Abstract

We present a detailed overview of stimulated Brillouin scattering (SBS) in single-mode optical fibers. The review is divided into two parts. In the first part, we discuss the fundamentals of SBS. A particular emphasis is given to analytical calculation of the backreflected power and SBS threshold (SBST) in optical fibers with various index profiles. For this, we consider acousto-optic interaction in the guiding geometry and derive the modal overlap integral, which describes the dependence of the Brillouin gain on the refractive index profile of the optical fiber. We analyze Stokes backreflected power initiated by thermal phonons, compare values of the SBST calculated from different approximations, and discuss the SBST dependence on the fiber length. We also review an analytical approach to calculate the gain of Brillouin fiber amplifiers (BFAs) in the regime of pump depletion. In the high-gain regime, fiber loss is a nonnegligible effect and needs to be accounted for along with the pump depletion. We provide an accurate analytic expression for the BFA gain and show results of experimental validation. Finally, we review methods to suppress SBS including index-controlled acoustic guiding or segmented fiber links. The second part of the review deals with recent advances in fiber-optic applications where SBS is a relevant effect. In particular, we discuss the impact of SBS on the radio-over-fiber technology, enhancement of the SBS efficiency in Raman-pumped fibers, slow light due to SBS and SBS-based optical delay lines, Brillouin fiber-optic sensors, and SBS mitigation in high-power fiber lasers, as well as SBS in multimode and microstructured fibers. A detailed derivation of evolutional equations in the guided wave geometry as well as key physical relations are given in appendices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Brillouin, “Diffusion de la lumière par un corps transparent homogène,” Ann. Phys. 17, 88 (1922).
  2. I. L. Fabelinskii, “The discovery of combination scattering of light in Russia and India,” Phys. Usp. 46, 1105–1112 (2003).
    [CrossRef]
  3. B. R. Masters, “C. V. Raman and the Raman effect,” Opt. Photonics News 20(3), 41–45 (2009).
    [CrossRef]
  4. V. Sundar, R. E. Newnham, “Electrostriction,” in The Electrical Engineering Handbook, 2nd ed., R. C. Dorf, ed. (CRC Press, 1997), pp. 1193–1200.
  5. R. Y. Chiao, C. H. Townes, B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense supersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
    [CrossRef]
  6. E. L. Buckland, R. W. Boyd, “Electrostrictive contribution to the intensity-dependent refractive index of optical fibers,” Opt. Lett. 21, 1117–1119 (1996).
    [CrossRef] [PubMed]
  7. E. L. Buckland, “Mode-profile dependence of the electrostrictive response in fibers,” Opt. Lett. 24, 872–874 (1999).
    [CrossRef]
  8. E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index-profile fibers,” Opt. Lett. 25, 390–392 (2000).
    [CrossRef]
  9. E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index profile fibers: errata,” Opt. Lett. 25, 987 (2000).
    [CrossRef]
  10. A. S. Biryukov, M. E. Sukharev, E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibres,” Quantum Electron. 32, 765–775 (2002).
    [CrossRef]
  11. P. D. Townsend, A. J. Poustie, P. J. Hardman, K. J. Blow, “Measurement of the refractive-index modulation generated by electrostriction-induced acoustic waves in optical fibers,” Opt. Lett. 21, 333–335 (1996).
    [CrossRef] [PubMed]
  12. A. Fellegara, A. Melloni, M. Martinelli, “Measurement of the frequency response induced by electrostriction in optical fibers,” Opt. Lett. 22, 1615–1617 (1997).
    [CrossRef]
  13. E. L. Buckland, R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers,” Opt. Lett. 22, 676–678 (1997).
    [CrossRef] [PubMed]
  14. A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23, 691–693 (1998).
    [CrossRef]
  15. A. S. Biryukov, S. V. Erokhin, S. V. Kushchenko, E. M. Dianov, “Electrostriction temporal shift of laser pulses in optical fibres,” Quantum Electron. 34, 1047–1053 (2004).
    [CrossRef]
  16. N. Shibata, Y. Azuma, T. Horiguchi, M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett. 13, 595–597 (1988).
    [CrossRef] [PubMed]
  17. N. Shibata, K. Okamoto, Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers,” J. Opt. Soc. Am. B 6, 1167–1174 (1989).
    [CrossRef]
  18. A. Yeniay, J. M. Delavaux, J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20, 1425–1432 (2002).
    [CrossRef]
  19. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22, 631–639 (2004).
    [CrossRef]
  20. M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  21. J. Yu, Y. Park, K. Oh, I. Kwon, “Brillouin frequency shifts in silica optical fiber with the double cladding structure,” Opt. Express 10, 996–1002 (2002).
    [CrossRef] [PubMed]
  22. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
    [CrossRef] [PubMed]
  23. A. H. McCurdy, “Modeling of stimulated Brillouin scattering in optical fibers with arbitrary radial index profile,” J. Lightwave Technol. 23, 3509–3516 (2005).
    [CrossRef]
  24. S. Afshar, V. P. Kalosha, X. Bao, L. Chen, “Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber,” Opt. Lett. 30, 2685–2687 (2005).
    [CrossRef] [PubMed]
  25. A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123–3125 (2005).
    [CrossRef] [PubMed]
  26. V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34, 1018–1020 (2009).
    [CrossRef] [PubMed]
  27. L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282, 2431–2436 (2009).
    [CrossRef]
  28. B. G. Ward, J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951J (2009).
    [CrossRef]
  29. P. D. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B 26, 1614–1620 (2009).
    [CrossRef]
  30. K. Ogusu, H. Li, M. Kitao, “Brillouin-gain coefficients of chalcogenide glasses,” J. Opt. Soc. Am. B 21, 1302–1304 (2004).
    [CrossRef]
  31. K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005).
    [CrossRef] [PubMed]
  32. M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
    [CrossRef]
  33. H. E. Engan, “Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers,” J. Opt. Soc. Am. A 13, 112–118 (1996).
    [CrossRef]
  34. Y. Imai, M. Yoshida, “Polarization characteristics of fiber-optic SBS phase conjugation,” Opt. Fiber Technol. 6, 42–48 (2000).
    [CrossRef]
  35. P. Narum, R. W. Boyd, “Nonfrequency-shifted phase conjugation by Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 23, 1211–1216 (1987).
    [CrossRef]
  36. A. M. Scott, K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 438–459 (1989).
    [CrossRef]
  37. K. Inoue, T. Hasegawa, H. Toba, “Influence of stimulated Brillouin scattering and optimum length in fiber four-wave mixing wavelength conversion,” IEEE Photon. Technol. Lett. 7, 327–329 (1995).
    [CrossRef]
  38. K. Ogusu, “Interplay between cascaded stimulated Brillouin scattering and four-wave mixing in a fiber Fabry–Perot resonator,” J. Opt. Soc. Am. B 20, 685–694 (2003).
    [CrossRef]
  39. J. D. Downie, J. Hurley, “Experimental study of SBS mitigation and transmission improvement from cross-phase modulation in 10.7 Gb∕s unrepeatered systems,” Opt. Express 15, 9527–9534 (2007).
    [CrossRef] [PubMed]
  40. P. Narum, A. L. Gaeta, M. D. Skeldon, R. W. Boyd, “Instabilities of laser beams counterpropagating through a Brillouin-active medium,” J. Opt. Soc. Am. B 5, 623–628 (1988).
    [CrossRef]
  41. D. E. Watkins, A. M. Scott, K. D. Ridley, “Determination of the threshold for instability in four-wave mixing mediated by Brillouin scattering,” IEEE J. Quantum Electron. 26, 2130–2137 (1990).
    [CrossRef]
  42. A. A. Fotiadi, G. Ravet, P. Mégret, M. Blondel, “Multi-cascaded SBS in an optical fiber supported by Rayleigh backscattering,” Proc. SPIE 5480, 71–81 (2003).
    [CrossRef]
  43. C. N. Pannell, P. St. J. Russell, T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effect of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
    [CrossRef]
  44. S. L. Zhang, J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 5, 537–539 (1993).
    [CrossRef]
  45. M. F. dos Santos Ferreira, “Impact of stimulated Brillouin scattering in optical fibers with distributed gain,” J. Lightwave Technol. 13, 1692–1697 (1995).
    [CrossRef]
  46. B. Foley, M. L. Dakss, R. W. Davies, P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol. 7, 2024–2032 (1989).
    [CrossRef]
  47. M. F. dos Santos Ferreira, J. F. Rocha, J. L. Pinto, “Impact of stimulated Brillouin scattering on fibre Raman amplifiers,” Electron. Lett. 27, 1576–1577 (1991).
    [CrossRef]
  48. S. Hamidi, D. Simeonidou, A. S. Siddiqui, T. Chaleon, “Effect of pump laser mode structure on the gain of forward pumped Raman fibre amplifier in the presence of stimulated Brillouin scattering,” Electron. Lett. 28, 1768–1770 (1992).
    [CrossRef]
  49. A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, A. F. Evans, “Stimulated Brillouin scattering in Raman-pumped fibers: a theoretical approach,” J. Lightwave Technol. 20, 1635–1643 (2002).
    [CrossRef]
  50. A. P. Küng, A. Agarwal, D. F. Grosz, S. Banerjee, D. N. Maywar, “Analytical solution of transmission performance improvement in fiber spans with forward Raman gain and its application to repeaterless systems,” J. Lightwave Technol. 23, 1182–1188 (2005).
    [CrossRef]
  51. G. Valley, “A review of stimulated Brillouin scattering excited with a broad-band pump laser,” J. Lightwave Technol. 22, 704–712 (1986).
  52. P. Narum, M. Skeldon, R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” J. Lightwave Technol. 22, 2161–2167 (1986).
  53. K. Ogusu, “Effect of stimulated Brillouin scattering on nonlinear pulse propagation in fiber Bragg gratings,” J. Opt. Soc. Am. B 17, 769–774 (2000).
    [CrossRef]
  54. H. Lee, G. P. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express 11, 3467–3472 (2003).
    [CrossRef] [PubMed]
  55. H. Li, K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys. 38, 6309–6315 (1999).
    [CrossRef]
  56. A. Djupsjöbacka, C. Jacobsen, B. Tromborg, “Dynamic stimulated Brillouin scattering analysis,” J. Lightwave Technol. 18, 416–424 (2000).
    [CrossRef]
  57. V. Grimalsky, S. Koshevaya, G. Burlak, B. Salazar-H, “Dynamic effects of the stimulated Brillouin scattering in fibers due to acoustic diffraction,” J. Opt. Soc. Am. B 19, 689–694 (2002).
    [CrossRef]
  58. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Electrostriction mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990).
    [CrossRef] [PubMed]
  59. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Long-range interaction of soliton pulse trains in a single-mode fibre,” Sov. Lightwave Commun. 1, 37–43 (1991).
  60. C. Montes, A. M. Rubenchik, “Stimulated Brillouin scattering from trains of solitons in optical fibers: information degradation,” J. Opt. Soc. Am. B 9, 1857–1875 (1992).
    [CrossRef]
  61. A. N. Pilipetskii, A. V. Luchnikov, A. M. Prokhorov, “Soliton pulse long-range interaction in optical fibres: the role of light polarization and fibre geometry,” Sov. Lightwave Commun. 3, 29–39 (1993).
  62. E. A. Golovchenko, A. N. Pilipetskii, “Acoustic effect and the polarization of adjacent bits in soliton communication lines,” J. Lightwave Technol. 12, 1052–1056 (1994).
    [CrossRef]
  63. A. Fellegara, S. Wabnitz, “Electrostrictive cross-phase modulation of periodic pulse trains in optical fibers,” Opt. Lett. 23, 1357–1359 (1998).
    [CrossRef]
  64. Y. Jaouën, L. du Mouza, G. Debarge, “Electrostriction-induced acoustic effect in ultralong-distance soliton transmission systems,” Opt. Lett. 23, 1185–1187 (1998).
    [CrossRef]
  65. D. A. Fishman, J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11, 1721–1728 (1993).
    [CrossRef]
  66. F. Forghieri, R. W. Tkach, A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications III, I. P. Kaminov and T. L. Koch, eds. (Academic, 1997), vol. A, pp. 196–264.
    [CrossRef]
  67. X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett. 4, 287–289 (1992).
    [CrossRef]
  68. F. W. Willems, W. Muys, J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photon. Technol. Lett. 6, 1476–1478 (1994).
    [CrossRef]
  69. F. W. Willems, J. C. van der Plaats, W. Muys, “Harmonic distortion caused by stimulated Brillouin scattering suppression in externally modulated lightwave AM-CATV systems,” Electron. Lett. 30, 343–345 (1994).
    [CrossRef]
  70. I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968).
    [CrossRef]
  71. B. Ya. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985), chap. 2.
    [CrossRef]
  72. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), chap. 9.
  73. R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).
  74. A. Yariv, Quantum Electronics, 3d ed. (Wiley, 1989).
  75. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001), chap. 9.
  76. C. C. Lee, S. Chi, “Measurement of stimulated Brillouin scattering threshold for various types of fibers using Brillouin optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000).
    [CrossRef]
  77. R. M. Shelby, M. D. Levenson, P. W. Bayer, “Resolved forward Brillouin scattering in optical fibers,” Phys. Rev. Lett. 54, 939–942 (1985).
    [CrossRef] [PubMed]
  78. J. A. Buck, Fundamentals of Optical Fibers (Wiley Interscience, 1995).
  79. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  80. R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microwave Theory Tech. MTT-17, 893–904 (1969).
    [CrossRef]
  81. R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am. 64, 1–37 (1978).
    [CrossRef]
  82. P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986–4998 (1979).
    [CrossRef]
  83. J. D. Achenbach, Wave Propagation in Elastic Solids (North Holland, 1973).
  84. B. A. Auld, Acoustic Fields and Waves in Solids, 2nd ed. (Krieger, 1990).
  85. A. Safaai-Jazi, C.-K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 59–68 (1986).
    [CrossRef]
  86. C.-K. Jen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guided fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634–643 (1986).
  87. A. Safaai-Jazi, R. O. Claus, “Acoustic modes in optical fiberlike waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-35, 619–627 (1988).
    [CrossRef]
  88. K. Tajima, “Exact acoustic leaky wave solutions for single-mode fibres,” Electron. Lett. 27, 251–253 (1991).
    [CrossRef]
  89. J. Qu, L. Jacobs, “Cylindrical waveguides and their applications in ultrasonic evaluation,” in Ultrasonic Nondestructive Evaluation, T. Kundu, ed. (CRC Press, 2004).
  90. E. Peral, A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
    [CrossRef]
  91. G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, Y. Jaouën, “Characteristics of the Brillouin spectra in erbium–ytterbium fibers,” Opt. Express 16, 3212–3222 (2008).
    [CrossRef] [PubMed]
  92. W. Zou, Z. He, K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006).
    [CrossRef]
  93. W. Zou, Z. He, K. Hotate, “Analysis on the influence of intrinsic thermal stress on Brillouin gain spectra in optical fibers,” Proc. SPIE 6371, 637104 (2006).
    [CrossRef]
  94. W. Zou, Z. He, K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped innner cladding,” Opt. Express 16, 10006–10017 (2008).
    [CrossRef] [PubMed]
  95. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [CrossRef] [PubMed]
  96. K. Rząźewski, M. Levenstein, M. G. Raymer, “Statistics of stimulated Stokes pulse energies in the steady-state regime,” Opt. Commun. 43, 451–454 (1982).
    [CrossRef]
  97. R. W. Boyd, K. Rząźewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
    [CrossRef] [PubMed]
  98. A. L. Gaeta, R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
    [CrossRef] [PubMed]
  99. W. Jinsong, T. Weizhong, Z. Wen, “Stimulated Brillouin scattering initiated by thermally excited acoustic waves in absorption media,” Opt. Commun. 123, 574–576 (1996).
    [CrossRef]
  100. A. A. Fotiadi, R. Kiyan, O. Deparis, P. Megret, M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27, 83–85 (2002).
    [CrossRef]
  101. S. Le Floch, P. Cambon, “Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20, 1132–1137 (2003).
    [CrossRef]
  102. A. Kobyakov, S. A. Darmanyan, D. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260, 46–49 (2006).
    [CrossRef]
  103. P. Bayvel, P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26, 434–436 (1990).
    [CrossRef]
  104. R. D. Esman, K. J. Williams, “Brillouin scattering: beyond threshold,” in Optical Fiber Communication Conference, vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), paper ThF5.
  105. J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
    [CrossRef] [PubMed]
  106. V. I. Kovalev, R. G. Harrison, “Threshold for stimulated Brillouin scattering in optical fiber,” Opt. Express 15, 17625–17630 (2007).
    [CrossRef] [PubMed]
  107. T. H. Russell, W. B. Roh, “Threshold of second-order stimulated Brillouin scattering in optical fiber,” J. Opt. Soc. Am. B 19, 2341–2345 (2002).
    [CrossRef]
  108. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, 1965).
  109. G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Academic, 2001).
  110. For this fiber, there is another strong peak in the BGS at 10.9 GHz.
  111. K. Shiraki, M. Ohashi, M. Tateda, “Performance of strain-free stimulated Brillouin scattering suppression fiber,” J. Lightwave Technol. 14, 549–554 (1996).
    [CrossRef]
  112. C. McIntosh, A. Yeniay, J. Toulouse, J. M. P. Delavaux, “Stimulated Brillouin scattering in dispersion-compensating fibers,” Opt. Fiber Technol. 3, 173–176 (1997).
    [CrossRef]
  113. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, D. J. Richardson, “Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering,” Opt. Lett. 27, 927–929 (2002).
    [CrossRef]
  114. F. Poletti, K. Furusawa, Z. Yusoff, N. G. R. Broderick, D. J. Richardson, “Nonlinear tapered holey fibers with high stimulated Brillouin scattering threshold and controlled dispersion,” J. Opt. Soc. Am. B 24, 2185–2194 (2007).
    [CrossRef]
  115. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
    [CrossRef]
  116. X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
    [CrossRef]
  117. A. Loayssa, D. Benito, M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
    [CrossRef]
  118. T. Tanemura, Y. Takushima, K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 1552–1554 (2002).
    [CrossRef]
  119. Y. Shen, X. Zhang, K. Chen, “A simple filter based on stimulated Brillouin scattering for carrier-suppression of microwave photonic signals,” Proc. SPIE 5625, 109–116 (2005).
    [CrossRef]
  120. S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944–946 (2000).
    [CrossRef]
  121. M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157–2158 (1994).
    [CrossRef]
  122. K. J. Williams, R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965–1966 (1994).
    [CrossRef]
  123. A. Wiberg, P. O. Hedekvist, “Photonic microwave generator utilizing narrowband Brillouin amplification and fiber-based oscillator,” Proc. SPIE 5466, 148–156 (2004).
    [CrossRef]
  124. T. Schneider, M. Junker, D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” Electron. Lett. 40, 1500–1501 (2004).
    [CrossRef]
  125. L. Xing, L. Zhan, S. Luo, Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133–1138 (2008).
    [CrossRef]
  126. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipies in C. The Art of Scientific Computing, 2nd ed., (Cambridge Univ. Press, 1995), chap. 17.
  127. C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2955 (1966).
    [CrossRef]
  128. L. Chen, X. Bao, “Analytical and numerical solution for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998).
    [CrossRef]
  129. R. H. Enns, L. P. Batra, “Saturation and depletion in stimulated light scattering,” Phys. Lett. 28A, 591–592 (1969).
    [CrossRef]
  130. M. Vasilyev, A. Kobyakov, “Effect of pump depletion on the noise figure of distributed Raman amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CWL3.
  131. A. Kobyakov, S. A. Darmanyan, M. Sauer, D. Chowdhury, “High-gain Brillouin amplification: an analytical approach,” Opt. Lett. 31, 1960–1962 (2006).
    [CrossRef] [PubMed]
  132. Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density and refractve index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
    [CrossRef]
  133. N. Lagakos, J. A. Bucaro, R. Hughes, “Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering,” Appl. Opt. 19, 3668–3670 (1980).
    [CrossRef] [PubMed]
  134. S. T. Gulati, J. D. Helfinstine, “Fatigue behavior of GeO2–SiO2 glasses,” Mater. Res. Soc. Symp. Proc. 531, 133–137 (1998).
    [CrossRef]
  135. S. R. Bickham, A. Kobyakov, S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuA3.
  136. W. Zou, Z. He, K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16, 18804–18812 (2008).
    [CrossRef]
  137. X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
    [CrossRef]
  138. C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10, 969–972 (1993).
    [CrossRef]
  139. K. Shiraki, M. Ohashi, M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
    [CrossRef]
  140. A. Kobyakov, M. Sauer, J. E. Hurley, “SBS threshold of segmented fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OME5.
  141. S. Rae, I. Bennion, M. J. Cardwell, “New numerical model for stimulated Brillouin scattering in optical fibers with nonuniformity,” Opt. Commun. 123, 611–616 (1996).
    [CrossRef]
  142. Y. Yamamoto, T. Miyamoto, M. Onishi, E. Sasaoka, “Zero-water-peak pure-silica-core fiber compatible with ITU-T G.652 single-mode fiber and its applicability to access networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper JWA63.
  143. P. S. Devgan, V. J. Urick, K. J. Williams, J. F. Diehl, “Long-haul microwave analog link with shot-noise-limited performance above the stimulated Brillouin scattering threshold,” in 2008 International Topical Meeting on Microwave Photonics and 2008 Asia-pacific Microwave Photonics Conference (IEEE, 2009), pp. 326–329.
  144. F. W. Willems, W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993).
    [CrossRef]
  145. N. Yoshizawa, T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
    [CrossRef]
  146. J. M. C. Boggio, J. D. Marconi, H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23, 3808–3814 (2005).
    [CrossRef]
  147. K. Shiraki, M. Ohashi, M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
    [CrossRef]
  148. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, S. N. Knudsen, “Increase in the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
    [CrossRef]
  149. M. Ohashi, M. Tateda, “Design of strain-free-fiber with nonuniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993).
    [CrossRef]
  150. H. Al-Raweshidy and S. Komaki, eds., Radio over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).
  151. A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.
  152. X. Qian, A. Wonfor, R. V. Penty, I. H. White, “Overcoming transmission impairments in wide frequency range radio-over-fibre distribution systems,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper We3.
  153. H. Le Bras, M. Moignard, B. Charbonnier, “Brillouin scattering in radio over fiber transmission,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA86.
  154. M. Sauer, A. Kobyakov, A. B. Ruffin, “Radio-over-fiber transmission with mitigated stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19, 1487–1489 (2007).
    [CrossRef]
  155. R. B. Ellis, F. Weiss, O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43, 405–407 (2007).
    [CrossRef]
  156. M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
    [CrossRef]
  157. M. Sauer, A. Kobyakov, J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25, 3301–3320 (2007).
    [CrossRef]
  158. M. Islam, ed., Raman Amplifiers for Telecommunications (Springer, 2004).
  159. C. Headley, G. P. Agrawal, Raman Amplification in Fiber-Optical Communication Systems (Elsevier, 2004).
  160. A. Kobyakov, “Prospects of Raman-assisted transmission systems,” Proc. SPIE 5246, 174–188 (2003).
    [CrossRef]
  161. R. Chi, K. Lu, X. Dong, W. Chen, G. Yang, Z. Liu, “Gain saturation and nonlinear effect of erbium-doped fiber amplifier/discrete compensating Raman amplifier hybrid fiber amplifiers in the C-band,” Opt. Eng. 43, 346–349 (2004).
    [CrossRef]
  162. L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000).
    [CrossRef]
  163. M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, A. F. Evans, “Effect of Raman amplification on stimulated Brillouin scattering in dispersion compensating fibres,” Electron. Lett. 38, 268–269 (2002).
    [CrossRef]
  164. T. Okuno, M. Nishimura, “Effects of stimulated Raman amplification in optical fibre on stimulated Brillouin scattering threshold power,” Electron. Lett. 38, 14–16 (2002).
    [CrossRef]
  165. L. Thévenaz, “Slow and fast light using stimulated Brillouin scattering: a highly flexible approach,” in Slow Light—Science and Applications, J. B. Khurgin and R. S. Tucker, eds. (CRC Press, 2009), chap. 9.
  166. G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, Y. Ohishi, “Stimulated Brillouin amplification in a tellurite fiber as a potential system for slow light generation,” Jpn. J. Appl. Phys. 46, L810–L812 (2007).
    [CrossRef]
  167. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
    [CrossRef]
  168. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  169. L. Ren, Y. Tomita, “SBS-based slow light in optical fibers: optimum design considerations for undistorted slow-light signal propagation in steady-state and transient regimes,” Proc. SPIE 7226, 722605 (2009).
    [CrossRef]
  170. K.-Y. Song, M. G. Herráez, L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
    [CrossRef] [PubMed]
  171. Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
    [CrossRef] [PubMed]
  172. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
    [CrossRef] [PubMed]
  173. K.-Y. Song, M. G. Herráez, L. Thévenaz, “Gain assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005).
    [CrossRef] [PubMed]
  174. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
    [CrossRef] [PubMed]
  175. T. Sakamoto, T. Yamamoto, K. Shiraki, T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008).
    [CrossRef] [PubMed]
  176. M. G. Herráez, K.-Y. Song, L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
    [CrossRef]
  177. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
    [CrossRef]
  178. K. Y. Song, K. Hotate, “25 GHz Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
    [CrossRef] [PubMed]
  179. R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513–6519 (2007).
    [CrossRef] [PubMed]
  180. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007).
    [CrossRef] [PubMed]
  181. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
    [CrossRef]
  182. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1346 (1995).
    [CrossRef]
  183. L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structures using distributed Brillouin fiber sensing,” Proc. SPIE 3746, 345–348 (1999).
  184. K. T. V. Graffan and B. T. Meggitt, eds., Optical Fiber Sensor Technology : Volume 4: Chemical and Environmental Sensing (Kluwer Academic, 1999).
  185. Y. Li, F. Zhang, T. Yoshino, “Wide-range temperature dependence of Brillouin shift in a dispersion-shifted fiber and its annealing effect,” J. Lightwave Technol. 21, 1663–1667 (2003).
    [CrossRef]
  186. S. Le Floch, P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003).
    [CrossRef]
  187. W. Zou, Z. He, K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26, 1854–1861 (2008).
    [CrossRef]
  188. S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., Fiber Optic Sensors, 2nd ed. (CRC Press, 2008).
  189. M. Tateda, “First measurement of strain distribution along field installed optical fibers using Brillouin spectroscopy,” J. Lightwave Technol. 8, 1269–1272 (1990).
    [CrossRef]
  190. F. Ravet, L. Zou, X. Bao, L. Chen, R. F. Huang, H. A. Khoo, “Pipeline buckling detection by the distributed Brillouin sensor,” in Sensing Issues in Civil Structural Health Monitoring, F. Ansari, ed. (Springer, 2005), pp. 515–524.
    [CrossRef]
  191. L. Zou, G. A. Ferrier, S. Afshar, Q. Yu, L. Chen, X. Bao, “Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure,” Appl. Opt. 43, 1583–1588 (2004).
    [CrossRef] [PubMed]
  192. X. Bao, “Optical fiber sensors based on Brillouin scattering,” Opt. Photonics News 20(9), 41–45 (2009).
    [CrossRef]
  193. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
    [CrossRef]
  194. S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).
  195. M. D. Mermelstein, S. Ramachandran, J. M. Fini, S. Ghalmi, “SBS gain efficiency measurements and modeling in a 1714 μm2 effective area LP08 higher order mode optical fiber,” Opt. Express 15, 15952–15963 (2007).
    [CrossRef] [PubMed]
  196. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, “100-W single frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1537–1539 (2003).
    [CrossRef] [PubMed]
  197. D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
    [CrossRef]
  198. V. I. Kovalev, R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett. 31, 161–163 (2006).
    [CrossRef] [PubMed]
  199. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531 (2007).
    [CrossRef]
  200. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
    [CrossRef] [PubMed]
  201. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).
  202. S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
    [CrossRef] [PubMed]
  203. A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE, 5581, 654–661 (2004).
    [CrossRef]
  204. A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005).
    [CrossRef] [PubMed]
  205. A. Fotiadi, E. A. Kuzin, “Stimulated Brillouin scattering associated with hypersound diffraction in multimode optical fibers,” presented at Quantum Electronics and Laser Science Conference, Anaheim, Calif, June 2–7 1996, paper QFC4.
  206. K. Tei, Y. Tsuruoka, T. Uchiyama, T. Fujioka, “Critical power of stimulated Brillouin scattering in multimode optical fibers,” Jpn. J. Appl. Phys. 40, 3191–3194 (2001).
    [CrossRef]
  207. V. I. Kovalev, R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 2022–2024 (2002).
    [CrossRef]
  208. S. Yoo, J. K. Sahu, J. Nilsson, “Optimized acoustic refractive index profiles for suppression of stimulated Brillouin scattering in large core fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA5.
  209. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  210. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
    [CrossRef]
  211. P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
    [CrossRef] [PubMed]
  212. C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16, 9398–9404 (2008).
    [CrossRef] [PubMed]
  213. J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 582–593 (2008).
    [CrossRef]
  214. J. E. McElhenny, R. Pattnaik, J. Toulouse, “Polarization dependence of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 2107–2115 (2008).
    [CrossRef]
  215. D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
    [CrossRef] [PubMed]
  216. J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32, 17–19 (2007).
    [CrossRef]
  217. G. S. Wiederhecker, A. Brenn, H. L. Fragnito, P. St. J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
    [CrossRef] [PubMed]
  218. S. Yang, H. Chen, C. Qiu, M. Chen, M. Chen, S. Xie, J. Li, W. Chen, “Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering,” Opt. Lett. 33, 95–97 (2008).
    [CrossRef] [PubMed]
  219. C. Vassalo, Optical Waveguide Concepts (Elsevier, 1991).

