Abstract

Off-axis holographic multiplexing involves capturing several complex wavefronts, each encoded into off-axis holograms with different interference fringe orientations, simultaneously, with a single camera acquisition. Thus, the multiplexed off-axis hologram can capture several wavefronts at once, where each one encodes different information from the sample, using the same number of pixels typically required for acquiring a single conventional off-axis hologram encoding only one sample wavefront. This gives rise to many possible applications, with focus on acquisition of dynamic samples, with hundreds of scientific papers already published in the last decade. These include field-of-view multiplexing, depth-of-field multiplexing, angular perspective multiplexing for tomographic phase microscopy for 3-D refractive index imaging, multiple wavelength multiplexing for multiwavelength phase unwrapping or for spectroscopy, performing super-resolution holographic imaging with synthetic aperture with simultaneous acquisition, holographic imaging of ultrafast events by encoding different temporal events into the parallel channels using laser pulses, measuring the Jones matrix and the birefringence of the sample from a single multiplexed hologram, and measuring several fluorescent microscopy channels and quantitative phase profiles together, among others. Each of the multiplexing techniques opens new perspectives for applying holography to efficiently measure challenging biological and metrological samples. Furthermore, even if the multiplexing is done digitally, off-axis holographic multiplexing is useful for rapid processing of the wavefront, for holographic compression, and for visualization purposes. Although each of these applications typically requires a different optical system or processing, they all share the same theoretical background. We therefore review the theory, various optical systems, applications, and perspectives of the field of off-axis holographic multiplexing, with the goal of stimulating its further development.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
When metasurface meets hologram: principle and advances

Qiang Jiang, Guofan Jin, and Liangcai Cao
Adv. Opt. Photon. 11(3) 518-576 (2019)

Recent advances in self-interference incoherent digital holography

Joseph Rosen, A. Vijayakumar, Manoj Kumar, Mani Ratnam Rai, Roy Kelner, Yuval Kashter, Angika Bulbul, and Saswata Mukherjee
Adv. Opt. Photon. 11(1) 1-66 (2019)

Recent advances in holographic 3D particle tracking

Pasquale Memmolo, Lisa Miccio, Melania Paturzo, Giuseppe Di Caprio, Giuseppe Coppola, Paolo A. Netti, and Pietro Ferraro
Adv. Opt. Photon. 7(4) 713-755 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref]
  2. T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
    [Crossref]
  3. H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20, 26906–26912 (2012).
    [Crossref]
  4. G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
    [Crossref]
  5. F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
    [Crossref]
  6. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
    [Crossref]
  7. A. Nativ and N. T. Shaked, “Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination,” Opt. Lett. 42, 1492–1495 (2017).
    [Crossref]
  8. R. Friedman and N. T. Shaked, “Hybrid reflective interferometric system combining wide-field and single-point phase measurements,” IEEE Photon. J. 7, 6801413 (2015).
    [Crossref]
  9. H. Gabai, M. Baranes-Zeevi, M. Zilberman, and N. T. Shaked, “Continuous wide-field characterization of drug release from skin substitute using off-axis interferometry,” Opt. Lett. 38, 3017–3020 (2013).
    [Crossref]
  10. P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21, 5701–5714 (2013).
    [Crossref]
  11. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
    [Crossref]
  12. A. W. Lohmann, “Reconstruction of vectorial wavefronts,” Appl. Opt. 4, 1667–1668 (1965).
    [Crossref]
  13. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [Crossref]
  14. J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
    [Crossref]
  15. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
    [Crossref]
  16. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
    [Crossref]
  17. L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
    [Crossref]
  18. H. Wang, M. Lyu, and G. Situ, “eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).
    [Crossref]
  19. Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imaging,” Light Sci. Appl. 8, 85 (2019).
    [Crossref]
  20. T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
    [Crossref]
  21. T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
    [Crossref]
  22. P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
    [Crossref]
  23. T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
    [Crossref]
  24. E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53, 2058–2066 (2014).
    [Crossref]
  25. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  26. I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525–1528 (2014).
    [Crossref]
  27. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
    [Crossref]
  28. S. K. Mirsky and N. T. Shaked, “First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution,” Opt. Express 27, 26708–26720 (2019).
    [Crossref]
  29. Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
    [Crossref]
  30. P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).
    [Crossref]
  31. D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
    [Crossref]
  32. M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
    [Crossref]
  33. T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
    [Crossref]
  34. G. Dardikman and N. T. Shaked, “Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography?” J. Opt. Soc. Am. A 36, A1–A11 (2019).
    [Crossref]
  35. B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
    [Crossref]
  36. B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
    [Crossref]
  37. G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
    [Crossref]
  38. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
    [Crossref]
  39. C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
    [Crossref]
  40. N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
    [Crossref]
  41. D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
    [Crossref]
  42. Y. Baek, K. Lee, S. Shin, and Y. Park, “Kramers–Kronig holographic imaging for high-space-bandwidth product,” Optica 6, 45–51 (2019).
    [Crossref]
  43. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
    [Crossref]
  44. L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express 2, 987–995 (2011).
    [Crossref]
  45. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
    [Crossref]
  46. M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
    [Crossref]
  47. J. A. Picazo-Bueno, M. Trusiak, and V. Micó, “Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube,” Opt. Express 27, 5655–5669 (2019).
    [Crossref]
  48. J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
    [Crossref]
  49. Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
    [Crossref]
  50. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
    [Crossref]
  51. I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975–983 (2006).
    [Crossref]
  52. P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20, 111217 (2015).
    [Crossref]
  53. N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43, 5543–5546 (2018).
    [Crossref]
  54. V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
    [Crossref]
  55. V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
    [Crossref]
  56. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
    [Crossref]
  57. K. Seo, B. M. Kim, and E. S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9, 471 (2014).
    [Crossref]
  58. B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24, 10326–10344 (2016).
    [Crossref]
  59. L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
    [Crossref]
  60. T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
    [Crossref]
  61. S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
    [Crossref]
  62. T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
    [Crossref]
  63. S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter,” Appl. Opt. 10, 1575–1580 (1971).
    [Crossref]
  64. A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
    [Crossref]
  65. K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), Vol. 27, pp. 1–108.
  66. J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
    [Crossref]
  67. K. Patorski, M. Trusiak, and K. Pokorski, “Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing,” Proc. SPIE 9132, 91320Z (2014).
    [Crossref]
  68. J. Primot and N. Guérineau, “Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard,” Appl. Opt. 39, 5715–5720 (2000).
    [Crossref]
  69. K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
    [Crossref]
  70. T. Ling, D. Liu, X. Yue, Y. Yang, Y. Shen, and J. Bai, “Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating,” Opt. Lett. 40, 2245–2248 (2015).
    [Crossref]
  71. R. Legarda-Sáenz and A. Espinosa-Romero, “Wavefront reconstruction using multiple directional derivatives and Fourier transform,” Opt. Eng. 50, 040501 (2011).
    [Crossref]
  72. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
    [Crossref]
  73. S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
    [Crossref]
  74. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
    [Crossref]
  75. S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23, 16383–16406 (2015).
    [Crossref]
  76. K. Patorski, Ł. Służewski, and M. Trusiak, “Single-shot 3 × 3 beam grating interferometry for self-imaging free extended range wave front sensing,” Opt. Lett. 41, 4417–4420 (2016).
    [Crossref]
  77. K. Patorski, Ł. Służewski, and M. Trusiak, “5-beam grating interferometry for extended phase gradient sensing,” Opt. Express 26, 26872–26887 (2018).
    [Crossref]
  78. P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
    [Crossref]
  79. P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699 (1999).
    [Crossref]
  80. P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
    [Crossref]
  81. M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
    [Crossref]
  82. C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express 18, 3023–3034 (2010).
    [Crossref]
  83. P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
    [Crossref]
  84. J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
    [Crossref]
  85. M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
    [Crossref]
  86. W. Pan, “Multiplane imaging and depth-of-focus extending in digital holography by a single-shot digital hologram,” Opt. Commun. 286, 117–122 (2013).
    [Crossref]
  87. M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
    [Crossref]
  88. L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43, 2046–2049 (2018).
    [Crossref]
  89. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38, 7056–7062 (1999).
    [Crossref]
  90. P. Picart, E. Moisson, and D. Mounier, “Twin-sensitivity measurement by spatial multiplexing of digitally recorded holograms,” Appl. Opt. 42, 1947–1957 (2003).
    [Crossref]
  91. T. Saucedo-A, M. H. De la Torre-Ibarra, F. M. Santoyo, and I. Moreno, “Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements,” Opt. Express 18, 19867–19875 (2010).
    [Crossref]
  92. P. Tankam, Q. Song, M. Karray, J. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010).
    [Crossref]
  93. A. T. Saucedo, F. M. Santoyo, M. H. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468–1475 (2006).
    [Crossref]
  94. B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39, 5740–5743 (2014).
    [Crossref]
  95. B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23, 11264–11271 (2015).
    [Crossref]
  96. P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
    [Crossref]
  97. P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
    [Crossref]
  98. S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
    [Crossref]
  99. Z. Ren, Z. Xu, and E. Y. Lam, “Learning-based nonparametric autofocusing for digital holography,” Optica 5, 337–344 (2018).
    [Crossref]
  100. Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).
    [Crossref]
  101. H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for single-shot autofocus microscopy,” Optica 6, 794–797 (2019).
    [Crossref]
  102. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071–2074 (1973).
    [Crossref]
  103. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).
    [Crossref]
  104. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
    [Crossref]
  105. D. G. Abdelsalam and D. Kim, “Real-time dual-wavelength digital holographic microscopy based on polarizing separation,” Opt. Commun. 285, 233–237 (2012).
    [Crossref]
  106. A. Khmaladze, A. Restrepo-Martínez, M. Kim, R. Castañeda, and A. Blandón, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
    [Crossref]
  107. A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
    [Crossref]
  108. B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
    [Crossref]
  109. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
    [Crossref]
  110. N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73–76 (2017).
    [Crossref]
  111. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
    [Crossref]
  112. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
    [Crossref]
  113. Y. Li, W. Xiao, and F. Pan, “Multiple-wavelength-scanning-based phase unwrapping method for digital holographic microscopy,” Appl. Opt. 53, 979–987 (2014).
    [Crossref]
  114. J. M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Laser Eng. 68, 188–193 (2015).
    [Crossref]
  115. N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43, 1943–1946 (2018).
    [Crossref]
  116. Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20, 9673–9681 (2012).
    [Crossref]
  117. N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
    [Crossref]
  118. T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22, 29594–29610 (2014).
    [Crossref]
  119. B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
    [Crossref]
  120. M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39, 2908–2911 (2014).
    [Crossref]
  121. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: IV. Das optische Vermögen des Mikroskops,” Arch. für mikroskopische Anat. 9, 413–468 (1873).
    [Crossref]
  122. Helmholtz and H. Fripp, “On the limits of the optical capacity of the microscope,” Mon. Microsc. J. 16, 15–39 (1876).
    [Crossref]
  123. L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
    [Crossref]
  124. A. B. Porter, “XII. On the diffraction theory of microscopic vision,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 11, 154–166 (1906).
    [Crossref]
  125. M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  126. Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
    [Crossref]
  127. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
    [Crossref]
  128. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–51 (2010).
    [Crossref]
  129. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
  130. N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).
  131. J. J. Cargille, Immersion Oil and the Microscope (New York Microscopical Society Yearbook, 1964).
  132. V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
    [Crossref]
  133. V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
    [Crossref]
  134. M. Ueda and T. Sato, “Superresolution by holography,” J. Opt. Soc. Am. 61, 418–419 (1971).
    [Crossref]
  135. M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta Int. J. Opt. 20, 403–410 (1973).
    [Crossref]
  136. T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406–408 (1974).
    [Crossref]
  137. T. Sato, M. Ueda, and T. Ikeda, “Real time superresolution by means of an ultrasonic light diffractor and TV system,” Appl. Opt. 13, 1318–1321 (1974).
    [Crossref]
  138. W. T. Cathey, B. R. Frieden, W. T. Rhodes, and C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am. A 1, 241–250 (1984).
    [Crossref]
  139. A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547–557 (1997).
    [Crossref]
  140. Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).
  141. Z. Zalevsky, V. Micó, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
    [Crossref]
  142. E. N. Leith, D. Angell, and C. P. Kuei, “Superresolution by incoherent-to-coherent conversion,” J. Opt. Soc. Am. A 4, 1050–1054 (1987).
    [Crossref]
  143. E. N. Leith, “Small-aperture, high-resolution, two-channel imaging system,” Opt. Lett. 15, 885–887 (1990).
    [Crossref]
  144. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56, 1463–1471 (1966).
    [Crossref]
  145. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit. II,” J. Opt. Soc. Am. 57, 932–941 (1967).
    [Crossref]
  146. P. C. Sun and E. N. Leith, “Superresolution by spatial–temporal encoding methods,” Appl. Opt. 31, 4857–4862 (1992).
    [Crossref]
  147. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
    [Crossref]
  148. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
    [Crossref]
  149. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
    [Crossref]
  150. L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
    [Crossref]
  151. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
    [Crossref]
  152. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
    [Crossref]
  153. M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
    [Crossref]
  154. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
    [Crossref]
  155. C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
    [Crossref]
  156. J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
    [Crossref]
  157. C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50,B6–B11 (2011).
    [Crossref]
  158. H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.
  159. S. Li, J. Ma, C. Chang, S. Nie, S. Feng, and C. Yuan, “Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination,” Opt. Express 26, 23572–23584 (2018).
    [Crossref]
  160. A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
    [Crossref]
  161. A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
    [Crossref]
  162. L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
    [Crossref]
  163. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
    [Crossref]
  164. Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
    [Crossref]
  165. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
    [Crossref]
  166. M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
    [Crossref]
  167. Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
    [Crossref]
  168. K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21, 32269–32278 (2013).
    [Crossref]
  169. B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
    [Crossref]
  170. J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
    [Crossref]
  171. L. Foucault, N. Verrier, M. Debailleul, B. Simon, and O. Haeberlé, “Simplified tomographic diffractive microscopy for axisymmetric samples,” OSA Continuum 2, 1039–1055 (2019).
    [Crossref]
  172. Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
    [Crossref]
  173. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [Crossref]
  174. A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
    [Crossref]
  175. C. J. R. Sheppard and S. S. Kou, “3D imaging with holographic tomography,” AIP Conf. Proc. 1236, 65–69 (2010).
    [Crossref]
  176. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
    [Crossref]
  177. A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
    [Crossref]
  178. C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
    [Crossref]
  179. D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26, 428–437 (2018).
    [Crossref]
  180. K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).
    [Crossref]
  181. W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
    [Crossref]
  182. K. Franke, “Tomographic apparatus for producing transverse layer images,” U.S. patent4,150,293 (17April1979).
  183. E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
    [Crossref]
  184. E. Niemi, M. Lassas, and S. Siltanen, “Dynamic x-ray tomography with multiple sources,” in 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), pp. 618–621.
  185. L. Chen, N. Andrews, S. Kumar, P. Frankel, J. McGinty, and P. M. W. French, “Simultaneous angular multiplexing optical projection tomography at shifted focal planes,” Opt. Lett. 38, 851–853 (2013).
    [Crossref]
  186. G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 21–62.
  187. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
    [Crossref]
  188. M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
    [Crossref]
  189. E. Mudry, P. C. Chaumet, K. Belkebir, G. Maire, and A. Sentenac, “Mirror-assisted tomographic diffractive microscopy with isotropic resolution,” Opt. Lett. 35, 1857–1859 (2010).
    [Crossref]
  190. J. Kostencka, T. Kozacki, and M. Józwik, “Holographic tomography with object rotation and two-directional off-axis illumination,” Opt. Express 25, 23920–23934 (2017).
    [Crossref]
  191. P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
    [Crossref]
  192. S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
    [Crossref]
  193. V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
    [Crossref]
  194. K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
    [Crossref]
  195. Y. Sung, “Snapshot holographic optical tomography,” Phys. Rev. Appl. 11, 14039 (2019).
    [Crossref]
  196. A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
    [Crossref]
  197. Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
    [Crossref]
  198. A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
    [Crossref]
  199. G. Dardikman, G. Singh, and N. T. Shaked, “Four dimensional phase unwrapping of dynamic objects in digital holography,” Opt. Express 26, 3772–3778 (2018).
    [Crossref]
  200. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
    [Crossref]
  201. E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc. 245, 49–62 (2012).
    [Crossref]
  202. S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging,” Opt. Lett. 40, 4839–4842 (2015).
    [Crossref]
  203. Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43, 2587–2590 (2018).
    [Crossref]
  204. Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27, 22–24 (2002).
    [Crossref]
  205. X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31, 1636–1638 (2006).
    [Crossref]
  206. X. Wang and H. Zhai, “Pulsed digital micro-holography of femto-second order by wavelength division multiplexing,” Opt. Commun. 275, 42–45 (2007).
    [Crossref]
  207. L. Li, X. Wang, and H. Zhai, “Single-shot diagnostic for the three-dimensional field distribution of a terahertz pulse based on pulsed digital holography,” Opt. Lett. 36, 2737–2739 (2011).
    [Crossref]
  208. J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
    [Crossref]
  209. S. Suzuki, Y. Nozaki, and H. Kimura, “High-speed holographic microscopy for fast-propagating cracks in transparent materials,” Appl. Opt. 36, 7224–7233 (1997).
    [Crossref]
  210. N. Karasawa, “Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts,” Opt. Commun. 413, 19–23 (2018).
    [Crossref]
  211. N. Karasawa and A. Hirayama, “Experimental demonstration of single-shot chirped pulse digital holography,” Opt. Commun. 447, 42–45 (2019).
    [Crossref]
  212. Z. J. Cheng, Y. Yang, H. Y. Huang, Q. Y. Yue, and C. S. Guo, “Single-shot quantitative birefringence microscopy for imaging birefringence parameters,” Opt. Lett. 44, 3018–3021 (2019).
    [Crossref]
  213. X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39, 6170–6173 (2014).
    [Crossref]
  214. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20, 9948–9955 (2012).
    [Crossref]
  215. M. M. Sreelal, R. V. Vinu, and R. K. Singh, “Jones matrix microscopy from a single-shot intensity measurement,” Opt. Lett. 42, 5194–5197 (2017).
    [Crossref]
  216. X. Liu, Y. Yang, L. Han, and C. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25, 7288–7299 (2017).
    [Crossref]
  217. Y. Ohtsuka and K. Oka, “Contour mapping of the spatiotemporal state of polarization of light,” Appl. Opt. 33, 2633–2636 (1994).
    [Crossref]
  218. D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
    [Crossref]
  219. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
    [Crossref]
  220. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
    [Crossref]
  221. P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39, 2262–2265 (2014).
    [Crossref]
  222. B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22, 23066–23072 (2014).
    [Crossref]
  223. P. Girshovitz and N. T. Shaked, “Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time,” Opt. Express 23, 8773–8787 (2015).
    [Crossref]
  224. B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
    [Crossref]
  225. A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
    [Crossref]
  226. M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
    [Crossref]
  227. C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
    [Crossref]
  228. T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
    [Crossref]
  229. T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
    [Crossref]
  230. A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
    [Crossref]
  231. F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
    [Crossref]
  232. G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
    [Crossref]
  233. V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
    [Crossref]
  234. C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
    [Crossref]
  235. M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
    [Crossref]
  236. P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
    [Crossref]
  237. P. A. Cheremkhin and E. A. Kurbatova, “Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts,” Sci. Rep. 9, 7561 (2019).
    [Crossref]
  238. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
    [Crossref]
  239. A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).
    [Crossref]
  240. F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
    [Crossref]
  241. E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
    [Crossref]
  242. K. Jaferzadeh, S. Gholami, and I. Moon, “Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging,” Appl. Opt. 55, 10409–10416 (2016).
    [Crossref]
  243. G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
    [Crossref]
  244. H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
    [Crossref]

