Abstract

Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3D topography in reflective samples, as well as the inner structure or refractive index distribution of transparent and translucent samples. Similar to other imaging modalities, QPM is constrained by the conflict between numerical aperture (NA) and field of view (FOV): an imaging system with a low NA has to be employed to maintain a large FOV. This fact severely limits the resolution in QPM up to 0.82λ/NA, λ being the illumination wavelength. Consequently, finer structures of samples cannot be resolved by using modest NA objectives in QPM. Aimed to that, many approaches, such as oblique illumination, structured illumination, and speckle illumination (just to cite a few), have been proposed to improve the spatial resolution (or the space–bandwidth product) in phase microscopy by restricting other degrees of freedom (mostly time). This paper aims to provide an up-to-date review on the resolution enhancement approaches in QPM, discussing the pros and cons of each technique as well as the confusion on resolution definition claims on QPM and other coherent microscopy methods. Through this survey, we will review the most appealing and useful techniques for superresolution in coherent microscopy, working with and without lenses and with special attention to QPM. Note that, throughout this review, with the term “superresolution” we denote enhancing the resolution to surpass the limit imposed by diffraction and proportional to λ/NA, rather than the physics limit λ/(2nmed), with nmed being the refractive index value of the immersion medium.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging

Shwetadwip Chowdhury and Joseph Izatt
Biomed. Opt. Express 4(10) 1795-1805 (2013)

Wide-field anti-aliased quantitative differential phase contrast microscopy

Yao Fan, Jiasong Sun, Qian Chen, Jianqin Zhang, and Chao Zuo
Opt. Express 26(19) 25129-25146 (2018)

Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination

Pierre Bon, Sherazade Aknoun, Serge Monneret, and Benoit Wattellier
Opt. Express 22(7) 8654-8671 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref]
  2. P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
    [Crossref]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  4. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
    [Crossref]
  5. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  6. M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
    [Crossref]
  7. P. N. Hedde and G. U. Nienhaus, “Super-resolution localization microscopy with photoactivatable fluorescent marker proteins,” Protoplasma 251, 349–362 (2014).
    [Crossref]
  8. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
    [Crossref]
  9. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
    [Crossref]
  10. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
    [Crossref]
  11. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
    [Crossref]
  12. P. Gao and G. U. Nienhaus, “Precise background subtraction in stimulated emission double depletion nanoscopy,” Opt. Lett. 42, 831–834 (2017).
    [Crossref]
  13. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
    [Crossref]
  14. T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching,” Nat. Biotechnol. 29, 942–947(2011).
    [Crossref]
  15. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87(2000).
    [Crossref]
  16. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
    [Crossref]
  17. N. Pavillon, J. Kuhn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7, e30912 (2012).
    [Crossref]
  18. M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, and G. Popescu, “Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography,” PLoS One 7, e39816 (2012).
    [Crossref]
  19. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349(1955).
    [Crossref]
  20. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  21. T. S. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
    [Crossref]
  22. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).
  23. T. H. Demetrakopoulos and R. Mittra, “Digital and optical reconstruction of images from suboptical diffraction patterns,” Appl. Opt. 13, 665–670 (1974).
    [Crossref]
  24. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [Crossref]
  25. B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
    [Crossref]
  26. W. Osten, A. Faridian, P. Gao, K. Korner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography,” Appl. Opt. 53, G44–G63 (2014).
    [Crossref]
  27. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
    [Crossref]
  28. P. Gao, B. L. Yao, J. W. Min, R. L. Guo, J. J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19, 1930–1935 (2011).
    [Crossref]
  29. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [Crossref]
  30. G. Pedrini, P. Froning, H. J. Tiziani, and M. E. Gusev, “Pulsed digital holography for high-speed contouring that uses a two-wavelength method,” Appl. Opt. 38, 3460–3467 (1999).
    [Crossref]
  31. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004).
    [Crossref]
  32. M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a microparticle field with digital holographic microscopy,” Opt. Lett. 33, 1626–1628 (2008).
    [Crossref]
  33. M. F. Toy, J. Kuhn, S. Richard, J. Parent, M. Egli, and C. Depeursinge, “Accelerated autofocusing of off-axis holograms using critical sampling,” Opt. Lett. 37, 5094–5096 (2012).
    [Crossref]
  34. P. Gao, B. L. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34, 3553–3555 (2009).
    [Crossref]
  35. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
    [Crossref]
  36. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
    [Crossref]
  37. J. J. Zheng, P. Gao, and X. P. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7, 4255 (2017).
    [Crossref]
  38. M. Lyu, C. J. Yuan, D. Y. Li, and G. H. Situ, “Fast autofocusing in digital holography using the magnitude differential,” Appl. Opt. 56, F152–F157 (2017).
    [Crossref]
  39. P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. L. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35, 712–714 (2010).
    [Crossref]
  40. R. L. Guo, B. L. Yao, P. Gao, J. W. Min, M. L. Zhou, J. Han, X. Yu, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52, 8233–8238 (2013).
    [Crossref]
  41. J. A. Picazo-Bueno, D. Cojoc, F. Iseppon, V. Torre, and V. Mico, “Single-shot, dual-mode, water-immersion microscopy platform for biological applications,” Appl. Opt. 57, A242–A249 (2018).
    [Crossref]
  42. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
    [Crossref]
  43. J. B. Costa, “Modulation effect of the atmosphere in a pyramid wave-front sensor,” Appl. Opt. 44, 60–66 (2005).
    [Crossref]
  44. G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
    [Crossref]
  45. P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006).
    [Crossref]
  46. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
    [Crossref]
  47. F. C. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
    [Crossref]
  48. P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013).
    [Crossref]
  49. M. Sanz, J. A. Picazo-Bueno, L. Granero, J. Garcia, and V. Mico, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
    [Crossref]
  50. D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction,” Opt. Lett. 39, 193–196 (2014).
    [Crossref]
  51. D. W. E. Noom, D. E. B. Flaes, E. Labordus, K. S. E. Eikema, and S. Witte, “High-speed multi-wavelength Fresnel diffraction imaging,” Opt. Express 22, 30504–30511 (2014).
    [Crossref]
  52. M. Sanz, J. A. Picazo-Bueno, J. Garcia, and V. Mico, “Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm,” Opt. Express 23, 21352–21365 (2015).
    [Crossref]
  53. G. A. Zheng, R. Horstmeyer, and C. H. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  54. F. C. Zhang and J. M. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82, 121104 (2010).
    [Crossref]
  55. D. Claus, G. Pedrini, and W. Osten, “Iterative phase retrieval based on variable wavefront curvature,” Appl. Opt. 56, F134–F137 (2017).
    [Crossref]
  56. P. Bon, S. Aknoun, S. Monneret, and B. Wattellier, “Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination,” Opt. Express 22, 8654–8671 (2014).
    [Crossref]
  57. Y. H. Kang, K. H. Kim, and B. Lee, “Angular and speckle multiplexing of photorefractive holograms by use of fiber speckle patterns,” Appl. Opt. 37, 6969–6972 (1998).
    [Crossref]
  58. G. Lippmann, “Epreuves reversible donnant la sensation durelief,” J. Phys. Theor. Appl. 7, 821–825 (1908).
    [Crossref]
  59. J. H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13, 1875–1884 (2005).
    [Crossref]
  60. J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
    [Crossref]
  61. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
    [Crossref]
  62. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13, 4170–4191 (2013).
    [Crossref]
  63. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
    [Crossref]
  64. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
    [Crossref]
  65. A. V. Belashov, A. A. Zhikhoreva, V. G. Bespalov, V. I. Novik, N. T. Zhilinskaya, I. V. Semenova, and O. S. Vasyutinskii, “Refractive index distributions in dehydrated cells of human oral cavity epithelium,” J. Opt. Soc. Am. B 34, 2538–2543 (2017).
    [Crossref]
  66. J. J. Zheng, P. Gao, X. P. Shao, and G. U. Nienhaus, “Refractive index measurement of suspended cells using opposed-view digital holographic microscopy,” Appl. Opt. 56, 9000–9005 (2017).
    [Crossref]
  67. M. Kim, Y. Choi, C. Fang-Yen, Y. J. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
    [Crossref]
  68. B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
    [Crossref]
  69. https://www.lynceetec.com/wp-content/uploads/2014/02/apn_ls_monitoring.pdf .
  70. R. L. Guo and F. Wang, “Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective,” Opt. Express 25, 24512–24520 (2017).
    [Crossref]
  71. J. J. Zheng, Y. L. Yang, M. Lei, B. L. Yao, P. Gao, and T. Ye, “Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method,” Appl. Opt. 51, 7236–7245 (2012).
    [Crossref]
  72. G. F. Wu, F. Wang, and Y. J. Cai, “Generation and self-healing of a radially polarized Bessel-Gauss beam,” Phys. Rev. A 89, 043807 (2014).
    [Crossref]
  73. J. J. Zheng, B. L. Yao, Y. L. Yang, M. Lei, P. Gao, R. Z. Li, S. H. Yan, D. Dan, and T. Ye, “Investigation of Bessel beam propagation in scattering media with scalar diffraction method,” Chin. Opt. Lett. 11, 112601 (2013).
  74. J. J. Zheng, P. Gao, and X. P. Shao, “Aberration compensation and resolution improvement of focus modulation microscopy,” J. Opt. 19, 015302 (2017).
    [Crossref]
  75. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
    [Crossref]
  76. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
    [Crossref]
  77. V. Marx, “Microscopy: Hello, adaptive optics,” Nat. Methods 14, 1133–1136 (2017).
    [Crossref]
  78. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [Crossref]
  79. W. J. Eldridge, A. Sheinfeld, M. T. Rinehart, and A. Wax, “Imaging deformation of adherent cells due to shear stress using quantitative phase imaging,” Opt. Lett. 41, 352–355 (2016).
    [Crossref]
  80. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1, 706–719 (2010).
    [Crossref]
  81. Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [Crossref]
  82. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
    [Crossref]
  83. L. F. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. P. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express 17, 12031–12038(2009).
    [Crossref]
  84. P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
    [Crossref]
  85. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002).
    [Crossref]
  86. J. J. Zheng, D. Akimov, S. Heuke, M. Schmitt, B. L. Yao, T. Ye, M. Lei, P. Gao, and J. Popp, “Vibrational phase imaging in wide-field CARS for nonresonant background suppression,” Opt. Express 23, 10756–10763 (2015).
    [Crossref]
  87. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
    [Crossref]
  88. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).
    [Crossref]
  89. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47, A103–A110 (2008).
    [Crossref]
  90. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
    [Crossref]
  91. A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547–557 (1997).
    [Crossref]
  92. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
    [Crossref]
  93. I. J. Cox and C. J. R. Sheppard, “Information capacity and resolution in an optical-system,” J. Opt. Soc. Am. A 3, 1152–1158 (1986).
    [Crossref]
  94. D. Mendlovic and A. W. Lohman, “Space–bandwidth product adaptation and its application for super resolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997).
    [Crossref]
  95. D. Mendlovic, A. W. Lohman, and Z. Zalevsky, “Space–bandwidth product adaptation and its application for super resolution: examples,” J. Opt. Soc. Am. A 14, 562–567 (2009).
    [Crossref]
  96. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
    [Crossref]
  97. G. Pedrini, F. C. Zhang, and W. Osten, “Digital holographic microscopy in the deep (193 nm) ultraviolet,” Appl. Opt. 46, 7829–7835 (2007).
    [Crossref]
  98. V. Mico, C. Ferreira, and J. Garcia, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20, 9382–9395 (2012).
    [Crossref]
  99. F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550–1552(2001).
    [Crossref]
  100. M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
    [Crossref]
  101. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424–1426 (2003).
    [Crossref]
  102. V. Micó, Z. Zalevsky, and J. García, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” Speckle 5, 110–123 (2009).
    [Crossref]
  103. A. Neumann, Y. Kuznetsova, and S. R. J. Brueck, “Structured illumination for the extension of imaging interferometric microscopy,” Opt. Express 16, 6785–6793 (2008).
    [Crossref]
  104. X. J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43, 1143–1146 (2018).
    [Crossref]
  105. S. Chowdhury and J. Izatt, “Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging,” Opt. Lett. 39, 1015–1018 (2014).
    [Crossref]
  106. J. J. Zheng, P. Gao, B. L. Yao, T. Ye, M. Lei, J. W. Min, D. Dan, Y. L. Yang, and S. H. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photon. Res. 2, 87–91 (2014).
    [Crossref]
  107. L. H. Yeh, L. Tian, and L. Waller, “Structured illumination microscopy with unknown patterns and a statistical prior,” Biomed. Opt. Express 8, 695–711 (2017).
    [Crossref]
  108. Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. R. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
    [Crossref]
  109. Z. Zalevsky, J. Garcia, and V. Mico, “Transversal superresolution with noncontact axial movement of periodic structures,” J. Opt. Soc. Am. A 24, 3220–3225 (2007).
    [Crossref]
  110. J. Garcia, V. Mico, D. Cojoc, and Z. Zalevsky, “Full field of view super-resolution imaging based on two static gratings and white light illumination,” Appl. Opt. 47, 3080–3087 (2008).
    [Crossref]
  111. V. Mico, O. Limon, A. Gur, Z. Zalevsky, and J. Garcia, “Transverse resolution improvement using rotating-grating time-multiplexing approach,” J. Opt. Soc. Am. A 25, 1115–1129 (2008).
    [Crossref]
  112. J. P. Wilde, J. W. Goodman, Y. C. Eldar, and Y. Takashima, “Coherent superresolution imaging via grating-based illumination,” Appl. Opt. 56, A79–A88 (2017).
    [Crossref]
  113. J. Garcia, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073–6078 (2005).
    [Crossref]
  114. Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Mico, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A 11, 085406 (2009).
    [Crossref]
  115. D. Sylman, V. Mico, J. Garcia, and Z. Zalevsky, “Random angular coding for superresolved imaging,” Appl. Opt. 49, 4874–4882 (2010).
    [Crossref]
  116. J. J. Zheng, G. Pedrini, P. Gao, B. L. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17, 085301 (2015).
    [Crossref]
  117. O. Wagner, A. Schwarz, A. Shemer, C. Ferreira, J. Garcia, and Z. Zalevsky, “Superresolved imaging based on wavelength multiplexing of projected unknown speckle patterns,” Appl. Opt. 54, D51–D60 (2015).
    [Crossref]
  118. Z. Zalevsky, V. Mico, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
    [Crossref]
  119. V. Mico, Z. Zalevsky, C. Ferreira, and J. Garcia, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
    [Crossref]
  120. D. P. Kelly and D. Claus, “Filtering role of the sensor pixel in Fourier and Fresnel digital holography,” Appl. Opt. 52, A336–A345 (2013).
    [Crossref]
  121. E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102, 2391–2400 (2012).
    [Crossref]
  122. H. Ji and K. Wang, “Robust image deblurring with an inaccurate blur kernel,” IEEE Trans. Image Process. 21, 1624–1634 (2012).
    [Crossref]
  123. G. Freedman and R. Fattal, “Image and video upscaling from local self-examples,” ACM Trans. Graphic 30, 12 (2011).
    [Crossref]
  124. D. Dai, R. Timofte, and L. Van Gool, “Jointly optimized regressors for image super-resolution,” Comput. Graph. Forum 34, 95–104 (2015).
    [Crossref]
  125. W. Osten and N. Kerwien, “Resolution enhancement technologies in optical metrology,” Proc. SPIE 5776, 10–21 (2005).
    [Crossref]
  126. C. Dong, C. C. Loy, K. M. He, and X. O. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. 38, 295–307 (2016).
    [Crossref]
  127. C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 37, 10–21 (1949).
    [Crossref]
  128. E. Abbe, “Beitrage zür Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Archiv. Microskopische Anat. 9, 413–418 (1873).
    [Crossref]
  129. Lord Rayleigh, “On the theory of optical images, with special reference to the microscope,” Philos. Mag. 42(255), 167–195 (1896).
    [Crossref]
  130. P. M. Duffieux, L’intégrale de Fourier et ses Applications à l’Optique (Faculté des Sciences, 1946).
  131. G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–438 (1952).
    [Crossref]
  132. B. R. Frieden, “On arbitrarily perfect imagery with a finite aperture,” Opt. Acta 16, 795–807 (1969).
    [Crossref]
  133. M. V. Laue, “Die Freiheitsgrade von Strahlenbündeln,” Ann. Phys. 349, 1197–1212 (1914).
    [Crossref]
  134. P. B. Fellgett and E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
    [Crossref]
  135. G. Toraldo di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497–501 (1955).
    [Crossref]
  136. A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spectrosc. 9, 394–398 (1960).
  137. A. W. Lohmann and D. P. Paris, “Superresolution for nonbirefringent objects,” Appl. Opt. 3, 1037–1043 (1964).
    [Crossref]
  138. W. Lukosz, “Optical systems with resolving powers exceeding classical limit,” J. Opt. Soc. Am. 56, 1463–1471 (1966).
    [Crossref]
  139. M. A. Grimm and A. W. Lohmann, “Superresolution image for one-dimensional objects,” J. Opt. Soc. Am. 56, 1151–1156 (1966).
    [Crossref]
  140. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit. II,” J. Opt. Soc. Am. 57, 932–941 (1967).
    [Crossref]
  141. A. Bachl and W. Lukosz, “Experiments on superresolution imaging of a reduced object field,” J. Opt. Soc. Am. 57, 163–169 (1967).
    [Crossref]
  142. M. Françon, “Amelioration de resolution d’optique,” Nuovo Cimento Suppl. 9, 283–287 (1952).
  143. I. J. Cox and C. J. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152–1158 (1986).
    [Crossref]
  144. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
    [Crossref]
  145. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [Crossref]
  146. M. J. Bastiaans, “Wigner distribution function and its application to 1st-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).
    [Crossref]
  147. H. M. Ozaktas and D. Mendlovic, “Fourier-transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).
    [Crossref]
  148. K. B. Wolf, D. Mendlovic, and Z. Zalevsky, “Generalized Wigner function for the analysis of superresolution systems,” Appl. Opt. 37, 4374–4379(1998).
    [Crossref]
  149. T. Kozacki and K. Falaggis, “Angular spectrum-based wave-propagation method with compact space bandwidth for large propagation distances,” Opt. Lett. 40, 3420–3423 (2015).
    [Crossref]
  150. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
    [Crossref]
  151. D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, H116–H127 (2011).
    [Crossref]
  152. V. Eckhouse, Z. Zalevsky, N. Konforti, and D. Mendlovic, “Subwavelength structure imaging,” Opt. Eng. 43, 2462–2468 (2004).
    [Crossref]
  153. S. T. Thurman and A. Bratcher, “Multiplexed synthetic-aperture digital holography,” Appl. Opt. 54, 559–568 (2015).
    [Crossref]
  154. H. Y. Li, L. Y. Zhong, Z. J. Ma, and X. X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272 (2011).
    [Crossref]
  155. J. Buhl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
    [Crossref]
  156. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179–2181 (2002).
    [Crossref]
  157. A. E. Tippie, A. Kumar, and J. R. Fienup, “High-resolution synthetic-aperture digital holography with digital phase and pupil correction,” Opt. Express 19, 12027–12038 (2011).
    [Crossref]
  158. S. Lim, K. Choi, J. Hahn, D. L. Marks, and D. J. Brady, “Image-based registration for synthetic aperture holography,” Opt. Express 19, 11716–11731 (2011).
    [Crossref]
  159. X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54, A51–A58 (2015).
    [Crossref]
  160. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy,” J. Opt. Soc. Am. A 25, 811–822 (2008).
    [Crossref]
  161. H. Z. Jiang, J. L. Zhao, J. L. Di, and C. A. Qin, “Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography,” Opt. Express 17, 18836–18842 (2009).
    [Crossref]
  162. L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
    [Crossref]
  163. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
    [Crossref]
  164. M. Ueda and T. Sato, “Superresolution by holography,” J. Opt. Soc. Am. 61, 418–419 (1971).
    [Crossref]
