.

P. McWilliams, P. Hayden, and Z. Soos, “Theory of even-parity state and two-photon spectra of conjugated polymers,” Phys. Rev. B 43(12), 9777–9791 (1991).
[CrossRef]

Sounik, J.

Southgate, P. D.

P. D. Southgate and D. S. Hall, “Second harmonic generation and Miller’s delta parameter in a series of benzene derivatives,” J. Appl. Phys. 43(6), 2765–2770 (1972).
[CrossRef]

Squier, J. A.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef]

Stegeman, G.

G. Stegeman and H. Hu, “Refractive nonlinearity of linear symmetric molecules and polymers revisited,” Photon. Lett. Poland 1, 148–150 (2009).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, “Nonlinear optics of conjugated polymers and linear molecules,” Nonlinear Opt. Quantum Opt. 43(1), 143158 (2012).

G. I. Stegeman, M. G. Kuzyk, D. G. Papazoglou, and S. Tzortzakis, “Off-resonance and non-resonant dispersion of Kerr nonlinearity for symmetric molecules [Invited],” Opt. Express 19(23), 22486–22495 (2011).
[CrossRef]

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudess,” Adv. Opt. Photon. 2(1), 60–200 (2010).
[CrossRef]

S. Polyakov, F. Yoshino, M. Liu, and G. I. Stegeman, “Nonlinear refraction and multi-photon absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

M. Canva and G. I. Stegeman, “Parametric interactions in organic waveguides,” Adv. Polym. Sci. 158, 87–121 (2002).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, “Cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[CrossRef]

W. E. Torruellas, B. L. Lawrence, G. I. Stegeman, and G. Baker, “Two-photon saturation in the band gap of a molecular quantum wire,” Opt. Lett. 21(21), 1777–1779 (1996).
[CrossRef]

G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (Wiley, 2012).

Stegeman, R. A.

G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (Wiley, 2012).

Stern, C. L.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Stiller, M. A.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52(13), 1031–1033 (1988).
[CrossRef]

Sukhomlinova, L.

K. D. Singer, R. G. Petschek, V. Ostroverkhov, R. J. Twieg, and L. Sukhomlinova, “Non-polar second-order nonlinear and electro-optic materials: axially ordered chiral polymers and liquid crystals,” J. Polym. Sci. B Polym. Phys. 41(21), 2744–2754 (2003).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor using hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 17(9), 1531–1542 (2000).
[CrossRef]

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[CrossRef]

Swenberg, C. E.

M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford, 1999).

Sylvester, A. W.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef]

Szafruga, U. B.

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76(5), 053831 (2007).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

Thackara, J. I.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52(13), 1031–1033 (1988).
[CrossRef]

Thomas, U. W.

F. Reiche and U. W. Thomas, “Über die zahl der dispersionselektronen, die einem stationären Zustand zugeordnet sind,” Z. Phys. 34(1), 510–525 (1925).
[CrossRef]

Thomas, W.

W. Thomas, “Über die zahl der dispersionselektronen, die einem station aren zustande zugeordnet sind (vorlaufige mitteilung),” Naturwissenschaften 13(28), 627 (1925).
[CrossRef]

Ticknor, A. J.

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52(13), 1031–1033 (1988).
[CrossRef]

Tiemann, B. G.

S. R. Marder, C. B. Gorman, B. G. Tiemann, J. W. Perry, G. Bourhill, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261(5118), 186–189 (1993).
[CrossRef]

Tom, H. W. K.

T. F. Heinz, H. W. K. Tom, and Y. R. Shen, “Determination of molecular-orientation of monolayer adsorbates by optical second-harmonic generation,” Phys. Rev. A 28(3), 1883–1885 (1983).
[CrossRef]

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, “Cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[CrossRef]

Torruellas, W. E.

Tostenrude, J.

Tretiak, S.

V. Chernyak, S. Tretiak, and S. Mukamel, “Electronic versus vibrational optical nonlinearities of push-pull polymers,” Chem. Phys. Lett. 319(3–4), 261–264 (2000).
[CrossRef]

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

L. Sanguinet, R. J. Twieg, G. Wiggers, G. Mao, K. D. Singer, and R. G. Petschek, “Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations,” Tetrahedron Lett. 46(31), 5121–5125 (2005).
[CrossRef]

L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).

K. D. Singer, R. G. Petschek, V. Ostroverkhov, R. J. Twieg, and L. Sukhomlinova, “Non-polar second-order nonlinear and electro-optic materials: axially ordered chiral polymers and liquid crystals,” J. Polym. Sci. B Polym. Phys. 41(21), 2744–2754 (2003).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, and R. J. Twieg, “Λ-like chromophores for chiral non-linear optical materials,” Chem. Phys. Lett. 340(1–2), 109–115 (2001).
[CrossRef]

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor using hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 17(9), 1531–1542 (2000).
[CrossRef]

Tykwinski, R. R.

A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120(15), 6807–6810 (2004).
[CrossRef]

Tzortzakis, S.

Ugo, R.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Valentin, G.

G. Valentin, G. Dmitriev, G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 2010).

Vallejo, F.

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

van der Vorst, C. P. J. M.

van Hulst, N.

G. Heesink, A. Ruiter, N. van Hulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering,” Phys. Rev. Lett. 71(7), 999–1002 (1993).
[CrossRef]

Van Stryland, E. W.

Verbiest, T.

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116(20), 9320–9323 (1994).
[CrossRef]

Vidakovic, P.

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

Wanapun, D.

D. Wanapun, V. J. Hall, N. J. Begue, J. G. Grote, and G. J. Simpson, “DNA-based polymers as chiral templates for second-order nonlinear optical materials,” Chem. Phys. Chem. 10(15), 2674–2678 (2009).
[CrossRef]

Wang, S.-X.

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor using hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 17(9), 1531–1542 (2000).
[CrossRef]

Ward, J. F.

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971).
[CrossRef]

J. F. Ward, “Calculation of nonlinear optical susceptibility using diagrammatic perturbation theory,” Phys. Rev. 37, 1–18 (1965).

Watkins, D. S.

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76(5), 053831 (2007).
[CrossRef]

J. Zhou, M. G. Kuzyk, and D. S. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31(19), 2891–2893 (2006).
[CrossRef]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

Welker, D. J.

Wiggers, G.

L. Sanguinet, R. J. Twieg, G. Wiggers, G. Mao, K. D. Singer, and R. G. Petschek, “Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations,” Tetrahedron Lett. 46(31), 5121–5125 (2005).
[CrossRef]

L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).

Williams, L. R.

B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, “Nonlinear optical response of excitons confined to one dimension,” Phys. Rev. Lett. 58(26), 2750–2753 (1987).
[CrossRef]

Wolff, J.

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116(20), 9320–9323 (1994).
[CrossRef]

Wong, K. Y.

J. W. Wu, J. R. Heflin, R. A. Norwood, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, P. Kalyanaraman, and J. Sounik, “Nonlinear optical processes in lower-dimensional conjugated structures,” J. Opt. Soc. Am. B 6(4), 707–720 (1989).
[CrossRef]

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Symmetry-controlled electron correlation mechanism for third order nonlinear optical properties of conjugated linear chains,” Mol. Cryst. Liq. Cryst. 160, 37–51 (1988).