2020 (3)

Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
[Crossref]

V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]

H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]

2019 (20)

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]

P. A. Cheremkhin and E. A. Kurbatova, “Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts,” Sci. Rep. 9, 7561 (2019).
[Crossref]

A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]

V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]

Y. Sung, “Snapshot holographic optical tomography,” Phys. Rev. Appl. 11, 14039 (2019).
[Crossref]

N. Karasawa and A. Hirayama, “Experimental demonstration of single-shot chirped pulse digital holography,” Opt. Commun. 447, 42–45 (2019).
[Crossref]

Z. J. Cheng, Y. Yang, H. Y. Huang, Q. Y. Yue, and C. S. Guo, “Single-shot quantitative birefringence microscopy for imaging birefringence parameters,” Opt. Lett. 44, 3018–3021 (2019).
[Crossref]

L. Foucault, N. Verrier, M. Debailleul, B. Simon, and O. Haeberlé, “Simplified tomographic diffractive microscopy for axisymmetric samples,” OSA Continuum 2, 1039–1055 (2019).
[Crossref]

A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]

Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imaging,” Light Sci. Appl. 8, 85 (2019).
[Crossref]

S. K. Mirsky and N. T. Shaked, “First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution,” Opt. Express 27, 26708–26720 (2019).
[Crossref]

G. Dardikman and N. T. Shaked, “Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography?” J. Opt. Soc. Am. A 36, A1–A11 (2019).
[Crossref]

B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
[Crossref]

Y. Baek, K. Lee, S. Shin, and Y. Park, “Kramers–Kronig holographic imaging for high-space-bandwidth product,” Optica 6, 45–51 (2019).
[Crossref]

M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]

J. A. Picazo-Bueno, M. Trusiak, and V. Micó, “Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube,” Opt. Express 27, 5655–5669 (2019).
[Crossref]

K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
[Crossref]

H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for single-shot autofocus microscopy,” Optica 6, 794–797 (2019).
[Crossref]

B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
[Crossref]

2018 (22)

N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43, 1943–1946 (2018).
[Crossref]

Z. Ren, Z. Xu, and E. Y. Lam, “Learning-based nonparametric autofocusing for digital holography,” Optica 5, 337–344 (2018).
[Crossref]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).
[Crossref]

K. Patorski, Ł. Służewski, and M. Trusiak, “5-beam grating interferometry for extended phase gradient sensing,” Opt. Express 26, 26872–26887 (2018).
[Crossref]

L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43, 2046–2049 (2018).
[Crossref]

T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]

S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]

N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43, 5543–5546 (2018).
[Crossref]

B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
[Crossref]

Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]

H. Wang, M. Lyu, and G. Situ, “eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).
[Crossref]

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26, 428–437 (2018).
[Crossref]

J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]

S. Li, J. Ma, C. Chang, S. Nie, S. Feng, and C. Yuan, “Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination,” Opt. Express 26, 23572–23584 (2018).
[Crossref]

N. Karasawa, “Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts,” Opt. Commun. 413, 19–23 (2018).
[Crossref]

Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43, 2587–2590 (2018).
[Crossref]

G. Dardikman, G. Singh, and N. T. Shaked, “Four dimensional phase unwrapping of dynamic objects in digital holography,” Opt. Express 26, 3772–3778 (2018).
[Crossref]

G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]

A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
[Crossref]

T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]

2017 (16)

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]

S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
[Crossref]

M. M. Sreelal, R. V. Vinu, and R. K. Singh, “Jones matrix microscopy from a single-shot intensity measurement,” Opt. Lett. 42, 5194–5197 (2017).
[Crossref]

X. Liu, Y. Yang, L. Han, and C. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25, 7288–7299 (2017).
[Crossref]

B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]

J. Kostencka, T. Kozacki, and M. Józwik, “Holographic tomography with object rotation and two-directional off-axis illumination,” Opt. Express 25, 23920–23934 (2017).
[Crossref]

M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
[Crossref]

G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
[Crossref]

A. Nativ and N. T. Shaked, “Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination,” Opt. Lett. 42, 1492–1495 (2017).
[Crossref]

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]

D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
[Crossref]

L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
[Crossref]

N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73–76 (2017).
[Crossref]

2016 (8)

K. Patorski, Ł. Służewski, and M. Trusiak, “Single-shot 3 × 3 beam grating interferometry for self-imaging free extended range wave front sensing,” Opt. Lett. 41, 4417–4420 (2016).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24, 10326–10344 (2016).
[Crossref]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]

W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
[Crossref]

L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]

B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]

K. Jaferzadeh, S. Gholami, and I. Moon, “Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging,” Appl. Opt. 55, 10409–10416 (2016).
[Crossref]