  165. M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
    [Crossref]
  166. T. Sato, M. Ueda, and G. Yamagish, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406–408 (1974).
    [Crossref]
  167. T. Sato, M. Ueda, and T. Ikeda, “Real-time superresolution by means of an ultrasonic light diffractor and TV system,” Appl. Opt. 13, 1318–1321 (1974).
    [Crossref]
  168. A. Neumann, Y. Kuznetsova, and S. R. J. Brueck, “Optical resolution below λ/4 using synthetic aperture microscopy and evanescent-wave illumination,” Opt. Express 16, 20477–20483 (2008).
    [Crossref]
  169. V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
    [Crossref]
  170. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
    [Crossref]
  171. T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Opt. Lett. 35, 1136–1138 (2010).
    [Crossref]
  172. L. Granero, C. Ferreira, Z. Zalevsky, J. Garcia, and V. Mico, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
    [Crossref]
  173. A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
    [Crossref]
  174. A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Mico, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
    [Crossref]
  175. Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett. 36, 4263–4265 (2011).
    [Crossref]
  176. C. J. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50, B6–B11 (2011).
    [Crossref]
  177. J. A. Picazo-Bueno, Z. Zalevsky, J. Garcia, and V. Mico, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42, 927–930 (2017).
    [Crossref]
  178. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
    [Crossref]
  179. V. Mico, Z. Zalevsky, and J. Garcia, “Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator,” Opt. Lett. 37, 4988–4990 (2012).
    [Crossref]
  180. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy—approaching the linear systems limits of optical resolution,” Opt. Express 15, 6651–6663 (2007).
    [Crossref]
  181. V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
    [Crossref]
  182. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993–1000 (2007).
    [Crossref]
  183. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
    [Crossref]
  184. G. Indebetouw, A. El Maghnouji, and R. Foster, “Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus,” J. Opt. Soc. Am. A 22, 892–898 (2005).
    [Crossref]
  185. V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006).
    [Crossref]
  186. D. J. Lee and A. M. Weiner, “Optical phase imaging using a synthetic aperture phase retrieval technique,” Opt. Express 22, 9380–9394 (2014).
    [Crossref]
  187. Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
    [Crossref]
  188. A. Hussain, T. Amin, C. F. Kuang, L. C. Cao, and X. Liu, “Simple fringe illumination technique for optical superresolution,” J. Opt. Soc. Am. B 34, B78–B84 (2017).
    [Crossref]
  189. A. Hussain, J. L. Martinez, A. Lizana, and J. Campos, “Super resolution imaging achieved by using on-axis interferometry based on a spatial light modulator,” Opt. Express 21, 9615–9623 (2013).
    [Crossref]
  190. A. A. Mudassar, “A simplified holography based superresolution system,” Opt. Laser Eng. 75, 27–38 (2015).
    [Crossref]
  191. A. Hussain and A. A. Mudassar, “Optical super resolution using tilted illumination coupled with object rotation,” Opt. Commun. 339, 34–40 (2015).
    [Crossref]
  192. A. Hussain and A. A. Mudassar, “Holography based super resolution,” Opt. Commun. 285, 2303–2310 (2012).
    [Crossref]
  193. A. H. Phan, J. H. Park, and N. Kim, “Super-resolution digital holographic microscopy for three dimensional sample using multipoint light source illumination,” Jpn. J. Appl. Phys. 50, 092503 (2011).
    [Crossref]
  194. A. A. Mudassar and A. Hussain, “Super-resolution of active spatial frequency heterodyning using holographic approach,” Appl. Opt. 49, 3434–3441(2010).
    [Crossref]
  195. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
    [Crossref]
  196. P. Gao, B. L. Yao, I. Harder, N. Lindlein, and F. J. Torcal-Milla, “Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement,” Opt. Lett. 36, 4305–4307 (2011).
    [Crossref]
  197. V. Mico, J. Garcia, and Z. Zalevsky, “Axial superresolution by synthetic aperture generation,” J. Opt. A 10, 125001 (2008).
    [Crossref]
  198. V. Micó, Z. Zalevsky, and J. García, “Edge processing by synthetic aperture superresolution in digital holographic microscopy,” 3D Res. 2, 01001 (2011).
    [Crossref]
  199. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [Crossref]
  200. K. Kim, J. S. Yoon, S. Y. Lee, S. A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
    [Crossref]
  201. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
    [Crossref]
  202. F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
    [Crossref]
  203. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
    [Crossref]
  204. A. J. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett. 6, 374–376 (1981).
    [Crossref]
  205. R. Horstmeyer, J. Chung, X. Z. Ou, G. A. Zheng, and C. H. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
    [Crossref]
  206. Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
    [Crossref]
  207. S. Chowdhury, A. H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express 3, 1841–1854 (2012).
    [Crossref]
  208. A. Shemer, Z. Zalevsky, D. Mendlovic, N. Konforti, and E. Marom, “Time multiplexing superresolution based on interference grating projection,” Appl. Opt. 41, 7397–7404 (2002).
    [Crossref]
  209. P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
    [Crossref]
  210. E. Sanchez-Ortiga, M. Martinez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39, 2086–2089 (2014).
    [Crossref]
  211. K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
    [Crossref]
  212. A. Hussain and J. L. M. Fuentes, “Resolution enhancement using simultaneous couple illumination,” J. Opt. 18, 105702 (2016).
    [Crossref]
  213. S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
    [Crossref]
  214. C. J. Yuan, J. Ma, J. T. Dou, J. D. Wei, S. T. Feng, S. P. Nie, and C. L. Chang, “Resolution enhancement of the microscopic imaging by unknown sinusoidal structured illumination with iterative algorithm,” Appl. Opt. 56, F78–F83 (2017).
    [Crossref]
  215. S. Chowdhury and J. Izatt, “Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging,” Biomed. Opt. Express 4, 1795–1805 (2013).
    [Crossref]
  216. S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy,” Biomed. Opt. Express 8, 2496–2518 (2017).
    [Crossref]
  217. S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction,” Biomed. Opt. Express 8, 5776–5793 (2017).
    [Crossref]
  218. J. L. Chen, Y. Xu, X. H. Lv, X. M. Lai, and S. Q. Zeng, “Super-resolution differential interference contrast microscopy by structured illumination,” Opt. Express 21, 112–121 (2013).
    [Crossref]
  219. J. Yi, Q. Wei, H. F. Zhang, and V. Backman, “Structured interference optical coherence tomography,” Opt. Lett. 37, 3048–3050 (2012).
    [Crossref]
  220. K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8, 342–344 (2014).
    [Crossref]
  221. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2006).
  222. P. F. Almoro, L. Waller, M. Agour, C. Falldorf, G. Pedrini, W. Osten, and S. G. Hanson, “Enhanced deterministic phase retrieval using a partially developed speckle field,” Opt. Lett. 37, 2088–2090 (2012).
    [Crossref]
  223. J. W. Goodman, Statistical Optics (Wiley, 1983).
  224. H. J. Tiziani and G. Pedrini, “From speckle pattern photography to digital holographic interferometry,” Appl. Opt. 52, 30–44 (2013).
    [Crossref]
  225. M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Opt. Commun. 174, 75–80 (2000).
    [Crossref]
  226. F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131–1139 (2004).
    [Crossref]
  227. M. C. Pitter, C. W. See, and M. G. Somekh, “Full-field heterodyne interference microscope with spatially incoherent illumination,” Opt. Lett. 29, 1200–1202 (2004).
    [Crossref]
  228. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009).
    [Crossref]
  229. V. Kollarova, J. Collakova, Z. Dostal, P. Vesely, and R. Chmelik, “Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope,” J. Biomed. Opt. 20, 111206 (2015).
    [Crossref]
  230. M. Lost’ak, R. Chmelik, M. Slaba, and T. Slaby, “Coherence-controlled holographic microscopy in diffuse media,” Opt. Express 22, 4180–4195 (2014).
    [Crossref]
  231. T. Slaby, P. Kolman, Z. Dostal, M. Antos, M. Lost’ak, and R. Chmelik, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21, 14747–14762 (2013).
    [Crossref]
  232. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P. C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
    [Crossref]
  233. S. P. Li and J. G. Zhong, “Dynamic imaging through turbid media based on digital holography,” J. Opt. Soc. Am. A 31, 480–486 (2014).
    [Crossref]
  234. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
    [Crossref]
  235. V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
    [Crossref]
  236. R. K. Singh, A. M. Sharma, and B. Das, “Quantitative phase-contrast imaging through a scattering media,” Opt. Lett. 39, 5054–5057 (2014).
    [Crossref]
  237. S. Tamano, Y. Hayasaki, and N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief object hidden behind a light-scattering medium,” Appl. Opt. 45, 953–959 (2006).
    [Crossref]
  238. M. P. Shih, H. S. Chen, and E. N. Leith, “Spectral holography for coherent-gated imaging,” Opt. Lett. 24, 52–54 (1999).
    [Crossref]
  239. E. N. Leith, B. G. Hoover, S. M. Grannell, K. D. Mills, H. S. Chen, and D. S. Dilworth, “Realization of time gating by use of spatial filtering,” Appl. Opt. 38, 1370–1376 (1999).
    [Crossref]
  240. P. Naulleau, E. Leith, H. Chen, B. Hoover, and J. Lopez, “Time-gated ensemble-averaged imaging through highly scattering media,” Appl. Opt. 36, 3889–3894 (1997).
    [Crossref]
  241. E. Leith, P. Naulleau, and D. Dilworth, “Ensemble-averaged imaging through highly scattering media,” Opt. Lett. 21, 1691–1693 (1996).
    [Crossref]
  242. J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
    [Crossref]
  243. K. Mills, Z. Zalevsky, and E. N. Leith, “Holographic generalized first-arriving light approach for resolving images viewed through a scattering medium,” Appl. Opt. 41, 2116–2121 (2002).
    [Crossref]
  244. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
    [Crossref]
  245. H. Yu, T. R. Hillman, W. Choi, J. O. Lee, M. S. Feld, R. R. Dasari, and Y. Park, “Measuring large optical transmission matrices of disordered media,” Phys. Rev. Lett. 111, 153902 (2013).
    [Crossref]
  246. M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
    [Crossref]
  247. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
    [Crossref]
  248. H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett. 21, 1526–1528 (1996).
    [Crossref]
  249. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
    [Crossref]
  250. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35, 2370–2372 (2010).
    [Crossref]
  251. F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36, 3079–3081 (2011).
    [Crossref]
  252. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
    [Crossref]
  253. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18, 22817–22825 (2010).
    [Crossref]
  254. J. A. Rodrigo and T. Alieva, “Rapid quantitative phase imaging for partially coherent light microscopy,” Opt. Express 22, 13472–13483 (2014).
    [Crossref]
  255. C. Zuo, Q. Chen, W. J. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21, 24060–24075 (2013).
    [Crossref]
  256. Y. Li, J. L. Di, C. J. Ma, J. W. Zhang, J. Z. Zhong, K. Q. Wang, T. L. Xi, and J. L. Zhao, “Quantitative phase microscopy for cellular dynamics based on transport of intensity equation,” Opt. Express 26, 586–593 (2018).
    [Crossref]
  257. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
    [Crossref]
  258. L. Camacho, V. Mico, Z. Zalevsky, and J. Garcia, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6766 (2010).
    [Crossref]
  259. P. Bao, F. C. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
    [Crossref]
  260. A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889–895 (2012).
    [Crossref]
  261. W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
    [Crossref]
  262. J. L. Zhang, J. S. Sun, Q. Chen, J. J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy,” Sci. Rep. 7, 11777 (2017).
    [Crossref]
  263. Y. Rivenson, Y. C. Wu, H. D. Wang, Y. B. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6, 37862 (2016).
    [Crossref]
  264. A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20, 3129–3143 (2012).
    [Crossref]
  265. Y. C. Wu, Y. B. Zhang, W. Luo, and A. Ozcan, “Demosaiced pixel super-resolution for multiplexed holographic color imaging,” Sci. Rep. 6, 28601 (2016).
    [Crossref]
  266. W. Luo, Y. Zhang, A. Feizi, Z. Gorocs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5, e16060 (2016).
    [Crossref]
  267. A. Greenbaum, W. Luo, B. Khademhosseinieh, T. W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
    [Crossref]
  268. A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21, 12469–12483 (2013).
    [Crossref]
  269. W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
    [Crossref]
  270. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [Crossref]
  271. G. A. Zheng, S. A. Lee, S. Yang, and C. H. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10, 3125–3129 (2010).
    [Crossref]
  272. W. Bishara, H. Y. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18, 27499–27510 (2010).
    [Crossref]
  273. Y. Li, F. Lilley, D. Burton, and M. Lalor, “Evaluation and benchmarking of a pixel-shifting camera for superresolution lensless digital holography,” Appl. Opt. 49, 1643–1650 (2010).
    [Crossref]
  274. G. Jacquemod, C. Odet, and R. Goutte, “Image-resolution enhancement using subpixel camera displacement,” Signal Process. 26, 139–146 (1992).
    [Crossref]
  275. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  276. W. B. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
    [Crossref]
  277. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004).
    [Crossref]
  278. O. Mendoza-Yero, M. Carbonell-Leal, J. Lancis, and J. Garcia-Sucerouia, “Second-harmonic illumination to enhance multispectral digital lensless holographic microscopy,” Opt. Lett. 41, 1062–1065 (2016).
    [Crossref]
  279. S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
    [Crossref]
  280. F. Kazemzadeh and A. Wong, “Laser light-field fusion for wide-field lensfree on-chip phase contrast microscopy of nanoparticles,” Sci. Rep. 6, 38981(2016).
    [Crossref]
  281. S. A. Lee, J. Erath, G. A. Zheng, X. Z. Ou, P. Willems, D. Eichinger, A. Rodriguez, and C. H. Yang, “Imaging and identification of waterborne parasites using a chip-scale microscope,” PLoS One 9, e89712 (2014).
    [Crossref]
  282. A. Ozcan and U. Demirci, “Ultra wide-field lens-free monitoring of cells on-chip,” Lab Chip 8, 98–106 (2008).
    [Crossref]
  283. S. Seo, T. W. Su, A. Erlinger, and A. Ozcan, “Multi-color LUCAS: lensfree on-chip cytometry using tunable monochromatic illumination and digital noise reduction,” Cell. Mol. Bioeng. 1, 146–156 (2008).
    [Crossref]
  284. H. Z. Jiang, J. L. Zhao, and J. L. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285, 3046–3049 (2012).
    [Crossref]
  285. D. Claus, “High resolution digital holographic synthetic aperture applied to deformation measurement and extended depth of field method,” Appl. Opt. 49, 3187–3198 (2010).
    [Crossref]
  286. B. Katz and J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements,” Opt. Express 18, 962–972(2010).
    [Crossref]
  287. V. Mico, L. Granero, Z. Zalevsky, and J. Garcia, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A 11, 125408 (2009).
    [Crossref]
  288. L. Martinez-Leon and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
    [Crossref]
  289. J. L. Di, J. L. Zhao, H. Z. Jiang, P. Zhang, Q. Fan, and W. W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47, 5654–5659 (2008).
    [Crossref]
  290. P. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett. 32, 733–735 (2007).
    [Crossref]
  291. L. Granero, Z. Zalevsky, and V. Mico, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
    [Crossref]
  292. J. L. Zhao, X. B. Yan, W. W. Sun, and J. L. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
    [Crossref]
  293. V. Mico and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
    [Crossref]
  294. P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express 17, 5473–5480 (2009).
    [Crossref]
  295. C. J. Yuan, H. C. Zhai, and H. T. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
    [Crossref]
  296. W. H. Zhang, L. C. Cao, G. F. Jin, and D. Brady, “Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation,” Appl. Opt. 57, A164–A171 (2018).
    [Crossref]
  297. Q. W. Lin, D. Y. Wang, Y. X. Wang, L. Rong, and S. F. Chang, “Super-resolution imaging in digital holography by using dynamic grating with a spatial light modulator,” Opt. Laser Eng. 66, 279–284 (2015).
    [Crossref]
  298. L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
    [Crossref]
  299. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
    [Crossref]
  300. M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imag. Syst. Tech. 16, 258–261 (2006).
    [Crossref]
  301. C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
    [Crossref]
  302. V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22, 22328–22339 (2014).
    [Crossref]
  303. V. Mico, C. Ferreira, and J. Garcia, “Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects,” Appl. Opt. 52, 6390–6400 (2013).
    [Crossref]
  304. R. Binet, J. Colineau, and J. C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt. 41, 4775–4782(2002).
    [Crossref]
  305. M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
    [Crossref]
  306. D. Claus and J. M. Rodenburg, “Pixel size adjustment in coherent diffractive imaging within the Rayleigh-Sommerfeld regime,” Appl. Opt. 54, 1936–1944 (2015).
    [Crossref]
  307. S. A. Arpali, C. Arpali, A. F. Coskun, H. H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12, 4968–4971 (2012).
    [Crossref]
  308. A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensfree fluorescent on-chip imaging of transgenic Caenorhabditis elegans over an ultra-wide field-of-view,” PLoS One 6, e15955 (2011).
    [Crossref]
  309. A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010).
    [Crossref]
  310. A. F. Coskun, T. W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10, 824–827 (2010).
    [Crossref]
  311. Y. B. Zhang, Y. C. Wu, Y. Zhang, and A. Ozcan, “Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction,” Sci. Rep. 6, 27811 (2016).
    [Crossref]
  312. S. A. Lee, G. A. Zheng, N. Mukherjee, and C. H. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip 12, 2385–2390 (2012).
    [Crossref]
  313. G. A. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. H. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894(2011).
    [Crossref]
  314. J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374–6380(2006).
    [Crossref]
  315. Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. B. Zhang, H. D. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
    [Crossref]
  316. T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
    [Crossref]
  317. T. W. Su, I. Choi, J. W. Feng, K. Huang, E. McLeod, and A. Ozcan, “Sperm trajectories form chiral ribbons,” Sci. Rep. 3, 1664 (2013).
    [Crossref]
  318. M. U. Daloglu and A. Ozcan, “Computational imaging of sperm locomotion,” Biol. Reprod. 97, 182–188 (2017).
    [Crossref]
  319. T. W. Su, S. O. Isikman, W. Bishara, D. Tseng, A. Erlinger, and A. Ozcan, “Multi-angle lensless digital holography for depth resolved imaging on a chip,” Opt. Express 18, 9690–9711 (2010).
    [Crossref]
  320. R. S. Arvidson, C. Fischer, D. S. Sawyer, G. D. Scott, D. Natelson, and A. Luttge, “Lateral resolution enhancement of vertical scanning interferometry by sub-pixel sampling,” Microsc. Microanal. 20, 90–98 (2014).