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38(2), 1573–1576 (1988).
[CrossRef]

Wu, J. W.

Wu, Y.

Wustholz, K. L.

K. L. Wustholz, D. R. B. Sluss, B. Kahr, and P. J. Reid, “Applications of single-molecule microscopy to problems in dyed composite materials,” Int. Rev. Phys. Chem. 27(2), 167–200 (2008).
[CrossRef]

Xie, X. S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[CrossRef]

Yang, D.-Y.

S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photon. Rev. 3(1–2), 1–11 (2009).
[CrossRef]

Yaron, D.

M. Joffre, D. Yaron, J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97(8), 5607–5615(1992).
[CrossRef]

Yeates, A. T.

G. P. Das, A. T. Yeates, and D. Dudis, “Vibronic contribution to static molecular hyperpolarizabilties,” Chem. Phys. Lett. 212(6), 671–676 (1993).
[CrossRef]

Yeh, A. T.

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev. 14(1), 119–131 (2008).
[CrossRef]

Yesudas, K.

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef]

Yokohama, I.

Yoshino, F.

S. Polyakov, F. Yoshino, M. Liu, and G. I. Stegeman, “Nonlinear refraction and multi-photon absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

Yue, S.

S. Yue, M. M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photon. Rev. 5(4), 496–512 (2011).
[CrossRef]

Yun, H.

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Zaera, F.

F. Zaera, “Probing liquid/solid interfaces at the molecular level,” Chem. Rev. 112(5), 2920–2986 (2012).
[CrossRef]

Zahn, H. E.

Zamani-Khamiri, O.

J. W. Wu, J. R. Heflin, R. A. Norwood, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, P. Kalyanaraman, and J. Sounik, “Nonlinear optical processes in lower-dimensional conjugated structures,” J. Opt. Soc. Am. B 6(4), 707–720 (1989).
[CrossRef]

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38(2), 1573–1576 (1988).
[CrossRef]

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Symmetry-controlled electron correlation mechanism for third order nonlinear optical properties of conjugated linear chains,” Mol. Cryst. Liq. Cryst. 160, 37–51 (1988).

Zhabotinskii, M. E.

B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].

Zhou, J.

J. Pérez-Moreno, S.-T. Hung, M. G. Kuzyk, J. Zhou, S. K. Ramini, and K. Clays, “Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response,” Phys. Rev. A 84(3), 033837 (2011).
[CrossRef]

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76(5), 053831 (2007).
[CrossRef]

J. Zhou, M. G. Kuzyk, and D. S. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31(19), 2891–2893 (2006).
[CrossRef]

Zhou, X.-H.

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

Zolin, V. F.

B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].

Zuccaccia, C.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Zyss, J.

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

C. Anceau, S. Brasselet, and J. Zyss, “Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
[CrossRef]

J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94(1), 77–105 (1994).
[CrossRef]

M. Joffre, D. Yaron, J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97(8), 5607–5615(1992).
[CrossRef]

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

J. Oudar and J. Zyss, “Structural dependence of nonlinear optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26(4), 2016–2027 (1982).
[CrossRef]

J. Zyss and J. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one-or two-dimensional units,” Phys. Rev. A 26(4), 2028–2048 (1982).
[CrossRef]

Accad. Lincei Rend. (1)

A. Pochettino, “Sul comportamento foto-elettrico dell’antracene,” Accad. Lincei Rend. 15, 355 (1906).

ACS Chem. Neurosci. (1)

G. C. R. Ellis-Davies, “Two-photon microscopy for chemical neuroscience,” ACS Chem. Neurosci. 2(4), 185–197 (2011).
[CrossRef]

Adv. Funct. Mater. (1)

P.-J. Kim, J.-H. Jeong, M. Jazbinsek, S.-B. Choi, I.-H. Baek, J.-T. Kim, F. Rotermund, H. Yun, Y. S. Lee, P. Günter, and O.-P. Kwon, “Highly efficient organic THz generator pumped at near-infrared: quinolinium single crystals,” Adv. Funct. Mater. 22(1), 200–209 (2012).
[CrossRef]

Adv. Mater. (1)

J. Pérez-Moreno and M. G. Kuzyk, “Comment on ‘Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers’—Increasing the nonlinear optical response by two orders of magnitude,” Adv. Mater. 23(12), 1428–1432 (2011).
[CrossRef]

Adv. Opt. Photon. (1)

Adv. Phys. (1)

J. Jerphagnon, D. S. Chemla, and R. Bonneville, “The description of the physical properties of condensed matter using irreducible tensors,” Adv. Phys. 27(4), 609–650 (1978).
[CrossRef]

Adv. Polym. Sci. (1)

M. Canva and G. I. Stegeman, “Parametric interactions in organic waveguides,” Adv. Polym. Sci. 158, 87–121 (2002).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[CrossRef]

Appl. Phys. Lett. (10)

K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49(5), 248–250 (1986).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53(19), 1800–1801 (1988).
[CrossRef]

M. G. Kuzyk, U. C. Paek, and C. W. Dirk, “Guest-host polymer fibers for nonlinear optics,” Appl. Phys. Lett. 59(8), 902–903 (1991).
[CrossRef]

J. I. Thackara, G. F. Lipscomb, M. A. Stiller, A. J. Ticknor, and R. Lytel, “Poled electro-optic waveguide formation in thin-film organic media,” Appl. Phys. Lett. 52(13), 1031–1033 (1988).
[CrossRef]

R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett. 5(1), 17 (1964).
[CrossRef]

B. F. Levine and C. G. Bethea, “Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids,” Appl. Phys. Lett. 24(9), 445–447 (1974).
[CrossRef]

M. Di Domenico, “Calculation of the nonlinear optical tensor coefficients in oxygen-octahedra ferroelectrics,” Appl. Phys. Lett. 12(10), 352–355 (1968).
[CrossRef]

M. Bass, D. Bua, and R. Mozzi, “Optical second-harmonic generation in crystals of organic dyes,” Appl. Phys. Lett. 15(12), 393–396 (1969).
[CrossRef]

S. J. Lalama, K. D. Singer, A. F. Garito, and K. N. Desai, “Exceptional second-order non-linear optical susceptibilities of quinoid systems,” Appl. Phys. Lett. 39(12), 940–942 (1981).
[CrossRef]

J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90(25), 251106 (2007).
[CrossRef]

Chem. Phys. (1)

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media,” Chem. Phys. 257(2–3), 263–274 (2000).
[CrossRef]

Chem. Phys. Chem. (1)

D. Wanapun, V. J. Hall, N. J. Begue, J. G. Grote, and G. J. Simpson, “DNA-based polymers as chiral templates for second-order nonlinear optical materials,” Chem. Phys. Chem. 10(15), 2674–2678 (2009).
[CrossRef]

Chem. Phys. Lett. (8)