2015 (16)

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]

P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]

K. Kim, J. Yoon, and Y. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343–346 (2015).
[Crossref]

P. Girshovitz and N. T. Shaked, “Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time,” Opt. Express 23, 8773–8787 (2015).
[Crossref]

J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]

A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]

S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging,” Opt. Lett. 40, 4839–4842 (2015).
[Crossref]

P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20, 111217 (2015).
[Crossref]

T. Ling, D. Liu, X. Yue, Y. Yang, Y. Shen, and J. Bai, “Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating,” Opt. Lett. 40, 2245–2248 (2015).
[Crossref]

S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23, 16383–16406 (2015).
[Crossref]

R. Friedman and N. T. Shaked, “Hybrid reflective interferometric system combining wide-field and single-point phase measurements,” IEEE Photon. J. 7, 6801413 (2015).
[Crossref]

J. M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Laser Eng. 68, 188–193 (2015).
[Crossref]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23, 11264–11271 (2015).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]

2014 (17)

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39, 5740–5743 (2014).
[Crossref]

M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
[Crossref]

Y. Li, W. Xiao, and F. Pan, “Multiple-wavelength-scanning-based phase unwrapping method for digital holographic microscopy,” Appl. Opt. 53, 979–987 (2014).
[Crossref]

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39, 2908–2911 (2014).
[Crossref]

T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22, 29594–29610 (2014).
[Crossref]

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).
[Crossref]

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]

T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53, 2058–2066 (2014).
[Crossref]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525–1528 (2014).
[Crossref]

K. Patorski, M. Trusiak, and K. Pokorski, “Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing,” Proc. SPIE 9132, 91320Z (2014).
[Crossref]

K. Seo, B. M. Kim, and E. S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9, 471 (2014).
[Crossref]

V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]

X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39, 6170–6173 (2014).
[Crossref]

P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39, 2262–2265 (2014).
[Crossref]

B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22, 23066–23072 (2014).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

2013 (10)

L. Chen, N. Andrews, S. Kumar, P. Frankel, J. McGinty, and P. M. W. French, “Simultaneous angular multiplexing optical projection tomography at shifted focal planes,” Opt. Lett. 38, 851–853 (2013).
[Crossref]

Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]

K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21, 32269–32278 (2013).
[Crossref]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
[Crossref]

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]

H. Gabai, M. Baranes-Zeevi, M. Zilberman, and N. T. Shaked, “Continuous wide-field characterization of drug release from skin substitute using off-axis interferometry,” Opt. Lett. 38, 3017–3020 (2013).
[Crossref]

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21, 5701–5714 (2013).
[Crossref]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

W. Pan, “Multiplane imaging and depth-of-focus extending in digital holography by a single-shot digital hologram,” Opt. Commun. 286, 117–122 (2013).
[Crossref]

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[Crossref]

2012 (16)

D. G. Abdelsalam and D. Kim, “Real-time dual-wavelength digital holographic microscopy based on polarizing separation,” Opt. Commun. 285, 233–237 (2012).
[Crossref]

Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20, 9673–9681 (2012).
[Crossref]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref]

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]

H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20, 26906–26912 (2012).
[Crossref]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]

M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20, 9948–9955 (2012).
[Crossref]

E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc. 245, 49–62 (2012).
[Crossref]

2011 (14)

L. Li, X. Wang, and H. Zhai, “Single-shot diagnostic for the three-dimensional field distribution of a terahertz pulse based on pulsed digital holography,” Opt. Lett. 36, 2737–2739 (2011).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]

A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]

C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50,B6–B11 (2011).
[Crossref]

C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]

L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express 2, 987–995 (2011).
[Crossref]

R. Legarda-Sáenz and A. Espinosa-Romero, “Wavefront reconstruction using multiple directional derivatives and Fourier transform,” Opt. Eng. 50, 040501 (2011).
[Crossref]

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
[Crossref]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]

L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]

B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]

P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]

M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
[Crossref]

2010 (12)

C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express 18, 3023–3034 (2010).
[Crossref]

P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]

T. Saucedo-A, M. H. De la Torre-Ibarra, F. M. Santoyo, and I. Moreno, “Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements,” Opt. Express 18, 19867–19875 (2010).
[Crossref]

P. Tankam, Q. Song, M. Karray, J. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010).
[Crossref]

M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[Crossref]

Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–51 (2010).
[Crossref]

N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
[Crossref]

C. J. R. Sheppard and S. S. Kou, “3D imaging with holographic tomography,” AIP Conf. Proc. 1236, 65–69 (2010).
[Crossref]

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
[Crossref]

E. Mudry, P. C. Chaumet, K. Belkebir, G. Maire, and A. Sentenac, “Mirror-assisted tomographic diffractive microscopy with isotropic resolution,” Opt. Lett. 35, 1857–1859 (2010).
[Crossref]

P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]

2009 (9)

M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
[Crossref]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
[Crossref]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[Crossref]

V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
[Crossref]

Z. Zalevsky, V. Micó, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]

2008 (9)

A. Khmaladze, A. Restrepo-Martínez, M. Kim, R. Castañeda, and A. Blandón, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[Crossref]

A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
[Crossref]

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
[Crossref]

L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
[Crossref]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]

C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
[Crossref]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
[Crossref]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]

2007 (4)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

X. Wang and H. Zhai, “Pulsed digital micro-holography of femto-second order by wavelength division multiplexing,” Opt. Commun. 275, 42–45 (2007).
[Crossref]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]

2006 (9)

A. T. Saucedo, F. M. Santoyo, M. H. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468–1475 (2006).
[Crossref]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]

I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975–983 (2006).
[Crossref]

X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31, 1636–1638 (2006).
[Crossref]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).
[Crossref]

2005 (5)

2004 (3)

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[Crossref]

2003 (2)

2002 (5)

2001 (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]

2000 (2)

1999 (4)

J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
[Crossref]

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38, 7056–7062 (1999).
[Crossref]

P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699 (1999).
[Crossref]

D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]

1997 (3)

1996 (1)

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[Crossref]

1994 (1)

1992 (1)

1990 (1)

1987 (1)

1984 (1)

1980 (1)

E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]

1974 (2)

1973 (2)

M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta Int. J. Opt. 20, 403–410 (1973).
[Crossref]

C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071–2074 (1973).
[Crossref]

1971 (3)

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

1967 (1)

1966 (2)

1965 (1)

1906 (1)

A. B. Porter, “XII. On the diffraction theory of microscopic vision,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 11, 154–166 (1906).
[Crossref]

1896 (1)

L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
[Crossref]

1876 (1)

Helmholtz and H. Fripp, “On the limits of the optical capacity of the microscope,” Mon. Microsc. J. 16, 15–39 (1876).
[Crossref]

1873 (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: IV. Das optische Vermögen des Mikroskops,” Arch. für mikroskopische Anat. 9, 413–468 (1873).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: IV. Das optische Vermögen des Mikroskops,” Arch. für mikroskopische Anat. 9, 413–468 (1873).
[Crossref]

Abdelsalam, D. G.

D. G. Abdelsalam and D. Kim, “Real-time dual-wavelength digital holographic microscopy based on polarizing separation,” Opt. Commun. 285, 233–237 (2012).
[Crossref]

Akamatsu, T.

T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Aknoun, S.

Anand, A.

Andrews, N.

Angell, D.

Arai, Y.

Arbabi, A.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]

Arfire, C.

Awatsuji, Y.

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]

T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]

Azzem, S. M.

S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]

Babakhani, A.

Baczewska, M.

A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]

Bae, Y. S.

Baek, Y.

Bai, H.

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]

Bai, J.

Bailleul, J.

J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]

B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
[Crossref]

Balasubramani, V.

V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]

Balduzzi, D.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

Baranes-Zeevi, M.

Barbastathis, G.

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]

G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 21–62.

Barbul, A.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]

Barnea, I.

Barrera, J. F.

A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
[Crossref]

Beghuin, D.

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]

D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]

Belkebir, K.

Bergoënd, I.

Bernabeu, E.

J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
[Crossref]

Bernet, S.

Bernhardt, I.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

Bertaux, N.

Bhaduri, B.

Bhatia, A. B.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Bhebhe, N.

C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]

Bianco, V.

V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]

Bingham, P. R.

Blanchard, P. M.

Blandón, A.

Bo, F.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Bon, P.

Born, M.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Bouamama, L.

S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]

Brock, N. J.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Calabuig, A.

Carcagnì, P.

V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]

Cargille, J. J.

J. J. Cargille, Immersion Oil and the Microscope (New York Microscopical Society Yearbook, 1964).

Castañeda, R.

Cathey, W. T.

Centurion, M.

Chang, C.

Charrière, F.

Chaumet, P. C.

Chen, B.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]

Chen, C.

Chen, L.

Cheng, C. J.

V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]

Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]

H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.

Cheng, Z. J.

Cheremkhin, P. A.

P. A. Cheremkhin and E. A. Kurbatova, “Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts,” Sci. Rep. 9, 7561 (2019).
[Crossref]

E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]

Chhaniwal, V.

Choi, W.

Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]

M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Choi, Y.

Chowdhury, S.

Clark, R. L.

Clemmow, P. C.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Cohen, M.

S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]

S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
[Crossref]

Colomb, T.

Coppola, G.

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Cotte, Y.

Crespo, D.

J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
[Crossref]

Cuche, E.

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]

D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]

Cywinska, M.

D’Ippolito, G.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Dahlgren, P.

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]

D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]

Dakoff, A.

Dalgarno, H. I. C.

Dalgarno, P. A.

Dan, D.

Dardikman, G.

Dasari, R. R.

Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]

M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[Crossref]

Dashtdar, M.

S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

De la Torre-Ibarra, M. H.

De Nicola, S.

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Debailleul, M.

Delacretaz, G.

D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]

den Dekker, A. J.

Depeursinge, C.

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc. 245, 49–62 (2012).
[Crossref]

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
[Crossref]

N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
[Crossref]

Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
[Crossref]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]

D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]

Desse, J. M.

J. M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Laser Eng. 68, 188–193 (2015).
[Crossref]

P. Tankam, Q. Song, M. Karray, J. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010).
[Crossref]

Di, J.

J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
[Crossref]

Di Caprio, G.

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

Dirksen, D.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

Distante, C.

V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]

Doblas, A.

Duan, T.

Dudek, M.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Dufaux, F.

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

Dürr, F.

Ebrahimi, S.

S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

Ecoffet, C.

Edwards, C.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]

Eldridge, W. J.

Emery, Y.

Eravuchira, P. J.

Espinosa-Romero, A.

R. Legarda-Sáenz and A. Espinosa-Romero, “Wavefront reconstruction using multiple directional derivatives and Fourier transform,” Opt. Eng. 50, 040501 (2011).
[Crossref]

Evtikhiev, N. N.

E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]

Fang-Yen, C.

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Fang-Yen, C. M.

M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]

Fassl, S.

Feld, M. S.

M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[Crossref]

Feng, S.

Ferraro, P.

V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
[Crossref]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]

M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
[Crossref]

P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]

M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
[Crossref]

P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Ferreira, C.

Finizio, A.

M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
[Crossref]

P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]

P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]

P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Fletcher, D. A.

Fontana, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Forbes, A.

C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]

Foucault, L.

L. Foucault, N. Verrier, M. Debailleul, B. Simon, and O. Haeberlé, “Simplified tomographic diffractive microscopy for axisymmetric samples,” OSA Continuum 2, 1039–1055 (2019).
[Crossref]

J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]

Franke, K.

K. Franke, “Tomographic apparatus for producing transverse layer images,” U.S. patent4,150,293 (17April1979).

Frankel, P.

Frauel, Y.

French, P. M. W.

Frenklach, I.

P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20, 111217 (2015).
[Crossref]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525–1528 (2014).
[Crossref]

Frieden, B. R.

Friedman, R.

R. Friedman and N. T. Shaked, “Hybrid reflective interferometric system combining wide-field and single-point phase measurements,” IEEE Photon. J. 7, 6801413 (2015).
[Crossref]

Fripp, H.

Helmholtz and H. Fripp, “On the limits of the optical capacity of the microscope,” Mon. Microsc. J. 16, 15–39 (1876).
[Crossref]

Gabai, H.

Gabor, D.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Galli, A.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

Gambale, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Gao, P.

Garcia, J.