2009 (8)

B. R. Masters, “C. V. Raman and the Raman effect,” Opt. Photonics News 20(3), 41–45 (2009).
[CrossRef]

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282, 2431–2436 (2009).
[CrossRef]

B. G. Ward, J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951J (2009).
[CrossRef]

L. Ren, Y. Tomita, “SBS-based slow light in optical fibers: optimum design considerations for undistorted slow-light signal propagation in steady-state and transient regimes,” Proc. SPIE 7226, 722605 (2009).
[CrossRef]

X. Bao, “Optical fiber sensors based on Brillouin scattering,” Opt. Photonics News 20(9), 41–45 (2009).
[CrossRef]

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34, 1018–1020 (2009).
[CrossRef] [PubMed]

P. D. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B 26, 1614–1620 (2009).
[CrossRef]

2008 (13)

S. Yang, H. Chen, C. Qiu, M. Chen, M. Chen, S. Xie, J. Li, W. Chen, “Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering,” Opt. Lett. 33, 95–97 (2008).
[CrossRef] [PubMed]

J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 582–593 (2008).
[CrossRef]

T. Sakamoto, T. Yamamoto, K. Shiraki, T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008).
[CrossRef] [PubMed]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16, 9398–9404 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped innner cladding,” Opt. Express 16, 10006–10017 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16, 18804–18812 (2008).
[CrossRef]

J. E. McElhenny, R. Pattnaik, J. Toulouse, “Polarization dependence of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 2107–2115 (2008).
[CrossRef]

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).

W. Zou, Z. He, K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26, 1854–1861 (2008).
[CrossRef]

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, P. St. J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
[CrossRef]

L. Xing, L. Zhan, S. Luo, Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133–1138 (2008).
[CrossRef]

G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, Y. Jaouën, “Characteristics of the Brillouin spectra in erbium–ytterbium fibers,” Opt. Express 16, 3212–3222 (2008).
[CrossRef] [PubMed]

2007 (20)

V. I. Kovalev, R. G. Harrison, “Threshold for stimulated Brillouin scattering in optical fiber,” Opt. Express 15, 17625–17630 (2007).
[CrossRef] [PubMed]

J. D. Downie, J. Hurley, “Experimental study of SBS mitigation and transmission improvement from cross-phase modulation in 10.7 Gb∕s unrepeatered systems,” Opt. Express 15, 9527–9534 (2007).
[CrossRef] [PubMed]

M. Sauer, A. Kobyakov, A. B. Ruffin, “Radio-over-fiber transmission with mitigated stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19, 1487–1489 (2007).
[CrossRef]

R. B. Ellis, F. Weiss, O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43, 405–407 (2007).
[CrossRef]

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531 (2007).
[CrossRef]

G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, Y. Ohishi, “Stimulated Brillouin amplification in a tellurite fiber as a potential system for slow light generation,” Jpn. J. Appl. Phys. 46, L810–L812 (2007).
[CrossRef]

Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
[CrossRef] [PubMed]

F. Poletti, K. Furusawa, Z. Yusoff, N. G. R. Broderick, D. J. Richardson, “Nonlinear tapered holey fibers with high stimulated Brillouin scattering threshold and controlled dispersion,” J. Opt. Soc. Am. B 24, 2185–2194 (2007).
[CrossRef]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513–6519 (2007).
[CrossRef] [PubMed]

J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
[CrossRef] [PubMed]

M. D. Mermelstein, S. Ramachandran, J. M. Fini, S. Ghalmi, “SBS gain efficiency measurements and modeling in a 1714 μm2 effective area LP08 higher order mode optical fiber,” Opt. Express 15, 15952–15963 (2007).
[CrossRef] [PubMed]

J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32, 17–19 (2007).
[CrossRef]

K. Y. Song, K. Hotate, “25 GHz Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
[CrossRef] [PubMed]

M. Sauer, A. Kobyakov, J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25, 3301–3320 (2007).
[CrossRef]

2006 (11)

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[CrossRef]

M. G. Herráez, K.-Y. Song, L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
[CrossRef]

A. Kobyakov, S. A. Darmanyan, M. Sauer, D. Chowdhury, “High-gain Brillouin amplification: an analytical approach,” Opt. Lett. 31, 1960–1962 (2006).
[CrossRef] [PubMed]

V. I. Kovalev, R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett. 31, 161–163 (2006).
[CrossRef] [PubMed]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[CrossRef] [PubMed]

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

A. Kobyakov, S. A. Darmanyan, D. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260, 46–49 (2006).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Analysis on the influence of intrinsic thermal stress on Brillouin gain spectra in optical fibers,” Proc. SPIE 6371, 637104 (2006).
[CrossRef]

2005 (14)

A. P. Küng, A. Agarwal, D. F. Grosz, S. Banerjee, D. N. Maywar, “Analytical solution of transmission performance improvement in fiber spans with forward Raman gain and its application to repeaterless systems,” J. Lightwave Technol. 23, 1182–1188 (2005).
[CrossRef]

K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Y. Shen, X. Zhang, K. Chen, “A simple filter based on stimulated Brillouin scattering for carrier-suppression of microwave photonic signals,” Proc. SPIE 5625, 109–116 (2005).
[CrossRef]

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005).
[CrossRef] [PubMed]

A. H. McCurdy, “Modeling of stimulated Brillouin scattering in optical fibers with arbitrary radial index profile,” J. Lightwave Technol. 23, 3509–3516 (2005).
[CrossRef]

J. M. C. Boggio, J. D. Marconi, H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23, 3808–3814 (2005).
[CrossRef]

K.-Y. Song, M. G. Herráez, L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
[CrossRef] [PubMed]

A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
[CrossRef] [PubMed]

S. Afshar, V. P. Kalosha, X. Bao, L. Chen, “Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber,” Opt. Lett. 30, 2685–2687 (2005).
[CrossRef] [PubMed]

K.-Y. Song, M. G. Herráez, L. Thévenaz, “Gain assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005).
[CrossRef] [PubMed]

A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123–3125 (2005).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
[CrossRef] [PubMed]

2004 (8)

L. Zou, G. A. Ferrier, S. Afshar, Q. Yu, L. Chen, X. Bao, “Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure,” Appl. Opt. 43, 1583–1588 (2004).
[CrossRef] [PubMed]

K. Ogusu, H. Li, M. Kitao, “Brillouin-gain coefficients of chalcogenide glasses,” J. Opt. Soc. Am. B 21, 1302–1304 (2004).
[CrossRef]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE, 5581, 654–661 (2004).
[CrossRef]

A. Wiberg, P. O. Hedekvist, “Photonic microwave generator utilizing narrowband Brillouin amplification and fiber-based oscillator,” Proc. SPIE 5466, 148–156 (2004).
[CrossRef]

T. Schneider, M. Junker, D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” Electron. Lett. 40, 1500–1501 (2004).
[CrossRef]

R. Chi, K. Lu, X. Dong, W. Chen, G. Yang, Z. Liu, “Gain saturation and nonlinear effect of erbium-doped fiber amplifier/discrete compensating Raman amplifier hybrid fiber amplifiers in the C-band,” Opt. Eng. 43, 346–349 (2004).
[CrossRef]

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22, 631–639 (2004).
[CrossRef]

A. S. Biryukov, S. V. Erokhin, S. V. Kushchenko, E. M. Dianov, “Electrostriction temporal shift of laser pulses in optical fibres,” Quantum Electron. 34, 1047–1053 (2004).
[CrossRef]

2003 (9)

I. L. Fabelinskii, “The discovery of combination scattering of light in Russia and India,” Phys. Usp. 46, 1105–1112 (2003).
[CrossRef]

A. A. Fotiadi, G. Ravet, P. Mégret, M. Blondel, “Multi-cascaded SBS in an optical fiber supported by Rayleigh backscattering,” Proc. SPIE 5480, 71–81 (2003).
[CrossRef]

A. Kobyakov, “Prospects of Raman-assisted transmission systems,” Proc. SPIE 5246, 174–188 (2003).
[CrossRef]

S. Le Floch, P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003).
[CrossRef]

K. Ogusu, “Interplay between cascaded stimulated Brillouin scattering and four-wave mixing in a fiber Fabry–Perot resonator,” J. Opt. Soc. Am. B 20, 685–694 (2003).
[CrossRef]

S. Le Floch, P. Cambon, “Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20, 1132–1137 (2003).
[CrossRef]

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, “100-W single frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1537–1539 (2003).
[CrossRef] [PubMed]

Y. Li, F. Zhang, T. Yoshino, “Wide-range temperature dependence of Brillouin shift in a dispersion-shifted fiber and its annealing effect,” J. Lightwave Technol. 21, 1663–1667 (2003).
[CrossRef]

H. Lee, G. P. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express 11, 3467–3472 (2003).
[CrossRef] [PubMed]

2002 (13)

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Megret, M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27, 83–85 (2002).
[CrossRef]

V. Grimalsky, S. Koshevaya, G. Burlak, B. Salazar-H, “Dynamic effects of the stimulated Brillouin scattering in fibers due to acoustic diffraction,” J. Opt. Soc. Am. B 19, 689–694 (2002).
[CrossRef]

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, D. J. Richardson, “Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering,” Opt. Lett. 27, 927–929 (2002).
[CrossRef]

T. Tanemura, Y. Takushima, K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 1552–1554 (2002).
[CrossRef]

V. I. Kovalev, R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 2022–2024 (2002).
[CrossRef]

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, A. F. Evans, “Effect of Raman amplification on stimulated Brillouin scattering in dispersion compensating fibres,” Electron. Lett. 38, 268–269 (2002).
[CrossRef]

T. Okuno, M. Nishimura, “Effects of stimulated Raman amplification in optical fibre on stimulated Brillouin scattering threshold power,” Electron. Lett. 38, 14–16 (2002).
[CrossRef]

A. Loayssa, D. Benito, M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
[CrossRef]

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, A. F. Evans, “Stimulated Brillouin scattering in Raman-pumped fibers: a theoretical approach,” J. Lightwave Technol. 20, 1635–1643 (2002).
[CrossRef]

A. Yeniay, J. M. Delavaux, J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20, 1425–1432 (2002).
[CrossRef]

A. S. Biryukov, M. E. Sukharev, E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibres,” Quantum Electron. 32, 765–775 (2002).
[CrossRef]

J. Yu, Y. Park, K. Oh, I. Kwon, “Brillouin frequency shifts in silica optical fiber with the double cladding structure,” Opt. Express 10, 996–1002 (2002).
[CrossRef] [PubMed]

T. H. Russell, W. B. Roh, “Threshold of second-order stimulated Brillouin scattering in optical fiber,” J. Opt. Soc. Am. B 19, 2341–2345 (2002).
[CrossRef]

2001 (2)

K. Tei, Y. Tsuruoka, T. Uchiyama, T. Fujioka, “Critical power of stimulated Brillouin scattering in multimode optical fibers,” Jpn. J. Appl. Phys. 40, 3191–3194 (2001).
[CrossRef]

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, S. N. Knudsen, “Increase in the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
[CrossRef]

2000 (8)

A. Djupsjöbacka, C. Jacobsen, B. Tromborg, “Dynamic stimulated Brillouin scattering analysis,” J. Lightwave Technol. 18, 416–424 (2000).
[CrossRef]

K. Ogusu, “Effect of stimulated Brillouin scattering on nonlinear pulse propagation in fiber Bragg gratings,” J. Opt. Soc. Am. B 17, 769–774 (2000).
[CrossRef]

E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index-profile fibers,” Opt. Lett. 25, 390–392 (2000).
[CrossRef]

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944–946 (2000).
[CrossRef]

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000).
[CrossRef]

C. C. Lee, S. Chi, “Measurement of stimulated Brillouin scattering threshold for various types of fibers using Brillouin optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000).
[CrossRef]

Y. Imai, M. Yoshida, “Polarization characteristics of fiber-optic SBS phase conjugation,” Opt. Fiber Technol. 6, 42–48 (2000).
[CrossRef]

E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index profile fibers: errata,” Opt. Lett. 25, 987 (2000).
[CrossRef]

1999 (4)

E. L. Buckland, “Mode-profile dependence of the electrostrictive response in fibers,” Opt. Lett. 24, 872–874 (1999).
[CrossRef]

H. Li, K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys. 38, 6309–6315 (1999).
[CrossRef]

E. Peral, A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[CrossRef]

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structures using distributed Brillouin fiber sensing,” Proc. SPIE 3746, 345–348 (1999).