    [Crossref]
  321. A. Anand, V. Chhaniwal, and B. Javidi, “Tutorial: common path self-referencing digital holographic microscopy,” APL Photon. 3, 071101 (2018).
    [Crossref]
  322. X. Q. Cui, J. A. Ren, G. J. Tearney, and C. H. Yang, “Wavefront image sensor chip,” Opt. Express 18, 16685–16701 (2010).
    [Crossref]
  323. N. T. Shaked, Y. Z. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
    [Crossref]
  324. V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
    [Crossref]
  325. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
    [Crossref]
  326. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
    [Crossref]
  327. P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21, 5701–5714 (2013).
    [Crossref]
  328. S. Karepov, N. T. Shaked, and T. Ellenbogen, “Off-axis interferometer with adjustable fringe contrast based on polarization encoding,” Opt. Lett. 40, 2273–2276 (2015).
    [Crossref]
  329. D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
    [Crossref]
  330. V. Mico, C. Ferreira, Z. Zalevsky, and J. Garcia, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
    [Crossref]
  331. J. A. Picazo-Bueno, Z. Zalevsky, J. Garcia, C. Ferreira, and V. Mico, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
    [Crossref]
  332. J. A. Picazo-Bueno, M. Trusiak, J. Garcia, K. Patorski, and V. Mico, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43, 1007–1010 (2018).
    [Crossref]
  333. S. Ebrahimi, M. Dashtdar, E. Sanchez-Ortiga, M. Martinez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
    [Crossref]
  334. D. J. Lee, K. Han, H. J. Lee, and A. M. Weiner, “Synthetic aperture microscopy based on referenceless phase retrieval with an electrically tunable lens,” Appl. Opt. 54, 5346–5352 (2015).
    [Crossref]
  335. T. D. Yang, H. J. Kim, K. J. Lee, B. M. Kim, and Y. Choi, “Single-shot and phase-shifting digital holographic microscopy using a 2-D grating,” Opt. Express 24, 9480–9488 (2016).
    [Crossref]
  336. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–698 (1942).
    [Crossref]
  337. J. Gluckstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001).
    [Crossref]
  338. J. J. Zheng, B. L. Yao, P. Gao, and T. Ye, “Phase contrast microscopy with fringe contrast adjustable by using grating-based phase-shifter,” Opt. Express 20, 16077–16082 (2012).
    [Crossref]
  339. Z. Wang, L. Millet, M. Mir, H. F. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
    [Crossref]
  340. T. H. Nguyen and G. Popescu, “Spatial light interference microscopy (SLIM) using twisted-nematic liquid-crystal modulation,” Biomed. Opt. Express 4, 1571–1583 (2013).
    [Crossref]
  341. H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using spatial light interference microscopy (SLIM),” Sci. Rep. 8, 6875 (2018).
    [Crossref]
  342. P. Gao, G. Pedrini, C. Zuo, and W. Osten, “Phase retrieval using spatially modulated illumination,” Opt. Lett. 39, 3615–3618 (2014).
    [Crossref]
  343. E. Peters, P. Clemente, E. Salvador-Balaguer, E. Tajahuerce, P. Andres, D. G. Perez, and J. Lancis, “Real-time acquisition of complex optical fields by binary amplitude modulation,” Opt. Lett. 42, 2030–2033 (2017).
    [Crossref]
  344. F. Soldevila, V. Duran, P. Clemente, J. Lancis, and E. Tajahuerce, “Phase imaging by spatial wavefront sampling,” Optica 5, 164–174 (2018).
    [Crossref]
  345. C. Lingel, T. Haist, and W. Osten, “Spatial-light-modulator-based adaptive optical system for the use of multiple phase retrieval methods,” Appl. Opt. 55, 10329–10334 (2016).
    [Crossref]
  346. J. Liu, Y. Li, W. B. Wang, H. Zhang, Y. H. Wang, J. B. Tan, and C. G. Liu, “Stable and robust frequency domain position compensation strategy for Fourier ptychographic microscopy,” Opt. Express 25, 28053–28067 (2017).
    [Crossref]
  347. J. Chung, H. W. Lu, X. Z. Ou, H. J. Zhou, and C. H. Yang, “Wide-field Fourier ptychographic microscopy using laser illumination source,” Biomed. Opt. Express 7, 4787–4802 (2016).
    [Crossref]
  348. X. Z. Ou, R. Horstmeyer, G. A. Zheng, and C. H. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23, 3472–3491 (2015).
    [Crossref]
  349. X. Z. Ou, R. Horstmeyer, C. H. Yang, and G. A. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
    [Crossref]
  350. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109, 338–343 (2009).
    [Crossref]
  351. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
    [Crossref]
  352. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264–7278 (2008).
    [Crossref]
  353. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
    [Crossref]
  354. W. Hoppe, “Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen,” Acta Crystallographica 25, 495–501 (1969).
    [Crossref]
  355. A. Tripathi, I. McNulty, and O. G. Shpyrko, “Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods,” Opt. Express 22, 1452–1466 (2014).
    [Crossref]
  356. X. J. Huang, H. F. Yan, R. Harder, Y. K. Hwu, I. K. Robinson, and Y. S. Chu, “Optimization of overlap uniformness for ptychography,” Opt. Express 22, 12634–12644 (2014).
    [Crossref]
  357. L. Tian, Z. J. Liu, L. H. Yeh, M. Chen, J. S. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2, 904–911 (2015).
    [Crossref]
  358. X. L. He, C. Liu, and J. Q. Zhu, “Single-shot Fourier ptychography based on diffractive beam splitting,” Opt. Lett. 43, 214–217 (2018).
    [Crossref]
  359. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
    [Crossref]
  360. J. S. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
    [Crossref]
  361. S. Pacheco, G. A. Zheng, and R. G. Liang, “Reflective Fourier ptychography,” J. Biomed. Opt. 21, 026010 (2016).
    [Crossref]
  362. S. Y. Dong, P. Nanda, R. Shiradkar, K. K. Guo, and G. A. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22, 20856–20870 (2014).
    [Crossref]
  363. S. Y. Dong, R. Shiradkar, P. Nanda, and G. A. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5, 1757–1767 (2014).
    [Crossref]
  364. P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494, 68–71 (2013).
    [Crossref]
  365. B. Lee, J.-Y. Hong, D. Yoo, J. Cho, Y. Jeong, S. Moon, and B. Lee, “Single-shot phase retrieval via Fourier ptychographic microscopy,” Optica 5, 976–983 (2018).
    [Crossref]
  366. A. M. Maiden, M. J. Humphry, F. C. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A 28, 604–612 (2011).
    [Crossref]
  367. C. Zuo, J. S. Sun, J. J. Li, J. L. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
    [Crossref]
  368. R. Hellwarth and P. Christensen, “Nonlinear optical microscope using second-harmonic generation,” Appl. Opt. 14, 247–248 (1975).
    [Crossref]
  369. R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974).
    [Crossref]
  370. J. N. Gannaway and C. J. R. Sheppard, “Second harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10, 435–439 (1978).
    [Crossref]
  371. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
    [Crossref]
  372. X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7, 654–669 (2012).
    [Crossref]
  373. P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5, 13–26 (2011).
    [Crossref]
  374. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
    [Crossref]
  375. E. Shaffer, N. Pavillon, J. Kuhn, and C. Depeursinge, “Digital holographic microscopy investigation of second harmonic generated at a glass/air interface,” Opt. Lett. 34, 2450–2452 (2009).
    [Crossref]
  376. E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett. 35, 4102–4104 (2010).
    [Crossref]
  377. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851 (2010).
    [Crossref]
  378. E. Shaffer, P. Marquet, and C. Depeursinge, “Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy,” Opt. Express 18, 17392–17403 (2010).
    [Crossref]
  379. D. R. Smith, D. G. Winters, P. Schlup, and R. A. Bartels, “Hilbert reconstruction of phase-shifted second-harmonic holographic images,” Opt. Lett. 37, 2052–2054 (2012).
    [Crossref]
  380. M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19, 085504 (2017).
    [Crossref]
  381. N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5, 13580 (2015).
    [Crossref]
  382. K. L. Sly, T. T. Nguyen, and J. C. Conboy, “Lens-less surface second harmonic imaging,” Opt. Express 20, 21953–21967 (2012).
    [Crossref]
  383. Y. B. Duan, G. Barbastathis, and B. L. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38, 2988–2990 (2013).
    [Crossref]
  384. T. X. Hoang, Y. B. Duan, X. D. Chen, and G. Barbastathis, “Focusing and imaging in microsphere-based microscopy,” Opt. Express 23, 12337–12353 (2015).
    [Crossref]
  385. Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, and M. H. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
    [Crossref]
  386. F. G. Wang, S. L. Yang, H. F. Ma, P. Shen, N. Wei, M. Wang, Y. Xia, Y. Deng, and Y. H. Ye, “Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion,” Appl. Phys. Lett. 112, 023101 (2018).
    [Crossref]
  387. J. Z. Ling, X. R. Wang, D. C. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
    [Crossref]
  388. S. L. Yang, F. G. Wang, Y. H. Ye, Y. Xia, Y. Deng, J. G. Wang, and Y. R. Cao, “Influence of the photonic nanojet of microspheres on microsphere imaging,” Opt. Express 25, 27551–27558 (2017).
    [Crossref]
  389. L. Y. Jiang, W. Zhang, H. Yuan, and X. Y. Li, “Super resolution from pure/hybrid nanoscale solid immersion lenses under dark-field illumination,” Opt. Express 24, 25224–25232 (2016).
    [Crossref]
  390. H. S. S. Lai, F. F. Wang, Y. Li, B. L. Jia, L. Q. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11, e0165194 (2016).
    [Crossref]
  391. R. Ye, Y. H. Ye, H. F. Ma, L. L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
    [Crossref]
  392. K. W. Allen, N. Farahi, Y. C. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23, 24484–24496 (2015).
    [Crossref]
  393. L. Li, W. Guo, Y. Z. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
    [Crossref]
  394. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
    [Crossref]
  395. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [Crossref]
  396. A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).
    [Crossref]
  397. A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Carabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40, 5–8 (2015).
    [Crossref]
  398. Y. X. Wang, S. Guo, D. Y. Wang, Q. W. Lin, L. Rong, and J. Zhao, “Resolution enhancement phase-contrast imaging by microsphere digital holography,” Opt. Commun. 366, 81–87 (2016).
    [Crossref]
  399. M. Aakhte, V. Abbasian, E. A. Akhlaghi, A. R. Moradi, A. Anand, and B. Javidi, “Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification,” Appl. Opt. 56, D8–D13 (2017).
    [Crossref]
  400. Y. Ben-Aryeh, “Increase of resolution by use of microspheres related to complex Snell’s law,” J. Opt. Soc. Am. A 33, 2284–2288 (2016).
    [Crossref]
  401. S. Perrin, A. Leong-Hoi, S. Lecler, P. Pfeiffer, I. Kassamakov, A. Nolvi, E. Haeggstrom, and P. Montgomery, “Microsphere-assisted phase-shifting profilometry,” Appl. Opt. 56, 7249–7255 (2017).
    [Crossref]
  402. A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
    [Crossref]
  403. V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A. R. Moradi, “Super-resolved microsphere-assisted Mirau digital holography by oblique illumination,” J. Opt. 20, 065301 (2018).
    [Crossref]
  404. Q. W. Lin, D. Y. Wang, Y. X. Wang, S. Guo, S. Panezai, L. T. Ouyang, L. Rong, and J. Zhao, “Super-resolution quantitative phase-contrast imaging by microsphere-based digital holographic microscopy,” Opt. Eng. 56, 034116 (2017).
    [Crossref]
  405. I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoi, P. Montgomery, and E. Haeggstrom, “3D super-resolution optical profiling using microsphere enhanced Mirau interferometry,” Sci. Rep. 7, 3683 (2017).
    [Crossref]
  406. C. P. Allier, G. Hiernard, V. Poher, and J. M. Dinten, “Bacteria detection with thin wetting film lensless imaging,” Biomed. Opt. Express 1, 762–770 (2010).
    [Crossref]
  407. O. Mudanyali, W. Bishara, and A. Ozcan, “Lensfree super-resolution holographic microscopy using wetting films on a chip,” Opt. Express 19, 17378–17389 (2011).
    [Crossref]
  408. O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 254 (2013).
    [Crossref]
  409. E. McLeod, T. U. Dincer, M. Veli, Y. N. Ertas, C. Nguyen, W. Luo, A. Greenbaum, A. Feizi, and A. Ozcan, “High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy,” ACS Nano 9, 3265–3273 (2015).
    [Crossref]
  410. E. McLeod, C. Nguyen, P. Huang, W. Luo, M. Veli, and A. Ozcan, “Tunable vapor-condensed nanolenses,” ACS Nano 8, 7340–7349 (2014).
    [Crossref]
  411. Y. Hennequin, C. P. Allier, E. McLeod, O. Mudanyali, D. Migliozzi, A. Ozcan, and J. M. Dinten, “Optical detection and sizing of single nanoparticles using continuous wetting films,” ACS Nano 7, 7601–7609 (2013).
    [Crossref]
  412. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  413. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Solid-immersion imaging interferometric nanoscopy to the limits of available frequency space,” J. Opt. Soc. Am. A 29, 772–781 (2012).
    [Crossref]
  414. J. W. Zhang, J. L. Di, Y. Li, T. L. Xi, and J. L. Zhao, “Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection,” Opt. Express 23, 27328–27334 (2015).
    [Crossref]
  415. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–607 (1986).
    [Crossref]
  416. D. Axelrod, “Cell-substrate contacts illuminated by total internal-reflection fluorescence,” J. Cell. Biol. 89, 141–145 (1981).
    [Crossref]
  417. W. M. Ash and M. K. Kim, “Digital holography of total internal reflection,” Opt. Express 16, 9811–9820 (2008).
    [Crossref]
  418. A. S. G. Curtis, “Mechanism of adhesion of cells to glass—study by interference reflection microscopy,” J. Cell. Biol. 20, 199–215 (1964).
    [Crossref]
  419. H. Verschueren, “Interference reflection microscopy in cell biology—methodology and applications,” J. Cell Sci. 75, 279–301 (1985).
  420. W. M. Ash, L. Krzewina, and M. K. Kim, “Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy,” Appl. Opt. 48, H144–H152 (2009).
    [Crossref]
  421. A. Calabuig, M. Matrecano, M. Paturzo, and P. Ferraro, “Common-path configuration in total internal reflection digital holography microscopy,” Opt. Lett. 39, 2471–2474 (2014).
    [Crossref]
  422. T. Das and K. Bhattacharya, “Refractive index profilometry using the total internally reflected light field,” Appl. Opt. 56, 9241–9246 (2017).
    [Crossref]
  423. J. W. Zhang, C. J. Ma, S. Q. Dai, J. L. Di, Y. Li, T. L. Xi, and J. L. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41, 3844–3847 (2016).
    [Crossref]
  424. C. J. Ma, J. L. Di, J. W. Zhang, Y. Li, T. L. Xi, E. P. Li, and J. L. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55, 9435–9439 (2016).
    [Crossref]
  425. B. Mandracchia, O. Gennari, V. Marchesano, M. Paturzo, and P. Ferraro, “Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy,” J. Biophoton. 10, 1163–1170 (2017).
    [Crossref]
  426. X. Hao, C. F. Kuang, Y. H. Li, and X. Liu, “Evanescent-wave-induced frequency shift for optical superresolution imaging,” Opt. Lett. 38, 2455–2458 (2013).
    [Crossref]
  427. P. von Olshausen and A. Rohrbach, “Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit,” Opt. Lett. 38, 4066–4069 (2013).
    [Crossref]
  428. G. Maire, H. Giovannini, A. Talneau, P. C. Chaumet, K. Belkebir, and A. Sentenac, “Phase imaging and synthetic aperture super-resolution via total internal reflection microscopy,” Opt. Lett. 43, 2173–2176 (2018).
    [Crossref]
  429. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
    [Crossref]
  430. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 328, 846–866 (1907).
    [Crossref]
  431. A. Otto, “Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
    [Crossref]
  432. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
    [Crossref]
  433. Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 1–12(2012).
    [Crossref]
  434. B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
    [Crossref]
  435. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
    [Crossref]
  436. A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
    [Crossref]
  437. Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30, 1488–1490 (2005).
    [Crossref]
  438. X. L. Yu, X. Ding, F. F. Liu, and Y. Deng, “A novel surface plasmon resonance imaging interferometry for protein array detection,” Sens. Actuators B Chem. 130, 52–58 (2008).
    [Crossref]
  439. M. G. Somekh, G. Stabler, S. G. Liu, J. Zhang, and C. W. See, “Wide-field high-resolution surface-plasmon interference microscopy,” Opt. Lett. 34, 3110–3112 (2009).
    [Crossref]
  440. Y. D. Su, K. C. Chiu, N. S. Chang, H. L. Wu, and S. J. Chen, “Study of cell-biosubstrate contacts via surface plasmon polariton phase microscopy,” Opt. Express 18, 20125–20135 (2010).
    [Crossref]
  441. D. Q. Wang, L. L. Ding, W. Zhang, Z. F. Luo, H. C. Ou, E. Y. Zhang, and X. L. Yu, “A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging,” Meas. Sci. Technol. 23, 065701 (2012).
    [Crossref]
  442. C. Y. Hu, J. G. Zhong, and J. W. Weng, “Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes,” J. Biomed. Opt. 15, 056015 (2010).
    [Crossref]
  443. S. P. Li and J. G. Zhong, “Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography,” Biomed. Opt. Express 3, 3190–3202 (2012).
    [Crossref]
  444. B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87, 4124–4128 (2015).
    [Crossref]
  445. J. W. Zhang, S. Q. Dai, J. Z. Zhong, T. L. Xi, C. J. Ma, Y. Li, J. L. Di, and J. L. Zhao, “Wavelength-multiplexing surface plasmon holographic microscopy,” Opt. Express 26, 13549–13560 (2018).
    [Crossref]
  446. J. W. Zhang, S. Q. Dai, C. J. Ma, J. L. Di, and J. L. Zhao, “Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance,” Appl. Opt. 56, 3223–3228 (2017).
    [Crossref]
  447. J. W. Zhang, S. Q. Dai, C. J. Ma, J. L. Di, and J. L. Zhao, “Compact surface plasmon holographic microscopy for near-field film mapping,” Opt. Lett. 42, 3462–3465 (2017).
    [Crossref]
  448. S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt. 10, 034005 (2005).
    [Crossref]
  449. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface-plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
    [Crossref]
  450. L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism-based surface plasmon resonance microscopy,” Opt. Express 22, 22771–22785 (2014).
    [Crossref]
  451. H. E. Debruijn, R. P. H. Kooyman, and J. Greve, “Surface-plasmon resonance microscopy—improvement of the resolution by rotation of the object,” Appl. Opt. 32, 2426–2430 (1993).
    [Crossref]
  452. T. Son, C. Lee, J. Seo, I. H. Choi, and D. Kim, “Surface plasmon microscopy by spatial light switching for label-free imaging with enhanced resolution,” Opt. Lett. 43, 959–962 (2018).
    [Crossref]
  453. F. A. Banville, J. Moreau, M. Sarkar, M. Besbes, M. Canva, and P. G. Charette, “Spatial resolution versus contrast trade-off enhancement in high-resolution surface plasmon resonance imaging (SPRI) by metal surface nanostructure design,” Opt. Express 26, 10616–10630 (2018).
    [Crossref]
  454. Q. L. Liu, Y. Fang, R. J. Zhou, P. Xiu, C. F. Kuang, and X. Liu, “Surface wave illumination Fourier ptychographic microscopy,” Opt. Lett. 41, 5373–5376 (2016).
    [Crossref]
  455. D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—I,” Bell. Syst. Tech. J. 40, 43–63 (1961).
    [Crossref]
  456. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
    [Crossref]
  457. A. Gur, D. Fixler, V. Mico, J. Garcia, and Z. Zalevsky, “Linear optics based nanoscopy,” Opt. Express 18, 22222–22231 (2010).
    [Crossref]
  458. T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular imaging using temporally flickering nanoparticles,” Sci. Rep. 5, 8244 (2015).
    [Crossref]
  459. T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular superresolved imaging of multiple markers using temporally flickering nanoparticles,” Sci. Rep. 5, 10965 (2015).
    [Crossref]