García, J.

Garcia-Martinez, P.

García-Martínez, P.

Garcia-Monreal, J.

V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
[Crossref]

Garcia-Sucerquia, J.

Gass, J.

Ge, X. L.

Georgiev, G. K.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Gholami, S.

Gilbert, B. K.

E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]

Girshovitz, P.

Goddard, L. L.

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]

Gotohda, T.

Granero, L.

Greenaway, A. H.

Grilli, S.

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Gu, M.

H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]

Guerineau, N.

S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]

Guérineau, N.

Günaydin, H.

Guo, C.

X. Liu, Y. Yang, L. Han, and C. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25, 7288–7299 (2017).
[Crossref]

B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]

Guo, C. S.

Guo, L.

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]

Guo, R.

Haeberlé, O.

Haidar, R.

S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]

Han, J.

B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]

B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
[Crossref]

Han, J. H.

B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
[Crossref]

Han, L.

Har, D.

Harris, L. D.

E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]

Hayes, J. B.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

He, Y.

Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
[Crossref]

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Helmholtz,

Helmholtz and H. Fripp, “On the limits of the optical capacity of the microscope,” Mon. Microsc. J. 16, 15–39 (1876).
[Crossref]

Herminjard, S.

Hillman, T. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]

Hirayama, A.

N. Karasawa and A. Hirayama, “Experimental demonstration of single-shot chirped pulse digital holography,” Opt. Commun. 447, 42–45 (2019).
[Crossref]

Holbrow, C. J.

C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]

Hong, J.

Horstmeyer, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Hosseini, P.

Houkal, M.

Huang, H. Y.

Hughes, J. F.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]

Ikeda, T.

Iodice, M.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Iolascon, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Ito, T.

T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Ito, Y.

Ivanova, L.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

Izatt, J.

Izatt, J. A.

Jafarfard, M. R.

Jaferzadeh, K.

Jalali, B.

Jang, J.

Jang, Y.

Javidi, B.

S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]

P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]

L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
[Crossref]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).
[Crossref]

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
[Crossref]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[Crossref]

Jenness, N. J.

Jeong, J.

Jeong, Y.

B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
[Crossref]

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]

Jiang, B.

J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]

Jin, D.

Jozwicka, A.

M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
[Crossref]

Józwik, M.

Kaku, T.

Kakue, T.

T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]

Kang, J. W.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]

Karasawa, N.

N. Karasawa and A. Hirayama, “Experimental demonstration of single-shot chirped pulse digital holography,” Opt. Commun. 447, 42–45 (2019).
[Crossref]

N. Karasawa, “Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts,” Opt. Commun. 413, 19–23 (2018).
[Crossref]

Karray, M.

Kemper, B.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

Ketelhut, S.

B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

Khan, S.

Khmaladze, A.

Kim, B. M.

B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24, 10326–10344 (2016).
[Crossref]

K. Seo, B. M. Kim, and E. S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9, 471 (2014).
[Crossref]

Kim, D.

D. G. Abdelsalam and D. Kim, “Real-time dual-wavelength digital holographic microscopy based on polarizing separation,” Opt. Commun. 285, 233–237 (2012).
[Crossref]

Kim, D. Y.

Kim, E. S.

B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24, 10326–10344 (2016).
[Crossref]

K. Seo, B. M. Kim, and E. S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9, 471 (2014).
[Crossref]

Kim, G.

Kim, K.

Kim, K. S.

Kim, M.

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–51 (2010).
[Crossref]

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).
[Crossref]

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

Kim, M. W.

Kim, W.

B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]

Kim, Y.

Kimura, H.

Kinsey, J. H.

E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]

Kirschner, M. W.

Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]

Kondo, M.

M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta Int. J. Opt. 20, 403–410 (1973).
[Crossref]

Korenstein, R.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]

Kostencka, J.

J. Kostencka, T. Kozacki, and M. Józwik, “Holographic tomography with object rotation and two-directional off-axis illumination,” Opt. Express 25, 23920–23934 (2017).
[Crossref]

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[Crossref]

Kou, S. S.

C. J. R. Sheppard and S. S. Kou, “3D imaging with holographic tomography,” AIP Conf. Proc. 1236, 65–69 (2010).
[Crossref]

Kozacki, T.

J. Kostencka, T. Kozacki, and M. Józwik, “Holographic tomography with object rotation and two-directional off-axis illumination,” Opt. Express 25, 23920–23934 (2017).
[Crossref]

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[Crossref]

M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
[Crossref]

Kozma, A.

Krasnov, V. V.

E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]

Krauze, W.

A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]

W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
[Crossref]

A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]

Kubota, T.

T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]

Kuehn, J.

Kuei, C. P.

Kühn, J.

Kujawinska, M.

A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]

A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]

W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
[Crossref]

A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
[Crossref]

Kumar, S.

Kurbatova, E. A.

P. A. Cheremkhin and E. A. Kurbatova, “Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts,” Sci. Rep. 9, 7561 (2019).
[Crossref]

E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]

Kus, A.

A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]

A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]

W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
[Crossref]

A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

Lai, J.

Lai, X. J.

V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]

Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]

H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.

Lam, E. Y.

Lambert, J.

Lambert, R.

Langehanenberg, P.

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

Lassas, M.

E. Niemi, M. Lassas, and S. Siltanen, “Dynamic x-ray tomography with multiple sources,” in 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), pp. 618–621.

Lee, K.

Lee, Y.

Legarda-Sáenz, R.

R. Legarda-Sáenz and A. Espinosa-Romero, “Wavefront reconstruction using multiple directional derivatives and Fourier transform,” Opt. Eng. 50, 040501 (2011).
[Crossref]

Lei, M.

Leitgeb, R. A.

Leith, E. N.

Li, J.

Li, L.

Li, S.

Li, V.

Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]

Li, Y.

H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]

Y. Li, W. Xiao, and F. Pan, “Multiple-wavelength-scanning-based phase unwrapping method for digital holographic microscopy,” Appl. Opt. 53, 979–987 (2014).
[Crossref]

Li, Z.

Limberger, H. G.

Lin, X.

Lin, Y. C.

Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]

H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.

Ling, T.

Liu, C.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Liu, D.

Liu, H.

Liu, X.

Liu, Z.

Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27, 22–24 (2002).
[Crossref]

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Lizewski, K.

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[Crossref]

Lo, C. M.

Logan, D. C.

Lohmann, A. W.

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
[Crossref]

A. W. Lohmann, “Reconstruction of vectorial wavefronts,” Appl. Opt. 4, 1667–1668 (1965).
[Crossref]

Lu, J.

T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]

T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]

Lu, P.

T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]

T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]

Lu, Y.

B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]

Lucente, M.

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[Crossref]

Lue, N.

P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Lukosz, W.

Lyu, M.

Ma, B.

Ma, J.

Magistretti, P. J.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

Mahjoubfar, A.

Mahonisi, N.

C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]

Maire, G.

Makowski, P.

Makowski, P. L.

A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]

Mann, C. J.

Marian, A.

Marks, J.

Marquet, P.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]

Martínez-Corral, M.

S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53, 2058–2066 (2014).
[Crossref]

Martínez-León, L.

Massey, N.

Matoba, O.

T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[Crossref]

Matrecano, M.

M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
[Crossref]

Matusik, W.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]

Maucort, G.

Maurer, C.

McGinty, J.

McGuire, M.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]

Memmolo, P.

V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]

P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]

P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]

Mendlovic, D.

Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).

Merola, F.

V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

Miccio, L.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]

Mico, V.

Micó, V.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
[Crossref]

J. A. Picazo-Bueno, M. Trusiak, and V. Micó, “Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube,” Opt. Express 27, 5655–5669 (2019).
[Crossref]

L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]

A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]

A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]

L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
[Crossref]

Z. Zalevsky, V. Micó, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]

Millerd, J. E.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Mills, G. A.

Min, J.

Mir, M.

Mirsky, S. K.

Moisson, E.

Monneret, S.

Montfort, F.

Moon, I.

Moon, S.

Moreno, I.

Mounier, D.

Mu, G.

Mudry, E.

Mugnano, M.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Murata, S.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Nativ, A.

Nativ, N.

Naughton, T. J.

Nayar, S. K.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]

Netti, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

Netti, P. A.

Niazi, K. R.

Nie, S.

Niemi, E.

E. Niemi, M. Lassas, and S. Siltanen, “Dynamic x-ray tomography with multiple sources,” in 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), pp. 618–621.

Nishio, K.

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]

T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]

North-Morris, M. B.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Novak, M.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Nozaki, Y.

Nygate, Y. N.

Oh, S.

Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Ohtsuka, Y.

Oka, K.

Osten, W.

Ozcan, A.

Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imaging,” Light Sci. Appl. 8, 85 (2019).
[Crossref]

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]

Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. Ozcan, “Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery,” Optica 5, 704–710 (2018).
[Crossref]

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]

Pan, F.

Pan, W.

W. Pan, “Multiplane imaging and depth-of-focus extending in digital holography by a single-shot digital hologram,” Opt. Commun. 286, 117–122 (2013).
[Crossref]

Panotopoulos, G.

Paquit, V. C.

Park, H.

Park, J. H.

B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
[Crossref]

Park, Y.

Paterson, L.

Patorski, K.

M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]

K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
[Crossref]

K. Patorski, Ł. Służewski, and M. Trusiak, “5-beam grating interferometry for extended phase gradient sensing,” Opt. Express 26, 26872–26887 (2018).
[Crossref]

K. Patorski, Ł. Służewski, and M. Trusiak, “Single-shot 3 × 3 beam grating interferometry for self-imaging free extended range wave front sensing,” Opt. Lett. 41, 4417–4420 (2016).
[Crossref]

K. Patorski, M. Trusiak, and K. Pokorski, “Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing,” Proc. SPIE 9132, 91320Z (2014).
[Crossref]

K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), Vol. 27, pp. 1–108.

Paturzo, M.

V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
[Crossref]

P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]

M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
[Crossref]

P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]

M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
[Crossref]

P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]

Pavillon, N.

Pedrini, G.

Pelagotti, A.

Pesquet-Popescu, B.

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

Pfister, H.

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]

Pham, H.

Phillips, Z.

Picart, P.

Picazo-Bueno, J.

M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]

Picazo-Bueno, J. A.

Pinkard, H.

Pokorski, K.

K. Patorski, M. Trusiak, and K. Pokorski, “Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing,” Proc. SPIE 9132, 91320Z (2014).
[Crossref]

Polhemus, C.

Popescu, G.

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[Crossref]

Porter, A. B.

A. B. Porter, “XII. On the diffraction theory of microscopic vision,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 11, 154–166 (1906).
[Crossref]

Primot, J.

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Przibilla, S.

B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]

Psaltis, D.

Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27, 22–24 (2002).
[Crossref]

G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 21–62.

Puglisi, R.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

Putoud, A.

Quiroga, J. A.

J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
[Crossref]

Rabizadeh, S.

Rappaz, B.

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

Rayleigh, L.

L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
[Crossref]

Ren, H.

H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]

Ren, Z.

Restrepo-Martínez, A.

Rhodes, W. T.

Rinehart, M. T.

Ritman, E. L.

E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]

Ritsch-Marte, M.

Rivenson, Y.

Robb, R. A.

E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]

Roitshtain, D.

Rosales-Guzmán, C.

C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]

Rotman-Nativ, N.

Rubin, M.

Rushforth, C. K.

Saavedra, G.

Salathé, R. P.

D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]

Salathé, R.-P.

Salim, F.

H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]

Sánchez-Ortiga, E.

S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53, 2058–2066 (2014).
[Crossref]

Santoyo, F. M.

Sardo, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Sato, T.

Satterwhite, L. L.

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).

Saucedo, A. T.

Saucedo-A, T.

Savatier, J.

Savoia, R.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

Schedin, S.

Schelkens, P.

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

Schlichthaber, F.

B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]

Seelamantula, C. S.

Sentenac, A.

Seo, K.

K. Seo, B. M. Kim, and E. S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9, 471 (2014).
[Crossref]

Sha, B.

B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]

B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22, 23066–23072 (2014).
[Crossref]

Shaffer, E.

E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc. 245, 49–62 (2012).
[Crossref]

Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
[Crossref]

Shaked, N. T.