G. R. Meredith, “Local field cascading in third-order non-linear optical phenomena of liquids,” Chem. Phys. Lett. 92(2), 165–171 (1982).
[CrossRef]

V. Chernyak, S. Tretiak, and S. Mukamel, “Electronic versus vibrational optical nonlinearities of push-pull polymers,” Chem. Phys. Lett. 319(3–4), 261–264 (2000).
[CrossRef]

D. M. Bishop, B. Champagne, and B. Kirtman, “Comment on ‘Electronic versus vibrational optical nonlinearities of push–pull polymers,’” Chem. Phys. Lett. 329(3–4), 329–330 (2000).
[CrossRef]

G. P. Das, A. T. Yeates, and D. Dudis, “Vibronic contribution to static molecular hyperpolarizabilties,” Chem. Phys. Lett. 212(6), 671–676 (1993).
[CrossRef]

A. Painelli, “Vibronic contribution to static NLO properties: exact results for the DA dimer,” Chem. Phys. Lett. 285(5–6), 352–358 (1998).
[CrossRef]

C. A. Dailey, B. J. Burke, and G. J. Simpson, “The general failure of Kleinman symmetry in practical nonlinear optical applications,” Chem. Phys. Lett. 390(1–3), 8–13 (2004).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, and R. J. Twieg, “Λ-like chromophores for chiral non-linear optical materials,” Chem. Phys. Lett. 340(1–2), 109–115 (2001).
[CrossRef]

C. Anceau, S. Brasselet, and J. Zyss, “Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
[CrossRef]

Chem. Rev. (3)

F. Zaera, “Probing liquid/solid interfaces at the molecular level,” Chem. Rev. 112(5), 2920–2986 (2012).
[CrossRef]

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[CrossRef]

J. Zyss and I. Ledoux, “Nonlinear optics in multipolar media: theory and experiments,” Chem. Rev. 94(1), 77–105 (1994).
[CrossRef]

Eksp. Teor. Fiz. (1)

B. L. Davydov, L. D. Derkacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, and M. A. Samokhina, “Connection between charge transfer and laser second harmonic generation,” Eksp. Teor. Fiz. 12, 24–26 (1970) [JETP Lett. 12, 16–18 (1970)].

Electron. Lett. (1)

I. R. Girling, N. A. Cade, P. V. Kolinsky, and C. M. Montgomery, “Observation of second-harmonic generation from a Langmuir-Blodgett monolayer of merocyanine dye,” Electron. Lett. 21(5), 169–170 (1985).
[CrossRef]

Europhys. Lett. (1)

I. Ledoux, D. Josse, P. Vidakovic, J. Zyss, R. A. Hann, P. F. Gordon, B. D. Bothwell, S. K. Gupta, S. Allen, P. Robin, E. Chastaing, and J. C. Dubois, “Second harmonic generation by Langmuir-Blodgett multilayers of an organic azo dye,” Europhys. Lett. 3, 803–809 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

V. Ostroverkhov, O. Ostroverkhova, R. G. Petschek, K. D. Singer, L. Sukhomlinova, and R. J. Twieg, “Prospects for chiral nonlinear optical media,” IEEE J. Sel. Top. Quantum Electron. 7(5), 781–792 (2001).
[CrossRef]

M. G. Kuzyk, “Quantum limits of the hyper-Rayleigh scattering susceptibility,” IEEE J. Sel. Top. Quantum Electron. 7(5), 774–780 (2001).
[CrossRef]

Int. J. Quantum Chem. (1)

C. W. Dirk, L. T. Cheng, and M. G. Kuzyk, “A simplified three-level model for describing the molecular third-order nonlinear optical susceptibility,” Int. J. Quantum Chem. 43(1), 27–36 (1992).
[CrossRef]

Int. Rev. Phys. Chem. (2)

B. Kirtman and B. Champagne, “Nonlinear optical properties of quasilinear conjugated oligomers, polymers and organic molecules,” Int. Rev. Phys. Chem. 16(4), 389–420 (1997).
[CrossRef]

K. L. Wustholz, D. R. B. Sluss, B. Kahr, and P. J. Reid, “Applications of single-molecule microscopy to problems in dyed composite materials,” Int. Rev. Phys. Chem. 27(2), 167–200 (2008).
[CrossRef]

J. Am. Chem. Soc. (5)

T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, “Investigations of the hyperpolarizability in organic molecules from dipolar to octopolar systems,” J. Am. Chem. Soc. 116(20), 9320–9323 (1994).
[CrossRef]

M. M. Ayhan, A. Singh, C. Hirel, A. G. Gürek, V. Ahsen, E. Jeanneau, I. Ledoux-Rak, J. Zyss, C. Andraud, and Y. Bretonnière, “ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability,” J. Am. Chem. Soc. 134(8), 3655–3658 (2012).
[CrossRef]

F. Meyers, S. R. Marder, B. M. Pierce, and J. L. Bredas, “Electric field modulated nonlinear optical properties of donor-acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alteration,” J. Am. Chem. Soc. 116(23), 10703–10714 (1994).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef]

Y. Liao, B. E. Eichinger, K. A. Firestone, M. Haller, J. Luo, W. Kaminsky, J. B. Benedict, P. J. Reid, A. K. Jen, L. R. Dalton, and B. H. Robinson, “Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores,” J. Am. Chem. Soc. 127(8), 2758–2766 (2005).
[CrossRef]

J. Appl. Phys. (6)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970).
[CrossRef]

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys. 39(8), 3798–3813 (1968).
[CrossRef]

P. D. Southgate and D. S. Hall, “Second harmonic generation and Miller’s delta parameter in a series of benzene derivatives,” J. Appl. Phys. 43(6), 2765–2770 (1972).
[CrossRef]

M. Di Domenico, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[CrossRef]

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[CrossRef]

P. D. Cunningham, N. N. Valdes, F. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[CrossRef]

J. Chem. Phys. (15)

G. F. Lipscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic-solid MNA,” J. Chem. Phys. 75(3), 1509–1516 (1981).
[CrossRef]

J. Pérez-Moreno, K. Clays, and M. G. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128(8), 084109 (2008).
[CrossRef]

J. L. Oudar and D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment,” J. Chem. Phys. 66(6), 2664–2668 (1977).
[CrossRef]

H. Kuhn, “Free electron model for absorption spectra of organic dyes,” J. Chem. Phys. 16(8), 840–841 (1948).
[CrossRef]

H. Kuhn, “A quantum-mechanical theory of light absorption of organic dyes and similar compounds,” J. Chem. Phys. 17(12), 1198–1212 (1949).
[CrossRef]

K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic-generation,” J. Chem. Phys. 75(7), 3572–3580 (1981).
[CrossRef]

B. F. Levine and C. G. Bethea, “Second and third order hyperpolarizabilities of organic molecules,” J. Chem. Phys. 63(6), 2666–2682 (1975).
[CrossRef]