1998 (6)

A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23, 691–693 (1998).
[CrossRef]

Y. Jaouën, L. du Mouza, G. Debarge, “Electrostriction-induced acoustic effect in ultralong-distance soliton transmission systems,” Opt. Lett. 23, 1185–1187 (1998).
[CrossRef]

S. T. Gulati, J. D. Helfinstine, “Fatigue behavior of GeO2–SiO2 glasses,” Mater. Res. Soc. Symp. Proc. 531, 133–137 (1998).
[CrossRef]

L. Chen, X. Bao, “Analytical and numerical solution for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998).
[CrossRef]

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[CrossRef]

A. Fellegara, S. Wabnitz, “Electrostrictive cross-phase modulation of periodic pulse trains in optical fibers,” Opt. Lett. 23, 1357–1359 (1998).
[CrossRef]

1997 (4)

C. McIntosh, A. Yeniay, J. Toulouse, J. M. P. Delavaux, “Stimulated Brillouin scattering in dispersion-compensating fibers,” Opt. Fiber Technol. 3, 173–176 (1997).
[CrossRef]

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

E. L. Buckland, R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers,” Opt. Lett. 22, 676–678 (1997).
[CrossRef] [PubMed]

A. Fellegara, A. Melloni, M. Martinelli, “Measurement of the frequency response induced by electrostriction in optical fibers,” Opt. Lett. 22, 1615–1617 (1997).
[CrossRef]

1996 (7)

H. E. Engan, “Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers,” J. Opt. Soc. Am. A 13, 112–118 (1996).
[CrossRef]

W. Jinsong, T. Weizhong, Z. Wen, “Stimulated Brillouin scattering initiated by thermally excited acoustic waves in absorption media,” Opt. Commun. 123, 574–576 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, M. Tateda, “Performance of strain-free stimulated Brillouin scattering suppression fiber,” J. Lightwave Technol. 14, 549–554 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

S. Rae, I. Bennion, M. J. Cardwell, “New numerical model for stimulated Brillouin scattering in optical fibers with nonuniformity,” Opt. Commun. 123, 611–616 (1996).
[CrossRef]

P. D. Townsend, A. J. Poustie, P. J. Hardman, K. J. Blow, “Measurement of the refractive-index modulation generated by electrostriction-induced acoustic waves in optical fibers,” Opt. Lett. 21, 333–335 (1996).
[CrossRef] [PubMed]

E. L. Buckland, R. W. Boyd, “Electrostrictive contribution to the intensity-dependent refractive index of optical fibers,” Opt. Lett. 21, 1117–1119 (1996).
[CrossRef] [PubMed]

1995 (5)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1346 (1995).
[CrossRef]

K. Shiraki, M. Ohashi, M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[CrossRef]

M. F. dos Santos Ferreira, “Impact of stimulated Brillouin scattering in optical fibers with distributed gain,” J. Lightwave Technol. 13, 1692–1697 (1995).
[CrossRef]

K. Inoue, T. Hasegawa, H. Toba, “Influence of stimulated Brillouin scattering and optimum length in fiber four-wave mixing wavelength conversion,” IEEE Photon. Technol. Lett. 7, 327–329 (1995).
[CrossRef]

1994 (6)

M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

F. W. Willems, W. Muys, J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photon. Technol. Lett. 6, 1476–1478 (1994).
[CrossRef]

F. W. Willems, J. C. van der Plaats, W. Muys, “Harmonic distortion caused by stimulated Brillouin scattering suppression in externally modulated lightwave AM-CATV systems,” Electron. Lett. 30, 343–345 (1994).
[CrossRef]

E. A. Golovchenko, A. N. Pilipetskii, “Acoustic effect and the polarization of adjacent bits in soliton communication lines,” J. Lightwave Technol. 12, 1052–1056 (1994).
[CrossRef]

M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157–2158 (1994).
[CrossRef]

K. J. Williams, R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965–1966 (1994).
[CrossRef]

1993 (8)

F. W. Willems, W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993).
[CrossRef]

N. Yoshizawa, T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[CrossRef]

M. Ohashi, M. Tateda, “Design of strain-free-fiber with nonuniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993).
[CrossRef]

C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10, 969–972 (1993).
[CrossRef]

D. A. Fishman, J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11, 1721–1728 (1993).
[CrossRef]

A. N. Pilipetskii, A. V. Luchnikov, A. M. Prokhorov, “Soliton pulse long-range interaction in optical fibres: the role of light polarization and fibre geometry,” Sov. Lightwave Commun. 3, 29–39 (1993).

C. N. Pannell, P. St. J. Russell, T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effect of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
[CrossRef]

S. L. Zhang, J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 5, 537–539 (1993).
[CrossRef]

1992 (4)

S. Hamidi, D. Simeonidou, A. S. Siddiqui, T. Chaleon, “Effect of pump laser mode structure on the gain of forward pumped Raman fibre amplifier in the presence of stimulated Brillouin scattering,” Electron. Lett. 28, 1768–1770 (1992).
[CrossRef]

X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett. 4, 287–289 (1992).
[CrossRef]

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

C. Montes, A. M. Rubenchik, “Stimulated Brillouin scattering from trains of solitons in optical fibers: information degradation,” J. Opt. Soc. Am. B 9, 1857–1875 (1992).
[CrossRef]

1991 (4)

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Long-range interaction of soliton pulse trains in a single-mode fibre,” Sov. Lightwave Commun. 1, 37–43 (1991).

K. Tajima, “Exact acoustic leaky wave solutions for single-mode fibres,” Electron. Lett. 27, 251–253 (1991).
[CrossRef]

A. L. Gaeta, R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

M. F. dos Santos Ferreira, J. F. Rocha, J. L. Pinto, “Impact of stimulated Brillouin scattering on fibre Raman amplifiers,” Electron. Lett. 27, 1576–1577 (1991).
[CrossRef]

1990 (5)

D. E. Watkins, A. M. Scott, K. D. Ridley, “Determination of the threshold for instability in four-wave mixing mediated by Brillouin scattering,” IEEE J. Quantum Electron. 26, 2130–2137 (1990).
[CrossRef]

R. W. Boyd, K. Rząźewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

P. Bayvel, P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26, 434–436 (1990).
[CrossRef]

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Electrostriction mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990).
[CrossRef] [PubMed]

M. Tateda, “First measurement of strain distribution along field installed optical fibers using Brillouin spectroscopy,” J. Lightwave Technol. 8, 1269–1272 (1990).
[CrossRef]

1989 (3)

N. Shibata, K. Okamoto, Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers,” J. Opt. Soc. Am. B 6, 1167–1174 (1989).
[CrossRef]

A. M. Scott, K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 438–459 (1989).
[CrossRef]

B. Foley, M. L. Dakss, R. W. Davies, P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol. 7, 2024–2032 (1989).
[CrossRef]

1988 (3)

1987 (1)

P. Narum, R. W. Boyd, “Nonfrequency-shifted phase conjugation by Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 23, 1211–1216 (1987).
[CrossRef]

1986 (4)

G. Valley, “A review of stimulated Brillouin scattering excited with a broad-band pump laser,” J. Lightwave Technol. 22, 704–712 (1986).

P. Narum, M. Skeldon, R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” J. Lightwave Technol. 22, 2161–2167 (1986).

A. Safaai-Jazi, C.-K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 59–68 (1986).
[CrossRef]

C.-K. Jen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guided fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634–643 (1986).

1985 (1)

R. M. Shelby, M. D. Levenson, P. W. Bayer, “Resolved forward Brillouin scattering in optical fibers,” Phys. Rev. Lett. 54, 939–942 (1985).
[CrossRef] [PubMed]

1983 (1)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

1982 (1)

K. Rząźewski, M. Levenstein, M. G. Raymer, “Statistics of stimulated Stokes pulse energies in the steady-state regime,” Opt. Commun. 43, 451–454 (1982).
[CrossRef]

1980 (1)

1979 (1)

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986–4998 (1979).
[CrossRef]

1978 (2)

R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am. 64, 1–37 (1978).
[CrossRef]

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density and refractve index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
[CrossRef]

1972 (1)

1969 (2)

R. H. Enns, L. P. Batra, “Saturation and depletion in stimulated light scattering,” Phys. Lett. 28A, 591–592 (1969).
[CrossRef]

R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microwave Theory Tech. MTT-17, 893–904 (1969).
[CrossRef]

1966 (1)

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2955 (1966).
[CrossRef]

1964 (1)

R. Y. Chiao, C. H. Townes, B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense supersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

1922 (1)

L. Brillouin, “Diffusion de la lumière par un corps transparent homogène,” Ann. Phys. 17, 88 (1922).

Abedin, K. S.

K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005).
[CrossRef] [PubMed]

Abramowitz, M.

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, 1965).

Achenbach, J. D.

J. D. Achenbach, Wave Propagation in Elastic Solids (North Holland, 1973).

Afshar, S.

Agarwal, A.

A. P. Küng, A. Agarwal, D. F. Grosz, S. Banerjee, D. N. Maywar, “Analytical solution of transmission performance improvement in fiber spans with forward Raman gain and its application to repeaterless systems,” J. Lightwave Technol. 23, 1182–1188 (2005).
[CrossRef]

Agrawal, G. P.

Alam, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531 (2007).
[CrossRef]

Alasia, D.

Alegria, C.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Alvarez-Chavez, J. A.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Andersen, U. L.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Andrejco, M. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).

Andrekson, P. A.

Annunziata, F.

A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123–3125 (2005).
[CrossRef] [PubMed]

A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.

Anton, O. M.

R. B. Ellis, F. Weiss, O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43, 405–407 (2007).
[CrossRef]

Arfken, G. B.

G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Academic, 2001).

Auld, B. A.

B. A. Auld, Acoustic Fields and Waves in Solids, 2nd ed. (Krieger, 1990).

Azuma, Y.

Banerjee, S.

A. P. Küng, A. Agarwal, D. F. Grosz, S. Banerjee, D. N. Maywar, “Analytical solution of transmission performance improvement in fiber spans with forward Raman gain and its application to repeaterless systems,” J. Lightwave Technol. 23, 1182–1188 (2005).
[CrossRef]

Bao, X.

X. Bao, “Optical fiber sensors based on Brillouin scattering,” Opt. Photonics News 20(9), 41–45 (2009).
[CrossRef]

S. Afshar, V. P. Kalosha, X. Bao, L. Chen, “Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber,” Opt. Lett. 30, 2685–2687 (2005).
[CrossRef] [PubMed]

L. Zou, G. A. Ferrier, S. Afshar, Q. Yu, L. Chen, X. Bao, “Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure,” Appl. Opt. 43, 1583–1588 (2004).
[CrossRef] [PubMed]

L. Chen, X. Bao, “Analytical and numerical solution for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1346 (1995).
[CrossRef]

F. Ravet, L. Zou, X. Bao, L. Chen, R. F. Huang, H. A. Khoo, “Pipeline buckling detection by the distributed Brillouin sensor,” in Sensing Issues in Civil Structural Health Monitoring, F. Ansari, ed. (Springer, 2005), pp. 515–524.
[CrossRef]

Batra, L. P.

R. H. Enns, L. P. Batra, “Saturation and depletion in stimulated light scattering,” Phys. Lett. 28A, 591–592 (1969).
[CrossRef]

Bayer, P. W.

R. M. Shelby, M. D. Levenson, P. W. Bayer, “Resolved forward Brillouin scattering in optical fibers,” Phys. Rev. Lett. 54, 939–942 (1985).
[CrossRef] [PubMed]

Bayvel, P.

P. Bayvel, P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26, 434–436 (1990).
[CrossRef]

Belardi, W.

Benito, D.

A. Loayssa, D. Benito, M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
[CrossRef]

Bennion, I.

S. Rae, I. Bennion, M. J. Cardwell, “New numerical model for stimulated Brillouin scattering in optical fibers with nonuniformity,” Opt. Commun. 123, 611–616 (1996).
[CrossRef]

Beugnot, J. C.

Beugnot, J.-C.

Bickham, S. R.

A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
[CrossRef] [PubMed]

S. R. Bickham, A. Kobyakov, S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuA3.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Biryukov, A. S.

A. S. Biryukov, S. V. Erokhin, S. V. Kushchenko, E. M. Dianov, “Electrostriction temporal shift of laser pulses in optical fibres,” Quantum Electron. 34, 1047–1053 (2004).
[CrossRef]

A. S. Biryukov, M. E. Sukharev, E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibres,” Quantum Electron. 32, 765–775 (2002).
[CrossRef]

E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index-profile fibers,” Opt. Lett. 25, 390–392 (2000).
[CrossRef]

E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index profile fibers: errata,” Opt. Lett. 25, 987 (2000).
[CrossRef]

Blondel, M.

A. A. Fotiadi, G. Ravet, P. Mégret, M. Blondel, “Multi-cascaded SBS in an optical fiber supported by Rayleigh backscattering,” Proc. SPIE 5480, 71–81 (2003).
[CrossRef]

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Megret, M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27, 83–85 (2002).
[CrossRef]

Blow, K. J.

Bodeep, G. E.

X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett. 4, 287–289 (1992).
[CrossRef]

Boggio, J. M. C.

Boot, A. J.

M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

Boskovic, A.

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

Bourdon, P.

G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, Y. Jaouën, “Characteristics of the Brillouin spectra in erbium–ytterbium fibers,” Opt. Express 16, 3212–3222 (2008).
[CrossRef] [PubMed]

Boyd, R. W.

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt. 46, 6513–6519 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

E. L. Buckland, R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers,” Opt. Lett. 22, 676–678 (1997).
[CrossRef] [PubMed]

E. L. Buckland, R. W. Boyd, “Electrostrictive contribution to the intensity-dependent refractive index of optical fibers,” Opt. Lett. 21, 1117–1119 (1996).
[CrossRef] [PubMed]

A. L. Gaeta, R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

R. W. Boyd, K. Rząźewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

P. Narum, A. L. Gaeta, M. D. Skeldon, R. W. Boyd, “Instabilities of laser beams counterpropagating through a Brillouin-active medium,” J. Opt. Soc. Am. B 5, 623–628 (1988).
[CrossRef]

P. Narum, R. W. Boyd, “Nonfrequency-shifted phase conjugation by Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 23, 1211–1216 (1987).
[CrossRef]

P. Narum, M. Skeldon, R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” J. Lightwave Technol. 22, 2161–2167 (1986).

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), chap. 9.

Brenn, A.

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, P. St. J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

Brilland, L.

Brillouin, L.

L. Brillouin, “Diffusion de la lumière par un corps transparent homogène,” Ann. Phys. 17, 88 (1922).

Broderick, N. G. R.

Bucaro, J. A.

Buck, J. A.

J. A. Buck, Fundamentals of Optical Fibers (Wiley Interscience, 1995).

Buckland, E. L.

Burlak, G.

Cambon, P.

S. Le Floch, P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003).
[CrossRef]

S. Le Floch, P. Cambon, “Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20, 1132–1137 (2003).
[CrossRef]

Canat, G.

G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, Y. Jaouën, “Characteristics of the Brillouin spectra in erbium–ytterbium fibers,” Opt. Express 16, 3212–3222 (2008).
[CrossRef] [PubMed]

Caneau, C.

A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.

Cardwell, M. J.

S. Rae, I. Bennion, M. J. Cardwell, “New numerical model for stimulated Brillouin scattering in optical fibers with nonuniformity,” Opt. Commun. 123, 611–616 (1996).
[CrossRef]

Chaleon, T.

S. Hamidi, D. Simeonidou, A. S. Siddiqui, T. Chaleon, “Effect of pump laser mode structure on the gain of forward pumped Raman fibre amplifier in the presence of stimulated Brillouin scattering,” Electron. Lett. 28, 1768–1770 (1992).
[CrossRef]

Chamarti, A.

A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.

Charbonnier, B.

H. Le Bras, M. Moignard, B. Charbonnier, “Brillouin scattering in radio over fiber transmission,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA86.

Charczenko, W.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157–2158 (1994).
[CrossRef]

Charlet, G.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944–946 (2000).
[CrossRef]

Chazelas, J.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944–946 (2000).
[CrossRef]

Chen, H.

Chen, K.

Y. Shen, X. Zhang, K. Chen, “A simple filter based on stimulated Brillouin scattering for carrier-suppression of microwave photonic signals,” Proc. SPIE 5625, 109–116 (2005).
[CrossRef]

Chen, L.

S. Afshar, V. P. Kalosha, X. Bao, L. Chen, “Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber,” Opt. Lett. 30, 2685–2687 (2005).
[CrossRef] [PubMed]

L. Zou, G. A. Ferrier, S. Afshar, Q. Yu, L. Chen, X. Bao, “Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure,” Appl. Opt. 43, 1583–1588 (2004).
[CrossRef] [PubMed]

L. Chen, X. Bao, “Analytical and numerical solution for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998).
[CrossRef]

F. Ravet, L. Zou, X. Bao, L. Chen, R. F. Huang, H. A. Khoo, “Pipeline buckling detection by the distributed Brillouin sensor,” in Sensing Issues in Civil Structural Health Monitoring, F. Ansari, ed. (Springer, 2005), pp. 515–524.
[CrossRef]

Chen, M.

Chen, W.

S. Yang, H. Chen, C. Qiu, M. Chen, M. Chen, S. Xie, J. Li, W. Chen, “Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering,” Opt. Lett. 33, 95–97 (2008).
[CrossRef] [PubMed]

R. Chi, K. Lu, X. Dong, W. Chen, G. Yang, Z. Liu, “Gain saturation and nonlinear effect of erbium-doped fiber amplifier/discrete compensating Raman amplifier hybrid fiber amplifiers in the C-band,” Opt. Eng. 43, 346–349 (2004).
[CrossRef]

Chen, X.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123–3125 (2005).
[CrossRef] [PubMed]

Cherif, R.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282, 2431–2436 (2009).
[CrossRef]

Chi, R.

R. Chi, K. Lu, X. Dong, W. Chen, G. Yang, Z. Liu, “Gain saturation and nonlinear effect of erbium-doped fiber amplifier/discrete compensating Raman amplifier hybrid fiber amplifiers in the C-band,” Opt. Eng. 43, 346–349 (2004).
[CrossRef]

Chi, S.

C. C. Lee, S. Chi, “Measurement of stimulated Brillouin scattering threshold for various types of fibers using Brillouin optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000).
[CrossRef]

Chiao, R. Y.

R. Y. Chiao, C. H. Townes, B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense supersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Chowdhury, D.

Chraplyvy, A. R.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett. 4, 287–289 (1992).
[CrossRef]

F. Forghieri, R. W. Tkach, A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications III, I. P. Kaminov and T. L. Koch, eds. (Academic, 1997), vol. A, pp. 196–264.
[CrossRef]

Chryssou, C. E.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Chujo, W.