G. Dardikman and N. T. Shaked, “Is multiplexed off-axis holography for quantitative phase imaging more spatial bandwidth-efficient than on-axis holography?” J. Opt. Soc. Am. A 36, A1–A11 (2019).
[Crossref]

S. K. Mirsky and N. T. Shaked, “First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution,” Opt. Express 27, 26708–26720 (2019).
[Crossref]

N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43, 5543–5546 (2018).
[Crossref]

N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43, 1943–1946 (2018).
[Crossref]

L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43, 2046–2049 (2018).
[Crossref]

G. Dardikman, G. Singh, and N. T. Shaked, “Four dimensional phase unwrapping of dynamic objects in digital holography,” Opt. Express 26, 3772–3778 (2018).
[Crossref]

Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43, 2587–2590 (2018).
[Crossref]

G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]

N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73–76 (2017).
[Crossref]

G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
[Crossref]

M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
[Crossref]

A. Nativ and N. T. Shaked, “Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination,” Opt. Lett. 42, 1492–1495 (2017).
[Crossref]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]

R. Friedman and N. T. Shaked, “Hybrid reflective interferometric system combining wide-field and single-point phase measurements,” IEEE Photon. J. 7, 6801413 (2015).
[Crossref]

P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20, 111217 (2015).
[Crossref]

P. Girshovitz and N. T. Shaked, “Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time,” Opt. Express 23, 8773–8787 (2015).
[Crossref]

P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39, 2262–2265 (2014).
[Crossref]

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).
[Crossref]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525–1528 (2014).
[Crossref]

H. Gabai, M. Baranes-Zeevi, M. Zilberman, and N. T. Shaked, “Continuous wide-field characterization of drug release from skin substitute using off-axis interferometry,” Opt. Lett. 38, 3017–3020 (2013).
[Crossref]

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21, 5701–5714 (2013).
[Crossref]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[Crossref]

H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20, 26906–26912 (2012).
[Crossref]

M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[Crossref]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[Crossref]

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).

Shan, M.

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]

Shao, W.

H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]

Sharif, F.

Shen, Y.

Sheppard, C. J. R.

C. J. R. Sheppard and S. S. Kou, “3D imaging with holographic tomography,” AIP Conf. Proc. 1236, 65–69 (2010).
[Crossref]

Shimobaba, T.

T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Shimozato, Y.

Shin, S.

Shokuh, S. H. H.

Shortt, A. E.

Siltanen, S.

E. Niemi, M. Lassas, and S. Siltanen, “Dynamic x-ray tomography with multiple sources,” in 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), pp. 618–621.

Silva, D. E.

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
[Crossref]

Simoëns, S.

S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]

Simon, B.

Singh, A. S. G.

Singh, G.

Singh, R. K.

Situ, G.

Sluzewski, L.

So, P.

So, P. T. C.

Song, Q.

Song, Y. S.

Soppera, O.

Spangenberg, A.

Sreelal, M. M.

Starikov, S. N.

E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]

Stokes, A. R.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Su, T. W.

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]

Sun, P. C.

Sun, T.

T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]

T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]

Sun, W.

Sung, Y.

Y. Sung, “Snapshot holographic optical tomography,” Phys. Rev. Appl. 11, 14039 (2019).
[Crossref]

P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]

Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]

M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]

Suzuki, S.

Suzuki, T.

Tahara, T.

T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]

T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22, 29594–29610 (2014).
[Crossref]

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]

Tajahuerce, E.

Takahashi, Y.

Tankam, P.

Tayebi, B.

B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]

B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
[Crossref]

B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
[Crossref]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23, 11264–11271 (2015).
[Crossref]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39, 5740–5743 (2014).
[Crossref]

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39, 2908–2911 (2014).
[Crossref]

Taylor, A. M.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Tiziani, H. J.

Tobin, K. W.

Torroba, R.

A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
[Crossref]

Towers, D. P.

Toy, M. F.

Trusiak, M.

Tu, H. Y.

V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]

Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]

H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.

Tulino, A.

Turko, N. A.

G. Dardikman, Y. N. Nygate, I. Barnea, N. A. Turko, G. Singh, B. Javidi, and N. T. Shaked, “Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy,” Biomed. Opt. Express 9, 1177–1189 (2018).
[Crossref]

N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43, 5543–5546 (2018).
[Crossref]

L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43, 2046–2049 (2018).
[Crossref]

N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43, 1943–1946 (2018).
[Crossref]

N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73–76 (2017).
[Crossref]

G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
[Crossref]

M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
[Crossref]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]

Tzur, A.

Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]

Ueda, M.

Unser, M.

Upatnieks, J.

Ura, S.

T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]

van den Bos, A.

Velghe, S.

S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
[Crossref]

S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]

Verrier, N.

L. Foucault, N. Verrier, M. Debailleul, B. Simon, and O. Haeberlé, “Simplified tomographic diffractive microscopy for axisymmetric samples,” OSA Continuum 2, 1039–1055 (2019).
[Crossref]

J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]

Vinu, R. V.

Vollmer, A.

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

von Bally, G.

B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

Waller, L.

H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for single-shot autofocus microscopy,” Optica 6, 794–797 (2019).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Wang, B. Y.

Wang, H.

Wang, J.

J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]

Wang, S.

Wang, X.

Wang, Y.

Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
[Crossref]

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Warburton, R. J.

Wattellier, B.

Wax, A.

Wayman, P. A.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Wei, Z.

Wilcock, W. L.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Wolbromsky, L.

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Wood, E. H.

E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]

Wu, X. R.

Wu, Y.

Wyant, J. C.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

Xia, P.

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]

T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

Xiao, W.

Xie, D.

D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
[Crossref]

Xie, Y.

B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]

Xing, Y.

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]

Xu, Z.

Xue, L.

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]

L. Xue, J. Lai, S. Wang, and Z. Li, “Single-shot slightly-off-axis interferometry based Hilbert phase microscopy of red blood cells,” Biomed. Opt. Express 2, 987–995 (2011).
[Crossref]

Yamagishi, G.

Yamaguchi, I.

Yamamoto, K.

Yamamoto, S.

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

Yan, S.

Yan, X.

Yang, C.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Yang, Y.

Yao, B.

Yaqoob, Z.

D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26, 428–437 (2018).
[Crossref]

P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]

Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Ye, J. C.

Ye, T.

Yokota, M.

Yokozeki, S.

Yonesaka, R.

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]

Yoon, B.

B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]

Yoon, J.

Yuan, C.

Yue, Q.

B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]

Yue, Q. Y.

Yue, X.

Zalevsky, Z.

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11, 135–214 (2019).
[Crossref]

L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]

V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]

A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]

A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]

L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
[Crossref]

Z. Zalevsky, V. Micó, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]

V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[Crossref]

Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).

Zdankowski, P.

K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
[Crossref]

M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]

Zea, A. V.

A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
[Crossref]

Zhai, H.

Zhang, T.

Zhang, W.

T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]

T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]

Zhang, Y.

Zhao, D.

D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
[Crossref]

Zhao, J.

J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
[Crossref]

Zheng, J.

Zhong, Z.

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]

Zhou, R.

Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
[Crossref]

D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26, 428–437 (2018).
[Crossref]

Zhu, J.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Zhu, Y.

Zhuo, Z.

T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]

T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]

Ziemczonok, M.

A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]

Zilberman, M.

Adv. Intell. Syst. (1)

V. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, “Microplastic identification via holographic imaging and machine learning,” Adv. Intell. Syst. 2, 1900153 (2020).
[Crossref]

Adv. Opt. Photon. (2)

AIP Conf. Proc. (1)

C. J. R. Sheppard and S. S. Kou, “3D imaging with holographic tomography,” AIP Conf. Proc. 1236, 65–69 (2010).
[Crossref]

Appl. Opt. (27)

C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50,B6–B11 (2011).
[Crossref]

E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
[Crossref]

S. Suzuki, Y. Nozaki, and H. Kimura, “High-speed holographic microscopy for fast-propagating cracks in transparent materials,” Appl. Opt. 36, 7224–7233 (1997).
[Crossref]

Y. Ohtsuka and K. Oka, “Contour mapping of the spatiotemporal state of polarization of light,” Appl. Opt. 33, 2633–2636 (1994).
[Crossref]

T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
[Crossref]

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27–37 (2002).
[Crossref]

T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005).
[Crossref]

K. Jaferzadeh, S. Gholami, and I. Moon, “Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging,” Appl. Opt. 55, 10409–10416 (2016).
[Crossref]

T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406–408 (1974).
[Crossref]

T. Sato, M. Ueda, and T. Ikeda, “Real time superresolution by means of an ultrasonic light diffractor and TV system,” Appl. Opt. 13, 1318–1321 (1974).
[Crossref]

P. C. Sun and E. N. Leith, “Superresolution by spatial–temporal encoding methods,” Appl. Opt. 31, 4857–4862 (1992).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Appl. Opt. 45, 8209–8217 (2006).
[Crossref]

Y. Li, W. Xiao, and F. Pan, “Multiple-wavelength-scanning-based phase unwrapping method for digital holographic microscopy,” Appl. Opt. 53, 979–987 (2014).
[Crossref]

C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071–2074 (1973).
[Crossref]

A. Khmaladze, A. Restrepo-Martínez, M. Kim, R. Castañeda, and A. Blandón, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[Crossref]

P. M. Blanchard and A. H. Greenaway, “Simultaneous multiplane imaging with a distorted diffraction grating,” Appl. Opt. 38, 6692–6699 (1999).
[Crossref]

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38, 7056–7062 (1999).
[Crossref]

P. Picart, E. Moisson, and D. Mounier, “Twin-sensitivity measurement by spatial multiplexing of digitally recorded holograms,” Appl. Opt. 42, 1947–1957 (2003).
[Crossref]

A. W. Lohmann, “Reconstruction of vectorial wavefronts,” Appl. Opt. 4, 1667–1668 (1965).
[Crossref]

E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia-Sucerquia, “Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit,” Appl. Opt. 53, 2058–2066 (2014).
[Crossref]

N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
[Crossref]

J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51, 191–196 (2012).
[Crossref]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[Crossref]

I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, “Image reconstruction only by phase data in phase-shifting digital holography,” Appl. Opt. 45, 975–983 (2006).
[Crossref]

S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter,” Appl. Opt. 10, 1575–1580 (1971).
[Crossref]

J. Primot and N. Guérineau, “Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard,” Appl. Opt. 39, 5715–5720 (2000).
[Crossref]

Appl. Phys. Express (1)

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Space-bandwidth capacity-enhanced digital holography,” Appl. Phys. Express 6, 22502 (2013).
[Crossref]

Appl. Phys. Lett. (3)

S. Ebrahimi, M. Dashtdar, E. Sánchez-Ortiga, M. Martínez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 84101 (2012).
[Crossref]

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Arch. für mikroskopische Anat. (1)

E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung: IV. Das optische Vermögen des Mikroskops,” Arch. für mikroskopische Anat. 9, 413–468 (1873).
[Crossref]

Biomed. Opt. Express (3)

Chin. Opt. Lett. (1)

B. Sha, Y. Lu, Y. Xie, Q. Yue, and C. Guo, “Fast reconstruction of multiple off-axis holograms based on a combination of complex encoding and digital spatial multiplexing,” Chin. Opt. Lett. 14, 60902 (2016).
[Crossref]

Cytometry Part A (1)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry Part A 73A, 895–903 (2008).
[Crossref]

Electron. Lett. (2)

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50, 1693–1695 (2014).
[Crossref]

D. Beghuin, E. Cuche, P. Dahlgren, C. Depeursinge, G. Delacretaz, and R. P. Salathé, “Single acquisition polarisation imaging with digital holography,” Electron. Lett. 35, 2053–2055 (1999).
[Crossref]

ETRI J. (1)

A. Kuś, W. Krauze, P. L. Makowski, and M. Kujawińska, “Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging,” ETRI J. 41, 61–72 (2019).
[Crossref]

IBM Syst. J. (1)

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[Crossref]

IEEE Access (1)

B. Tayebi, J. H. Park, and J. Han, “Super-bandwidth two-step phase-shifting off-axis digital holography by optimizing two-dimensional spatial frequency sampling scheme,” IEEE Access 7, 136836 (2019).
[Crossref]

IEEE Comput. Graph. Applic. (1)