J. L. Oudar, “Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds,” J. Chem. Phys. 67(2), 446–457 (1977).
[CrossRef]

J. L. Oudar, D. S. Chemla, and E. Batifol, “Optical nonlinearities of various substituted benzene molecules in the liquid state and comparison with solid state nonlinear susceptibilities,” J. Chem. Phys. 67(4), 1626–1635 (1977).
[CrossRef]

G. R. Meredith, “Second-order cascading in third-order nonlinear optical processes,” J. Chem. Phys. 77(12), 5863–5871 (1982).
[CrossRef]

D. M. Bishop, B. Kirtman, and B. Champagne, “Differences between the exact sum-over-states and the canonical approximation for the calculation of static and dynamic hyperpolarizabilities,” J. Chem. Phys. 107(15), 5780–5784 (1997).
[CrossRef]

A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliott, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120(15), 6807–6810 (2004).
[CrossRef]

M. Joffre, D. Yaron, J. Silbey, and J. Zyss, “Second order optical nonlinearity in octupolar aromatic systems,” J. Chem. Phys. 97(8), 5607–5615(1992).
[CrossRef]

D. Jacquemin, B. Champagne, and B. Kirtman, “Ab initio static polarizability and first hyperpolarizability of model polymethineimine chains. II. Effects of conformation and of substitution by donor/acceptor end groups,” J. Chem. Phys. 107(13), 5076–5087 (1997).
[CrossRef]

D. M. Bishop, B. Champagne, and B. Kirtman, “Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push-pull molecules within the two-state valence-bond charge-transfer model,” J. Chem. Phys. 109(22), 9987–9994 (1998).
[CrossRef]

J. Mater. Chem. (1)

M. G. Kuzyk, “Using fundamental principles to understand and optimize nonlinear optical materials,” J. Mater. Chem. 19(40), 7444–7465 (2009).
[CrossRef]

J. Opt. Soc. Am. B (16)

S. Shafei and M. G. Kuzyk, “Critical role of the energy spectrum in determining the nonlinear optical response of a quantum system,” J. Opt. Soc. Am. B 28(4), 882–891 (2011).
[CrossRef]

J. H. Andrews, J. D. V. Khaydarov, K. D. Singer, D. L. Hull, and K. C. Chuang, “Characterization of excited states of centrosymmetric and noncentrosymmetric squaraines by third-harmonic spectral dispersion,” J. Opt. Soc. Am. B 12(12), 2360–2371 (1995).
[CrossRef]

M. G. Kuzyk, J. E. Sohn, and C. W. Dirk, “Mechanisms of quadratic electrooptic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7(5), 842–858 (1990).
[CrossRef]

Y. Wu, G. Mao, H. Li, R. G. Petschek, and K. D. Singer, “Control of multiphoton excited emission and phase retardation in Kleinman-disallowed hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 25(4), 495–503 (2008).
[CrossRef]

V. Ostroverkhov, K. D. Singer, and R. G. Petschek, “Second-harmonic generation in nonpolar chiral materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 18(12), 1858–1865 (2001).
[CrossRef]

F. Ghebremichael, M. G. Kuzyk, K. D. Singer, and J. H. Andrews, “Relationship between the second-order microscopic and macroscopic nonlinear optical susceptibilities of poled dye-doped polymers,” J. Opt. Soc. Am. B 15(8), 2294–2297 (1998).
[CrossRef]

M. G. Kuzyk, K. D. Singer, H. E. Zahn, and L. A. King, “Second order nonlinear optical tensor properties of poled films under stress,” J. Opt. Soc. Am. B 6(4), 742–752 (1989).
[CrossRef]

C. P. J. M. van der Vorst and S. J. Picken, “Electric field poling of acceptor–donor molecules,” J. Opt. Soc. Am. B 7(3), 320–325 (1990).
[CrossRef]

G. J. Ashwell, T. Handa, and R. Ranjan, “Improved second-harmonic generation from homomolecular Langmuir-Blodgett films of a transparent dye,” J. Opt. Soc. Am. B 15(1), 466–470 (1998).
[CrossRef]

J. W. Wu, J. R. Heflin, R. A. Norwood, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, P. Kalyanaraman, and J. Sounik, “Nonlinear optical processes in lower-dimensional conjugated structures,” J. Opt. Soc. Am. B 6(4), 707–720 (1989).
[CrossRef]

J. R. Heflin, Y. M. Cai, and A. F. Garito, “Dispersion measurements of electric-field-induced second-harmonic generation and third-harmonic generation in conjugated linear chains,” J. Opt. Soc. Am. B 8(10), 2132–2147 (1991).
[CrossRef]

S. F. Hubbard, R. G. Petschek, K. D. Singer, N. D’Sidocky, C. Hudson, L. C. Chien, and P. A. Cahill, “Measurements of Kleinman-disallowed hyperpolarizability in conjugated chiral molecules,” J. Opt. Soc. Am. B 15(1), 289–301 (1998).
[CrossRef]

V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, and L. C. Chien, “Measurements of the hyperpolarizability tensor using hyper-Rayleigh scattering,” J. Opt. Soc. Am. B 17(9), 1531–1542 (2000).
[CrossRef]

W. N. Herman and L. M. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12(3), 416–427 (1995).
[CrossRef]

M. G. Kuzyk, K. D. Singer, and R. J. Twieg, eds., feature issue on “Organic and Polymeric Nonlinear Optical Materials,” J. Opt. Soc. Am. B 15(1–2) 1–932 (1998).

K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4(6), 968–976 (1987).
[CrossRef]

J. Phys. Theor. Appl. (1)

J. Kerr, “Electro-optic observations on various liquids,” J. Phys. Theor. Appl. 8, 414–418 (1879).

J. Polym. Sci. B Polym. Phys. (1)

K. D. Singer, R. G. Petschek, V. Ostroverkhov, R. J. Twieg, and L. Sukhomlinova, “Non-polar second-order nonlinear and electro-optic materials: axially ordered chiral polymers and liquid crystals,” J. Polym. Sci. B Polym. Phys. 41(21), 2744–2754 (2003).
[CrossRef]

Laser Focus (1)

A. F. Garito and K. D. Singer, “Organic crystals and polymers—a new class of nonlinear optical materials,” Laser Focus 18(2), 59–64 (1982).

Laser Photon. Rev. (2)

S. Yue, M. M. N. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser Photon. Rev. 5(4), 496–512 (2011).
[CrossRef]

S.-H. Park, D.-Y. Yang, and K.-S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photon. Rev. 3(1–2), 1–11 (2009).
[CrossRef]

Microsc. Microanal. (1)

L. Loew, A. Millard, and P. Campagnola, “Second harmonic imaging microscopy,” Microsc. Microanal. 9(Suppl. S02), 170–171 (2003).

Mol. Cryst. Liq. Cryst. (2)

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Molecular orientation, pair correlations and cascading in nonlinear optical susceptibilties,” Mol. Cryst. Liq. Cryst. 223(1), 143–150 (1992).
[CrossRef]

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Symmetry-controlled electron correlation mechanism for third order nonlinear optical properties of conjugated linear chains,” Mol. Cryst. Liq. Cryst. 160, 37–51 (1988).