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22, 631–639 (2004).
[CrossRef]

Claus, R. O.

A. Safaai-Jazi, R. O. Claus, “Acoustic modes in optical fiberlike waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-35, 619–627 (1988).
[CrossRef]

Codemard, C.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282, 2431–2436 (2009).
[CrossRef]

Codemard, C. A.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Cotter, D.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

Crowley, A. M.

Dainese, P.

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[CrossRef] [PubMed]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Dakss, M. L.

B. Foley, M. L. Dakss, R. W. Davies, P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol. 7, 2024–2032 (1989).
[CrossRef]

Damsgaard, H.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000).
[CrossRef]

Darcie, T. E.

X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett. 4, 287–289 (1992).
[CrossRef]

Dardel, B.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structures using distributed Brillouin fiber sensing,” Proc. SPIE 3746, 345–348 (1999).

Darmanyan, S. A.

A. Kobyakov, S. A. Darmanyan, M. Sauer, D. Chowdhury, “High-gain Brillouin amplification: an analytical approach,” Opt. Lett. 31, 1960–1962 (2006).
[CrossRef] [PubMed]

A. Kobyakov, S. A. Darmanyan, D. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260, 46–49 (2006).
[CrossRef]

Davies, R. W.

B. Foley, M. L. Dakss, R. W. Davies, P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol. 7, 2024–2032 (1989).
[CrossRef]

Dawes, A. M. C.

de Oliveira, C. A. S.

C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10, 969–972 (1993).
[CrossRef]

Debarge, G.

Delavaux, J. M.

A. Yeniay, J. M. Delavaux, J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20, 1425–1432 (2002).
[CrossRef]

Delavaux, J. M. P.

C. McIntosh, A. Yeniay, J. Toulouse, J. M. P. Delavaux, “Stimulated Brillouin scattering in dispersion-compensating fibers,” Opt. Fiber Technol. 3, 173–176 (1997).
[CrossRef]

Demeritt, J. A.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

Deparis, O.

Derosier, R. M.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett. 4, 287–289 (1992).
[CrossRef]

Desevedavy, F.

Devgan, P. S.

P. S. Devgan, V. J. Urick, K. J. Williams, J. F. Diehl, “Long-haul microwave analog link with shot-noise-limited performance above the stimulated Brillouin scattering threshold,” in 2008 International Topical Meeting on Microwave Photonics and 2008 Asia-pacific Microwave Photonics Conference (IEEE, 2009), pp. 326–329.

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1346 (1995).
[CrossRef]

Dianov, E. M.

A. S. Biryukov, S. V. Erokhin, S. V. Kushchenko, E. M. Dianov, “Electrostriction temporal shift of laser pulses in optical fibres,” Quantum Electron. 34, 1047–1053 (2004).
[CrossRef]

A. S. Biryukov, M. E. Sukharev, E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibres,” Quantum Electron. 32, 765–775 (2002).
[CrossRef]

E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index-profile fibers,” Opt. Lett. 25, 390–392 (2000).
[CrossRef]

E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index profile fibers: errata,” Opt. Lett. 25, 987 (2000).
[CrossRef]

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Long-range interaction of soliton pulse trains in a single-mode fibre,” Sov. Lightwave Commun. 1, 37–43 (1991).

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Electrostriction mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990).
[CrossRef] [PubMed]

Diehl, J. F.

P. S. Devgan, V. J. Urick, K. J. Williams, J. F. Diehl, “Long-haul microwave analog link with shot-noise-limited performance above the stimulated Brillouin scattering threshold,” in 2008 International Topical Meeting on Microwave Photonics and 2008 Asia-pacific Microwave Photonics Conference (IEEE, 2009), pp. 326–329.

DiGiovanni, D. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).

Djupsjöbacka, A.

Dolfi, D.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944–946 (2000).
[CrossRef]

Dong, X.

R. Chi, K. Lu, X. Dong, W. Chen, G. Yang, Z. Liu, “Gain saturation and nonlinear effect of erbium-doped fiber amplifier/discrete compensating Raman amplifier hybrid fiber amplifiers in the C-band,” Opt. Eng. 43, 346–349 (2004).
[CrossRef]

dos Santos Ferreira, M. F.

M. F. dos Santos Ferreira, “Impact of stimulated Brillouin scattering in optical fibers with distributed gain,” J. Lightwave Technol. 13, 1692–1697 (1995).
[CrossRef]

M. F. dos Santos Ferreira, J. F. Rocha, J. L. Pinto, “Impact of stimulated Brillouin scattering on fibre Raman amplifiers,” Electron. Lett. 27, 1576–1577 (1991).
[CrossRef]

Downie, J. D.

J. D. Downie, J. Hurley, “Experimental study of SBS mitigation and transmission improvement from cross-phase modulation in 10.7 Gb∕s unrepeatered systems,” Opt. Express 15, 9527–9534 (2007).
[CrossRef] [PubMed]

Dragic, P. D.

Dross, F.

du Mouza, L.

Dupriez, P.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Durécu, A.

G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, Y. Jaouën, “Characteristics of the Brillouin spectra in erbium–ytterbium fibers,” Opt. Express 16, 3212–3222 (2008).
[CrossRef] [PubMed]

Eberhardt, R.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Edvold, B.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000).
[CrossRef]

Ellis, R. B.

R. B. Ellis, F. Weiss, O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43, 405–407 (2007).
[CrossRef]

Elser, D.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Engan, H. E.

H. E. Engan, “Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers,” J. Opt. Soc. Am. A 13, 112–118 (1996).
[CrossRef]

Enns, R. H.

R. H. Enns, L. P. Batra, “Saturation and depletion in stimulated light scattering,” Phys. Lett. 28A, 591–592 (1969).
[CrossRef]

Erokhin, S. V.

A. S. Biryukov, S. V. Erokhin, S. V. Kushchenko, E. M. Dianov, “Electrostriction temporal shift of laser pulses in optical fibres,” Quantum Electron. 34, 1047–1053 (2004).
[CrossRef]

Esman, R. D.

K. J. Williams, R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965–1966 (1994).
[CrossRef]

R. D. Esman, K. J. Williams, “Brillouin scattering: beyond threshold,” in Optical Fiber Communication Conference, vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), paper ThF5.

Evans, A. F.

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, A. F. Evans, “Effect of Raman amplification on stimulated Brillouin scattering in dispersion compensating fibres,” Electron. Lett. 38, 268–269 (2002).
[CrossRef]

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, A. F. Evans, “Stimulated Brillouin scattering in Raman-pumped fibers: a theoretical approach,” J. Lightwave Technol. 20, 1635–1643 (2002).
[CrossRef]

Fabelinskii, I. L.

I. L. Fabelinskii, “The discovery of combination scattering of light in Russia and India,” Phys. Usp. 46, 1105–1112 (2003).
[CrossRef]

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968).
[CrossRef]

Facchini, M.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structures using distributed Brillouin fiber sensing,” Proc. SPIE 3746, 345–348 (1999).

Farnell, G. W.

C.-K. Jen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guided fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634–643 (1986).

A. Safaai-Jazi, C.-K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 59–68 (1986).
[CrossRef]

Fatome, J.

Fazal, I.

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007).
[CrossRef] [PubMed]

Fellay, A.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structures using distributed Brillouin fiber sensing,” Proc. SPIE 3746, 345–348 (1999).

Fellegara, A.

A. Fellegara, S. Wabnitz, “Electrostrictive cross-phase modulation of periodic pulse trains in optical fibers,” Opt. Lett. 23, 1357–1359 (1998).
[CrossRef]

A. Fellegara, A. Melloni, M. Martinelli, “Measurement of the frequency response induced by electrostriction in optical fibers,” Opt. Lett. 22, 1615–1617 (1997).
[CrossRef]

Ferrier, G. A.

Fini, J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).

Fini, J. M.

Fishman, D. A.

D. A. Fishman, J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11, 1721–1728 (1993).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipies in C. The Art of Scientific Computing, 2nd ed., (Cambridge Univ. Press, 1995), chap. 17.

Foley, B.

B. Foley, M. L. Dakss, R. W. Davies, P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol. 7, 2024–2032 (1989).
[CrossRef]

Forghieri, F.

F. Forghieri, R. W. Tkach, A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications III, I. P. Kaminov and T. L. Koch, eds. (Academic, 1997), vol. A, pp. 196–264.
[CrossRef]

Fortier, C.

Fotiadi, A.

A. Fotiadi, E. A. Kuzin, “Stimulated Brillouin scattering associated with hypersound diffraction in multimode optical fibers,” presented at Quantum Electronics and Laser Science Conference, Anaheim, Calif, June 2–7 1996, paper QFC4.

Fotiadi, A. A.

A. A. Fotiadi, G. Ravet, P. Mégret, M. Blondel, “Multi-cascaded SBS in an optical fiber supported by Rayleigh backscattering,” Proc. SPIE 5480, 71–81 (2003).
[CrossRef]

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Megret, M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27, 83–85 (2002).
[CrossRef]

Fragnito, H. L.

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, P. St. J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[CrossRef] [PubMed]

J. M. C. Boggio, J. D. Marconi, H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23, 3808–3814 (2005).
[CrossRef]

Frasca, M.

Fujioka, T.

K. Tei, Y. Tsuruoka, T. Uchiyama, T. Fujioka, “Critical power of stimulated Brillouin scattering in multimode optical fibers,” Jpn. J. Appl. Phys. 40, 3191–3194 (2001).
[CrossRef]

Furusawa, K.

Gabet, R.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

A. L. Gaeta, R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

P. Narum, A. L. Gaeta, M. D. Skeldon, R. W. Boyd, “Instabilities of laser beams counterpropagating through a Brillouin-active medium,” J. Opt. Soc. Am. B 5, 623–628 (1988).
[CrossRef]

Garavaglia, A.

Garde, M. J.

A. Loayssa, D. Benito, M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
[CrossRef]

Gauthier, D. J.

Gavrielides, A.

A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE, 5581, 654–661 (2004).
[CrossRef]

George, J.

M. Sauer, A. Kobyakov, J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25, 3301–3320 (2007).
[CrossRef]

A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.

Ghalmi, S.

Glöckl, O.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Golovchenko, E. A.

E. A. Golovchenko, A. N. Pilipetskii, “Acoustic effect and the polarization of adjacent bits in soliton communication lines,” J. Lightwave Technol. 12, 1052–1056 (1994).
[CrossRef]

Gray, S.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

Grimalsky, V.

Grosz, D. F.

A. P. Küng, A. Agarwal, D. F. Grosz, S. Banerjee, D. N. Maywar, “Analytical solution of transmission performance improvement in fiber spans with forward Raman gain and its application to repeaterless systems,” J. Lightwave Technol. 23, 1182–1188 (2005).
[CrossRef]

Grüner-Nielsen, L.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000).
[CrossRef]

Gulati, S. T.

S. T. Gulati, J. D. Helfinstine, “Fatigue behavior of GeO2–SiO2 glasses,” Mater. Res. Soc. Symp. Proc. 531, 133–137 (1998).
[CrossRef]

Hamidi, S.

S. Hamidi, D. Simeonidou, A. S. Siddiqui, T. Chaleon, “Effect of pump laser mode structure on the gain of forward pumped Raman fibre amplifier in the presence of stimulated Brillouin scattering,” Electron. Lett. 28, 1768–1770 (1992).
[CrossRef]

Hamilton, M. C.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157–2158 (1994).
[CrossRef]

Hannover, D.

T. Schneider, M. Junker, D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” Electron. Lett. 40, 1500–1501 (2004).
[CrossRef]

Hansryd, J.

Hardman, P. J.

Harrison, R. G.

Hasegawa, T.

K. Inoue, T. Hasegawa, H. Toba, “Influence of stimulated Brillouin scattering and optimum length in fiber four-wave mixing wavelength conversion,” IEEE Photon. Technol. Lett. 7, 327–329 (1995).
[CrossRef]

He, Z.

W. Zou, Z. He, K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16, 18804–18812 (2008).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26, 1854–1861 (2008).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped innner cladding,” Opt. Express 16, 10006–10017 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Analysis on the influence of intrinsic thermal stress on Brillouin gain spectra in optical fibers,” Proc. SPIE 6371, 637104 (2006).
[CrossRef]

Headley, C.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).

C. Headley, G. P. Agrawal, Raman Amplification in Fiber-Optical Communication Systems (Elsevier, 2004).

Hedekvist, P. O.

A. Wiberg, P. O. Hedekvist, “Photonic microwave generator utilizing narrowband Brillouin amplification and fiber-based oscillator,” Proc. SPIE 5466, 148–156 (2004).
[CrossRef]

Helfinstine, J. D.

S. T. Gulati, J. D. Helfinstine, “Fatigue behavior of GeO2–SiO2 glasses,” Mater. Res. Soc. Symp. Proc. 531, 133–137 (1998).
[CrossRef]

Hernandez, V.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1346 (1995).
[CrossRef]

Herráez, M. G.

Hickey, L.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

N. Shibata, Y. Azuma, T. Horiguchi, M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett. 13, 595–597 (1988).
[CrossRef] [PubMed]

Horley, R.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Hotate, K.

W. Zou, Z. He, K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26, 1854–1861 (2008).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16, 18804–18812 (2008).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped innner cladding,” Opt. Express 16, 10006–10017 (2008).
[CrossRef] [PubMed]

K. Y. Song, K. Hotate, “25 GHz Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Hotate, “Analysis on the influence of intrinsic thermal stress on Brillouin gain spectra in optical fibers,” Proc. SPIE 6371, 637104 (2006).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006).
[CrossRef]

Houizot, P.

Huang, R. F.

F. Ravet, L. Zou, X. Bao, L. Chen, R. F. Huang, H. A. Khoo, “Pipeline buckling detection by the distributed Brillouin sensor,” in Sensing Issues in Civil Structural Health Monitoring, F. Ansari, ed. (Springer, 2005), pp. 515–524.
[CrossRef]

Huang, Y. Y.

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density and refractve index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
[CrossRef]

Hughes, R.

Huignard, J.-P.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944–946 (2000).
[CrossRef]

Hurley, J.

J. D. Downie, J. Hurley, “Experimental study of SBS mitigation and transmission improvement from cross-phase modulation in 10.7 Gb∕s unrepeatered systems,” Opt. Express 15, 9527–9534 (2007).
[CrossRef] [PubMed]

A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.

Hurley, J. E.

A. Kobyakov, M. Sauer, J. E. Hurley, “SBS threshold of segmented fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OME5.

Ibsen, M.

Imai, T.

N. Yoshizawa, T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[CrossRef]

Imai, Y.

Y. Imai, M. Yoshida, “Polarization characteristics of fiber-optic SBS phase conjugation,” Opt. Fiber Technol. 6, 42–48 (2000).
[CrossRef]

Inaudi, D.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structures using distributed Brillouin fiber sensing,” Proc. SPIE 3746, 345–348 (1999).

Inoue, K.

K. Inoue, T. Hasegawa, H. Toba, “Influence of stimulated Brillouin scattering and optimum length in fiber four-wave mixing wavelength conversion,” IEEE Photon. Technol. Lett. 7, 327–329 (1995).
[CrossRef]

Jackson, D. A.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1346 (1995).
[CrossRef]

Jacobs, L.

J. Qu, L. Jacobs, “Cylindrical waveguides and their applications in ultrasonic evaluation,” in Ultrasonic Nondestructive Evaluation, T. Kundu, ed. (CRC Press, 2004).

Jacobsen, C.

Jain, R.

A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE, 5581, 654–661 (2004).
[CrossRef]

Jaouën, Y.

Jen, C. K.

C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10, 969–972 (1993).
[CrossRef]

Jen, C.-K.

A. Safaai-Jazi, C.-K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 59–68 (1986).
[CrossRef]

C.-K. Jen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guided fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634–643 (1986).

Jeong, Y.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Jiang, S.

Jinsong, W.

W. Jinsong, T. Weizhong, Z. Wen, “Stimulated Brillouin scattering initiated by thermally excited acoustic waves in absorption media,” Opt. Commun. 123, 574–576 (1996).
[CrossRef]

Jolivet, V.

G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, Y. Jaouën, “Characteristics of the Brillouin spectra in erbium–ytterbium fibers,” Opt. Express 16, 3212–3222 (2008).
[CrossRef] [PubMed]

Joly, N.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[CrossRef] [PubMed]

Jopson, R. M.

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

Junker, M.

T. Schneider, M. Junker, D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” Electron. Lett. 40, 1500–1501 (2004).
[CrossRef]

Kalosha, V. P.

Khelif, A.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[CrossRef] [PubMed]

Khoo, H. A.

F. Ravet, L. Zou, X. Bao, L. Chen, R. F. Huang, H. A. Khoo, “Pipeline buckling detection by the distributed Brillouin sensor,” in Sensing Issues in Civil Structural Health Monitoring, F. Ansari, ed. (Springer, 2005), pp. 515–524.
[CrossRef]

Kikuchi, K.

Kitao, M.

Kiyan, R.

Klingebiel, S.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Knight, J. C.

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Knudsen, S. N.

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, S. N. Knudsen, “Increase in the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
[CrossRef]

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000).
[CrossRef]

Kobyakov, A.

M. Sauer, A. Kobyakov, A. B. Ruffin, “Radio-over-fiber transmission with mitigated stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19, 1487–1489 (2007).
[CrossRef]

M. Sauer, A. Kobyakov, J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25, 3301–3320 (2007).
[CrossRef]

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

A. Kobyakov, S. A. Darmanyan, M. Sauer, D. Chowdhury, “High-gain Brillouin amplification: an analytical approach,” Opt. Lett. 31, 1960–1962 (2006).
[CrossRef] [PubMed]

A. Kobyakov, S. A. Darmanyan, D. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260, 46–49 (2006).
[CrossRef]

A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123–3125 (2005).
[CrossRef] [PubMed]

A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
[CrossRef] [PubMed]

A. Kobyakov, “Prospects of Raman-assisted transmission systems,” Proc. SPIE 5246, 174–188 (2003).
[CrossRef]

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, A. F. Evans, “Effect of Raman amplification on stimulated Brillouin scattering in dispersion compensating fibres,” Electron. Lett. 38, 268–269 (2002).
[CrossRef]

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, A. F. Evans, “Stimulated Brillouin scattering in Raman-pumped fibers: a theoretical approach,” J. Lightwave Technol. 20, 1635–1643 (2002).
[CrossRef]

S. R. Bickham, A. Kobyakov, S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuA3.

M. Vasilyev, A. Kobyakov, “Effect of pump depletion on the noise figure of distributed Raman amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CWL3.

A. Kobyakov, M. Sauer, J. E. Hurley, “SBS threshold of segmented fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OME5.

A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.

Korn, A.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Koshevaya, S.

Koshiba, M.

Kovalev, V. I.

Koyamada, Y.

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22, 631–639 (2004).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Kozischek, D.

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

Kumar, S.

Küng, A. P.

A. P. Küng, A. Agarwal, D. F. Grosz, S. Banerjee, D. N. Maywar, “Analytical solution of transmission performance improvement in fiber spans with forward Raman gain and its application to repeaterless systems,” J. Lightwave Technol. 23, 1182–1188 (2005).
[CrossRef]

Kurashima, T.

T. Sakamoto, T. Yamamoto, K. Shiraki, T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008).
[CrossRef] [PubMed]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Kushchenko, S. V.

A. S. Biryukov, S. V. Erokhin, S. V. Kushchenko, E. M. Dianov, “Electrostriction temporal shift of laser pulses in optical fibres,” Quantum Electron. 34, 1047–1053 (2004).
[CrossRef]

Kuzin, E. A.

A. Fotiadi, E. A. Kuzin, “Stimulated Brillouin scattering associated with hypersound diffraction in multimode optical fibers,” presented at Quantum Electronics and Laser Science Conference, Anaheim, Calif, June 2–7 1996, paper QFC4.

Kwon, I.

J. Yu, Y. Park, K. Oh, I. Kwon, “Brillouin frequency shifts in silica optical fiber with the double cladding structure,” Opt. Express 10, 996–1002 (2002).
[CrossRef] [PubMed]

Lagakos, N.

LaGasse, M. J.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157–2158 (1994).
[CrossRef]

Lanticq, V.

Larsen, C. C.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000).
[CrossRef]

Laude, V.