M. McGuire, W. Matusik, H. Pfister, B. Chen, J. F. Hughes, and S. K. Nayar, “Optical splitting trees for high-precision monocular imaging,” IEEE Comput. Graph. Applic. 27, 32–42 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

B. Tayebi, W. Kim, F. Sharif, B. Yoon, and J. Han, “Single-shot and label-free refractive index dispersion of single nerve fiber by triple-wavelength diffraction phase microscopy,” IEEE J. Sel. Top. Quantum Electron. 25, 7200708 (2019).
[Crossref]

T. Tahara, R. Yonesaka, S. Yamamoto, T. Kakue, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed three-dimensional microscope for dynamically moving biological objects based on parallel phase-shifting digital holographic microscopy,” IEEE J. Sel. Top. Quantum Electron. 18, 1387–1393 (2012).
[Crossref]

B. Tayebi, Y. Jeong, and J. H. Han, “Dual-wavelength diffraction phase microscopy with 170 times larger image area,” IEEE J. Sel. Top. Quantum Electron. 25, 7101206 (2018).
[Crossref]

IEEE Photon. J. (1)

R. Friedman and N. T. Shaked, “Hybrid reflective interferometric system combining wide-field and single-point phase measurements,” IEEE Photon. J. 7, 6801413 (2015).
[Crossref]

J. Biomed. Opt. (7)

P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20, 111217 (2015).
[Crossref]

M. Trusiak, J. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Mico, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24, 1–8 (2019).
[Crossref]

P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. K. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009).
[Crossref]

A. Kuś, W. Krauze, and M. Kujawińska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
[Crossref]

M. Kim, Y. Choi, W. Choi, C. M. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and K. Kim, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

A. Kuś, M. Dudek, B. Kemper, M. Kujawińska, and A. Vollmer, “Tomographic phase microscopy of living three-dimensional cell cultures,” J. Biomed. Opt. 19, 046009 (2014).
[Crossref]

C. M. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
[Crossref]

J. Disp. Technol. (1)

M. Paturzo, A. Finizio, and P. Ferraro, “Simultaneous multiplane imaging in digital holographic microscopy,” J. Disp. Technol. 7, 24–28 (2011).
[Crossref]

J. Hologr. Speckle (1)

V. Micó, Z. Zalevsky, and J. Garcia-Monreal, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Hologr. Speckle 5, 110–123 (2009).
[Crossref]

J. Microsc. (1)

E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc. 245, 49–62 (2012).
[Crossref]

J. Nanophoton. (1)

Z. Zalevsky, V. Micó, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]

J. Opt. (2)

S. M. Azzem, L. Bouamama, S. Simoëns, and W. Osten, “Two beams two orthogonal views particle detection,” J. Opt. 17, 45301 (2015).
[Crossref]

C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, and A. Forbes, “Multiplexing 200 spatial modes with a single hologram,” J. Opt. 19, 113501 (2017).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (7)

Lab Chip (1)

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13, 4512–4516 (2013).
[Crossref]

Laser Phys. (1)

T. Sun, Z. Zhuo, W. Zhang, J. Lu, and P. Lu, “Single-shot interference microscopy using a wedged glass plate for quantitative phase imaging of biological cells,” Laser Phys. 28, 125601 (2018).
[Crossref]

Light Sci. Appl. (4)

Y. Rivenson, Y. Wu, and A. Ozcan, “Deep learning in holography and coherent imaging,” Light Sci. Appl. 8, 85 (2019).
[Crossref]

P. Girshovitz and N. T. Shaked, “Doubling the field of view in off-axis low-coherence interferometric imaging,” Light Sci. Appl. 3, e151 (2014).
[Crossref]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
[Crossref]

C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, “Optically monitoring and controlling nanoscale topography during semiconductor etching,” Light Sci. Appl. 1, e30 (2012).
[Crossref]

London, Edinburgh, Dublin Philos. Mag. J. Sci. (2)

L. Rayleigh, “XV. On the theory of optical images, with special reference to the microscope,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 42, 167–195 (1896).
[Crossref]

A. B. Porter, “XII. On the diffraction theory of microscopic vision,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 11, 154–166 (1906).
[Crossref]

Meas. Sci. Technol. (1)

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, “A digital holographic microscope for complete characterization of microelectromechanical systems,” Meas. Sci. Technol. 15, 529–539 (2004).
[Crossref]

Mon. Microsc. J. (1)

Helmholtz and H. Fripp, “On the limits of the optical capacity of the microscope,” Mon. Microsc. J. 16, 15–39 (1876).
[Crossref]

Nanoscale Res. Lett. (1)

K. Seo, B. M. Kim, and E. S. Kim, “Digital holographic microscopy based on a modified lateral shearing interferometer for three-dimensional visual inspection of nanoscale defects on transparent objects,” Nanoscale Res. Lett. 9, 471 (2014).
[Crossref]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Nat. Photonics (2)

Y. Park, C. Depeursinge, and G. Popescu, “Quantitative phase imaging in biomedicine,” Nat. Photonics 12, 578–589 (2018).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Opt. Acta Int. J. Opt. (1)

M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta Int. J. Opt. 20, 403–410 (1973).
[Crossref]

Opt. Commun. (12)

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[Crossref]

D. G. Abdelsalam and D. Kim, “Real-time dual-wavelength digital holographic microscopy based on polarizing separation,” Opt. Commun. 285, 233–237 (2012).
[Crossref]

W. Pan, “Multiplane imaging and depth-of-focus extending in digital holography by a single-shot digital hologram,” Opt. Commun. 286, 117–122 (2013).
[Crossref]

T. Sun, P. Lu, Z. Zhuo, W. Zhang, and J. Lu, “Single-shot two-channel Fresnel bimirror interferometric microscopy for quantitative phase imaging of biological cell,” Opt. Commun. 426, 77–83 (2018).
[Crossref]

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
[Crossref]

D. Zhao, D. Xie, Y. Yang, and H. Zhai, “Iterative approach for zero-order term elimination in off-axis multiplex digital holography,” Opt. Commun. 383, 513–517 (2017).
[Crossref]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

J. Bailleul, B. Simon, M. Debailleul, L. Foucault, N. Verrier, and O. Haeberlé, “Tomographic diffractive microscopy: towards high-resolution 3-D real-time data acquisition, image reconstruction and display of unlabeled samples,” Opt. Commun. 422, 28–37 (2018).
[Crossref]

N. Karasawa, “Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts,” Opt. Commun. 413, 19–23 (2018).
[Crossref]

N. Karasawa and A. Hirayama, “Experimental demonstration of single-shot chirped pulse digital holography,” Opt. Commun. 447, 42–45 (2019).
[Crossref]

X. Wang and H. Zhai, “Pulsed digital micro-holography of femto-second order by wavelength division multiplexing,” Opt. Commun. 275, 42–45 (2007).
[Crossref]

T. Tahara, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography,” Opt. Commun. 402, 462–467 (2017).
[Crossref]

Opt. Eng. (3)

J. A. Quiroga, D. Crespo, and E. Bernabeu, “Fourier transform method for automatic processing of moire deflectograms,” Opt. Eng. 38, 974–982 (1999).
[Crossref]

R. Legarda-Sáenz and A. Espinosa-Romero, “Wavefront reconstruction using multiple directional derivatives and Fourier transform,” Opt. Eng. 50, 040501 (2011).
[Crossref]

M. Matrecano, M. Paturzo, and P. Ferraro, “Extended focus imaging in digital holographic microscopy: a review,” Opt. Eng. 53, 112317 (2014).
[Crossref]

Opt. Express (45)

T. Saucedo-A, M. H. De la Torre-Ibarra, F. M. Santoyo, and I. Moreno, “Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements,” Opt. Express 18, 19867–19875 (2010).
[Crossref]

K. Patorski, Ł. Służewski, and M. Trusiak, “5-beam grating interferometry for extended phase gradient sensing,” Opt. Express 26, 26872–26887 (2018).
[Crossref]

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
[Crossref]

S. Aknoun, P. Bon, J. Savatier, B. Wattellier, and S. Monneret, “Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry,” Opt. Express 23, 16383–16406 (2015).
[Crossref]

C. Maurer, S. Khan, S. Fassl, S. Bernet, and M. Ritsch-Marte, “Depth of field multiplexing in microscopy,” Opt. Express 18, 3023–3034 (2010).
[Crossref]

P. A. Dalgarno, H. I. C. Dalgarno, A. Putoud, R. Lambert, L. Paterson, D. C. Logan, D. P. Towers, R. J. Warburton, and A. H. Greenaway, “Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy,” Opt. Express 18, 877–884 (2010).
[Crossref]

A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
[Crossref]

A. T. Saucedo, F. M. Santoyo, M. H. De la Torre-Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468–1475 (2006).
[Crossref]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Song, D. Har, and D. Y. Kim, “Large step-phase measurement by a reduced-phase triple-illumination interferometer,” Opt. Express 23, 11264–11271 (2015).
[Crossref]

P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011).
[Crossref]

Y. Jang, J. Jang, and Y. Park, “Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,” Opt. Express 20, 9673–9681 (2012).
[Crossref]

V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[Crossref]

T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22, 29594–29610 (2014).
[Crossref]

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
[Crossref]

K. Patorski, Ł. Służewski, P. Zdańkowski, M. Cywińska, and M. Trusiak, “Three-level transmittance 2D grating with reduced spectrum and its self-imaging,” Opt. Express 27, 1854–1868 (2019).
[Crossref]

N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[Crossref]

B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer,” Opt. Express 24, 10326–10344 (2016).
[Crossref]

L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25, 21877–21886 (2017).
[Crossref]

V. Mico, C. Ferreira, Z. Zalevsky, and J. García, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]

N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010).
[Crossref]

G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25, 33400–33415 (2017).
[Crossref]

J. A. Picazo-Bueno, M. Trusiak, and V. Micó, “Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube,” Opt. Express 27, 5655–5669 (2019).
[Crossref]

H. Gabai and N. T. Shaked, “Dual-channel low-coherence interferometry and its application to quantitative phase imaging of fingerprints,” Opt. Express 20, 26906–26912 (2012).
[Crossref]

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21, 5701–5714 (2013).
[Crossref]

L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
[Crossref]

H. Wang, M. Lyu, and G. Situ, “eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction,” Opt. Express 26, 22603–22614 (2018).
[Crossref]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[Crossref]

S. K. Mirsky and N. T. Shaked, “First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution,” Opt. Express 27, 26708–26720 (2019).
[Crossref]

Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]

B. Sha, X. Liu, X. L. Ge, and C. S. Guo, “Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing,” Opt. Express 22, 23066–23072 (2014).
[Crossref]

P. Girshovitz and N. T. Shaked, “Fast phase processing in off-axis holography using multiplexing with complex encoding and live-cell fluctuation map calculation in real-time,” Opt. Express 23, 8773–8787 (2015).
[Crossref]

A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).
[Crossref]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20, 9948–9955 (2012).
[Crossref]

X. Liu, Y. Yang, L. Han, and C. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25, 7288–7299 (2017).
[Crossref]

G. Dardikman, G. Singh, and N. T. Shaked, “Four dimensional phase unwrapping of dynamic objects in digital holography,” Opt. Express 26, 3772–3778 (2018).
[Crossref]

Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Diffraction phase and fluorescence microscopy,” Opt. Express 14, 8263–8268 (2006).
[Crossref]

J. Kostencka, T. Kozacki, and M. Józwik, “Holographic tomography with object rotation and two-directional off-axis illumination,” Opt. Express 25, 23920–23934 (2017).
[Crossref]

P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
[Crossref]

K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, “Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography,” Opt. Express 21, 32269–32278 (2013).
[Crossref]

D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26, 428–437 (2018).
[Crossref]

W. Krauze, P. Makowski, M. Kujawińska, and A. Kuś, “Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography,” Opt. Express 24, 4924–4936 (2016).
[Crossref]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

S. Li, J. Ma, C. Chang, S. Nie, S. Feng, and C. Yuan, “Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination,” Opt. Express 26, 23572–23584 (2018).
[Crossref]

Opt. Laser Eng. (5)

L. Granero, C. Ferreira, Z. Zalevsky, J. García, and V. Micó, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]

J. Wang, J. Zhao, J. Di, and B. Jiang, “A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser,” Opt. Laser Eng. 67, 17–21 (2015).
[Crossref]