Mol. Phys. (1)

B. J. Orr and J. F. Ward, “Perturbation theory of the non-linear optical polarization of an isolated system,” Mol. Phys. 20(3), 513–526 (1971).
[CrossRef]

Nature (2)

D. D. Eley, “Phthalocyanines as semiconductors,” Nature 162(4125), 819 (1948).
[CrossRef]

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[CrossRef]

Naturwissenschaften (1)

W. Thomas, “Über die zahl der dispersionselektronen, die einem station aren zustande zugeordnet sind (vorlaufige mitteilung),” Naturwissenschaften 13(28), 627 (1925).
[CrossRef]

Nonlinear Opt. Quantum Opt. (3)

L. Sanguinet, J. C. Williams, R. J. Twieg, G. Mao, G. Wiggers, R. G. Petschek, and K. D. Singer, “Synthesis and HRS NLO characterization of new triarylmethyl cations,” Nonlinear Opt. Quantum Opt. 34, 41–44 (2005).

G. I. Stegeman, “Nonlinear optics of conjugated polymers and linear molecules,” Nonlinear Opt. Quantum Opt. 43(1), 143158 (2012).

M. G. Kuzyk, “A bird’s-eye view of nonlinear optical processes: unification through scale invariance,” Nonlinear Opt. Quantum Opt. 40, 1–13 (2010).

Opt. Commun. (2)

K. C. Rustagi and J. Ducuing, “Third-order optical polarizability of conjugated organic molecules,” Opt. Commun. 10(3), 258–261 (1974).
[CrossRef]

I. R. Girling, P. V. Kolinsky, N. A. Cade, J. D. Earls, and I. R. Peterson, “Second harmonic generation from alternating Langmuir-Blodgett films,” Opt. Commun. 55(4), 289–292 (1985).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, “Cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28(12), 1691–1740 (1996).
[CrossRef]

Philos. Mag. 4th Series (1)

J. Kerr, “A new relation between electricity and light: dielectrified media birefringent,” Philos. Mag. 4th Series 50(332), 337–348 (1875).

Philos. Mag. 5th Series (1)

J. Kerr, “Electro-optic observations on various liquids,” Philos. Mag. 5th Series 8(47), 85–102, 202–245 (1879).

Photon. Lett. Poland (1)

G. Stegeman and H. Hu, “Refractive nonlinearity of linear symmetric molecules and polymers revisited,” Photon. Lett. Poland 1, 148–150 (2009).
[CrossRef]

Phys. Rev. (1)

J. F. Ward, “Calculation of nonlinear optical susceptibility using diagrammatic perturbation theory,” Phys. Rev. 37, 1–18 (1965).

Phys. Rev. A (11)

T. F. Heinz, H. W. K. Tom, and Y. R. Shen, “Determination of molecular-orientation of monolayer adsorbates by optical second-harmonic generation,” Phys. Rev. A 28(3), 1883–1885 (1983).
[CrossRef]

J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76(5), 053831 (2007).
[CrossRef]

J. Oudar and J. Zyss, “Structural dependence of nonlinear optical properties of methyl-(2,4-dinitrophenyl)-aminopropanoate crystals,” Phys. Rev. A 26(4), 2016–2027 (1982).
[CrossRef]

J. Zyss and J. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one-or two-dimensional units,” Phys. Rev. A 26(4), 2028–2048 (1982).
[CrossRef]

S. J. Lalama and A. F. Garito, “Origin of the nonlinear second-order optical susceptibilities of organic systems,” Phys. Rev. A 20(3), 1179–1194 (1979).
[CrossRef]

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Classical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043406 (2011).
[CrossRef]

D. C. Rodenberger, J. R. Heflin, and A. F. Garito, “Excited-state enhancement of third-order nonlinear optical responses in conjugated organic chains,” Phys. Rev. A 51(4), 3234–3245 (1995).
[CrossRef]

J. H. Andrews, K. L. Kowalski, and K. D. Singer, “Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities,” Phys. Rev. A 46(7), 4172–4184 (1992).
[CrossRef]

N. J. Dawson, B. R. Anderson, J. L. Schei, and M. G. Kuzyk, “Quantum mechanical model of the upper bounds of the cascading contribution to the second hyperpolarizability,” Phys. Rev. A 84(4), 043407 (2011).
[CrossRef]

J. Pérez-Moreno, S.-T. Hung, M. G. Kuzyk, J. Zhou, S. K. Ramini, and K. Clays, “Experimental verification of a self-consistent theory of the first-, second-, and third-order (non)linear optical response,” Phys. Rev. A 84(3), 033837 (2011).
[CrossRef]

M. G. Kuzyk and C. W. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41(9), 5098–5109 (1990).
[CrossRef]

Phys. Rev. B (5)

J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38(2), 1573–1576 (1988).
[CrossRef]

G. R. Meredith, “Cascading in optical third-harmonic generation by crystalline quartz,” Phys. Rev. B 24(10), 5522–5532 (1981).
[CrossRef]

P. McWilliams, P. Hayden, and Z. Soos, “Theory of even-parity state and two-photon spectra of conjugated polymers,” Phys. Rev. B 43(12), 9777–9791 (1991).
[CrossRef]

S. Polyakov, F. Yoshino, M. Liu, and G. I. Stegeman, “Nonlinear refraction and multi-photon absorption in polydiacetylenes from 1200 to 2200 nm,” Phys. Rev. B 69(11), 115421 (2004).
[CrossRef]

B. F. Levine, “Bond-charge calculation of nonlinear optical susceptibilities for various crystal structures,” Phys. Rev. B 7(6), 2600–2626 (1973).
[CrossRef]

Phys. Rev. Lett. (10)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[CrossRef]

J. Giordmaine, “Mixing of light beams in crystals,” Phys. Rev. Lett. 8(1), 19–20 (1962).
[CrossRef]

K. Clays and A. Persoons, “Hyper-Rayleigh scattering in solution,” Phys. Rev. Lett. 66(23), 2980–2983 (1991).
[CrossRef]

M. G. Kuzyk, “Erratum: Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 90(3), 039902 (2003).
[CrossRef]

M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85(6), 1218–1221 (2000).
[CrossRef]

C. Sauteret, J. P. Hermann, R. Frey, F. Pradere, J. Ducuing, R. H. Baughman, and R. R. Chance, “Optical nonlinearities in one-dimensional-conjugated polymer crystals,” Phys. Rev. Lett. 36(16), 956–959 (1976).
[CrossRef]

P. D. Maker, R. W. Terhune, M. Nisenhoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[CrossRef]

B. I. Greene, J. Orenstein, R. R. Millard, and L. R. Williams, “Nonlinear optical response of excitons confined to one dimension,” Phys. Rev. Lett. 58(26), 2750–2753 (1987).
[CrossRef]

G. Heesink, A. Ruiter, N. van Hulst, and B. Bölger, “Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering,” Phys. Rev. Lett. 71(7), 999–1002 (1993).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[CrossRef]

Science (2)

J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327(5972), 1485–1488 (2010).
[CrossRef]