J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
[CrossRef] [PubMed]

J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32, 17–19 (2007).
[CrossRef]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[CrossRef] [PubMed]

Le Bras, H.

H. Le Bras, M. Moignard, B. Charbonnier, “Brillouin scattering in radio over fiber transmission,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA86.

Le Floch, S.

S. Le Floch, P. Cambon, “Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20, 1132–1137 (2003).
[CrossRef]

S. Le Floch, P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003).
[CrossRef]

Lee, C. C.

C. C. Lee, S. Chi, “Measurement of stimulated Brillouin scattering threshold for various types of fibers using Brillouin optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000).
[CrossRef]

Lee, H.

Lee, J. H.

Leong, J. S.

F. W. Willems, W. Muys, J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photon. Technol. Lett. 6, 1476–1478 (1994).
[CrossRef]

Lesueur, G.

G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, Y. Jaouën, “Characteristics of the Brillouin spectra in erbium–ytterbium fibers,” Opt. Express 16, 3212–3222 (2008).
[CrossRef] [PubMed]

Leuchs, G.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, P. W. Bayer, “Resolved forward Brillouin scattering in optical fibers,” Phys. Rev. Lett. 54, 939–942 (1985).
[CrossRef] [PubMed]

Levenstein, M.

K. Rząźewski, M. Levenstein, M. G. Raymer, “Statistics of stimulated Stokes pulse energies in the steady-state regime,” Opt. Commun. 43, 451–454 (1982).
[CrossRef]

Li, H.

K. Ogusu, H. Li, M. Kitao, “Brillouin-gain coefficients of chalcogenide glasses,” J. Opt. Soc. Am. B 21, 1302–1304 (2004).
[CrossRef]

H. Li, K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys. 38, 6309–6315 (1999).
[CrossRef]

Li, J.

Li, M.-J.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123–3125 (2005).
[CrossRef] [PubMed]

Li, S.

S. R. Bickham, A. Kobyakov, S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuA3.

Li, Y.

Liem, A.

Limpert, J.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, “100-W single frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1537–1539 (2003).
[CrossRef] [PubMed]

Liu, A.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

Liu, Z.

R. Chi, K. Lu, X. Dong, W. Chen, G. Yang, Z. Liu, “Gain saturation and nonlinear effect of erbium-doped fiber amplifier/discrete compensating Raman amplifier hybrid fiber amplifiers in the C-band,” Opt. Eng. 43, 346–349 (2004).
[CrossRef]

Loayssa, A.

A. Loayssa, D. Benito, M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
[CrossRef]

Lombard, L.

G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, Y. Jaouën, “Characteristics of the Brillouin spectra in erbium–ytterbium fibers,” Opt. Express 16, 3212–3222 (2008).
[CrossRef] [PubMed]

Lorenz, S.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Lu, K.

R. Chi, K. Lu, X. Dong, W. Chen, G. Yang, Z. Liu, “Gain saturation and nonlinear effect of erbium-doped fiber amplifier/discrete compensating Raman amplifier hybrid fiber amplifiers in the C-band,” Opt. Eng. 43, 346–349 (2004).
[CrossRef]

Luchnikov, A. V.

A. N. Pilipetskii, A. V. Luchnikov, A. M. Prokhorov, “Soliton pulse long-range interaction in optical fibres: the role of light polarization and fibre geometry,” Sov. Lightwave Commun. 3, 29–39 (1993).

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Long-range interaction of soliton pulse trains in a single-mode fibre,” Sov. Lightwave Commun. 1, 37–43 (1991).

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Electrostriction mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990).
[CrossRef] [PubMed]

Luo, S.

L. Xing, L. Zhan, S. Luo, Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133–1138 (2008).
[CrossRef]

Machewirth, D. P.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531 (2007).
[CrossRef]

Mafang, S. F.

Magnussen, D.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000).
[CrossRef]

Maillotte, H.

Mao, X. P.

X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett. 4, 287–289 (1992).
[CrossRef]

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

Maran, J.-N.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282, 2431–2436 (2009).
[CrossRef]

Marconi, J. D.

Marquardt, C.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Martinelli, M.

Masters, B. R.

B. R. Masters, “C. V. Raman and the Raman effect,” Opt. Photonics News 20(3), 41–45 (2009).
[CrossRef]

Maywar, D. N.

A. P. Küng, A. Agarwal, D. F. Grosz, S. Banerjee, D. N. Maywar, “Analytical solution of transmission performance improvement in fiber spans with forward Raman gain and its application to repeaterless systems,” J. Lightwave Technol. 23, 1182–1188 (2005).
[CrossRef]

Mazzali, C.

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

McCurdy, A. H.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).

A. H. McCurdy, “Modeling of stimulated Brillouin scattering in optical fibers with arbitrary radial index profile,” J. Lightwave Technol. 23, 3509–3516 (2005).
[CrossRef]

McElhenny, J. E.

McIntosh, C.

C. McIntosh, A. Yeniay, J. Toulouse, J. M. P. Delavaux, “Stimulated Brillouin scattering in dispersion-compensating fibers,” Opt. Fiber Technol. 3, 173–176 (1997).
[CrossRef]

Megret, P.

Mégret, P.

A. A. Fotiadi, G. Ravet, P. Mégret, M. Blondel, “Multi-cascaded SBS in an optical fiber supported by Rayleigh backscattering,” Proc. SPIE 5480, 71–81 (2003).
[CrossRef]

Mehendale, M.

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, A. F. Evans, “Effect of Raman amplification on stimulated Brillouin scattering in dispersion compensating fibres,” Electron. Lett. 38, 268–269 (2002).
[CrossRef]

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, A. F. Evans, “Stimulated Brillouin scattering in Raman-pumped fibers: a theoretical approach,” J. Lightwave Technol. 20, 1635–1643 (2002).
[CrossRef]

Meis, D.

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

Mélin, G.

Melloni, A.

Melman, P.

B. Foley, M. L. Dakss, R. W. Davies, P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol. 7, 2024–2032 (1989).
[CrossRef]

Mermelstein, M. D.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).

M. D. Mermelstein, S. Ramachandran, J. M. Fini, S. Ghalmi, “SBS gain efficiency measurements and modeling in a 1714 μm2 effective area LP08 higher order mode optical fiber,” Opt. Express 15, 15952–15963 (2007).
[CrossRef] [PubMed]

Millot, G.

Mishra, R.

Miyamoto, T.

Y. Yamamoto, T. Miyamoto, M. Onishi, E. Sasaoka, “Zero-water-peak pure-silica-core fiber compatible with ITU-T G.652 single-mode fiber and its applicability to access networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper JWA63.

Mocofanescu, A.

A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE, 5581, 654–661 (2004).
[CrossRef]

Moignard, M.

H. Le Bras, M. Moignard, B. Charbonnier, “Brillouin scattering in radio over fiber transmission,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA86.

Monro, T. M.

Montes, C.

Monteville, A.

Moreau, G.

Mori, A.

G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, Y. Ohishi, “Stimulated Brillouin amplification in a tellurite fiber as a potential system for slow light generation,” Jpn. J. Appl. Phys. 46, L810–L812 (2007).
[CrossRef]

Muys, W.

F. W. Willems, W. Muys, J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photon. Technol. Lett. 6, 1476–1478 (1994).
[CrossRef]

F. W. Willems, J. C. van der Plaats, W. Muys, “Harmonic distortion caused by stimulated Brillouin scattering suppression in externally modulated lightwave AM-CATV systems,” Electron. Lett. 30, 343–345 (1994).
[CrossRef]

F. W. Willems, W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993).
[CrossRef]

Nagel, J. A.

D. A. Fishman, J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11, 1721–1728 (1993).
[CrossRef]

Nakamura, S.

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22, 631–639 (2004).
[CrossRef]

Narum, P.

R. W. Boyd, K. Rząźewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

P. Narum, A. L. Gaeta, M. D. Skeldon, R. W. Boyd, “Instabilities of laser beams counterpropagating through a Brillouin-active medium,” J. Opt. Soc. Am. B 5, 623–628 (1988).
[CrossRef]

P. Narum, R. W. Boyd, “Nonfrequency-shifted phase conjugation by Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 23, 1211–1216 (1987).
[CrossRef]

P. Narum, M. Skeldon, R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” J. Lightwave Technol. 22, 2161–2167 (1986).

Neifeld, M. A.

Newnham, R. E.

V. Sundar, R. E. Newnham, “Electrostriction,” in The Electrical Engineering Handbook, 2nd ed., R. C. Dorf, ed. (CRC Press, 1997), pp. 1193–1200.

Newson, T. P.

C. N. Pannell, P. St. J. Russell, T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effect of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Nilsson, J.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

S. Yoo, J. K. Sahu, J. Nilsson, “Optimized acoustic refractive index profiles for suppression of stimulated Brillouin scattering in large core fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA5.

Nishimura, M.

T. Okuno, M. Nishimura, “Effects of stimulated Raman amplification in optical fibre on stimulated Brillouin scattering threshold power,” Electron. Lett. 38, 14–16 (2002).
[CrossRef]

Nishiyama, N.

A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.

O’Connor, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531 (2007).
[CrossRef]

O’Reilly, J. J.

S. L. Zhang, J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 5, 537–539 (1993).
[CrossRef]

Ogusu, K.

Oh, K.

J. Yu, Y. Park, K. Oh, I. Kwon, “Brillouin frequency shifts in silica optical fiber with the double cladding structure,” Opt. Express 10, 996–1002 (2002).
[CrossRef] [PubMed]

Ohashi, M.

K. Shiraki, M. Ohashi, M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, M. Tateda, “Performance of strain-free stimulated Brillouin scattering suppression fiber,” J. Lightwave Technol. 14, 549–554 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[CrossRef]

M. Ohashi, M. Tateda, “Design of strain-free-fiber with nonuniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993).
[CrossRef]

Ohishi, Y.

G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, Y. Ohishi, “Stimulated Brillouin amplification in a tellurite fiber as a potential system for slow light generation,” Jpn. J. Appl. Phys. 46, L810–L812 (2007).
[CrossRef]

Okamoto, K.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Okuno, T.

T. Okuno, M. Nishimura, “Effects of stimulated Raman amplification in optical fibre on stimulated Brillouin scattering threshold power,” Electron. Lett. 38, 14–16 (2002).
[CrossRef]

Onishi, M.

Y. Yamamoto, T. Miyamoto, M. Onishi, E. Sasaoka, “Zero-water-peak pure-silica-core fiber compatible with ITU-T G.652 single-mode fiber and its applicability to access networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper JWA63.

Pannell, C. N.

C. N. Pannell, P. St. J. Russell, T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effect of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
[CrossRef]

Pant, R.

Pantell, R. H.

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).

Park, Y.

J. Yu, Y. Park, K. Oh, I. Kwon, “Brillouin frequency shifts in silica optical fiber with the double cladding structure,” Opt. Express 10, 996–1002 (2002).
[CrossRef] [PubMed]

Pattnaik, R.

Pattnaik, R. K.

Payne, D. N.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Penty, R. V.

X. Qian, A. Wonfor, R. V. Penty, I. H. White, “Overcoming transmission impairments in wide frequency range radio-over-fibre distribution systems,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper We3.

Peral, E.

E. Peral, A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[CrossRef]

Peschel, T.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Peterson, P.

A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005).
[CrossRef] [PubMed]

Peterson, P. R.

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE, 5581, 654–661 (2004).
[CrossRef]

Philippov, V. N.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Pilipetskii, A. N.

E. A. Golovchenko, A. N. Pilipetskii, “Acoustic effect and the polarization of adjacent bits in soliton communication lines,” J. Lightwave Technol. 12, 1052–1056 (1994).
[CrossRef]

A. N. Pilipetskii, A. V. Luchnikov, A. M. Prokhorov, “Soliton pulse long-range interaction in optical fibres: the role of light polarization and fibre geometry,” Sov. Lightwave Commun. 3, 29–39 (1993).

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Long-range interaction of soliton pulse trains in a single-mode fibre,” Sov. Lightwave Commun. 1, 37–43 (1991).

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Electrostriction mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990).
[CrossRef] [PubMed]

Pilipetsky, N. F.

B. Ya. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985), chap. 2.
[CrossRef]

Pinto, J. L.

M. F. dos Santos Ferreira, J. F. Rocha, J. L. Pinto, “Impact of stimulated Brillouin scattering on fibre Raman amplifiers,” Electron. Lett. 27, 1576–1577 (1991).
[CrossRef]

Pitois, S.

Poletti, F.

Poustie, A. J.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipies in C. The Art of Scientific Computing, 2nd ed., (Cambridge Univ. Press, 1995), chap. 17.

Prokhorov, A. M.

A. N. Pilipetskii, A. V. Luchnikov, A. M. Prokhorov, “Soliton pulse long-range interaction in optical fibres: the role of light polarization and fibre geometry,” Sov. Lightwave Commun. 3, 29–39 (1993).

Provino, L.

Puthoff, H. E.

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).

Qian, X.

X. Qian, A. Wonfor, R. V. Penty, I. H. White, “Overcoming transmission impairments in wide frequency range radio-over-fibre distribution systems,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper We3.

Qin, G.

G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, Y. Ohishi, “Stimulated Brillouin amplification in a tellurite fiber as a potential system for slow light generation,” Jpn. J. Appl. Phys. 46, L810–L812 (2007).
[CrossRef]

Qiu, C.

Qu, J.

J. Qu, L. Jacobs, “Cylindrical waveguides and their applications in ultrasonic evaluation,” in Ultrasonic Nondestructive Evaluation, T. Kundu, ed. (CRC Press, 2004).

Radmore, P. M.

P. Bayvel, P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26, 434–436 (1990).
[CrossRef]

Rae, S.

S. Rae, I. Bennion, M. J. Cardwell, “New numerical model for stimulated Brillouin scattering in optical fibers with nonuniformity,” Opt. Commun. 123, 611–616 (1996).
[CrossRef]

Ramachandran, S.

Ravet, F.

F. Ravet, L. Zou, X. Bao, L. Chen, R. F. Huang, H. A. Khoo, “Pipeline buckling detection by the distributed Brillouin sensor,” in Sensing Issues in Civil Structural Health Monitoring, F. Ansari, ed. (Springer, 2005), pp. 515–524.
[CrossRef]

Ravet, G.

A. A. Fotiadi, G. Ravet, P. Mégret, M. Blondel, “Multi-cascaded SBS in an optical fiber supported by Rayleigh backscattering,” Proc. SPIE 5480, 71–81 (2003).
[CrossRef]

Raymer, M. G.

K. Rząźewski, M. Levenstein, M. G. Raymer, “Statistics of stimulated Stokes pulse energies in the steady-state regime,” Opt. Commun. 43, 451–454 (1982).
[CrossRef]

Ren, L.

L. Ren, Y. Tomita, “SBS-based slow light in optical fibers: optimum design considerations for undistorted slow-light signal propagation in steady-state and transient regimes,” Proc. SPIE 7226, 722605 (2009).
[CrossRef]

Richardson, D. J.

Ridley, K. D.

D. E. Watkins, A. M. Scott, K. D. Ridley, “Determination of the threshold for instability in four-wave mixing mediated by Brillouin scattering,” IEEE J. Quantum Electron. 26, 2130–2137 (1990).
[CrossRef]

A. M. Scott, K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 438–459 (1989).
[CrossRef]

Robert, P.

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structures using distributed Brillouin fiber sensing,” Proc. SPIE 3746, 345–348 (1999).

Robert, P. A.

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Rocha, J. F.

M. F. dos Santos Ferreira, J. F. Rocha, J. L. Pinto, “Impact of stimulated Brillouin scattering on fibre Raman amplifiers,” Electron. Lett. 27, 1576–1577 (1991).
[CrossRef]

Roh, W. B.

T. H. Russell, W. B. Roh, “Threshold of second-order stimulated Brillouin scattering in optical fiber,” J. Opt. Soc. Am. B 19, 2341–2345 (2002).
[CrossRef]

Roser, F.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Rowell, N. L.

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986–4998 (1979).
[CrossRef]

Rubenchik, A. M.

Ruffin, A. B.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

M. Sauer, A. Kobyakov, A. B. Ruffin, “Radio-over-fiber transmission with mitigated stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19, 1487–1489 (2007).
[CrossRef]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123–3125 (2005).
[CrossRef] [PubMed]

A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
[CrossRef] [PubMed]

Russell, P. St. J.

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, P. St. J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[CrossRef] [PubMed]

C. N. Pannell, P. St. J. Russell, T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effect of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
[CrossRef]

Russell, T. H.

T. H. Russell, W. B. Roh, “Threshold of second-order stimulated Brillouin scattering in optical fiber,” J. Opt. Soc. Am. B 19, 2341–2345 (2002).
[CrossRef]

Rzazewski, K.

R. W. Boyd, K. Rząźewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

K. Rząźewski, M. Levenstein, M. G. Raymer, “Statistics of stimulated Stokes pulse energies in the steady-state regime,” Opt. Commun. 43, 451–454 (1982).
[CrossRef]

Safaai-Jazi, A.

A. Safaai-Jazi, R. O. Claus, “Acoustic modes in optical fiberlike waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-35, 619–627 (1988).
[CrossRef]

C.-K. Jen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guided fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634–643 (1986).

A. Safaai-Jazi, C.-K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 59–68 (1986).
[CrossRef]

Sahu, J. K.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

S. Yoo, J. K. Sahu, J. Nilsson, “Optimized acoustic refractive index profiles for suppression of stimulated Brillouin scattering in large core fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA5.

Saitoh, K.

Sakamoto, T.

Salazar-H, B.

Samson, B.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531 (2007).
[CrossRef]

Saravanos, C.

C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10, 969–972 (1993).
[CrossRef]

Sarkar, A.

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density and refractve index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
[CrossRef]

Sasaoka, E.

Y. Yamamoto, T. Miyamoto, M. Onishi, E. Sasaoka, “Zero-water-peak pure-silica-core fiber compatible with ITU-T G.652 single-mode fiber and its applicability to access networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper JWA63.

Sato, S.

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22, 631–639 (2004).
[CrossRef]

Sauer, M.

M. Sauer, A. Kobyakov, A. B. Ruffin, “Radio-over-fiber transmission with mitigated stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19, 1487–1489 (2007).
[CrossRef]

M. Sauer, A. Kobyakov, J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25, 3301–3320 (2007).
[CrossRef]

A. Kobyakov, S. A. Darmanyan, M. Sauer, D. Chowdhury, “High-gain Brillouin amplification: an analytical approach,” Opt. Lett. 31, 1960–1962 (2006).
[CrossRef] [PubMed]

A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
[CrossRef] [PubMed]

A. Kobyakov, M. Sauer, J. E. Hurley, “SBS threshold of segmented fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OME5.

A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.

Schneider, T.

T. Schneider, M. Junker, D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” Electron. Lett. 40, 1500–1501 (2004).
[CrossRef]

Schreiber, T.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Schultz, P. C.

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density and refractve index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Scott, A. M.

D. E. Watkins, A. M. Scott, K. D. Ridley, “Determination of the threshold for instability in four-wave mixing mediated by Brillouin scattering,” IEEE J. Quantum Electron. 26, 2130–2137 (1990).
[CrossRef]

A. M. Scott, K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 438–459 (1989).
[CrossRef]

Shang, A.

C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10, 969–972 (1993).
[CrossRef]

Sharma, M.

A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Shaw, K.

A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005).
[CrossRef] [PubMed]

Shaw, K. D.

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE, 5581, 654–661 (2004).
[CrossRef]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, P. W. Bayer, “Resolved forward Brillouin scattering in optical fibers,” Phys. Rev. Lett. 54, 939–942 (1985).
[CrossRef] [PubMed]

Shen, Y.

Y. Shen, X. Zhang, K. Chen, “A simple filter based on stimulated Brillouin scattering for carrier-suppression of microwave photonic signals,” Proc. SPIE 5625, 109–116 (2005).
[CrossRef]

Shi, Z.

Shibata, N.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Shiraki, K.

T. Sakamoto, T. Yamamoto, K. Shiraki, T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008).
[CrossRef] [PubMed]

K. Shiraki, M. Ohashi, M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, M. Tateda, “Performance of strain-free stimulated Brillouin scattering suppression fiber,” J. Lightwave Technol. 14, 549–554 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[CrossRef]

Shkunov, V. V.