2018 (19)

A. Anand, V. Chhaniwal, and B. Javidi, “Tutorial: common path self-referencing digital holographic microscopy,” APL Photon. 3, 071101 (2018).
[Crossref]

S. Ebrahimi, M. Dashtdar, E. Sanchez-Ortiga, M. Martinez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using spatial light interference microscopy (SLIM),” Sci. Rep. 8, 6875 (2018).
[Crossref]

F. G. Wang, S. L. Yang, H. F. Ma, P. Shen, N. Wei, M. Wang, Y. Xia, Y. Deng, and Y. H. Ye, “Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion,” Appl. Phys. Lett. 112, 023101 (2018).
[Crossref]

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A. R. Moradi, “Super-resolved microsphere-assisted Mirau digital holography by oblique illumination,” J. Opt. 20, 065301 (2018).
[Crossref]

W. H. Zhang, L. C. Cao, G. F. Jin, and D. Brady, “Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation,” Appl. Opt. 57, A164–A171 (2018).
[Crossref]

J. A. Picazo-Bueno, D. Cojoc, F. Iseppon, V. Torre, and V. Mico, “Single-shot, dual-mode, water-immersion microscopy platform for biological applications,” Appl. Opt. 57, A242–A249 (2018).
[Crossref]

X. L. He, C. Liu, and J. Q. Zhu, “Single-shot Fourier ptychography based on diffractive beam splitting,” Opt. Lett. 43, 214–217 (2018).
[Crossref]

Y. Li, J. L. Di, C. J. Ma, J. W. Zhang, J. Z. Zhong, K. Q. Wang, T. L. Xi, and J. L. Zhao, “Quantitative phase microscopy for cellular dynamics based on transport of intensity equation,” Opt. Express 26, 586–593 (2018).
[Crossref]

F. Soldevila, V. Duran, P. Clemente, J. Lancis, and E. Tajahuerce, “Phase imaging by spatial wavefront sampling,” Optica 5, 164–174 (2018).
[Crossref]

T. Son, C. Lee, J. Seo, I. H. Choi, and D. Kim, “Surface plasmon microscopy by spatial light switching for label-free imaging with enhanced resolution,” Opt. Lett. 43, 959–962 (2018).
[Crossref]

J. A. Picazo-Bueno, M. Trusiak, J. Garcia, K. Patorski, and V. Mico, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43, 1007–1010 (2018).
[Crossref]

X. J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43, 1143–1146 (2018).
[Crossref]

F. A. Banville, J. Moreau, M. Sarkar, M. Besbes, M. Canva, and P. G. Charette, “Spatial resolution versus contrast trade-off enhancement in high-resolution surface plasmon resonance imaging (SPRI) by metal surface nanostructure design,” Opt. Express 26, 10616–10630 (2018).
[Crossref]

G. Maire, H. Giovannini, A. Talneau, P. C. Chaumet, K. Belkebir, and A. Sentenac, “Phase imaging and synthetic aperture super-resolution via total internal reflection microscopy,” Opt. Lett. 43, 2173–2176 (2018).
[Crossref]

Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26, 12620–12631 (2018).
[Crossref]

J. W. Zhang, S. Q. Dai, J. Z. Zhong, T. L. Xi, C. J. Ma, Y. Li, J. L. Di, and J. L. Zhao, “Wavelength-multiplexing surface plasmon holographic microscopy,” Opt. Express 26, 13549–13560 (2018).
[Crossref]

B. Lee, J.-Y. Hong, D. Yoo, J. Cho, Y. Jeong, S. Moon, and B. Lee, “Single-shot phase retrieval via Fourier ptychographic microscopy,” Optica 5, 976–983 (2018).
[Crossref]

2017 (39)

J. P. Wilde, J. W. Goodman, Y. C. Eldar, and Y. Takashima, “Coherent superresolution imaging via grating-based illumination,” Appl. Opt. 56, A79–A88 (2017).
[Crossref]

M. Aakhte, V. Abbasian, E. A. Akhlaghi, A. R. Moradi, A. Anand, and B. Javidi, “Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification,” Appl. Opt. 56, D8–D13 (2017).
[Crossref]

L. H. Yeh, L. Tian, and L. Waller, “Structured illumination microscopy with unknown patterns and a statistical prior,” Biomed. Opt. Express 8, 695–711 (2017).
[Crossref]

P. Gao and G. U. Nienhaus, “Precise background subtraction in stimulated emission double depletion nanoscopy,” Opt. Lett. 42, 831–834 (2017).
[Crossref]

J. A. Picazo-Bueno, Z. Zalevsky, J. Garcia, and V. Mico, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42, 927–930 (2017).
[Crossref]

K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]

C. J. Yuan, J. Ma, J. T. Dou, J. D. Wei, S. T. Feng, S. P. Nie, and C. L. Chang, “Resolution enhancement of the microscopic imaging by unknown sinusoidal structured illumination with iterative algorithm,” Appl. Opt. 56, F78–F83 (2017).
[Crossref]

D. Claus, G. Pedrini, and W. Osten, “Iterative phase retrieval based on variable wavefront curvature,” Appl. Opt. 56, F134–F137 (2017).
[Crossref]

M. Lyu, C. J. Yuan, D. Y. Li, and G. H. Situ, “Fast autofocusing in digital holography using the magnitude differential,” Appl. Opt. 56, F152–F157 (2017).
[Crossref]

J. W. Zhang, S. Q. Dai, C. J. Ma, J. L. Di, and J. L. Zhao, “Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance,” Appl. Opt. 56, 3223–3228 (2017).
[Crossref]

S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy,” Biomed. Opt. Express 8, 2496–2518 (2017).
[Crossref]

A. Hussain, T. Amin, C. F. Kuang, L. C. Cao, and X. Liu, “Simple fringe illumination technique for optical superresolution,” J. Opt. Soc. Am. B 34, B78–B84 (2017).
[Crossref]

S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
[Crossref]

E. Peters, P. Clemente, E. Salvador-Balaguer, E. Tajahuerce, P. Andres, D. G. Perez, and J. Lancis, “Real-time acquisition of complex optical fields by binary amplitude modulation,” Opt. Lett. 42, 2030–2033 (2017).
[Crossref]

J. W. Zhang, S. Q. Dai, C. J. Ma, J. L. Di, and J. L. Zhao, “Compact surface plasmon holographic microscopy for near-field film mapping,” Opt. Lett. 42, 3462–3465 (2017).
[Crossref]

S. Perrin, A. Leong-Hoi, S. Lecler, P. Pfeiffer, I. Kassamakov, A. Nolvi, E. Haeggstrom, and P. Montgomery, “Microsphere-assisted phase-shifting profilometry,” Appl. Opt. 56, 7249–7255 (2017).
[Crossref]

R. L. Guo and F. Wang, “Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective,” Opt. Express 25, 24512–24520 (2017).
[Crossref]