A. V. Zea, J. F. Barrera, and R. Torroba, “Cross-talk free selective reconstruction of individual objects from multiplexed optical field data,” Opt. Laser Eng. 100, 90–97 (2018).
[Crossref]

Z. Zhong, H. Bai, M. Shan, Y. Zhang, and L. Guo, “Fast phase retrieval in slightly off-axis digital holography,” Opt. Laser Eng. 97, 9–18 (2017).
[Crossref]

J. M. Desse and P. Picart, “Quasi-common path three-wavelength holographic interferometer based on Wollaston prisms,” Opt. Laser Eng. 68, 188–193 (2015).
[Crossref]

Opt. Laser Technol. (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Opt. Lett. (50)

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[Crossref]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

H. Gabai, M. Baranes-Zeevi, M. Zilberman, and N. T. Shaked, “Continuous wide-field characterization of drug release from skin substitute using off-axis interferometry,” Opt. Lett. 38, 3017–3020 (2013).
[Crossref]

A. Nativ and N. T. Shaked, “Compact interferometric module for full-field interferometric phase microscopy with low spatial coherence illumination,” Opt. Lett. 42, 1492–1495 (2017).
[Crossref]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]

M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42, 4611–4614 (2017).
[Crossref]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525–1528 (2014).
[Crossref]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett. 36, 4131–4133 (2011).
[Crossref]

T. Tahara, Y. Lee, Y. Ito, P. Xia, Y. Shimozato, Y. Takahashi, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Superresolution of interference fringes in parallel four-step phase-shifting digital holography,” Opt. Lett. 39, 1673–1676 (2014).
[Crossref]

N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43, 5543–5546 (2018).
[Crossref]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 30, 1165–1167 (2005).
[Crossref]

T. Ling, D. Liu, X. Yue, Y. Yang, Y. Shen, and J. Bai, “Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating,” Opt. Lett. 40, 2245–2248 (2015).
[Crossref]

S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005).
[Crossref]

N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43, 1943–1946 (2018).
[Crossref]

M. R. Jafarfard, S. Moon, B. Tayebi, and D. Y. Kim, “Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness,” Opt. Lett. 39, 2908–2911 (2014).
[Crossref]

L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]

E. N. Leith, “Small-aperture, high-resolution, two-channel imaging system,” Opt. Lett. 15, 885–887 (1990).
[Crossref]

Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010).
[Crossref]

B. Tayebi, M. R. Jafarfard, F. Sharif, Y. S. Bae, S. H. H. Shokuh, and D. Y. Kim, “Reduced-phase dual-illumination interferometer for measuring large stepped objects,” Opt. Lett. 39, 5740–5743 (2014).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref]

N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73–76 (2017).
[Crossref]

J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).
[Crossref]

M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35, 2612–2614 (2010).
[Crossref]

P. Ferraro, M. Paturzo, P. Memmolo, and A. Finizio, “Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms,” Opt. Lett. 34, 2787–2789 (2009).
[Crossref]

K. Patorski, Ł. Służewski, and M. Trusiak, “Single-shot 3 × 3 beam grating interferometry for self-imaging free extended range wave front sensing,” Opt. Lett. 41, 4417–4420 (2016).
[Crossref]

P. Tankam, Q. Song, M. Karray, J. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010).
[Crossref]

L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43, 2046–2049 (2018).
[Crossref]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33, 2629–2631 (2008).
[Crossref]

T. Tahara, T. Gotohda, T. Akamatsu, Y. Arai, T. Shimobaba, T. Ito, and T. Kakue, “High-speed image-reconstruction algorithm for a spatially multiplexed image and application to digital holography,” Opt. Lett. 43, 2937–2940 (2018).
[Crossref]

P. Girshovitz and N. T. Shaked, “Real-time quantitative phase reconstruction in off-axis digital holography using multiplexing,” Opt. Lett. 39, 2262–2265 (2014).
[Crossref]

P. Memmolo, M. Paturzo, A. Pelagotti, A. Finizio, P. Ferraro, and B. Javidi, “Compression of digital holograms via adaptive-sparse representation,” Opt. Lett. 35, 3883–3885 (2010).
[Crossref]

M. M. Sreelal, R. V. Vinu, and R. K. Singh, “Jones matrix microscopy from a single-shot intensity measurement,” Opt. Lett. 42, 5194–5197 (2017).
[Crossref]

L. Li, X. Wang, and H. Zhai, “Single-shot diagnostic for the three-dimensional field distribution of a terahertz pulse based on pulsed digital holography,” Opt. Lett. 36, 2737–2739 (2011).
[Crossref]

Z. J. Cheng, Y. Yang, H. Y. Huang, Q. Y. Yue, and C. S. Guo, “Single-shot quantitative birefringence microscopy for imaging birefringence parameters,” Opt. Lett. 44, 3018–3021 (2019).
[Crossref]

X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39, 6170–6173 (2014).
[Crossref]

S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Spatial frequency-domain multiplexed microscopy for simultaneous, single-camera, one-shot, fluorescent, and quantitative-phase imaging,” Opt. Lett. 40, 4839–4842 (2015).
[Crossref]

Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43, 2587–2590 (2018).
[Crossref]

Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27, 22–24 (2002).
[Crossref]

X. Wang, H. Zhai, and G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Opt. Lett. 31, 1636–1638 (2006).
[Crossref]

L. Chen, N. Andrews, S. Kumar, P. Frankel, J. McGinty, and P. M. W. French, “Simultaneous angular multiplexing optical projection tomography at shifted focal planes,” Opt. Lett. 38, 851–853 (2013).
[Crossref]

E. Mudry, P. C. Chaumet, K. Belkebir, G. Maire, and A. Sentenac, “Mirror-assisted tomographic diffractive microscopy with isotropic resolution,” Opt. Lett. 35, 1857–1859 (2010).
[Crossref]

K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red–green–blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]

C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
[Crossref]

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
[Crossref]

M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
[Crossref]

F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

Optica (8)

OSA Continuum (1)

Phys. Procedia (1)

E. A. Kurbatova, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, and S. N. Starikov, “Methods of compression of digital holograms,” Phys. Procedia 73, 328–332 (2015).
[Crossref]

Phys. Rev. Appl. (1)

Y. Sung, “Snapshot holographic optical tomography,” Phys. Rev. Appl. 11, 14039 (2019).
[Crossref]

PLoS One (1)

Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, 1–7 (2012).
[Crossref]

Proc. Natl. Acad. Sci. USA (3)

Y. Sung, A. Tzur, S. Oh, W. Choi, V. Li, R. R. Dasari, Z. Yaqoob, and M. W. Kirschner, “Size homeostasis in adherent cells studied by synthetic phase microscopy,” Proc. Natl. Acad. Sci. USA 110, 16687–16692 (2013).
[Crossref]

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]

Proc. SPIE (8)

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[Crossref]

S. Velghe, J. Primot, N. Guerineau, R. Haidar, M. Cohen, and B. Wattellier, “Accurate and highly resolving quadri-wave lateral shearing interferometer, from visible to IR,” Proc. SPIE 5776, 134–143 (2005).
[Crossref]

K. Patorski, M. Trusiak, and K. Pokorski, “Single-shot two-channel Talbot interferometry using checker grating and Hilbert-Huang fringe pattern processing,” Proc. SPIE 9132, 91320Z (2014).
[Crossref]

B. Kemper, F. Schlichthaber, A. Vollmer, S. Ketelhut, S. Przibilla, and G. von Bally, “Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens,” Proc. SPIE 8082, 808207 (2011).
[Crossref]

Y. He, Y. Wang, and R. Zhou, “Digital micromirror device based angle-multiplexed optical diffraction tomography for high throughput 3D imaging of cells,” Proc. SPIE 11294, 1129402 (2020).
[Crossref]

A. Kuś, M. Baczewska, M. Ziemczonok, and M. Kujawińska, “Projection multiplexing for enhanced acquisition speed in holographic tomography,” Proc. SPIE 10883, 1088318 (2019).
[Crossref]

M. Kujawinska, A. Jozwicka, and T. Kozacki, “Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements,” Proc. SPIE 7063, 70630F (2008).
[Crossref]

F. Dufaux, Y. Xing, B. Pesquet-Popescu, and P. Schelkens, “Compression of digital holographic data: an overview,” Proc. SPIE 9599, 95990I (2015).
[Crossref]

Sci. Adv. (1)

H. Ren, W. Shao, Y. Li, F. Salim, and M. Gu, “Three-dimensional vectorial holography based on machine learning inverse design,” Sci. Adv. 6, eaaz4261 (2020).
[Crossref]

Sci. Rep. (2)

P. A. Cheremkhin and E. A. Kurbatova, “Wavelet compression of off-axis digital holograms using real/imaginary and amplitude/phase parts,” Sci. Rep. 9, 7561 (2019).
[Crossref]

V. Balasubramani, H. Y. Tu, X. J. Lai, and C. J. Cheng, “Adaptive wavefront correction structured illumination holographic tomography,” Sci. Rep. 9, 10489 (2019).
[Crossref]

Science (1)

E. L. Ritman, J. H. Kinsey, R. A. Robb, B. K. Gilbert, L. D. Harris, and E. H. Wood, “Three-dimensional imaging of heart, lungs, and circulation,” Science 210, 273–280 (1980).
[Crossref]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 1–51 (2010).
[Crossref]

Other (11)

M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

N. T. Shaked, Z. Zalevsky, and L. L. Satterwhite, Biomedical Optical Phase Microscopy and Nanoscopy (Academic, 2012).

J. J. Cargille, Immersion Oil and the Microscope (New York Microscopical Society Yearbook, 1964).

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).

Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer, 2004).

K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), Vol. 27, pp. 1–108.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

E. Niemi, M. Lassas, and S. Siltanen, “Dynamic x-ray tomography with multiple sources,” in 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (2013), pp. 618–621.

K. Franke, “Tomographic apparatus for producing transverse layer images,” U.S. patent4,150,293 (17April1979).

H. Y. Tu, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Angular- and polarization-multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” in Digital Holography & 3-D Imaging Meeting (Optical Society of America, 2015), paper DT3A.4.

G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 21–62.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (27)