B. Ya. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985), chap. 2.
[CrossRef]

Siddiqui, A. S.

S. Hamidi, D. Simeonidou, A. S. Siddiqui, T. Chaleon, “Effect of pump laser mode structure on the gain of forward pumped Raman fibre amplifier in the presence of stimulated Brillouin scattering,” Electron. Lett. 28, 1768–1770 (1992).
[CrossRef]

Simeonidou, D.

S. Hamidi, D. Simeonidou, A. S. Siddiqui, T. Chaleon, “Effect of pump laser mode structure on the gain of forward pumped Raman fibre amplifier in the presence of stimulated Brillouin scattering,” Electron. Lett. 28, 1768–1770 (1992).
[CrossRef]

Skeldon, M.

P. Narum, M. Skeldon, R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” J. Lightwave Technol. 22, 2161–2167 (1986).

Skeldon, M. D.

Smektala, F.

Smith, R. G.

Soh, D. B. S.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Song, K. Y.

Song, K.-Y.

Sotobayashi, H.

G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, Y. Ohishi, “Stimulated Brillouin amplification in a tellurite fiber as a potential system for slow light generation,” Jpn. J. Appl. Phys. 46, L810–L812 (2007).
[CrossRef]

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22, 631–639 (2004).
[CrossRef]

Spring, J. B.

B. G. Ward, J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951J (2009).
[CrossRef]

Starodumov, A. N.

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Long-range interaction of soliton pulse trains in a single-mode fibre,” Sov. Lightwave Commun. 1, 37–43 (1991).

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Electrostriction mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990).
[CrossRef] [PubMed]

Stegeman, G. I.

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986–4998 (1979).
[CrossRef]

Stegun, I.

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, 1965).

Stenner, M. D.

Stoicheff, B. P.

R. Y. Chiao, C. H. Townes, B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense supersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Sukharev, M. E.

A. S. Biryukov, M. E. Sukharev, E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibres,” Quantum Electron. 32, 765–775 (2002).
[CrossRef]

E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index profile fibers: errata,” Opt. Lett. 25, 987 (2000).
[CrossRef]

E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index-profile fibers,” Opt. Lett. 25, 390–392 (2000).
[CrossRef]

Sundar, V.

V. Sundar, R. E. Newnham, “Electrostriction,” in The Electrical Engineering Handbook, 2nd ed., R. C. Dorf, ed. (CRC Press, 1997), pp. 1193–1200.

Sylvestre, T.

Taillade, F.

Tajima, K.

K. Tajima, “Exact acoustic leaky wave solutions for single-mode fibres,” Electron. Lett. 27, 251–253 (1991).
[CrossRef]

Takushima, Y.

Tanemura, T.

Tang, C. L.

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2955 (1966).
[CrossRef]

Tankala, K.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531 (2007).
[CrossRef]

Tartara, L.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282, 2431–2436 (2009).
[CrossRef]

Tateda, M.

K. Shiraki, M. Ohashi, M. Tateda, “Performance of strain-free stimulated Brillouin scattering suppression fiber,” J. Lightwave Technol. 14, 549–554 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

K. Shiraki, M. Ohashi, M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

M. Ohashi, M. Tateda, “Design of strain-free-fiber with nonuniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993).
[CrossRef]

M. Tateda, “First measurement of strain distribution along field installed optical fibers using Brillouin spectroscopy,” J. Lightwave Technol. 8, 1269–1272 (1990).
[CrossRef]

N. Shibata, Y. Azuma, T. Horiguchi, M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett. 13, 595–597 (1988).
[CrossRef] [PubMed]

Tei, K.

K. Tei, Y. Tsuruoka, T. Uchiyama, T. Fujioka, “Critical power of stimulated Brillouin scattering in multimode optical fibers,” Jpn. J. Appl. Phys. 40, 3191–3194 (2001).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipies in C. The Art of Scientific Computing, 2nd ed., (Cambridge Univ. Press, 1995), chap. 17.

Thaniyavarn, S.

M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157–2158 (1994).
[CrossRef]

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
[CrossRef]

J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
[CrossRef] [PubMed]

M. G. Herráez, K.-Y. Song, L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
[CrossRef]

K.-Y. Song, M. G. Herráez, L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
[CrossRef] [PubMed]

K.-Y. Song, M. G. Herráez, L. Thévenaz, “Gain assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005).
[CrossRef] [PubMed]

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structures using distributed Brillouin fiber sensing,” Proc. SPIE 3746, 345–348 (1999).

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

L. Thévenaz, “Slow and fast light using stimulated Brillouin scattering: a highly flexible approach,” in Slow Light—Science and Applications, J. B. Khurgin and R. S. Tucker, eds. (CRC Press, 2009), chap. 9.

Thomas, P. J.

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986–4998 (1979).
[CrossRef]

Thurston, R. N.

R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am. 64, 1–37 (1978).
[CrossRef]

Tkach, R. W.

X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett. 4, 287–289 (1992).
[CrossRef]

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

F. Forghieri, R. W. Tkach, A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications III, I. P. Kaminov and T. L. Koch, eds. (Academic, 1997), vol. A, pp. 196–264.
[CrossRef]

Toba, H.

K. Inoue, T. Hasegawa, H. Toba, “Influence of stimulated Brillouin scattering and optimum length in fiber four-wave mixing wavelength conversion,” IEEE Photon. Technol. Lett. 7, 327–329 (1995).
[CrossRef]

Tomita, Y.

L. Ren, Y. Tomita, “SBS-based slow light in optical fibers: optimum design considerations for undistorted slow-light signal propagation in steady-state and transient regimes,” Proc. SPIE 7226, 722605 (2009).
[CrossRef]

Tonda-Goldstein, S.

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944–946 (2000).
[CrossRef]

Tonini, A.

Toulouse, J.

J. E. McElhenny, R. Pattnaik, J. Toulouse, “Polarization dependence of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 2107–2115 (2008).
[CrossRef]

J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 582–593 (2008).
[CrossRef]

A. Yeniay, J. M. Delavaux, J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20, 1425–1432 (2002).
[CrossRef]

C. McIntosh, A. Yeniay, J. Toulouse, J. M. P. Delavaux, “Stimulated Brillouin scattering in dispersion-compensating fibers,” Opt. Fiber Technol. 3, 173–176 (1997).
[CrossRef]

Townes, C. H.

R. Y. Chiao, C. H. Townes, B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense supersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Townsend, P. D.

Traynor, N.

Troles, J.

Tromborg, B.

Tsuchiya, M.

G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, Y. Ohishi, “Stimulated Brillouin amplification in a tellurite fiber as a potential system for slow light generation,” Jpn. J. Appl. Phys. 46, L810–L812 (2007).
[CrossRef]

Tsuda, S.

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, A. F. Evans, “Stimulated Brillouin scattering in Raman-pumped fibers: a theoretical approach,” J. Lightwave Technol. 20, 1635–1643 (2002).
[CrossRef]

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, A. F. Evans, “Effect of Raman amplification on stimulated Brillouin scattering in dispersion compensating fibres,” Electron. Lett. 38, 268–269 (2002).
[CrossRef]

Tsuruoka, Y.

K. Tei, Y. Tsuruoka, T. Uchiyama, T. Fujioka, “Critical power of stimulated Brillouin scattering in multimode optical fibers,” Jpn. J. Appl. Phys. 40, 3191–3194 (2001).
[CrossRef]

Tünnermann, A.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, “100-W single frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1537–1539 (2003).
[CrossRef] [PubMed]

Turner, P.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Uchiyama, T.

K. Tei, Y. Tsuruoka, T. Uchiyama, T. Fujioka, “Critical power of stimulated Brillouin scattering in multimode optical fibers,” Jpn. J. Appl. Phys. 40, 3191–3194 (2001).
[CrossRef]

Urick, V. J.

P. S. Devgan, V. J. Urick, K. J. Williams, J. F. Diehl, “Long-haul microwave analog link with shot-noise-limited performance above the stimulated Brillouin scattering threshold,” in 2008 International Topical Meeting on Microwave Photonics and 2008 Asia-pacific Microwave Photonics Conference (IEEE, 2009), pp. 326–329.

Valley, G.

G. Valley, “A review of stimulated Brillouin scattering excited with a broad-band pump laser,” J. Lightwave Technol. 22, 704–712 (1986).

van der Plaats, J. C.

F. W. Willems, J. C. van der Plaats, W. Muys, “Harmonic distortion caused by stimulated Brillouin scattering suppression in externally modulated lightwave AM-CATV systems,” Electron. Lett. 30, 343–345 (1994).
[CrossRef]

van Deventer, M. O.

M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

van Driel, H. M.

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986–4998 (1979).
[CrossRef]

Vasilyev, M.

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, A. F. Evans, “Effect of Raman amplification on stimulated Brillouin scattering in dispersion compensating fibres,” Electron. Lett. 38, 268–269 (2002).
[CrossRef]

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, A. F. Evans, “Stimulated Brillouin scattering in Raman-pumped fibers: a theoretical approach,” J. Lightwave Technol. 20, 1635–1643 (2002).
[CrossRef]

M. Vasilyev, A. Kobyakov, “Effect of pump depletion on the noise figure of distributed Raman amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CWL3.

Vassalo, C.

C. Vassalo, Optical Waveguide Concepts (Elsevier, 1991).

Vaughn, M. D.

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

Veng, T.

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipies in C. The Art of Scientific Computing, 2nd ed., (Cambridge Univ. Press, 1995), chap. 17.

Wabnitz, S.

A. Fellegara, S. Wabnitz, “Electrostrictive cross-phase modulation of periodic pulse trains in optical fibers,” Opt. Lett. 23, 1357–1359 (1998).
[CrossRef]

Wagner, R. E.

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

Waldron, R. A.

R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microwave Theory Tech. MTT-17, 893–904 (1969).
[CrossRef]

Walton, D. T.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

Wang, J.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

Wang, L.

A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE, 5581, 654–661 (2004).
[CrossRef]

Wang, Q.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531 (2007).
[CrossRef]

Wanzcyk, L.

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

Ward, B. G.

B. G. Ward, J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951J (2009).
[CrossRef]

Watkins, D. E.

D. E. Watkins, A. M. Scott, K. D. Ridley, “Determination of the threshold for instability in four-wave mixing mediated by Brillouin scattering,” IEEE J. Quantum Electron. 26, 2130–2137 (1990).
[CrossRef]

Webb, D. J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1346 (1995).
[CrossRef]

Weber, H. J.

G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Academic, 2001).

Weiss, F.

R. B. Ellis, F. Weiss, O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43, 405–407 (2007).
[CrossRef]

Weizhong, T.

W. Jinsong, T. Weizhong, Z. Wen, “Stimulated Brillouin scattering initiated by thermally excited acoustic waves in absorption media,” Opt. Commun. 123, 574–576 (1996).
[CrossRef]

Wen, Z.

W. Jinsong, T. Weizhong, Z. Wen, “Stimulated Brillouin scattering initiated by thermally excited acoustic waves in absorption media,” Opt. Commun. 123, 574–576 (1996).
[CrossRef]

Westlund, M.

White, I. H.

X. Qian, A. Wonfor, R. V. Penty, I. H. White, “Overcoming transmission impairments in wide frequency range radio-over-fibre distribution systems,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper We3.

Whitman, R.

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

Wiberg, A.

A. Wiberg, P. O. Hedekvist, “Photonic microwave generator utilizing narrowband Brillouin amplification and fiber-based oscillator,” Proc. SPIE 5466, 148–156 (2004).
[CrossRef]

Wiederhecker, G. S.

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, P. St. J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[CrossRef] [PubMed]

Willems, F. W.

F. W. Willems, J. C. van der Plaats, W. Muys, “Harmonic distortion caused by stimulated Brillouin scattering suppression in externally modulated lightwave AM-CATV systems,” Electron. Lett. 30, 343–345 (1994).
[CrossRef]

F. W. Willems, W. Muys, J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photon. Technol. Lett. 6, 1476–1478 (1994).
[CrossRef]

F. W. Willems, W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993).
[CrossRef]

Williams, K. J.

K. J. Williams, R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965–1966 (1994).
[CrossRef]

R. D. Esman, K. J. Williams, “Brillouin scattering: beyond threshold,” in Optical Fiber Communication Conference, vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), paper ThF5.

P. S. Devgan, V. J. Urick, K. J. Williams, J. F. Diehl, “Long-haul microwave analog link with shot-noise-limited performance above the stimulated Brillouin scattering threshold,” in 2008 International Topical Meeting on Microwave Photonics and 2008 Asia-pacific Microwave Photonics Conference (IEEE, 2009), pp. 326–329.

Willner, A. E.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007).
[CrossRef] [PubMed]

Wirth, C.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Wonfor, A.

X. Qian, A. Wonfor, R. V. Penty, I. H. White, “Overcoming transmission impairments in wide frequency range radio-over-fibre distribution systems,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper We3.

Woodfin, A.

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

Xia, Y.

L. Xing, L. Zhan, S. Luo, Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133–1138 (2008).
[CrossRef]

Xie, S.

Xing, L.

L. Xing, L. Zhan, S. Luo, Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133–1138 (2008).
[CrossRef]

Yablon, A.

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).

Yamamoto, T.

Yamamoto, Y.

Y. Yamamoto, T. Miyamoto, M. Onishi, E. Sasaoka, “Zero-water-peak pure-silica-core fiber compatible with ITU-T G.652 single-mode fiber and its applicability to access networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper JWA63.

Yan, L.

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007).
[CrossRef] [PubMed]

Yang, G.

R. Chi, K. Lu, X. Dong, W. Chen, G. Yang, Z. Liu, “Gain saturation and nonlinear effect of erbium-doped fiber amplifier/discrete compensating Raman amplifier hybrid fiber amplifiers in the C-band,” Opt. Eng. 43, 346–349 (2004).
[CrossRef]

Yang, S.

Yao, X. S.

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[CrossRef]

Yariv, A.

E. Peral, A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[CrossRef]

A. Yariv, Quantum Electronics, 3d ed. (Wiley, 1989).

Yeniay, A.

A. Yeniay, J. M. Delavaux, J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20, 1425–1432 (2002).
[CrossRef]

C. McIntosh, A. Yeniay, J. Toulouse, J. M. P. Delavaux, “Stimulated Brillouin scattering in dispersion-compensating fibers,” Opt. Fiber Technol. 3, 173–176 (1997).
[CrossRef]

Yoo, S.

S. Yoo, J. K. Sahu, J. Nilsson, “Optimized acoustic refractive index profiles for suppression of stimulated Brillouin scattering in large core fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA5.

Yoshida, M.

Y. Imai, M. Yoshida, “Polarization characteristics of fiber-optic SBS phase conjugation,” Opt. Fiber Technol. 6, 42–48 (2000).
[CrossRef]

Yoshino, T.

Yoshizawa, N.

N. Yoshizawa, T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[CrossRef]

Yu, J.

J. Yu, Y. Park, K. Oh, I. Kwon, “Brillouin frequency shifts in silica optical fiber with the double cladding structure,” Opt. Express 10, 996–1002 (2002).
[CrossRef] [PubMed]

Yu, Q.

Yusoff, Z.

Zah, C.-E.

A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.

Zel’dovich, B. Ya.

B. Ya. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985), chap. 2.
[CrossRef]

Zellmer, H.

Zenteno, L. A.

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

Zghal, M.

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282, 2431–2436 (2009).
[CrossRef]

Zhan, L.

L. Xing, L. Zhan, S. Luo, Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133–1138 (2008).
[CrossRef]

Zhang, B.

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007).
[CrossRef] [PubMed]

Zhang, F.

Zhang, L.

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007).
[CrossRef] [PubMed]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

Zhang, S. L.

S. L. Zhang, J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 5, 537–539 (1993).
[CrossRef]

Zhang, X.

Y. Shen, X. Zhang, K. Chen, “A simple filter based on stimulated Brillouin scattering for carrier-suppression of microwave photonic signals,” Proc. SPIE 5625, 109–116 (2005).
[CrossRef]

Zhu, Z.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
[CrossRef] [PubMed]

Zou, L.

L. Zou, G. A. Ferrier, S. Afshar, Q. Yu, L. Chen, X. Bao, “Distributed Brillouin scattering sensor for discrimination of wall-thinning defects in steel pipe under internal pressure,” Appl. Opt. 43, 1583–1588 (2004).
[CrossRef] [PubMed]

F. Ravet, L. Zou, X. Bao, L. Chen, R. F. Huang, H. A. Khoo, “Pipeline buckling detection by the distributed Brillouin sensor,” in Sensing Issues in Civil Structural Health Monitoring, F. Ansari, ed. (Springer, 2005), pp. 515–524.
[CrossRef]

Zou, W.

W. Zou, Z. He, K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16, 18804–18812 (2008).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26, 1854–1861 (2008).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped innner cladding,” Opt. Express 16, 10006–10017 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Hotate, “Analysis on the influence of intrinsic thermal stress on Brillouin gain spectra in optical fibers,” Proc. SPIE 6371, 637104 (2006).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006).
[CrossRef]

Ann. Phys. (1)

L. Brillouin, “Diffusion de la lumière par un corps transparent homogène,” Ann. Phys. 17, 88 (1922).

Appl. Opt. (4)

Electron. Lett. (1)

R. B. Ellis, F. Weiss, O. M. Anton, “HFC and PON-FTTH networks using higher SBS threshold singlemode optical fibre,” Electron. Lett. 43, 405–407 (2007).
[CrossRef]

Electron. Lett. (13)

M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, A. F. Evans, “Effect of Raman amplification on stimulated Brillouin scattering in dispersion compensating fibres,” Electron. Lett. 38, 268–269 (2002).
[CrossRef]

T. Okuno, M. Nishimura, “Effects of stimulated Raman amplification in optical fibre on stimulated Brillouin scattering threshold power,” Electron. Lett. 38, 14–16 (2002).
[CrossRef]

K. Shiraki, M. Ohashi, M. Tateda, “Suppression of stimulated Brillouin scattering in a fibre by changing the core radius,” Electron. Lett. 31, 668–669 (1995).
[CrossRef]

P. Bayvel, P. M. Radmore, “Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems,” Electron. Lett. 26, 434–436 (1990).
[CrossRef]

S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36, 944–946 (2000).
[CrossRef]

M. J. LaGasse, W. Charczenko, M. C. Hamilton, S. Thaniyavarn, “Optical carrier filtering for high dynamic range fibre optic links,” Electron. Lett. 30, 2157–2158 (1994).
[CrossRef]

K. J. Williams, R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett. 30, 1965–1966 (1994).
[CrossRef]

T. Schneider, M. Junker, D. Hannover, “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems,” Electron. Lett. 40, 1500–1501 (2004).
[CrossRef]

F. W. Willems, W. Muys, “Suppression of interferometric noise in externally modulated lightwave AM-CATV systems by phase modulation,” Electron. Lett. 29, 2062–2063 (1993).
[CrossRef]

M. F. dos Santos Ferreira, J. F. Rocha, J. L. Pinto, “Impact of stimulated Brillouin scattering on fibre Raman amplifiers,” Electron. Lett. 27, 1576–1577 (1991).
[CrossRef]

S. Hamidi, D. Simeonidou, A. S. Siddiqui, T. Chaleon, “Effect of pump laser mode structure on the gain of forward pumped Raman fibre amplifier in the presence of stimulated Brillouin scattering,” Electron. Lett. 28, 1768–1770 (1992).
[CrossRef]

F. W. Willems, J. C. van der Plaats, W. Muys, “Harmonic distortion caused by stimulated Brillouin scattering suppression in externally modulated lightwave AM-CATV systems,” Electron. Lett. 30, 343–345 (1994).
[CrossRef]

K. Tajima, “Exact acoustic leaky wave solutions for single-mode fibres,” Electron. Lett. 27, 251–253 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. P. Mao, G. E. Bodeep, R. W. Tkach, A. R. Chraplyvy, T. E. Darcie, R. M. Derosier, “Brillouin scattering in externally modulated lightwave AM-VSB CATV transmission systems,” IEEE Photon. Technol. Lett. 4, 287–289 (1992).
[CrossRef]

S. L. Zhang, J. J. O’Reilly, “Effect of stimulated Brillouin scattering on distributed erbium-doped fiber amplifier,” IEEE Photon. Technol. Lett. 5, 537–539 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Narum, R. W. Boyd, “Nonfrequency-shifted phase conjugation by Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 23, 1211–1216 (1987).
[CrossRef]

IEEE J. Quantum Electron. (4)

A. M. Scott, K. D. Ridley, “A review of Brillouin-enhanced four-wave mixing,” IEEE J. Quantum Electron. 25, 438–459 (1989).
[CrossRef]

D. E. Watkins, A. M. Scott, K. D. Ridley, “Determination of the threshold for instability in four-wave mixing mediated by Brillouin scattering,” IEEE J. Quantum Electron. 26, 2130–2137 (1990).
[CrossRef]

E. Peral, A. Yariv, “Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to shift induced by stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1185–1195 (1999).
[CrossRef]

L. Xing, L. Zhan, S. Luo, Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133–1138 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Sauer, A. Kobyakov, A. B. Ruffin, “Radio-over-fiber transmission with mitigated stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19, 1487–1489 (2007).
[CrossRef]

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett. 10, 138–140 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, R. M. Derosier, “Stimulated Brillouin threshold dependence on fiber type and uniformity,” IEEE Photon. Technol. Lett. 4, 66–69 (1992).
[CrossRef]

F. W. Willems, W. Muys, J. S. Leong, “Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems,” IEEE Photon. Technol. Lett. 6, 1476–1478 (1994).
[CrossRef]

C. C. Lee, S. Chi, “Measurement of stimulated Brillouin scattering threshold for various types of fibers using Brillouin optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 12, 672–674 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

W. Zou, Z. He, K. Hotate, “Two-dimensional finite-element modal analysis of Brillouin gain spectra in optical fibers,” IEEE Photon. Technol. Lett. 18, 2487–2489 (2006).
[CrossRef]

K. Inoue, T. Hasegawa, H. Toba, “Influence of stimulated Brillouin scattering and optimum length in fiber four-wave mixing wavelength conversion,” IEEE Photon. Technol. Lett. 7, 327–329 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microwave Theory Tech. MTT-17, 893–904 (1969).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

A. Safaai-Jazi, C.-K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 59–68 (1986).
[CrossRef]

C.-K. Jen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guided fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634–643 (1986).