S. L. Yang, F. G. Wang, Y. H. Ye, Y. Xia, Y. Deng, J. G. Wang, and Y. R. Cao, “Influence of the photonic nanojet of microspheres on microsphere imaging,” Opt. Express 25, 27551–27558 (2017).
[Crossref]

J. Liu, Y. Li, W. B. Wang, H. Zhang, Y. H. Wang, J. B. Tan, and C. G. Liu, “Stable and robust frequency domain position compensation strategy for Fourier ptychographic microscopy,” Opt. Express 25, 28053–28067 (2017).
[Crossref]

J. J. Zheng, P. Gao, X. P. Shao, and G. U. Nienhaus, “Refractive index measurement of suspended cells using opposed-view digital holographic microscopy,” Appl. Opt. 56, 9000–9005 (2017).
[Crossref]

A. V. Belashov, A. A. Zhikhoreva, V. G. Bespalov, V. I. Novik, N. T. Zhilinskaya, I. V. Semenova, and O. S. Vasyutinskii, “Refractive index distributions in dehydrated cells of human oral cavity epithelium,” J. Opt. Soc. Am. B 34, 2538–2543 (2017).
[Crossref]

T. Das and K. Bhattacharya, “Refractive index profilometry using the total internally reflected light field,” Appl. Opt. 56, 9241–9246 (2017).
[Crossref]

Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. B. Zhang, H. D. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
[Crossref]

S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction,” Biomed. Opt. Express 8, 5776–5793 (2017).
[Crossref]

Q. W. Lin, D. Y. Wang, Y. X. Wang, S. Guo, S. Panezai, L. T. Ouyang, L. Rong, and J. Zhao, “Super-resolution quantitative phase-contrast imaging by microsphere-based digital holographic microscopy,” Opt. Eng. 56, 034116 (2017).
[Crossref]

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoi, P. Montgomery, and E. Haeggstrom, “3D super-resolution optical profiling using microsphere enhanced Mirau interferometry,” Sci. Rep. 7, 3683 (2017).
[Crossref]

J. Z. Ling, X. R. Wang, D. C. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
[Crossref]

B. Mandracchia, O. Gennari, V. Marchesano, M. Paturzo, and P. Ferraro, “Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy,” J. Biophoton. 10, 1163–1170 (2017).
[Crossref]

J. S. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref]

C. Zuo, J. S. Sun, J. J. Li, J. L. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref]

M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19, 085504 (2017).
[Crossref]

M. U. Daloglu and A. Ozcan, “Computational imaging of sperm locomotion,” Biol. Reprod. 97, 182–188 (2017).
[Crossref]

J. L. Zhang, J. S. Sun, Q. Chen, J. J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy,” Sci. Rep. 7, 11777 (2017).
[Crossref]

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

J. J. Zheng, P. Gao, and X. P. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7, 4255 (2017).
[Crossref]

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. Garcia, and V. Mico, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

J. J. Zheng, P. Gao, and X. P. Shao, “Aberration compensation and resolution improvement of focus modulation microscopy,” J. Opt. 19, 015302 (2017).
[Crossref]

V. Marx, “Microscopy: Hello, adaptive optics,” Nat. Methods 14, 1133–1136 (2017).
[Crossref]

Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. R. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
[Crossref]

2016 (25)

C. Dong, C. C. Loy, K. M. He, and X. O. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. 38, 295–307 (2016).
[Crossref]

Y. Rivenson, Y. C. Wu, H. D. Wang, Y. B. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6, 37862 (2016).
[Crossref]

Y. C. Wu, Y. B. Zhang, W. Luo, and A. Ozcan, “Demosaiced pixel super-resolution for multiplexed holographic color imaging,” Sci. Rep. 6, 28601 (2016).
[Crossref]

W. Luo, Y. Zhang, A. Feizi, Z. Gorocs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5, e16060 (2016).
[Crossref]

F. Kazemzadeh and A. Wong, “Laser light-field fusion for wide-field lensfree on-chip phase contrast microscopy of nanoparticles,” Sci. Rep. 6, 38981(2016).
[Crossref]

L. Granero, C. Ferreira, Z. Zalevsky, J. Garcia, and V. Mico, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]

K. Kim, J. S. Yoon, S. Y. Lee, S. A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

A. Hussain and J. L. M. Fuentes, “Resolution enhancement using simultaneous couple illumination,” J. Opt. 18, 105702 (2016).
[Crossref]

Y. B. Zhang, Y. C. Wu, Y. Zhang, and A. Ozcan, “Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction,” Sci. Rep. 6, 27811 (2016).
[Crossref]

J. A. Picazo-Bueno, Z. Zalevsky, J. Garcia, C. Ferreira, and V. Mico, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
[Crossref]

S. Pacheco, G. A. Zheng, and R. G. Liang, “Reflective Fourier ptychography,” J. Biomed. Opt. 21, 026010 (2016).
[Crossref]

H. S. S. Lai, F. F. Wang, Y. Li, B. L. Jia, L. Q. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11, e0165194 (2016).
[Crossref]

Y. X. Wang, S. Guo, D. Y. Wang, Q. W. Lin, L. Rong, and J. Zhao, “Resolution enhancement phase-contrast imaging by microsphere digital holography,” Opt. Commun. 366, 81–87 (2016).
[Crossref]

C. Lingel, T. Haist, and W. Osten, “Spatial-light-modulator-based adaptive optical system for the use of multiple phase retrieval methods,” Appl. Opt. 55, 10329–10334 (2016).
[Crossref]

W. J. Eldridge, A. Sheinfeld, M. T. Rinehart, and A. Wax, “Imaging deformation of adherent cells due to shear stress using quantitative phase imaging,” Opt. Lett. 41, 352–355 (2016).
[Crossref]

O. Mendoza-Yero, M. Carbonell-Leal, J. Lancis, and J. Garcia-Sucerouia, “Second-harmonic illumination to enhance multispectral digital lensless holographic microscopy,” Opt. Lett. 41, 1062–1065 (2016).
[Crossref]

T. D. Yang, H. J. Kim, K. J. Lee, B. M. Kim, and Y. Choi, “Single-shot and phase-shifting digital holographic microscopy using a 2-D grating,” Opt. Express 24, 9480–9488 (2016).
[Crossref]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]

R. Horstmeyer, J. Chung, X. Z. Ou, G. A. Zheng, and C. H. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

J. W. Zhang, C. J. Ma, S. Q. Dai, J. L. Di, Y. Li, T. L. Xi, and J. L. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41, 3844–3847 (2016).
[Crossref]

L. Y. Jiang, W. Zhang, H. Yuan, and X. Y. Li, “Super resolution from pure/hybrid nanoscale solid immersion lenses under dark-field illumination,” Opt. Express 24, 25224–25232 (2016).
[Crossref]

J. Chung, H. W. Lu, X. Z. Ou, H. J. Zhou, and C. H. Yang, “Wide-field Fourier ptychographic microscopy using laser illumination source,” Biomed. Opt. Express 7, 4787–4802 (2016).
[Crossref]

Y. Ben-Aryeh, “Increase of resolution by use of microspheres related to complex Snell’s law,” J. Opt. Soc. Am. A 33, 2284–2288 (2016).
[Crossref]

Q. L. Liu, Y. Fang, R. J. Zhou, P. Xiu, C. F. Kuang, and X. Liu, “Surface wave illumination Fourier ptychographic microscopy,” Opt. Lett. 41, 5373–5376 (2016).
[Crossref]

C. J. Ma, J. L. Di, J. W. Zhang, Y. Li, T. L. Xi, E. P. Li, and J. L. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55, 9435–9439 (2016).
[Crossref]

2015 (29)

X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy,” Appl. Opt. 54, A51–A58 (2015).
[Crossref]

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Carabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40, 5–8 (2015).
[Crossref]

S. T. Thurman and A. Bratcher, “Multiplexed synthetic-aperture digital holography,” Appl. Opt. 54, 559–568 (2015).
[Crossref]

X. Z. Ou, R. Horstmeyer, G. A. Zheng, and C. H. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23, 3472–3491 (2015).
[Crossref]

D. Claus and J. M. Rodenburg, “Pixel size adjustment in coherent diffractive imaging within the Rayleigh-Sommerfeld regime,” Appl. Opt. 54, 1936–1944 (2015).
[Crossref]

O. Wagner, A. Schwarz, A. Shemer, C. Ferreira, J. Garcia, and Z. Zalevsky, “Superresolved imaging based on wavelength multiplexing of projected unknown speckle patterns,” Appl. Opt. 54, D51–D60 (2015).
[Crossref]

J. J. Zheng, D. Akimov, S. Heuke, M. Schmitt, B. L. Yao, T. Ye, M. Lei, P. Gao, and J. Popp, “Vibrational phase imaging in wide-field CARS for nonresonant background suppression,” Opt. Express 23, 10756–10763 (2015).
[Crossref]

T. X. Hoang, Y. B. Duan, X. D. Chen, and G. Barbastathis, “Focusing and imaging in microsphere-based microscopy,” Opt. Express 23, 12337–12353 (2015).
[Crossref]

S. Karepov, N. T. Shaked, and T. Ellenbogen, “Off-axis interferometer with adjustable fringe contrast based on polarization encoding,” Opt. Lett. 40, 2273–2276 (2015).
[Crossref]

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

D. J. Lee, K. Han, H. J. Lee, and A. M. Weiner, “Synthetic aperture microscopy based on referenceless phase retrieval with an electrically tunable lens,” Appl. Opt. 54, 5346–5352 (2015).
[Crossref]

T. Kozacki and K. Falaggis, “Angular spectrum-based wave-propagation method with compact space bandwidth for large propagation distances,” Opt. Lett. 40, 3420–3423 (2015).
[Crossref]

M. Sanz, J. A. Picazo-Bueno, J. Garcia, and V. Mico, “Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm,” Opt. Express 23, 21352–21365 (2015).
[Crossref]

K. W. Allen, N. Farahi, Y. C. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23, 24484–24496 (2015).
[Crossref]

J. W. Zhang, J. L. Di, Y. Li, T. L. Xi, and J. L. Zhao, “Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection,” Opt. Express 23, 27328–27334 (2015).
[Crossref]

L. Tian, Z. J. Liu, L. H. Yeh, M. Chen, J. S. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2, 904–911 (2015).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

E. McLeod, T. U. Dincer, M. Veli, Y. N. Ertas, C. Nguyen, W. Luo, A. Greenbaum, A. Feizi, and A. Ozcan, “High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy,” ACS Nano 9, 3265–3273 (2015).
[Crossref]

B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87, 4124–4128 (2015).
[Crossref]

T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular imaging using temporally flickering nanoparticles,” Sci. Rep. 5, 8244 (2015).
[Crossref]

T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular superresolved imaging of multiple markers using temporally flickering nanoparticles,” Sci. Rep. 5, 10965 (2015).
[Crossref]

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5, 13580 (2015).
[Crossref]

Q. W. Lin, D. Y. Wang, Y. X. Wang, L. Rong, and S. F. Chang, “Super-resolution imaging in digital holography by using dynamic grating with a spatial light modulator,” Opt. Laser Eng. 66, 279–284 (2015).
[Crossref]

V. Kollarova, J. Collakova, Z. Dostal, P. Vesely, and R. Chmelik, “Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope,” J. Biomed. Opt. 20, 111206 (2015).
[Crossref]

W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
[Crossref]

D. Dai, R. Timofte, and L. Van Gool, “Jointly optimized regressors for image super-resolution,” Comput. Graph. Forum 34, 95–104 (2015).
[Crossref]

J. J. Zheng, G. Pedrini, P. Gao, B. L. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17, 085301 (2015).
[Crossref]

A. A. Mudassar, “A simplified holography based superresolution system,” Opt. Laser Eng. 75, 27–38 (2015).
[Crossref]

A. Hussain and A. A. Mudassar, “Optical super resolution using tilted illumination coupled with object rotation,” Opt. Commun. 339, 34–40 (2015).
[Crossref]

2014 (32)

G. F. Wu, F. Wang, and Y. J. Cai, “Generation and self-healing of a radially polarized Bessel-Gauss beam,” Phys. Rev. A 89, 043807 (2014).
[Crossref]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

P. N. Hedde and G. U. Nienhaus, “Super-resolution localization microscopy with photoactivatable fluorescent marker proteins,” Protoplasma 251, 349–362 (2014).
[Crossref]

S. A. Lee, J. Erath, G. A. Zheng, X. Z. Ou, P. Willems, D. Eichinger, A. Rodriguez, and C. H. Yang, “Imaging and identification of waterborne parasites using a chip-scale microscope,” PLoS One 9, e89712 (2014).
[Crossref]

K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8, 342–344 (2014).
[Crossref]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref]

R. S. Arvidson, C. Fischer, D. S. Sawyer, G. D. Scott, D. Natelson, and A. Luttge, “Lateral resolution enhancement of vertical scanning interferometry by sub-pixel sampling,” Microsc. Microanal. 20, 90–98 (2014).
[Crossref]

E. McLeod, C. Nguyen, P. Huang, W. Luo, M. Veli, and A. Ozcan, “Tunable vapor-condensed nanolenses,” ACS Nano 8, 7340–7349 (2014).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).
[Crossref]