Figure 1.
Figure 1. Comparison of standard (single) off-axis hologram of (a) two beams, sample beam S1 and reference beam R, to (b) multiplexed off-axis hologram of three beams, sample beam S1, another sample beam S2, and common reference beam R. The first column illustrates beam angles at the camera plane. The second column illustrates the resulting hologram, containing images “A” for the single hologram or both “A” and “B” for the multiplexed hologram. The third column presents the spatial frequency domains of the hologram (obtained after a digital 2-D Fourier transform of the acquired hologram). DC, autocorrelation terms; CC1, ${\rm{CC1^*}}$, complex conjugate CC terms from S1 and $R$; CC2, ${\rm{CC2^*}}$, complex conjugate CC terms from S2 and $R$; ${\rm{CC}}x$, ${\rm{CC}}x^*$, cross terms from interference between S1 and S2.
Figure 2.
Figure 2. Schematic illustrations of off-axis holograms (top) and the coinciding spatial frequency domains (bottom) for (a) standard off-axis holography. (b) Multiplexing two off-axis holograms with orthogonal fringe directions. (c) Multiplexing four off-axis holograms. (d) 6PH, multiplexing six off-axis holograms. The numbered circles around the DC term denote the CC terms, where the coinciding complex conjugate CC terms are denoted by a number and an asterisk. Figure is modified from [32].
Figure 3.
Figure 3. Schematic illustration of the 6PH multiplexing concept. Figure is modified from [32].
Figure 4.
Figure 4. Schematic illustrations of the power spectra for various spatial bandwidth-efficient holographic imaging architectures, including bandwidth calculations, assuming the same number of camera pixels. (a) Optimal on-axis holography. (b) SPACE. (c) Diagonal off-axis multiplexing. (d) 6PH. (e) 8PH with the DC terms removed. (f) Diagonal slightly off-axis multiplexing with the DC terms removed. DC denotes the autocorrelation terms, and the numbered circles around it denote the CC terms, where coinciding complex conjugate CC terms are denoted by the same number with and without an asterisk. Figure is modified from [34].
Figure 5.
Figure 5. IDIA module for optical multiplexing of two off-axis holograms. The module is connected to the digital camera port at the output of a coherent or partially coherent imaging system. The retro-reflectors are orthogonal to each other. Right inset, 3-D diagram of the retro-reflectors and their effect on the incoming image. BS, beam splitter; L1 and L2, lenses in a ${{4f}}$ configuration; M, mirror; P, pinhole; RR1 and RR2, retro-reflectors. Figure is modified from [30].
Figure 6.
Figure 6. Optical multiplexing of two off-axis holograms of an optically transparent 1951-USAF test target under low-coherence illumination. (a) Multiplexed off-axis hologram recorded in a single digital camera exposure using the IDIA module. (b) Spatial Fourier transform of the multiplexed hologram. The white boxes mark the desired CC terms, and each is generated from another reference-sample beam pair and encodes a different FOV of the sample. The yellow dashed line box marks the unwanted cross term between the two sample beams. (c) Final optical thickness map of the test target, obtained by stitching together the two thickness maps. The white scale bars represent 10 µm. Figure is modified from [30].
Figure 7.
Figure 7. Quantitative optical thickness maps with doubled FOV of a swimming human spermatozoon, as recorded by the IDIA technique, enabling the acquisition of the fast dynamics of the spermatozoon with fine details on a doubled FOV. The white dashed line indicates the location of the stitching between the two FOVs. The white scale bars represent 10 µm. A video, demonstrating the ability to record fast dynamics, is shown in [30].
Figure 8.
Figure 8. (a) Optical system for multiplexing three FOVs using three rotated retro-reflectors and orthogonal polarization states to avoid one of the two unwanted cross terms [26]. This module is positioned at the output of a transmission microscope. L1, L2, lenses; POL, 45° polarizer; BS1, BS2, beam splitters; PBS, polarizing beam splitter; DF, density filter; M, mirror; PH, pinhole; RR1, RR2, retro-reflectors made out of two mirrors connected at a right angle; RRP, retro-reflector made out of a total internal reflection prism. (b) Multiplexed holograms containing three FOVs of microbeads. (c) The coinciding spatial power spectrum. (d) The three wrapped phase profiles reconstructed from the multiplexed hologram. (e) Resulting quantitative phase imaging of HeLa cell culture with tripled FOV. In muted colors, the scanned FOV (which is larger than the camera regular FOV). In vivid colors, the three quantitative unwrapped phase images reconstructed from a single multiplexed hologram, acquired simultaneously without any scanning. Figure is modified from [26].
Figure 9.
Figure 9. (a) Schematic representation of the optical setup for depth-of-field off-axis holographic multiplexing. LC, low-coherence light source; Lens1, Lens2, Lens3, lenses in ${{4f}}$ lens configurations; $S$, multilayer reflective sample; BS1-BS4, beam splitters; M1-M4, mirrors that provide the desired spatial frequencies in the off-axis interference fringes. (b) Multilayer sample comprising four coverslips, each imprinted with a reflective letter: O, M, N, I. (c) Unique fringe orientation captured from each layer of the sample indicating the axial location of each layer. Figure is modified from [88].
Figure 10.
Figure 10. Depth-of-field off-axis holographic multiplexing results: optical sectioning obtained by off-axis holographic multiplexing for the four-layer sample described in Fig. 9(b). (a) Multiplexed off-axis hologram acquired in a single camera exposure. The scale bar represents 130 µm on the sample. (b) Corresponding power spectra containing four distinct cross-correlational pairs. (c) Reconstructed amplitude (left) and unwrapped phase (right) profiles obtained by cropping the corresponding cross-correlational elements in (b), enabling simultaneous reconstruction of all four-layer complex wavefronts from a single camera exposure. The color bar represents the height values in nanometers. Figure is modified from [88].
Figure 11.
Figure 11. (a) External holographic module for multiplexing two wavelength channels into a single multiplexed hologram [110]. L5–L8, achromatic lenses; BS2, beam splitter; PH, pinhole plate; DM, dichroic mirror. A monochrome digital camera is used to acquire the two orthogonally rotated off-axis holograms of different wavelengths at once. (b) Reconstructed height profile of a 30.5-µm-high, 70-µm-wide copper pillar, obtained by the module shown in (a) when connected at the output port of a reflection microscope. The two wavelength channels are used for simultaneous two-wavelength phase unwrapping, enabling profiling of this thick sample without ${{2}}\pi$ phase ambiguities. Figure is modified from [110].
Figure 12.
Figure 12. Experimental results for single-shot 2-D super-resolution by Sato et al. [137]. (a) Conventional image with 0.037 NA and with light diffractors off. (b) Image restricted in resolution by closing the iris until 0.0006 NA and with light diffractors off. (c) The super-resolved image coming from (b) with light diffractors on. Figure is modified from [137].
Figure 13.
Figure 13. Experimental results for single-shot 1-D super-resolution by Leith et al. [142]. (a) Image with penalized resolution in the vertical direction and super-resolved 1-D image considering the proposed technique with (b) small and (c) large illumination sources. Figure is modified from [142].
Figure 14.
Figure 14. Approach proposed by Mico et al. [147] providing single-shot 1-D super-resolution imaging. The experimental layout is included in (a) and (b) for on-axis and off-axis illuminations, respectively, and the experimental results can be seen through (e) to (f) corresponding with a (e) high-resolution image (for comparison purposes), (d) low-resolution image using on-axis illumination, and (e) and (f) super-resolved image with three and five beams, respectively, using the proposed approach. Figure is modified from [147].
Figure 15.
Figure 15. SESRIM approach reported by Calabuig et al. [160,161]. (a) Experimental layout of both approaches. (b) Experimental results from [160]. (c) Experimental results from [161]. Figures are modified from [160,161].
Figure 16.
Figure 16. High-speed synthetic aperture microscopy. (a) Experimental layout. (b)–(e) Imaging a live microglia cell: (b) and (c) the conventional image and aperture, respectively; (d) and (e) the super-resolved and synthetic aperture, respectively. Figure is modified from [163].
Figure 17.
Figure 17. Simultaneous synthetic aperture super-resolution imaging based on 6PH. (a) Six-pack multiplexed hologram of a USAF target, experimentally acquired in a single camera exposure. Inset shows fringes magnified five times. (b) The corresponding spatial frequency power spectrum. (c) Positioning of CC terms in the synthetic aperture. (d) Same synthetic aperture as in (c) after cropping to the largest possible circle. (e) Amplitude image produced from (d). (f) Profiles along the lines marked in (e) demonstrating the smallest resolvable elements. (g) and (h) Results obtained from a standard off-axis hologram, for comparison to (e) and (f). Figure is modified from [28].
Figure 18.
Figure 18. (a) Multimirror object cuvette, which enables illumination direction multiplexing in object-rotation HT. Figure is modified from [188]. L1, L2, collimators; MC, multimirror cuvette; L3–L4, imaging system; O, rotated object. (b) Object-rotation configuration in holographic tomography with two multiplexed views. G, diffraction grating; O, object placed in a rotary fiber cuvette; MO, microscope objective; TL, tube lens; CCD, camera. (c) Spectrum of a hologram obtained in a multiplexed object-rotation HT system; ${{{f}}_{\rm NA}}$, frequency region corresponding to the NA diameter; ${{{f}}_{\rm ref}}$, frequency corresponding to reference beam angle; ${{{f}}_{\rm ill}}$, frequency corresponding to the angle between illumination beams. Figure is modified from [190].
Figure 19.
Figure 19. (a) Wavelength scanning holographic tomography with three multiplexed fields of view. Broadband source, 400–700 nm supercontinuum; AOTF, acousto-optic tunable filter; f1–f6, lenses; IP, image-conjugate plane; FP, Fourier plane. Figure is modified from [191]. (b) Structured illumination optical diffraction tomography; broadband source, $\Delta \lambda = {{30}}\;{\rm{nm}}$; L1–L6, lenses; MO, microscope objective; RG, Ronchi grating; PH, pinhole. Figure is modified from [192].
Figure 20.
Figure 20. ${{X}} - {{Y}}$ cross sections through the 3-D refractive index map of two HaCaT cells. (a) HT reconstruction based on 180 projections without multiplexing (ground truth); (b) HT reconstruction from multiplexing 18 holograms with 10 projections per hologram and NA masking during de-multiplexing; (c) error map calculated as a difference between (a) and (b). Figure is modified from [198].
Figure 21.
Figure 21. Snapshot holographic optical tomography system [195]. (a) FCL, fiber-coupled laser source; FS, ${{2}} \times {{2}}$ fiber-optic splitter; L1, L2, L3, lenses; MLA1, MLA2, microlens arrays; CL, condenser lens; OL, microscope objective lens; TL, tube lens; BS, beam splitter cube; C, camera; (b) MO, microscope objective; CP, camera plane. Figure is modified from [195].
Figure 22.
Figure 22. Multiplexed holography/fluorescent microscopy: (a) optical schematic for the multiplexed microscopy system with red–green–blue color codes for the separate optical arms and associated signal. (b) Spectra for dichroic mirrors used in system and fluorophores used for cell imaging. (c) Example of Fourier separation between microscope’s fluorescent and coherent signals (color coded) using rotated gratings DG1, DG2, and DG3. Experimental results when imaging a biological cell: (d) raw acquisition and (e) associated Fourier spectrum. Digital filters used for fluorescence and QP reconstructions are shown. Fluorescence reconstructions from the (f) red and (g) green channels, showing nucleus and $F$-actin, respectively. (h) Red/green fluorescence channel overlay. (i) Amplitude and (j) quantitative phase image reconstructions are also shown. (k) Gray-scale quantitative phase image with labeled cell body, nucleus, and potential endoplasmic reticulum is shown. Scale bar corresponds to 10 µm. Figure is modified from [204].
Figure 23.
Figure 23. Multiplexed holography/fluorescent microscopy: (a) external off-axis holography and fluorescence multiplexing system. BS1–BS3, beam splitters; L1–L2, lenses; M1, mirror; PH, pinhole; RR1–RR3, three-mirror retroreflectors. (b) Diagram of the spatial frequency power spectrum. Figure is modified from [205].
Figure 24.
Figure 24. (a) Pulsed digital holographic microscopy system with spatial angular multiplexing of rapid events. SPG, subpulse generator; BS, beam splitter; PBS, polarizing beam splitter. (b) The multiplexed hologram composed of three overlapped sub-holograms while recording air ionization. (c) The corresponding spatial frequency domain of the multiplexed hologram. (d) Counter maps of the phase differences during the air-ionization process, time resolution of 50 fs, and frame interval of 300 fs. Figure is modified from [205,206].
Figure 25.
Figure 25. (a) Schematic illustration of a one-step Jones matrix polarization holography system. (b) Four-pinhole spatial filter PF2, with orthogonal linear polarizers, P1 and P2, attached. (c) Spatial frequency domain of a four-channel multiplexed hologram. Laser1, Laser2, laser sources; G1, G2, diffraction gratings; M1, M2, mirrors, L1−L4, lenses; S, sample; MO, microscope objective; A1, A2, orthogonal polarization states. The cropped CC terms are processed to extract the full Jones matrix parameters. Figure is modified from [218].
Figure 26.
Figure 26. Algorithm B (conventional off-axis holography phase extraction algorithm), cropped cross-correlation algorithm for extracting quantitative phase profiles from off-axis holograms. Figure is modified from [221].
Figure 27.
Figure 27. Algorithm C, digital off-axis hologram multiplexing algorithm for extraction of the quantitative phase profiles from off-axis holograms. Figure is modified from [221].

Tables (2)

Tables Icon

Table 1. Comparison of Various Digital Holography Architecturesa,b

Tables Icon

Table 2. Comparison between Various Phase Retrieval Algorithmsa , b , c , d

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

| E S 1 + E R | 2 = | E S 1 | 2 + | E R | 2 + E S 1 E R + E R E S 1 ,
| E S 1 + E S 1 + E R | 2 = | E S 1 | 2 + | E S 2 | 2 + | E R | 2 + E S 1 E R + E R E S 1 + E S 2 E R + E R E S 2 + E S 1 E S 2 + E S 2 E S 1 ,
ω c = π Δ x .
ω s = 2 π M d ,
E f = ω s / ω c × N w / N a ,
U ( R ) = U ( i ) ( R ) + U ( s ) ( R ) .
( 2 + k 0 2 ) U ( s ) ( R ) = F ( R ) U ( R ) ,
F ( R ) = k 0 2 [ n 2 ( R ) 1 ] ,

Metrics