S. R. Marder, C. B. Gorman, B. G. Tiemann, J. W. Perry, G. Bourhill, and K. Mansour, “Relation between bond-length alternation and second electronic hyperpolarizability of conjugated organic molecules,” Science 261(5118), 186–189 (1993).
[CrossRef]

Tetrahedron Lett. (1)

L. Sanguinet, R. J. Twieg, G. Wiggers, G. Mao, K. D. Singer, and R. G. Petschek, “Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations,” Tetrahedron Lett. 46(31), 5121–5125 (2005).
[CrossRef]

Tissue Eng. Part B Rev. (1)

A. T. Yeh, H. Gibbs, J.-J. Hu, and A. M. Larson, “Advances in nonlinear optical microscopy for visualizing dynamic tissue properties in culture,” Tissue Eng. Part B Rev. 14(1), 119–131 (2008).
[CrossRef]

Z. Naturforsch. A (3)

W. Maier, and A. Saupe, “Eine einfache molekulare theorie des nematischen kristallinflussigen zustandes,” Z. Naturforsch. A 13, 564–566 (1958).

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 1,” Z. Naturforsch. A 14, 882–889 (1959).

W. Maier and A. Saupe, “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase 2,” Z. Naturforsch. A 15, 287–292 (1960).

Z. Phys. (1)

F. Reiche and U. W. Thomas, “Über die zahl der dispersionselektronen, die einem stationären Zustand zugeordnet sind,” Z. Phys. 34(1), 510–525 (1925).
[CrossRef]

Z. Phys. A Hadrons Nuclei (1)

W. Kuhn, “Über die gesamtstarke der von einem zustande ausgehenden absorptionslinien,” Z. Phys. A Hadrons Nuclei 33, 408–412 (1925).

Other (12)

M. G. Kuzyk and C. W. Dirk, Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (Marcel Dekker, 1998).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2009).

M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford, 1999).

G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices (Wiley, 2012).

G. Valentin, G. Dmitriev, G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 2010).

N. Bloembergen, Nonlinear Optics (Addison-Wesley, 1965) and references therein.

For an introduction to the subject including examples, see: R. C. Powell, Symmetry, Group Theory, and the Physical Properties of Crystals(Springer, 2010).

V. P. Ostroverkhov, “Chiral second order nonlinear optics,” Ph.D. dissertation (Case Western Reserve University, 2001).

J. F. Nye, Physical Properties of Crystals (Oxford University, 1985).

For example, J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1996).

M. G. Kuzyk, “Third order nonlinear optical processes in organic liquids,” Ph.D. dissertation (University of Pennsylvania, 1985).

H. Hui, S. Webster, D. Hagan, and E. Van Stryland, CREOL, University of Central Florida, are working on a manuscript, title and journal to be determined.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Figure 1
Figure 1

Molecules referenced in this work: (a) phthalocyanine, (b) anthracene, (c) disperse red 1 (DR1), and (d) 2-methyl-4-nitroaniline (MNA). Note the π -conjugated systems in each.

Figure 2
Figure 2

Intrinsic hyperpolarizability of some representative molecules that have large nonlinear optical responses, plotted as a function of the energy difference E 10 . Reproduced with permission of www.nlosource.com. The numbers in brackets label a series of similar molecules.

Figure 3
Figure 3

Plot of the measured second hyperpolarizability as a function of N (points) and the scaling predicted by the fundamental limits (curve) [158,161]. Reproduced with permission of J. Mat. Chem.

Figure 4
Figure 4

Plot of the calculated second hyperpolarizability of the molecule in the inset as a function of bond-order alternation.

Figure 5
Figure 5

Prototypical structures having octupolar symmetry in (a) two and (b) three dimensions. The colors/shapes represent distinct chemical moieties.

Figure 6
Figure 6

Two-level model for calculating (a)  χ ( 2 ) and (b)  χ ( 3 ) for noncentrosymmetric molecules.

Figure 7
Figure 7

The three χ ( 3 ) contributions to nonlinear absorption and refraction. The upward arrows correspond to absorption and the downward ones to emission.

Figure 8
Figure 8

Generic dependence on normalized frequency of the real and imaginary components in arbitrary units of the one- and two-photon terms of the third-order susceptibility in the two-level model. The blue curves are for the total of the one-photon terms ( | μ ¯ 10 | 4 ) and the red curves are for the total two-photon terms ( | μ ¯ 10 | 2 ( μ ¯ 11 μ ¯ 00 ) 2 ) . The regions of positive and negative susceptibility are identified. The upper curves show the dispersion of the two-photon resonance terms on a linear scale.

Figure 9
Figure 9

Non-resonant case for the interaction of low-energy photons with the two-level system. Reproduced with permission of John Wiley and Sons publishers [10].

Figure 10
Figure 10

(a) Two-level system with all electrons initially in the ground state. (b) A single incoming photon is absorbed and an electron is raised to the excited state. (c) Situation after many photons have been absorbed. Process I refers to stimulated emission, II refers to stimulated absorption, and III to spontaneous emission. Reproduced with permission of John Wiley and Sons [10].

Figure 11
Figure 11

Relative contributions to the total nonlinearity (solid curves) of the Kerr electronic nonlinearity (dotted curve) of the saturation contribution (dashed curve), all for the case ( μ 11 μ 00 ) 2 = | μ 10 | 2 . (a) The real part, which also shows the total nonlinearity for ( μ 11 μ 00 ) 2 = 1.2 | μ 10 | 2 as a dashed–dotted curve. (b) The imaginary part of the third-order nonlinearity in arbitrary units. The ± signs identify whether the nonlinearity is positive or negative. The vertical lines indicate where the nonlinearity changes sign. Reproduced with permission of John Wiley and Sons [11].

Figure 12
Figure 12

Examples of the different pathways possible for (a) the second summation (dashed lines) and (b) the first summation (solid lines) in Eq. (93) by which the even-symmetry excited states can be reached only via intermediate odd-symmetry excited states. Reproduced by permission of the Optical Society of America [108].

Figure 13
Figure 13

The three energy levels, the electric dipole matrix elements, and the excited state lifetimes for the three-level model of a centrosymmetric system.

Figure 14
Figure 14

Relative contributions to the total nonlinearity (solid curve) of the Kerr two-photon transitions (dotted curve) and the Kerr one-photon transitions (dashed curve) for ω 20 = 1.33 ω 10 , ω 10 τ 10 = 0.001 , ω 10 τ 21 = 0.01 , and | μ 21 | 2 ω 10 / | μ 10 | 2 ω 20 = 1.25 . (a) The real part and (b) the imaginary part of the third-order nonlinearity in arbitrary units. The ± signs identify whether the nonlinearity is positive or negative. The vertical lines indicate where the nonlinearity changes sign. Reproduced with permission of John Wiley and Sons [11].