A. Safaai-Jazi, R. O. Claus, “Acoustic modes in optical fiberlike waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-35, 619–627 (1988).
[CrossRef]

J. Lightwave Technol. (10)

E. A. Golovchenko, A. N. Pilipetskii, “Acoustic effect and the polarization of adjacent bits in soliton communication lines,” J. Lightwave Technol. 12, 1052–1056 (1994).
[CrossRef]

A. Yeniay, J. M. Delavaux, J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20, 1425–1432 (2002).
[CrossRef]

M. F. dos Santos Ferreira, “Impact of stimulated Brillouin scattering in optical fibers with distributed gain,” J. Lightwave Technol. 13, 1692–1697 (1995).
[CrossRef]

B. Foley, M. L. Dakss, R. W. Davies, P. Melman, “Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering,” J. Lightwave Technol. 7, 2024–2032 (1989).
[CrossRef]

M. O. van Deventer, A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

A. Kobyakov, M. Mehendale, M. Vasilyev, S. Tsuda, A. F. Evans, “Stimulated Brillouin scattering in Raman-pumped fibers: a theoretical approach,” J. Lightwave Technol. 20, 1635–1643 (2002).
[CrossRef]

G. Valley, “A review of stimulated Brillouin scattering excited with a broad-band pump laser,” J. Lightwave Technol. 22, 704–712 (1986).

K. Shiraki, M. Ohashi, M. Tateda, “Performance of strain-free stimulated Brillouin scattering suppression fiber,” J. Lightwave Technol. 14, 549–554 (1996).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Investigation of strain- and temperature-dependences of Brillouin frequency shifts in GeO2-doped optical fibers,” J. Lightwave Technol. 26, 1854–1861 (2008).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

H. E. Engan, “Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers,” J. Opt. Soc. Am. A 13, 112–118 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

C. N. Pannell, P. St. J. Russell, T. P. Newson, “Stimulated Brillouin scattering in optical fibers: the effect of optical amplification,” J. Opt. Soc. Am. B 10, 684–690 (1993).
[CrossRef]

C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10, 969–972 (1993).
[CrossRef]

J. Acoust. Soc. Am. (1)

R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am. 64, 1–37 (1978).
[CrossRef]

J. Appl. Phys. (1)

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945–2955 (1966).
[CrossRef]

J. Lightwave Technol. (6)

K. Shiraki, M. Ohashi, M. Tateda, “SBS threshold of a fiber with a Brillouin frequency shift distribution,” J. Lightwave Technol. 14, 50–57 (1996).
[CrossRef]

S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources,” J. Lightwave Technol. 15, 37–46 (2009).

P. Narum, M. Skeldon, R. W. Boyd, “Effect of laser mode structure on stimulated Brillouin scattering,” J. Lightwave Technol. 22, 2161–2167 (1986).

A. P. Küng, A. Agarwal, D. F. Grosz, S. Banerjee, D. N. Maywar, “Analytical solution of transmission performance improvement in fiber spans with forward Raman gain and its application to repeaterless systems,” J. Lightwave Technol. 23, 1182–1188 (2005).
[CrossRef]

Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single-mode fibers,” J. Lightwave Technol. 22, 631–639 (2004).
[CrossRef]

M. Niklès, L. Thévenaz, P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

J. Lightwave Technol. (13)

D. A. Fishman, J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11, 1721–1728 (1993).
[CrossRef]

M. Tateda, “First measurement of strain distribution along field installed optical fibers using Brillouin spectroscopy,” J. Lightwave Technol. 8, 1269–1272 (1990).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1346 (1995).
[CrossRef]

N. Yoshizawa, T. Imai, “Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling,” J. Lightwave Technol. 11, 1518–1522 (1993).
[CrossRef]

M. Ohashi, M. Tateda, “Design of strain-free-fiber with nonuniform dopant concentration for stimulated Brillouin scattering suppression,” J. Lightwave Technol. 11, 1941–1945 (1993).
[CrossRef]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[CrossRef]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

M. Sauer, A. Kobyakov, J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25, 3301–3320 (2007).
[CrossRef]

Y. Li, F. Zhang, T. Yoshino, “Wide-range temperature dependence of Brillouin shift in a dispersion-shifted fiber and its annealing effect,” J. Lightwave Technol. 21, 1663–1667 (2003).
[CrossRef]

A. H. McCurdy, “Modeling of stimulated Brillouin scattering in optical fibers with arbitrary radial index profile,” J. Lightwave Technol. 23, 3509–3516 (2005).
[CrossRef]

J. M. C. Boggio, J. D. Marconi, H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23, 3808–3814 (2005).
[CrossRef]

A. Djupsjöbacka, C. Jacobsen, B. Tromborg, “Dynamic stimulated Brillouin scattering analysis,” J. Lightwave Technol. 18, 416–424 (2000).
[CrossRef]

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, S. N. Knudsen, “Increase in the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
[CrossRef]

J. Non-Cryst. Solids (1)

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density and refractve index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
[CrossRef]

J. Opt. Netw. (1)

M. D. Vaughn, A. B. Ruffin, A. Kobyakov, A. Woodfin, C. Mazzali, R. Whitman, A. Boskovic, R. E. Wagner, D. Kozischek, D. Meis, “Techno-economic study of the value of high stimulated Brillouin scattering threshold single-mode fiber utilization in fiber-to-the-home access networks,” J. Opt. Netw. 5, 40–57 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

T. H. Russell, W. B. Roh, “Threshold of second-order stimulated Brillouin scattering in optical fiber,” J. Opt. Soc. Am. B 19, 2341–2345 (2002).
[CrossRef]

J. Opt. Commun. (1)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (11)

K. Ogusu, H. Li, M. Kitao, “Brillouin-gain coefficients of chalcogenide glasses,” J. Opt. Soc. Am. B 21, 1302–1304 (2004).
[CrossRef]

J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, M. Koshiba, “Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 582–593 (2008).
[CrossRef]

K. Ogusu, “Interplay between cascaded stimulated Brillouin scattering and four-wave mixing in a fiber Fabry–Perot resonator,” J. Opt. Soc. Am. B 20, 685–694 (2003).
[CrossRef]

F. Poletti, K. Furusawa, Z. Yusoff, N. G. R. Broderick, D. J. Richardson, “Nonlinear tapered holey fibers with high stimulated Brillouin scattering threshold and controlled dispersion,” J. Opt. Soc. Am. B 24, 2185–2194 (2007).
[CrossRef]

J. E. McElhenny, R. Pattnaik, J. Toulouse, “Polarization dependence of stimulated Brillouin scattering in small-core photonic crystal fibers,” J. Opt. Soc. Am. B 25, 2107–2115 (2008).
[CrossRef]

K. Ogusu, “Effect of stimulated Brillouin scattering on nonlinear pulse propagation in fiber Bragg gratings,” J. Opt. Soc. Am. B 17, 769–774 (2000).
[CrossRef]

V. Grimalsky, S. Koshevaya, G. Burlak, B. Salazar-H, “Dynamic effects of the stimulated Brillouin scattering in fibers due to acoustic diffraction,” J. Opt. Soc. Am. B 19, 689–694 (2002).
[CrossRef]

P. Narum, A. L. Gaeta, M. D. Skeldon, R. W. Boyd, “Instabilities of laser beams counterpropagating through a Brillouin-active medium,” J. Opt. Soc. Am. B 5, 623–628 (1988).
[CrossRef]

N. Shibata, K. Okamoto, Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers,” J. Opt. Soc. Am. B 6, 1167–1174 (1989).
[CrossRef]

C. Montes, A. M. Rubenchik, “Stimulated Brillouin scattering from trains of solitons in optical fibers: information degradation,” J. Opt. Soc. Am. B 9, 1857–1875 (1992).
[CrossRef]

P. D. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B 26, 1614–1620 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Li, K. Ogusu, “Dynamic behavior of stimulated Brillouin scattering in a single-mode optical fiber,” Jpn. J. Appl. Phys. 38, 6309–6315 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Tei, Y. Tsuruoka, T. Uchiyama, T. Fujioka, “Critical power of stimulated Brillouin scattering in multimode optical fibers,” Jpn. J. Appl. Phys. 40, 3191–3194 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, Y. Ohishi, “Stimulated Brillouin amplification in a tellurite fiber as a potential system for slow light generation,” Jpn. J. Appl. Phys. 46, L810–L812 (2007).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

S. T. Gulati, J. D. Helfinstine, “Fatigue behavior of GeO2–SiO2 glasses,” Mater. Res. Soc. Symp. Proc. 531, 133–137 (1998).
[CrossRef]

Nat. Photonics (1)

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
[CrossRef]

Nat. Phys. (1)

P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006).
[CrossRef]

Opt. Commun. (3)

L. Tartara, C. Codemard, J.-N. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282, 2431–2436 (2009).
[CrossRef]

A. Kobyakov, S. A. Darmanyan, D. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260, 46–49 (2006).
[CrossRef]

K. Rząźewski, M. Levenstein, M. G. Raymer, “Statistics of stimulated Stokes pulse energies in the steady-state regime,” Opt. Commun. 43, 451–454 (1982).
[CrossRef]

Opt. Express (9)

G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, Y. Jaouën, “Characteristics of the Brillouin spectra in erbium–ytterbium fibers,” Opt. Express 16, 3212–3222 (2008).
[CrossRef] [PubMed]

J. Yu, Y. Park, K. Oh, I. Kwon, “Brillouin frequency shifts in silica optical fiber with the double cladding structure,” Opt. Express 10, 996–1002 (2002).
[CrossRef] [PubMed]

K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005).
[CrossRef] [PubMed]

J. D. Downie, J. Hurley, “Experimental study of SBS mitigation and transmission improvement from cross-phase modulation in 10.7 Gb∕s unrepeatered systems,” Opt. Express 15, 9527–9534 (2007).
[CrossRef] [PubMed]

B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, “Slow light on Gbit/s differential-phase-shift-keying signals,” Opt. Express 15, 1878–1883 (2007).
[CrossRef] [PubMed]

V. I. Kovalev, R. G. Harrison, “Threshold for stimulated Brillouin scattering in optical fiber,” Opt. Express 15, 17625–17630 (2007).
[CrossRef] [PubMed]

P. Dainese, P. St. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141–4150 (2006).
[CrossRef] [PubMed]

A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, M. Sharma, “SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration,” Opt. Express 13, 2019–2024 (2005).
[CrossRef] [PubMed]

S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15, 17044–17050 (2007).
[CrossRef] [PubMed]

Opt. Lett. (4)

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Electrostriction mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990).
[CrossRef] [PubMed]

E. L. Buckland, “Mode-profile dependence of the electrostrictive response in fibers,” Opt. Lett. 24, 872–874 (1999).
[CrossRef]

E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index profile fibers: errata,” Opt. Lett. 25, 987 (2000).
[CrossRef]

A. Fellegara, S. Wabnitz, “Electrostrictive cross-phase modulation of periodic pulse trains in optical fibers,” Opt. Lett. 23, 1357–1359 (1998).
[CrossRef]

Opt. Commun. (4)

W. Jinsong, T. Weizhong, Z. Wen, “Stimulated Brillouin scattering initiated by thermally excited acoustic waves in absorption media,” Opt. Commun. 123, 574–576 (1996).
[CrossRef]

S. Rae, I. Bennion, M. J. Cardwell, “New numerical model for stimulated Brillouin scattering in optical fibers with nonuniformity,” Opt. Commun. 123, 611–616 (1996).
[CrossRef]

L. Chen, X. Bao, “Analytical and numerical solution for steady state stimulated Brillouin scattering in a single-mode fiber,” Opt. Commun. 152, 65–70 (1998).
[CrossRef]

S. Le Floch, P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun. 219, 395–410 (2003).
[CrossRef]

Opt. Eng. (1)

R. Chi, K. Lu, X. Dong, W. Chen, G. Yang, Z. Liu, “Gain saturation and nonlinear effect of erbium-doped fiber amplifier/discrete compensating Raman amplifier hybrid fiber amplifiers in the C-band,” Opt. Eng. 43, 346–349 (2004).
[CrossRef]

Opt. Express (13)

T. Sakamoto, T. Yamamoto, K. Shiraki, T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008).
[CrossRef] [PubMed]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Desevedavy, P. Houizot, L. Brilland, N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16, 9398–9404 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Hotate, “Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped innner cladding,” Opt. Express 16, 10006–10017 (2008).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Hotate, “Experimental study of Brillouin scattering in fluorine-doped single-mode optical fibers,” Opt. Express 16, 18804–18812 (2008).
[CrossRef]

M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al∕Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007).
[CrossRef] [PubMed]

J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
[CrossRef] [PubMed]

M. D. Mermelstein, S. Ramachandran, J. M. Fini, S. Ghalmi, “SBS gain efficiency measurements and modeling in a 1714 μm2 effective area LP08 higher order mode optical fiber,” Opt. Express 15, 15952–15963 (2007).
[CrossRef] [PubMed]

K.-Y. Song, M. G. Herráez, L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
[CrossRef] [PubMed]

A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
[CrossRef] [PubMed]

H. Lee, G. P. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express 11, 3467–3472 (2003).
[CrossRef] [PubMed]

M. G. Herráez, K.-Y. Song, L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
[CrossRef]

K.-Y. Song, M. G. Herráez, L. Thévenaz, “Gain assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
[CrossRef] [PubMed]

Opt. Fiber Technol. (3)

C. McIntosh, A. Yeniay, J. Toulouse, J. M. P. Delavaux, “Stimulated Brillouin scattering in dispersion-compensating fibers,” Opt. Fiber Technol. 3, 173–176 (1997).
[CrossRef]

A. Loayssa, D. Benito, M. J. Garde, “Applications of optical carrier Brillouin processing to microwave photonics,” Opt. Fiber Technol. 8, 24–42 (2002).
[CrossRef]

Y. Imai, M. Yoshida, “Polarization characteristics of fiber-optic SBS phase conjugation,” Opt. Fiber Technol. 6, 42–48 (2000).
[CrossRef]

Opt. Fiber Technol. (1)

L. Grüner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6, 164–180 (2000).
[CrossRef]

Opt. Lett. (22)

V. I. Kovalev, R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett. 31, 161–163 (2006).
[CrossRef] [PubMed]

A. B. Ruffin, M.-J. Li, X. Chen, A. Kobyakov, F. Annunziata, “Brillouin gain analysis for fibers with different refractive indices,” Opt. Lett. 30, 3123–3125 (2005).
[CrossRef] [PubMed]

A. Kobyakov, S. A. Darmanyan, M. Sauer, D. Chowdhury, “High-gain Brillouin amplification: an analytical approach,” Opt. Lett. 31, 1960–1962 (2006).
[CrossRef] [PubMed]

J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32, 17–19 (2007).
[CrossRef]

K. Y. Song, K. Hotate, “25 GHz Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
[CrossRef] [PubMed]

A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, “100-W single frequency master-oscillator fiber power amplifier,” Opt. Lett. 28, 1537–1539 (2003).
[CrossRef] [PubMed]

S. Afshar, V. P. Kalosha, X. Bao, L. Chen, “Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber,” Opt. Lett. 30, 2685–2687 (2005).
[CrossRef] [PubMed]

S. Yang, H. Chen, C. Qiu, M. Chen, M. Chen, S. Xie, J. Li, W. Chen, “Slow-light delay enhancement in small-core pure silica photonic crystal fiber based on Brillouin scattering,” Opt. Lett. 33, 95–97 (2008).
[CrossRef] [PubMed]

Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, R. W. Boyd, “Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity,” Opt. Lett. 32, 1986–1988 (2007).
[CrossRef] [PubMed]

V. Lanticq, S. Jiang, R. Gabet, Y. Jaouën, F. Taillade, G. Moreau, G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34, 1018–1020 (2009).
[CrossRef] [PubMed]

N. Shibata, Y. Azuma, T. Horiguchi, M. Tateda, “Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements,” Opt. Lett. 13, 595–597 (1988).
[CrossRef] [PubMed]

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, D. J. Richardson, “Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering,” Opt. Lett. 27, 927–929 (2002).
[CrossRef]

T. Tanemura, Y. Takushima, K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 1552–1554 (2002).
[CrossRef]

V. I. Kovalev, R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27, 2022–2024 (2002).
[CrossRef]

E. M. Dianov, M. E. Sukharev, A. S. Biryukov, “Electrostrictive response in single-mode ring-index-profile fibers,” Opt. Lett. 25, 390–392 (2000).
[CrossRef]

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Megret, M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27, 83–85 (2002).
[CrossRef]

E. L. Buckland, R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers,” Opt. Lett. 22, 676–678 (1997).
[CrossRef] [PubMed]

A. Fellegara, A. Melloni, M. Martinelli, “Measurement of the frequency response induced by electrostriction in optical fibers,” Opt. Lett. 22, 1615–1617 (1997).
[CrossRef]

A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23, 691–693 (1998).
[CrossRef]

Y. Jaouën, L. du Mouza, G. Debarge, “Electrostriction-induced acoustic effect in ultralong-distance soliton transmission systems,” Opt. Lett. 23, 1185–1187 (1998).
[CrossRef]

P. D. Townsend, A. J. Poustie, P. J. Hardman, K. J. Blow, “Measurement of the refractive-index modulation generated by electrostriction-induced acoustic waves in optical fibers,” Opt. Lett. 21, 333–335 (1996).
[CrossRef] [PubMed]

E. L. Buckland, R. W. Boyd, “Electrostrictive contribution to the intensity-dependent refractive index of optical fibers,” Opt. Lett. 21, 1117–1119 (1996).
[CrossRef] [PubMed]

Opt. Photonics News (2)

X. Bao, “Optical fiber sensors based on Brillouin scattering,” Opt. Photonics News 20(9), 41–45 (2009).
[CrossRef]

B. R. Masters, “C. V. Raman and the Raman effect,” Opt. Photonics News 20(3), 41–45 (2009).
[CrossRef]

Phys. Rev. B (1)

P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986–4998 (1979).
[CrossRef]

Phys. Rev. Lett. (1)

R. Y. Chiao, C. H. Townes, B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense supersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964).
[CrossRef]

Phys. Lett. (1)

R. H. Enns, L. P. Batra, “Saturation and depletion in stimulated light scattering,” Phys. Lett. 28A, 591–592 (1969).
[CrossRef]

Phys. Rev. A (1)

A. L. Gaeta, R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, C. Marquardt, G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Phys. Rev. A (1)

R. W. Boyd, K. Rząźewski, P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

R. M. Shelby, M. D. Levenson, P. W. Bayer, “Resolved forward Brillouin scattering in optical fibers,” Phys. Rev. Lett. 54, 939–942 (1985).
[CrossRef] [PubMed]

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, P. St. J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

Phys. Usp. (1)

I. L. Fabelinskii, “The discovery of combination scattering of light in Russia and India,” Phys. Usp. 46, 1105–1112 (2003).
[CrossRef]

Proc. SPIE (4)

B. G. Ward, J. B. Spring, “Brillouin gain in optical fibers with inhomogeneous acoustic velocity,” Proc. SPIE 7195, 71951J (2009).
[CrossRef]

A. A. Fotiadi, G. Ravet, P. Mégret, M. Blondel, “Multi-cascaded SBS in an optical fiber supported by Rayleigh backscattering,” Proc. SPIE 5480, 71–81 (2003).
[CrossRef]

L. Ren, Y. Tomita, “SBS-based slow light in optical fibers: optimum design considerations for undistorted slow-light signal propagation in steady-state and transient regimes,” Proc. SPIE 7226, 722605 (2009).
[CrossRef]

L. Thévenaz, M. Facchini, A. Fellay, P. Robert, D. Inaudi, B. Dardel, “Monitoring of large structures using distributed Brillouin fiber sensing,” Proc. SPIE 3746, 345–348 (1999).