R. Ye, Y. H. Ye, H. F. Ma, L. L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref]

D. W. E. Noom, K. S. E. Eikema, and S. Witte, “Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction,” Opt. Lett. 39, 193–196 (2014).
[Crossref]

A. Tripathi, I. McNulty, and O. G. Shpyrko, “Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods,” Opt. Express 22, 1452–1466 (2014).
[Crossref]

S. P. Li and J. G. Zhong, “Dynamic imaging through turbid media based on digital holography,” J. Opt. Soc. Am. A 31, 480–486 (2014).
[Crossref]

S. Chowdhury and J. Izatt, “Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging,” Opt. Lett. 39, 1015–1018 (2014).
[Crossref]

M. Lost’ak, R. Chmelik, M. Slaba, and T. Slaby, “Coherence-controlled holographic microscopy in diffuse media,” Opt. Express 22, 4180–4195 (2014).
[Crossref]

E. Sanchez-Ortiga, M. Martinez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39, 2086–2089 (2014).
[Crossref]

P. Bon, S. Aknoun, S. Monneret, and B. Wattellier, “Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination,” Opt. Express 22, 8654–8671 (2014).
[Crossref]

D. J. Lee and A. M. Weiner, “Optical phase imaging using a synthetic aperture phase retrieval technique,” Opt. Express 22, 9380–9394 (2014).
[Crossref]

A. Calabuig, M. Matrecano, M. Paturzo, and P. Ferraro, “Common-path configuration in total internal reflection digital holography microscopy,” Opt. Lett. 39, 2471–2474 (2014).
[Crossref]

S. Y. Dong, R. Shiradkar, P. Nanda, and G. A. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5, 1757–1767 (2014).
[Crossref]

J. J. Zheng, P. Gao, B. L. Yao, T. Ye, M. Lei, J. W. Min, D. Dan, Y. L. Yang, and S. H. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photon. Res. 2, 87–91 (2014).
[Crossref]

X. J. Huang, H. F. Yan, R. Harder, Y. K. Hwu, I. K. Robinson, and Y. S. Chu, “Optimization of overlap uniformness for ptychography,” Opt. Express 22, 12634–12644 (2014).
[Crossref]

J. A. Rodrigo and T. Alieva, “Rapid quantitative phase imaging for partially coherent light microscopy,” Opt. Express 22, 13472–13483 (2014).
[Crossref]

P. Gao, G. Pedrini, C. Zuo, and W. Osten, “Phase retrieval using spatially modulated illumination,” Opt. Lett. 39, 3615–3618 (2014).
[Crossref]

V. Mico, C. Ferreira, Z. Zalevsky, and J. Garcia, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]

W. Osten, A. Faridian, P. Gao, K. Korner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography,” Appl. Opt. 53, G44–G63 (2014).
[Crossref]

R. K. Singh, A. M. Sharma, and B. Das, “Quantitative phase-contrast imaging through a scattering media,” Opt. Lett. 39, 5054–5057 (2014).
[Crossref]

S. Y. Dong, P. Nanda, R. Shiradkar, K. K. Guo, and G. A. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22, 20856–20870 (2014).
[Crossref]

V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22, 22328–22339 (2014).
[Crossref]

L. Laplatine, L. Leroy, R. Calemczuk, D. Baganizi, P. N. Marche, Y. Roupioz, and T. Livache, “Spatial resolution in prism-based surface plasmon resonance microscopy,” Opt. Express 22, 22771–22785 (2014).
[Crossref]

D. W. E. Noom, D. E. B. Flaes, E. Labordus, K. S. E. Eikema, and S. Witte, “High-speed multi-wavelength Fresnel diffraction imaging,” Opt. Express 22, 30504–30511 (2014).
[Crossref]

2013 (30)

H. J. Tiziani and G. Pedrini, “From speckle pattern photography to digital holographic interferometry,” Appl. Opt. 52, 30–44 (2013).
[Crossref]

J. L. Chen, Y. Xu, X. H. Lv, X. M. Lai, and S. Q. Zeng, “Super-resolution differential interference contrast microscopy by structured illumination,” Opt. Express 21, 112–121 (2013).
[Crossref]

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21, 5701–5714 (2013).
[Crossref]

A. Hussain, J. L. Martinez, A. Lizana, and J. Campos, “Super resolution imaging achieved by using on-axis interferometry based on a spatial light modulator,” Opt. Express 21, 9615–9623 (2013).
[Crossref]

P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21, 12469–12483 (2013).
[Crossref]

T. Slaby, P. Kolman, Z. Dostal, M. Antos, M. Lost’ak, and R. Chmelik, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21, 14747–14762 (2013).
[Crossref]

X. Hao, C. F. Kuang, Y. H. Li, and X. Liu, “Evanescent-wave-induced frequency shift for optical superresolution imaging,” Opt. Lett. 38, 2455–2458 (2013).
[Crossref]

Y. B. Duan, G. Barbastathis, and B. L. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38, 2988–2990 (2013).
[Crossref]

T. H. Nguyen and G. Popescu, “Spatial light interference microscopy (SLIM) using twisted-nematic liquid-crystal modulation,” Biomed. Opt. Express 4, 1571–1583 (2013).
[Crossref]

V. Mico, C. Ferreira, and J. Garcia, “Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects,” Appl. Opt. 52, 6390–6400 (2013).
[Crossref]

S. Chowdhury and J. Izatt, “Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging,” Biomed. Opt. Express 4, 1795–1805 (2013).
[Crossref]

C. Zuo, Q. Chen, W. J. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21, 24060–24075 (2013).
[Crossref]

P. von Olshausen and A. Rohrbach, “Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit,” Opt. Lett. 38, 4066–4069 (2013).
[Crossref]

X. Z. Ou, R. Horstmeyer, C. H. Yang, and G. A. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
[Crossref]

R. L. Guo, B. L. Yao, P. Gao, J. W. Min, M. L. Zhou, J. Han, X. Yu, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52, 8233–8238 (2013).
[Crossref]

P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013).
[Crossref]

J. J. Zheng, B. L. Yao, Y. L. Yang, M. Lei, P. Gao, R. Z. Li, S. H. Yan, D. Dan, and T. Ye, “Investigation of Bessel beam propagation in scattering media with scalar diffraction method,” Chin. Opt. Lett. 11, 112601 (2013).

D. P. Kelly and D. Claus, “Filtering role of the sensor pixel in Fourier and Fresnel digital holography,” Appl. Opt. 52, A336–A345 (2013).
[Crossref]

L. Li, W. Guo, Y. Z. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Y. Hennequin, C. P. Allier, E. McLeod, O. Mudanyali, D. Migliozzi, A. Ozcan, and J. M. Dinten, “Optical detection and sizing of single nanoparticles using continuous wetting films,” ACS Nano 7, 7601–7609 (2013).
[Crossref]

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 254 (2013).
[Crossref]

T. W. Su, I. Choi, J. W. Feng, K. Huang, E. McLeod, and A. Ozcan, “Sperm trajectories form chiral ribbons,” Sci. Rep. 3, 1664 (2013).
[Crossref]

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref]

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494, 68–71 (2013).
[Crossref]

H. Yu, T. R. Hillman, W. Choi, J. O. Lee, M. S. Feld, R. R. Dasari, and Y. Park, “Measuring large optical transmission matrices of disordered media,” Phys. Rev. Lett. 111, 153902 (2013).
[Crossref]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T. W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13, 4170–4191 (2013).
[Crossref]

G. A. Zheng, R. Horstmeyer, and C. H. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

2012 (35)

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102, 2391–2400 (2012).
[Crossref]

H. Ji and K. Wang, “Robust image deblurring with an inaccurate blur kernel,” IEEE Trans. Image Process. 21, 1624–1634 (2012).
[Crossref]

A. Hussain and A. A. Mudassar, “Holography based super resolution,” Opt. Commun. 285, 2303–2310 (2012).
[Crossref]

N. Pavillon, J. Kuhn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7, e30912 (2012).
[Crossref]

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, and G. Popescu, “Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography,” PLoS One 7, e39816 (2012).
[Crossref]

A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889–895 (2012).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7, 654–669 (2012).
[Crossref]

S. A. Lee, G. A. Zheng, N. Mukherjee, and C. H. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip 12, 2385–2390 (2012).
[Crossref]

H. Z. Jiang, J. L. Zhao, and J. L. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285, 3046–3049 (2012).
[Crossref]

S. A. Arpali, C. Arpali, A. F. Coskun, H. H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12, 4968–4971 (2012).
[Crossref]

T. W. Su, L. Xue, and A. Ozcan, “High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories,” Proc. Natl. Acad. Sci. USA 109, 16018–16022 (2012).
[Crossref]

D. Q. Wang, L. L. Ding, W. Zhang, Z. F. Luo, H. C. Ou, E. Y. Zhang, and X. L. Yu, “A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging,” Meas. Sci. Technol. 23, 065701 (2012).
[Crossref]

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 1–12(2012).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref]

M. F. Toy, J. Kuhn, S. Richard, J. Parent, M. Egli, and C. Depeursinge, “Accelerated autofocusing of off-axis holograms using critical sampling,” Opt. Lett. 37, 5094–5096 (2012).
[Crossref]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]

A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20, 3129–3143 (2012).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref]

V. Mico, C. Ferreira, and J. Garcia, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20, 9382–9395 (2012).
[Crossref]

Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Solid-immersion imaging interferometric nanoscopy to the limits of available frequency space,” J. Opt. Soc. Am. A 29, 772–781 (2012).
[Crossref]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016–2018 (2012).
[Crossref]

D. R. Smith, D. G. Winters, P. Schlup, and R. A. Bartels, “Hilbert reconstruction of phase-shifted second-harmonic holographic images,” Opt. Lett. 37, 2052–2054 (2012).
[Crossref]

P. F. Almoro, L. Waller, M. Agour, C. Falldorf, G. Pedrini, W. Osten, and S. G. Hanson, “Enhanced deterministic phase retrieval using a partially developed speckle field,” Opt. Lett. 37, 2088–2090 (2012).
[Crossref]

J. J. Zheng, B. L. Yao, P. Gao, and T. Ye, “Phase contrast microscopy with fringe contrast adjustable by using grating-based phase-shifter,” Opt. Express 20, 16077–16082 (2012).
[Crossref]

S. Chowdhury, A. H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express 3, 1841–1854 (2012).
[Crossref]

J. Yi, Q. Wei, H. F. Zhang, and V. Backman, “Structured interference optical coherence tomography,” Opt. Lett. 37, 3048–3050 (2012).
[Crossref]

K. L. Sly, T. T. Nguyen, and J. C. Conboy, “Lens-less surface second harmonic imaging,” Opt. Express 20, 21953–21967 (2012).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[Crossref]

J. J. Zheng, Y. L. Yang, M. Lei, B. L. Yao, P. Gao, and T. Ye, “Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method,” Appl. Opt. 51, 7236–7245 (2012).
[Crossref]

S. P. Li and J. G. Zhong, “Simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging by use of digital holography,” Biomed. Opt. Express 3, 3190–3202 (2012).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator,” Opt. Lett. 37, 4988–4990 (2012).
[Crossref]

2011 (27)

M. Kim, Y. Choi, C. Fang-Yen, Y. J. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

Z. Wang, L. Millet, M. Mir, H. F. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19, 1016–1026 (2011).
[Crossref]

P. Gao, B. L. Yao, J. W. Min, R. L. Guo, J. J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19, 1930–1935 (2011).
[Crossref]

A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]

A. M. Maiden, M. J. Humphry, F. C. Zhang, and J. M. Rodenburg, “Superresolution imaging via ptychography,” J. Opt. Soc. Am. A 28, 604–612 (2011).
[Crossref]

L. Granero, Z. Zalevsky, and V. Mico, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]

S. Lim, K. Choi, J. Hahn, D. L. Marks, and D. J. Brady, “Image-based registration for synthetic aperture holography,” Opt. Express 19, 11716–11731 (2011).
[Crossref]

A. E. Tippie, A. Kumar, and J. R. Fienup, “High-resolution synthetic-aperture digital holography with digital phase and pupil correction,” Opt. Express 19, 12027–12038 (2011).
[Crossref]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36, 3079–3081 (2011).
[Crossref]

O. Mudanyali, W. Bishara, and A. Ozcan, “Lensfree super-resolution holographic microscopy using wetting films on a chip,” Opt. Express 19, 17378–17389 (2011).
[Crossref]

A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Mico, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]

Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett. 36, 4263–4265 (2011).
[Crossref]

P. Gao, B. L. Yao, I. Harder, N. Lindlein, and F. J. Torcal-Milla, “Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement,” Opt. Lett. 36, 4305–4307 (2011).
[Crossref]

D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, H116–H127 (2011).
[Crossref]

C. J. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50, B6–B11 (2011).
[Crossref]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensfree fluorescent on-chip imaging of transgenic Caenorhabditis elegans over an ultra-wide field-of-view,” PLoS One 6, e15955 (2011).
[Crossref]

G. A. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. H. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894(2011).
[Crossref]

P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5, 13–26 (2011).
[Crossref]

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, and M. H. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

V. Micó, Z. Zalevsky, and J. García, “Edge processing by synthetic aperture superresolution in digital holographic microscopy,” 3D Res. 2, 01001 (2011).
[Crossref]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching,” Nat. Biotechnol. 29, 942–947(2011).
[Crossref]