Figure 15
Figure 15

Calculation of n 2 eal { χ ( 3 ) ) in arbitrary units versus the normalized frequency ( ω 10 ω ) / ω 10 for the three-level model with ω 20 = 1.33 ω 10 , ω 10 τ 21 = 0.01 , ω 10 τ 10 = 0.001 , and | μ 21 | 2 ω 10 / | μ 10 | 2 ω 20 = 0.75 (dashed curve), | μ 21 | 2 ω 10 / | μ 10 | 2 ω 20 = 1.25 (solid curve) [108].

Figure 16
Figure 16

(a) A dipolar liquid in which the molecules (arrows) sweep out a spherical volume. (b) The shaded region represents the dielectric in an electric field (arrows) which is modeled as a continuum. (c) A spherical piece of the dielectric is removed with the charges frozen in place.

Figure 17
Figure 17

(a) Electric field of a dielectric sphere of dielectric constant ε 2 embedded in a dielectric of constant ε 1 and (b) with the charges fixed in place and the dielectric sphere removed.

Figure 18
Figure 18

(a) Euler angles relating molecular to macroscopic frames. (b) Geometry of C 2 v electron donor–acceptor–donor (D-A-D) chromophores.

Figure 19
Figure 19

Optimum alignment of C 2 v chromophores on a helix.

Figure 20
Figure 20

Examples of unit cells containing molecules with different properties. The red arrows portray one-dimensional second-order nonlinear coefficients. (a) Unit cells containing a centrosymmetric molecule (dipole moment represented by the dot). (b) Unit cells containing two counteraligned noncentrosymmetric molecules. (c) Unit cells with a single noncentrosymmetric molecule.

Figure 21
Figure 21

Prototype charge transfer molecule with acceptor and donor groups separated by a π -electron bridge.

Figure 22
Figure 22

(a) In-plane poling and (b) parallel plate poling of the charge transfer layer. The role of the buffer materials and glass substrate is to inhibit current flow between electrodes, which diminishes the poling field and causes dielectric breakdown. (c) Random orientation of molecules prior to poling. (d) Partial alignment of molecules by field. (e) “Frozen-in” structure.

Figure 23
Figure 23

Z-scan measurement of η 2 , eff from 30 fs to 9 ps for liquid CS 2 . Courtesy of Prof. E. VanStryland and Dr. H. Hu, University of Central Florida [150].

Figure 24
Figure 24

(a) A dipole in a cavity within a dielectric and (b) a representation of the charges, including the dipole-induced surface charge on the cavity wall and the dipole in the cavity. (c) Molecule represented as a point dipole and in a dielectric of permittivity, ε 1 r (d) represented as a dielectric sphere of permittivity ε 2 r and polarization P⃗ 0 . No electric fields or induced polarization are shown.

Tables (1)

Tables Icon

Table 1. Character Table for C 2 v Symmetry

Equations (164)

Equations on this page are rendered with MathJax. Learn more.