Proc. SPIE (8)

A. Kobyakov, “Prospects of Raman-assisted transmission systems,” Proc. SPIE 5246, 174–188 (2003).
[CrossRef]

D. N. Payne, Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, V. N. Philippov, V. Hernandez, R. Horley, L. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. Turner, “Kilowatt-class single-frequency fiber sources,” Proc. SPIE 5709, 133–141 (2005).
[CrossRef]

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, M. Alam, “Current developments in high-power monolithic polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531 (2007).
[CrossRef]

M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730 (2008).

A. Wiberg, P. O. Hedekvist, “Photonic microwave generator utilizing narrowband Brillouin amplification and fiber-based oscillator,” Proc. SPIE 5466, 148–156 (2004).
[CrossRef]

Y. Shen, X. Zhang, K. Chen, “A simple filter based on stimulated Brillouin scattering for carrier-suppression of microwave photonic signals,” Proc. SPIE 5625, 109–116 (2005).
[CrossRef]

W. Zou, Z. He, K. Hotate, “Analysis on the influence of intrinsic thermal stress on Brillouin gain spectra in optical fibers,” Proc. SPIE 6371, 637104 (2006).
[CrossRef]

A. Mocofanescu, L. Wang, R. Jain, K. D. Shaw, P. R. Peterson, A. Gavrielides, “Experimental and theoretical investigations on stimulated Brillouin scattering (SBS) in multimode fibers at 1550 nm wavelength,” Proc. SPIE, 5581, 654–661 (2004).
[CrossRef]

Quantum Electron. (2)

A. S. Biryukov, M. E. Sukharev, E. M. Dianov, “Excitation of sound waves upon propagation of laser pulses in optical fibres,” Quantum Electron. 32, 765–775 (2002).
[CrossRef]

A. S. Biryukov, S. V. Erokhin, S. V. Kushchenko, E. M. Dianov, “Electrostriction temporal shift of laser pulses in optical fibres,” Quantum Electron. 34, 1047–1053 (2004).
[CrossRef]

Science (1)

Z. Zhu, D. J. Gauthier, R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748–1750 (2007).
[CrossRef] [PubMed]

Sov. Lightwave Commun. (1)

E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Long-range interaction of soliton pulse trains in a single-mode fibre,” Sov. Lightwave Commun. 1, 37–43 (1991).

Sov. Lightwave Commun. (1)

A. N. Pilipetskii, A. V. Luchnikov, A. M. Prokhorov, “Soliton pulse long-range interaction in optical fibres: the role of light polarization and fibre geometry,” Sov. Lightwave Commun. 3, 29–39 (1993).

Other (36)

V. Sundar, R. E. Newnham, “Electrostriction,” in The Electrical Engineering Handbook, 2nd ed., R. C. Dorf, ed. (CRC Press, 1997), pp. 1193–1200.

J. Qu, L. Jacobs, “Cylindrical waveguides and their applications in ultrasonic evaluation,” in Ultrasonic Nondestructive Evaluation, T. Kundu, ed. (CRC Press, 2004).

J. A. Buck, Fundamentals of Optical Fibers (Wiley Interscience, 1995).

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

J. D. Achenbach, Wave Propagation in Elastic Solids (North Holland, 1973).

B. A. Auld, Acoustic Fields and Waves in Solids, 2nd ed. (Krieger, 1990).

F. Forghieri, R. W. Tkach, A. R. Chraplyvy, “Fiber nonlinearities and their impact on transmission systems,” in Optical Fiber Telecommunications III, I. P. Kaminov and T. L. Koch, eds. (Academic, 1997), vol. A, pp. 196–264.
[CrossRef]

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, 1968).
[CrossRef]

B. Ya. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985), chap. 2.
[CrossRef]

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), chap. 9.

R. H. Pantell, H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).

A. Yariv, Quantum Electronics, 3d ed. (Wiley, 1989).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001), chap. 9.

K. T. V. Graffan and B. T. Meggitt, eds., Optical Fiber Sensor Technology : Volume 4: Chemical and Environmental Sensing (Kluwer Academic, 1999).

F. Ravet, L. Zou, X. Bao, L. Chen, R. F. Huang, H. A. Khoo, “Pipeline buckling detection by the distributed Brillouin sensor,” in Sensing Issues in Civil Structural Health Monitoring, F. Ansari, ed. (Springer, 2005), pp. 515–524.
[CrossRef]

S. Yin, P. B. Ruffin, and F. T. S. Yu, eds., Fiber Optic Sensors, 2nd ed. (CRC Press, 2008).

S. R. Bickham, A. Kobyakov, S. Li, “Nonlinear optical fibers with increased SBS thresholds,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuA3.

L. Thévenaz, “Slow and fast light using stimulated Brillouin scattering: a highly flexible approach,” in Slow Light—Science and Applications, J. B. Khurgin and R. S. Tucker, eds. (CRC Press, 2009), chap. 9.

M. Islam, ed., Raman Amplifiers for Telecommunications (Springer, 2004).

C. Headley, G. P. Agrawal, Raman Amplification in Fiber-Optical Communication Systems (Elsevier, 2004).

R. D. Esman, K. J. Williams, “Brillouin scattering: beyond threshold,” in Optical Fiber Communication Conference, vol. 2 of 1996 OSA Technical Digest Series (Optical Society of America, 1996), paper ThF5.

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, 1965).

G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, 5th ed. (Academic, 2001).

For this fiber, there is another strong peak in the BGS at 10.9 GHz.

M. Vasilyev, A. Kobyakov, “Effect of pump depletion on the noise figure of distributed Raman amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CWL3.

Y. Yamamoto, T. Miyamoto, M. Onishi, E. Sasaoka, “Zero-water-peak pure-silica-core fiber compatible with ITU-T G.652 single-mode fiber and its applicability to access networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper JWA63.

P. S. Devgan, V. J. Urick, K. J. Williams, J. F. Diehl, “Long-haul microwave analog link with shot-noise-limited performance above the stimulated Brillouin scattering threshold,” in 2008 International Topical Meeting on Microwave Photonics and 2008 Asia-pacific Microwave Photonics Conference (IEEE, 2009), pp. 326–329.

H. Al-Raweshidy and S. Komaki, eds., Radio over Fiber Technologies for Mobile Communications Networks (Artech House, 2002).

A. Kobyakov, M. Sauer, N. Nishiyama, A. Chamarti, F. Annunziata, J. Hurley, C. Caneau, J. George, C.-E. Zah, “802.11a/g WLAN radio transmission at 1.3 μm over 1.1 km multimode and >30 km standard single-mode fiber using InP VCSEL,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper Tu1.6.1.

X. Qian, A. Wonfor, R. V. Penty, I. H. White, “Overcoming transmission impairments in wide frequency range radio-over-fibre distribution systems,” in European Conference on Optical Communications, 2006. ECOC 2006 (2006), paper We3.

H. Le Bras, M. Moignard, B. Charbonnier, “Brillouin scattering in radio over fiber transmission,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA86.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipies in C. The Art of Scientific Computing, 2nd ed., (Cambridge Univ. Press, 1995), chap. 17.

A. Kobyakov, M. Sauer, J. E. Hurley, “SBS threshold of segmented fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OME5.

A. Fotiadi, E. A. Kuzin, “Stimulated Brillouin scattering associated with hypersound diffraction in multimode optical fibers,” presented at Quantum Electronics and Laser Science Conference, Anaheim, Calif, June 2–7 1996, paper QFC4.

S. Yoo, J. K. Sahu, J. Nilsson, “Optimized acoustic refractive index profiles for suppression of stimulated Brillouin scattering in large core fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA5.

C. Vassalo, Optical Waveguide Concepts (Elsevier, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1
Fig. 1

Spontaneous (top) and stimulated (bottom) Brillouin scattering. Backscattered (Stokes) light (blue) from acoustic noise interferes with the input (pump) wave (black). The interference pattern is shown in red. The abscissa of the curves is the coordinate along the medium length. The ordinate is the amplitude of the optical waves (black and blue curves) and the intensity of the interference (red). The amplitude of the acoustic wave is proportional to the optical intensity. The acoustic wave generated as a result of electrostriction further stimulates backscattering, which in turn enhances the interference between the pump and the Stokes waves and reinforces the acoustic wave.

Fig. 2
Fig. 2

(a) Generation of backscattered light illustrated by a dispersion vector diagram [73], where participating photons and a phonon are represented by a vector on dispersion curves shown in the ( ω , β ) coordinate system. Dispersion of the acoustic phonon can be approximated by linear relation (3). Dispersion of the pump photon is the light line ω = c β . The right-hand half of the first Brillouin zone is shown. A backward propagating (projections of vectors β S and β p on the abscissa have opposite directions) wave ( ω S , β S ) originates from the interaction of a pump photon ( ω p , β p ) and the acoustic phonon ( Ω , B ) . The phonon dispersion curve originating at point (0,0) entails a strong dependence Ω ( φ ) that is due to the momentum conservation shown in diagram (b), which is used to illustrate the scattering efficiency in the backward direction φ = π ; see Eq. (4).

Fig. 3
Fig. 3

Schematic representation of spectra of the pump (red) and the Stokes (blue) waves in an optical fiber with a non-step-index profile. In this example, the BGS has two peaks due to excitation of two dominant acoustic modes with frequency shifts ν 1 and ν 2 . Refractive index n ( r ) and acoustic velocity v A ( r ) profiles of the fiber are schematically shown in the top diagram to emphasize the guided nature of optical and acoustic waves in the fiber.

Fig. 4
Fig. 4

Definition (21) of the SBST for several values of parameter μ. Measured (dots) dependence P S ( 0 ) versus the input pump power P 0 is shown together with the calculated UPA curve (blue). The abscissa of the intersection point is the threshold power. For standard single-mode fiber, the UPA is valid for μ 0.1 .

Fig. 5
Fig. 5

Reflected Stokes power P S ( 0 ) measured as a function of the input power P 0 for various fiber lengths. The threshold power can be obtained from definition (21), which is shown by a dashed line ( μ = 0.01 ) .

Fig. 6
Fig. 6

(a) SBST P th in standard single-mode fiber. P th is calculated exactly from Eqs. (21, 18) as well as by using several approximations: the asymptotic approximation of Bessel functions I 0 , 1 , Eq. (25); the short-fiber approximation (26); and analytical formulas (27, 28). Measured values of SBST obtained from Fig. 5 are shown by filled circles. (b) Same parameters as in (a) but the fiber loss is increased to α = 0.5 dB km .

Fig. 7
Fig. 7

Difference in SBST (decibels) between the exact value calculated from Eqs. (21, 18) and the value obtained from analytical formulas (27, 28).

Fig. 8
Fig. 8

Measured and calculated gain of a 10 km long BFA based on standard single-mode fiber. The power of the input Stokes wave is (a) P seed = 33 dBm and (b) P seed = 18 dBm .

Fig. 9
Fig. 9

Experimental setup for BFA measurements: MZM, Mach–Zehnder modulator; PM, powermeter; VOA, variable optical attenuator; OA, optical amplifier; FBG, fiber Bragg grating used to select the upper modulation sideband as a Stokes seed signal.

Fig. 10
Fig. 10

Profiles of the optical f ( r ) and first three ( m = 1 , 2 , 3 ) acoustic ξ m ( r ) modes for three single-mode optical fibers. The corresponding numerical values for A m ao and P th are listed in Table 1. (a) Fiber I, (b) fiber II, (c) fiber III.

Fig. 11
Fig. 11

Measured reflected versus input power for the first three fibers in Table 2. Each fiber length is 20 km . Definition (21) with μ = 0.01 is shown as a dashed line.

Fig. 12
Fig. 12

Schematic of SBS in a segmented fiber consisting of two fiber pieces with different BGS. The pump spectrum is shown in red; the Stokes spectra of fibers A and B have a single peak (one dominant acoustic mode) and are only weakly overlapping; so the generation of Stokes light starts anew from noise in each fiber piece.

Fig. 13
Fig. 13

SBST of two-segmented fibers plotted as a function of the length z 1 of the first segment (where the pump power is input) of a fiber link consisting of two concatenated single-mode fibers. The length of the second segment is 20 z 1 km , so that the total link length is constant and equals L = 20 km ; (a) concatenation of fiber I and fiber II, (b) concatenation of fiber I and fiber III. Theoretical curves are obtained from Eq. (39); scattered data show measured SBST values.

Fig. 14
Fig. 14

(a) BGS of fibers I and II measured with the electrical spectrum analyzer. The length of each fiber is 20 km . The input power is P p = 8.1 dBm for fiber I and P p = 9.6 dBm for fiber II, corresponding to the SBST value for a given fiber length; (b) BGS of concatenated spans of 10 km fiber I + 10 km fiber II (point A in Fig. 13(a)) and 10 km fiber II + 10 km fiber I (point B in Fig. 13(a)). The input power is 9.5 dBm for both configurations.

Fig. 15
Fig. 15

BGS of concatenated spans of the total length of 20 km for several values of the input power P p : (a) 5 km fiber I + 15 km fiber III (point C in Fig. 13(b)), (b) 15 km fiber III + 5 km fiber I (point D in Fig. 13(b)).

Fig. 16
Fig. 16

SBST of a 20 km long fiber link consisting of various numbers S of equal-length segments of alternating fiber I and fiber II: (a) fiber I + fiber II + fiber I + …; (b) fiber II + fiber I + fiber II + ….

Fig. 17
Fig. 17

Increase in SBST versus total link length consisting of various numbers M of pairs of equal-length segments of alternating fiber I and fiber II; (a) fiber I + fiber II + fiber I + …; (b) fiber II + fiber I + fiber II +….

Fig. 18
Fig. 18

An example of an access network architecture. Optical signal is distributed from the central office through a feeder fiber and then transmitted further from the local convergence point to network access points and premises.

Fig. 19
Fig. 19

Measured EVM as a function of the optical input power for two values of the carrier RF and two fiber types: fiber I and fiber III. The fiber length is 20 km .

Fig. 20
Fig. 20

Experimental setup for RF transmission over a single-mode fiber. DFB, distributed feedback laser; VSA, vector signal analyzer; VSG, vector signal generator.

Fig. 21
Fig. 21

Measured EVM versus optical input power for the concatenated span 15 km fiber III + 5 km fiber I for channel frequency of 5.8 GHz . Results for the uniform, 20 km long fiber III are shown for comparison.

Fig. 22
Fig. 22

Dimensionless SBS efficiency κ th defined by Eq. (16) corresponding to the SBST versus the forward Raman pump efficiency κ R f [Eq. (43)] in an 80 km span of standard single-mode fiber (fiber I). The curve is calculated by using Eqs. (41, 42). Only forward Raman pump is present, κ R b = 0 .

Fig. 23
Fig. 23

Experimental setup for measurement of SBST in Raman-pumped DCFs. DFB, distributed feedback laser; PM, powermeter; PC, polarization controller.

Fig. 24
Fig. 24

SBST in a Raman-pumped DCF. Scattered data show measured values, dashed curves are calculated by using Eqs. (44, 45). The DCF length is L = 10.5 km .

Fig. 25
Fig. 25

Schematic diagram of the SBS-based sensing setup. SA is the spectrum analyzer that detects pump and Stokes signals.

Tables (2)

Tables Icon

Table 1 Parameters of the BGS for Several Single-Mode Optical Fibers a

Tables Icon

Table 2 Calculated Acousto-optic and Optical Effective Areas [ μ m 2 ] and Calculated and Measured SBST P th [dBm] a

Equations (92)

Equations on this page are rendered with MathJax. Learn more.

ω S = ω p Ω .
β S = β p B
Ω v A B ,
Ω 2 v A ω p n c sin φ 2 ,
d P p d z = γ m L ( ν ) P p P S α P p ,
d P S d z = γ m L ( ν ) P p P S + α P S ,
γ m = g m A m ao
A m ao = [ f 2 ( r ) ξ m ( r ) f 2 ( r ) ] 2 ξ m 2 ( r ) ,
A eff = f 2 ( r ) 2 f 4 ( r )
g m = 4 π n 8 p 12 2 c λ p 3 ρ 0 ν m w m ,
L ( ν ) = ( w m 2 ) 2 ( ν ν p + ν m ) 2 + ( w m 2 ) 2 ,
γ m = g m A m ao K ( 1 + w las w m ) .
d P S d z = γ L ( ν ) P 0 P S e α z + α P S ,
d N d z = γ L ( ν ) e α z P 0 ( N + n sp ) + α N ,
G ( ν ) = N ( 0 ) n sp = exp [ κ L ( ν ) ( 1 e α L ) ] ( 1 κ L ( ν ) + e α L ) 1 1 κ L ( ν ) ,
κ = g 1 P 0 A 1 ao α = γ P 0 α
P S ( 0 ) = 2 n sp + h ν G ( ν ) d ν = 2 k T ν B + ν G ( ν ) d ν .
P S ( 0 ) = 4 π 3 Θ e q 2 { q ( 1 + e α L 2 ) [ I 0 ( q 2 ) I 1 ( q 2 ) ] ( 1 e α L ) I 1 ( q 2 ) } ,
q = κ ( 1 e α L ) ,
Θ = k T ν p w 1 2 ν 1
P S ( 0 ) = μ P 0 ,
P th = q γ L eff ,
L eff = 1 e α L α
I 0 ( x ) e x 2 π x ( 1 + 1 8 x ) , I 1 ( x ) e x 2 π x ( 1 3 8 x )
κ 3 2 e κ ( 1 e α L ) 1 e α L ( e α L + 1 2 κ ) = μ α 2 π γ Θ .
q 3 2 e q = 2 π γ Θ μ α e α L ( 1 e α L ) .
q ψ ( 1 + 3 2 ln ψ ψ 3 2 ) ,
ψ = ln [ 2 π γ Θ μ α e α L ( 1 e α L ) ] .
P th = 21 A eff α g B ,
κ 5 2 e κ = π Θ g B α A eff ,
ln ( P p P S ) γ α ( P p P S ) = const ,
G amp = P 0 P seed ( 1 Λ + ln [ Λ ( 1 Λ u ) ] u ) e α L ,
G amp UPA = exp [ α L + u 1 e α L α L ] .
v A ( r ) = 5944 [ 1 0.078 Δ % ( r ) ] ,
P S ( 0 ) = m = 1 M 2 κ T ν B + ν G m ( ν ) d ν = μ P S ( 0 ) ,
e α L 1 e α L m = 1 M exp [ r m k x ( 1 e α L ) ] r m k = x 3 2 μ α A 11 ao 2 π g 1 Θ ,
P th calc = x A 11 ao α g 1 , ref .
P S ( 0 ) = 2 k T ν B + ν i = 1 S G ν , i e α z i 1 d ν .
μ α 2 π Θ γ κ ¯ 3 2 = i = 1 S exp [ t i κ ¯ ( e α z i 1 e α z i ) α z i ] t i ( e α z i 1 e α z i ) ,
z 1 opt