χ i j k ( 2 ) ( 2 ω ) = χ i i ( 1 ) ( 2 ω ) χ j j ( 1 ) ( 2 ω ) χ k k ( 1 ) ( 2 ω ) δ i j k 2 ω ,
p i ( n ) ( ω ) = 1 2 n 1 ε 0 ξ i j k ( n ) ( ω ; ω 1 , ω 2 ω n ) F j ( ω 1 ) F ( ω n ) ,
F⃗ ( t ) = 1 2 F⃗ ( ω ) e i ω t + c.c. , F⃗ ( ω ) = F⃗ ( ω ) .
F⃗ ( t ) = p = 1 no. incident fields F⃗ p ( ω p , t ) .
P⃗ ( F⃗ ) = ψ g ( F⃗ ( t ) ) | P⃗ | ψ g ( F⃗ ( t ) ) ,
ξ i j k ( n ) ( ω ; ω 1 , ω 2 , ω n ) = 1 ε 0 D n F j ( ω 1 ) F k ( ω 2 ) F ( ω n ) ψ g ( F⃗ ) | P i | ψ g ( F⃗ ) | F⃗ = 0 ,
i t | ψ = H 0 | ψ .
V ( t ) = p μ⃗ · F⃗ p ( t ) ,
H = H 0 + λ V .
| ψ m ( 0 ) ( t ) = | ψ m ( 0 ) e i ω ^ m t ,
| ψ m ( t ) = s = 0 λ s | ψ m ( s ) ( t ) .
i t | ψ m ( s ) ( t ) = H 0 | ψ m ( s ) ( t ) + V ( t ) | ψ m ( s 1 ) ( t ) .
| ψ m ( s ) ( t ) = a m ( s ) ( t ) | ψ ( 0 ) ( t ) ,
| ψ g ( s ) ( t ) = a ( s ) ( t ) | ψ ( 0 ) ( t ) ,
i ( a ˙ ( s ) ( t ) | ψ ( 0 ) ( t ) + a ( s ) ( t ) ( i ω ) | ψ ( 0 ) ( t ) ) = E a ( s ) ( t ) | ψ ( 0 ) ( t ) + V ( t ) a ( s 1 ) ( t ) | ψ ( 0 ) ( t ) .
i a ˙ m ( s ) ( t ) e i ω ^ m t + ω m a m ( s ) ( t ) e i ω ^ m t = E m a m ( s ) ( t ) e i ω ^ m t + ψ m ( 0 ) | V ( t ) | ψ ( 0 ) a ( s 1 ) ( t ) e i ω ^ t .
a ˙ m ( s ) ( t ) = 1 i V m ( t ) a ( s 1 ) ( t ) e i ω ^ m t .
a m ( s ) ( t ) = 1 i t V m ( t ) a ( s 1 ) ( t ) e i ω ^ m t d t .
a m ( 1 ) ( t ) = 1 i t μ⃗ m g · 1 2 p F⃗ ( ω p ) e i ω p t e i ω ^ m g t d t .
a m ( 1 ) ( t ) = 1 2 p μ⃗ m g · F⃗ ( ω p ) ω ^ m g ω p e i ( ω ^ m g ω p ) t .
a v ( 2 ) ( t ) = 1 4 2 p , q m [ μ⃗ v m · F⃗ ( ω q ) ] [ μ⃗ m g · F⃗ ( ω p ) ] ( ω ^ v g ω p ω q ) ( ω ^ m g ω p ) e i ( ω ^ v g ω p ω q ) t ,
a d ( 3 ) ( t ) = 1 8 3 p , q , r d , v , m [ μ⃗ d v · F⃗ ( ω r ) ] [ μ⃗ v m · F⃗ ( ω q ) ] [ μ⃗ m g · F⃗ ( ω p ) ] ( ω ^ d g ω p ω q ω r ) ( ω ^ v g ω p ω q ) ( ω ^ m g ω p ) e i ( ω ^ d g ω p ω q ω r ) t .
| ψ g ( t ) = | ψ g ( 0 ) + λ m a m ( 1 ) ( t ) | ψ m ( 0 ) e i ω ^ m g t + λ 2 v a v ( 2 ) ( t ) | ψ v ( 0 ) e i ω ^ v g t + ,
| ψ m ( 0 ) ( t ) = | ψ m ( 0 ) e i ω ^ m g t .
μ⃗ ( t ) = ( ψ g ( 0 ) | + λ m a m * ( 1 ) ( t ) ψ m ( 0 ) | e i ω ^ m g * t + ) μ⃗ × ( | ψ g ( 0 ) + λ m a m ( 1 ) ( t ) | ψ m ( 0 ) e i ω ^ m g t + λ 2 m a m ( 2 ) ( t ) | ψ m ( 0 ) e i ω ^ m g t ) .
μ⃗ ( 1 ) ( t ) = m a m ( 1 ) * ( t ) ψ g ( 0 ) | μ⃗ e i ω ^ m g * t | ψ m ( 0 ) + ψ m ( 0 ) | μ⃗ m a m ( 1 ) ( t ) | ψ g ( 0 ) e i ω ^ m g t .
μ⃗ ( 1 ) ( t ) = 1 2 m p ( μ⃗ g m · F⃗ ( ω p ) μ⃗ m g ω ^ m g * + ω p + μ⃗ m g · F⃗ ( ω p ) μ⃗ g m ω ^ m g ω p ) e i ω p t + c.c. ,
p⃗ ( t ) = 1 2 p [ p⃗ ( ω p ) e i ω p t + p⃗ ( ω p ) e i ω p t ] ,
p⃗ ( ω p ) = 1 m ( μ⃗ g m · F⃗ ( ω p ) μ⃗ m g ω ^ m g * + ω p + μ⃗ m g · F⃗ ( ω p ) μ⃗ g m ω ^ m g * ω p ) ,
α i j ( 1 ) ( ω p ; ω p ) = 1 ε 0 L ( ω p ) ( μ g m , i μ m g , j ω ^ m g * + ω p + μ g m , j μ m g , i ω ^ m g ω p ) ,
p⃗ N L ( ω = ω p ± ω q ) = 1 ε 0 2 q p v , m ( μ⃗ g v [ μ⃗ v m · F⃗ ( ± ω q ) ] [ μ⃗ m g · F⃗ ( ω p ) ] ( ω ^ v g ω p ω q ) ( ω ^ m g ω p ) + [ μ⃗ g v · F⃗ ( ± ω q ) ] μ⃗ v m [ μ⃗ m g · F⃗ ( ω p ) ] ( ω ^ m g * + ω p ) ( ω ^ v g ω q ) + [ μ⃗ g v · F⃗ ( ± ω q ) ] [ μ⃗ v m · F⃗ ( ω p ) ] μ⃗ m g ( ω ^ m g * + ω p ) ( ω ^ v g * + ω p ± ω q ) ) .
F⃗ ( ω ) = E⃗ ( ω ) + 1 3 ε 0 P⃗ ( ω ) = L ( ω ) E⃗ ( ω ) .
p⃗ ( ω ) = N α⃗⃗ · [ E⃗ ( ω ) + 1 3 ε 0 P⃗ ( ω ) ] + N p⃗ N L ( ω ) ,
p⃗ ( ω ) = [ ε r ( ω ) + 2 3 ] [ α⃗⃗ · E⃗ ( ω ) + p ¯ N L ( ω ) ] .
p⃗ ( 2 ) ( r⃗ , t ) = 1 2 q , p p⃗ ( 2 ) ( ω p ± ω q ) e i ( ω p ± ω q ) t + c.c. = 1 4 ε 0 q . p β⃗⃗⃗ ( [ ω p ± ω q ] ; ω p , ± ω q ) : E⃗ ( ω p ) E⃗ ( ± ω q ) e i ( ω p ± ω q ) t + c.c. ,
p⃗ ( 2 ) ( ω p ± ω q ) = 1 2 2 [ ε r ( ω p ± ω q ) + 2 3 ] n , m { μ ¯ g n [ μ ¯ n m · F⃗ ( ± ω q ) ] [ μ ¯ m g · F⃗ ( ± ω p ) ] ( ω ^ n g ω q ω p ) ( ω ^ m g ω p ) + [ μ ¯ g n · F⃗ ( ± ω q ) ] μ ¯ n m [ μ ¯ m g · F⃗ ( ± ω p ] ( ω ^ n g ± ω q ) ( ( ω ^ n g * ω p ) ) + [ μ ¯ g n · F⃗ ( ± ω q ) ] [ μ ¯ n m · F⃗ ( ± ω p ] μ ¯ m g ( ω ^ m g * ± ω q + ω p ) ( ω ^ n g * ± ω q ) } ,
β i j k ( [ ω p ± ω q ] ; ω p , ± ω q ) = 1 2 ε 0 L ( ω p ± ω q ) L ( ω p ) L ( ± ω q ) n m { μ g n , i μ n m , k μ ¯ m g , j ( ω ¯ ^ n g ω q ω p ) ( ω ¯ ^ m g ω p ) + μ g n , k μ n m , i μ ¯ m g , j ( ω ¯ ^ n g * ± ω q ) ( ω ¯ ^ m g ω p ) + μ n m , j μ g n , k μ ¯ m g , j ( ω ¯ ^ m g * ± ω q + ω p ) ( ω ¯ ^ n g * + ω q ) } .
L ( ω p ± ω q ) L ( ω p ) L ( ± ω q ) = ε r ( ω p ± ω q ) + 2 3 ε r ( ω p ) + 2 3 ε r ( ω q ) + 2 3 ,
β i j k ( [ ω p ± ω q ] ; ω p , ± ω q ) = 1 ε 0 2 L ( ω p ± ω q ) L ( ω p ) L ( ± ω q ) n m { μ g n , i ( μ n m , k μ g g , k ) μ m g , j ( ω ^ n g ω q ω p ) ( ω ^ m g ω p ) + μ g n , k ( μ n m , j μ g g , j ) μ m g , i ( ω ^ n g * ± ω q ) ( ω ^ m g * + ω p ± ω q ) + μ g n , k ( μ n m , i μ g g , i ) μ ¯ m g , j ( ω ^ n g * ± ω q ) ( ω ^ m g + ω q ) } ,
p⃗ ( 2 ) ( r⃗ , t ) = 1 2 q , p p⃗ ( 2 ) ( ω p ± ω q ) e i ( ω p ± ω q ) t + c.c. = 1 4 ε 0 P I β⃗⃗⃗ ( [ ω p ± ω q ] ; ω p , ± ω q ) : E⃗ ( ω p ) E⃗ ( ± ω q ) e i ( ω p ± ω q ) t + c.c. ,
P I μ g v , i μ v m , j μ m g , k ( ω ^ v g ω p ω q ) ( ω ^ m g ω p ) = 1 2 [ μ g v , i μ v m , j μ m g , k ( ω ^ v g ω p ω q ) ( ω ^ m g ω p ) + μ g v , i μ v m , k μ m g , j ( ω ^ v g ω q ω p ) ( ω ^ m g ω q ) ] .
γ i j k l ( ω ; ω p , ω q , ω r ) = 1 ε 0 3 L ( ω ) L ( ω p ) L ( ω q ) L ( ω r ) P I [ v , n , m x { μ g v , i ( μ ν n , l μ g g , l ) ( μ n m , k μ g g , k ) μ m g , j (