A. H. Phan, J. H. Park, and N. Kim, “Super-resolution digital holographic microscopy for three dimensional sample using multipoint light source illumination,” Jpn. J. Appl. Phys. 50, 092503 (2011).
[Crossref]

H. Y. Li, L. Y. Zhong, Z. J. Ma, and X. X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272 (2011).
[Crossref]

G. Freedman and R. Fattal, “Image and video upscaling from local self-examples,” ACM Trans. Graphic 30, 12 (2011).
[Crossref]

2010 (35)

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[Crossref]

J. Buhl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
[Crossref]

F. C. Zhang and J. M. Rodenburg, “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82, 121104 (2010).
[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[Crossref]

G. A. Zheng, S. A. Lee, S. Yang, and C. H. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10, 3125–3129 (2010).
[Crossref]

A. F. Coskun, T. W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10, 824–827 (2010).
[Crossref]

V. Mico and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
[Crossref]

N. T. Shaked, Y. Z. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[Crossref]

C. Y. Hu, J. G. Zhong, and J. W. Weng, “Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes,” J. Biomed. Opt. 15, 056015 (2010).
[Crossref]

B. Katz and J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements,” Opt. Express 18, 962–972(2010).
[Crossref]

L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[Crossref]

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. L. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35, 712–714 (2010).
[Crossref]

Y. Li, F. Lilley, D. Burton, and M. Lalor, “Evaluation and benchmarking of a pixel-shifting camera for superresolution lensless digital holography,” Appl. Opt. 49, 1643–1650 (2010).
[Crossref]

L. Camacho, V. Mico, Z. Zalevsky, and J. Garcia, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6766 (2010).
[Crossref]

T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue,” Opt. Lett. 35, 1136–1138 (2010).
[Crossref]

T. W. Su, S. O. Isikman, W. Bishara, D. Tseng, A. Erlinger, and A. Ozcan, “Multi-angle lensless digital holography for depth resolved imaging on a chip,” Opt. Express 18, 9690–9711 (2010).
[Crossref]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851 (2010).
[Crossref]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010).
[Crossref]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18, 12283–12290 (2010).
[Crossref]

D. Claus, “High resolution digital holographic synthetic aperture applied to deformation measurement and extended depth of field method,” Appl. Opt. 49, 3187–3198 (2010).
[Crossref]

A. A. Mudassar and A. Hussain, “Super-resolution of active spatial frequency heterodyning using holographic approach,” Appl. Opt. 49, 3434–3441(2010).
[Crossref]

A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, and W. Osten, “Nanoscale imaging using deep ultraviolet digital holographic microscopy,” Opt. Express 18, 14159–14164 (2010).
[Crossref]

D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35, 2370–2372 (2010).
[Crossref]

X. Q. Cui, J. A. Ren, G. J. Tearney, and C. H. Yang, “Wavefront image sensor chip,” Opt. Express 18, 16685–16701 (2010).
[Crossref]

E. Shaffer, P. Marquet, and C. Depeursinge, “Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy,” Opt. Express 18, 17392–17403 (2010).
[Crossref]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1, 706–719 (2010).
[Crossref]

C. P. Allier, G. Hiernard, V. Poher, and J. M. Dinten, “Bacteria detection with thin wetting film lensless imaging,” Biomed. Opt. Express 1, 762–770 (2010).
[Crossref]

D. Sylman, V. Mico, J. Garcia, and Z. Zalevsky, “Random angular coding for superresolved imaging,” Appl. Opt. 49, 4874–4882 (2010).
[Crossref]

Y. D. Su, K. C. Chiu, N. S. Chang, H. L. Wu, and S. J. Chen, “Study of cell-biosubstrate contacts via surface plasmon polariton phase microscopy,” Opt. Express 18, 20125–20135 (2010).
[Crossref]

A. Gur, D. Fixler, V. Mico, J. Garcia, and Z. Zalevsky, “Linear optics based nanoscopy,” Opt. Express 18, 22222–22231 (2010).
[Crossref]

L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18, 22817–22825 (2010).
[Crossref]

J. L. Zhao, X. B. Yan, W. W. Sun, and J. L. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
[Crossref]

E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett. 35, 4102–4104 (2010).
[Crossref]

W. Bishara, H. Y. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18, 27499–27510 (2010).
[Crossref]

2009 (23)

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).
[Crossref]

P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express 17, 5473–5480 (2009).
[Crossref]

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
[Crossref]

L. F. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. P. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Express 17, 12031–12038(2009).
[Crossref]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009).
[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
[Crossref]

P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express 17, 13080–13094 (2009).
[Crossref]

E. Shaffer, N. Pavillon, J. Kuhn, and C. Depeursinge, “Digital holographic microscopy investigation of second harmonic generated at a glass/air interface,” Opt. Lett. 34, 2450–2452 (2009).
[Crossref]

L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

H. Z. Jiang, J. L. Zhao, J. L. Di, and C. A. Qin, “Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography,” Opt. Express 17, 18836–18842 (2009).
[Crossref]

M. G. Somekh, G. Stabler, S. G. Liu, J. Zhang, and C. W. See, “Wide-field high-resolution surface-plasmon interference microscopy,” Opt. Lett. 34, 3110–3112 (2009).
[Crossref]

J. H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[Crossref]

W. M. Ash, L. Krzewina, and M. K. Kim, “Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy,” Appl. Opt. 48, H144–H152 (2009).
[Crossref]

P. Gao, B. L. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34, 3553–3555 (2009).
[Crossref]

M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
[Crossref]

V. Mico, L. Granero, Z. Zalevsky, and J. Garcia, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A 11, 125408 (2009).
[Crossref]

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109, 338–343 (2009).
[Crossref]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[Crossref]

Z. Zalevsky, V. Mico, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]

D. Mendlovic, A. W. Lohman, and Z. Zalevsky, “Space–bandwidth product adaptation and its application for super resolution: examples,” J. Opt. Soc. Am. A 14, 562–567 (2009).
[Crossref]

V. Micó, Z. Zalevsky, and J. García, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” Speckle 5, 110–123 (2009).
[Crossref]

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Mico, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A 11, 085406 (2009).
[Crossref]

2008 (24)

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

A. Ozcan and U. Demirci, “Ultra wide-field lens-free monitoring of cells on-chip,” Lab Chip 8, 98–106 (2008).
[Crossref]

S. Seo, T. W. Su, A. Erlinger, and A. Ozcan, “Multi-color LUCAS: lensfree on-chip cytometry using tunable monochromatic illumination and digital noise reduction,” Cell. Mol. Bioeng. 1, 146–156 (2008).
[Crossref]

V. Mico, J. Garcia, and Z. Zalevsky, “Axial superresolution by synthetic aperture generation,” J. Opt. A 10, 125001 (2008).
[Crossref]

Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt. 47, A103–A110 (2008).
[Crossref]

L. Martinez-Leon and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
[Crossref]

P. Bao, F. C. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
[Crossref]

Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy,” J. Opt. Soc. Am. A 25, 811–822 (2008).
[Crossref]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[Crossref]

V. Mico, O. Limon, A. Gur, Z. Zalevsky, and J. Garcia, “Transverse resolution improvement using rotating-grating time-multiplexing approach,” J. Opt. Soc. Am. A 25, 1115–1129 (2008).
[Crossref]

A. Neumann, Y. Kuznetsova, and S. R. J. Brueck, “Structured illumination for the extension of imaging interferometric microscopy,” Opt. Express 16, 6785–6793 (2008).
[Crossref]

M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264–7278 (2008).
[Crossref]

J. Garcia, V. Mico, D. Cojoc, and Z. Zalevsky, “Full field of view super-resolution imaging based on two static gratings and white light illumination,” Appl. Opt. 47, 3080–3087 (2008).
[Crossref]

W. M. Ash and M. K. Kim, “Digital holography of total internal reflection,” Opt. Express 16, 9811–9820 (2008).
[Crossref]

X. L. Yu, X. Ding, F. F. Liu, and Y. Deng, “A novel surface plasmon resonance imaging interferometry for protein array detection,” Sens. Actuators B Chem. 130, 52–58 (2008).
[Crossref]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a microparticle field with digital holographic microscopy,” Opt. Lett. 33, 1626–1628 (2008).
[Crossref]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

C. J. Yuan, H. C. Zhai, and H. T. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
[Crossref]

J. L. Di, J. L. Zhao, H. Z. Jiang, P. Zhang, Q. Fan, and W. W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47, 5654–5659 (2008).
[Crossref]

V. Mico, Z. Zalevsky, C. Ferreira, and J. Garcia, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
[Crossref]

A. Neumann, Y. Kuznetsova, and S. R. J. Brueck, “Optical resolution below λ/4 using synthetic aperture microscopy and evanescent-wave illumination,” Opt. Express 16, 20477–20483 (2008).
[Crossref]

2007 (10)

G. Pedrini, F. C. Zhang, and W. Osten, “Digital holographic microscopy in the deep (193 nm) ultraviolet,” Appl. Opt. 46, 7829–7835 (2007).
[Crossref]

G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993–1000 (2007).
[Crossref]

P. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett. 32, 733–735 (2007).
[Crossref]

Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy—approaching the linear systems limits of optical resolution,” Opt. Express 15, 6651–6663 (2007).
[Crossref]

Z. Zalevsky, J. Garcia, and V. Mico, “Transversal superresolution with noncontact axial movement of periodic structures,” J. Opt. Soc. Am. A 24, 3220–3225 (2007).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

F. C. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation,” Phys. Rev. A 75, 043805 (2007).
[Crossref]

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[Crossref]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

2006 (17)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[Crossref]

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[Crossref]

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imag. Syst. Tech. 16, 258–261 (2006).
[Crossref]

F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]

S. Tamano, Y. Hayasaki, and N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief object hidden behind a light-scattering medium,” Appl. Opt. 45, 953–959 (2006).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006).
[Crossref]

J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45, 6374–6380(2006).
[Crossref]

V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]

P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006).
[Crossref]

2005 (13)

J. B. Costa, “Modulation effect of the atmosphere in a pyramid wave-front sensor,” Appl. Opt. 44, 60–66 (2005).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

J. H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13, 1875–1884 (2005).
[Crossref]

G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005).
[Crossref]

G. Indebetouw, A. El Maghnouji, and R. Foster, “Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus,” J. Opt. Soc. Am. A 22, 892–898 (2005).
[Crossref]

Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30, 1488–1490 (2005).
[Crossref]

J. Garcia, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073–6078 (2005).
[Crossref]

C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
[Crossref]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
[Crossref]

S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt. 10, 034005 (2005).
[Crossref]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[Crossref]

W. Osten and N. Kerwien, “Resolution enhancement technologies in optical metrology,” Proc. SPIE 5776, 10–21 (2005).
[Crossref]

2004 (9)

V. Eckhouse, Z. Zalevsky, N. Konforti, and D. Mendlovic, “Subwavelength structure imaging,” Opt. Eng. 43, 2462–2468 (2004).
[Crossref]

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref]

F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131–1139 (2004).
[Crossref]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref]

L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29, 1132–1134 (2004).
[Crossref]

M. C. Pitter, C. W. See, and M. G. Somekh, “Full-field heterodyne interference microscope with spatially incoherent illumination,” Opt. Lett. 29, 1200–1202 (2004).
[Crossref]

V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[Crossref]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004).
[Crossref]

2003 (1)

2002 (7)

2001 (4)

F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550–1552(2001).
[Crossref]

W. B. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[Crossref]

J. Gluckstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001).
[Crossref]

2000 (5)

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[Crossref]

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[Crossref]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87(2000).
[Crossref]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref]

M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Opt. Commun. 174, 75–80 (2000).
[Crossref]

1999 (5)

1998 (4)

1997 (3)

1996 (4)

1994 (3)

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref]

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface-plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[Crossref]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

1993 (2)

H. E. Debruijn, R. P. H. Kooyman, and J. Greve, “Surface-plasmon resonance microscopy—improvement of the resolution by rotation of the object,” Appl. Opt. 32, 2426–2430 (1993).
[Crossref]

H. M. Ozaktas and D. Mendlovic, “Fourier-transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993).
[Crossref]

1992 (2)

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

1988 (1)

B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[Crossref]

1986 (3)

1985 (1)

H. Verschueren, “Interference reflection microscopy in cell biology—methodology and applications,” J. Cell Sci. 75, 279–301 (1985).

1981 (2)

D. Axelrod, “Cell-substrate contacts illuminated by total internal-reflection fluorescence,” J. Cell. Biol. 89, 141–145 (1981).
[Crossref]

A. J. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett. 6, 374–376 (1981).
[Crossref]

1979 (1)

1978 (1)

J. N. Gannaway and C. J. R. Sheppard, “Second harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10, 435–439 (1978).
[Crossref]

1975 (1)

1974 (4)

1973 (1)

M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[Crossref]

1972 (1)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

1971 (2)

1969 (3)

B. R. Frieden, “On arbitrarily perfect imagery with a finite aperture,” Opt. Acta 16, 795–807 (1969).
[Crossref]

W. Hoppe, “Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen,” Acta Crystallographica 25, 495–501 (1969).
[Crossref]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

1968 (2)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968).
[Crossref]

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
[Crossref]

1967 (3)

1966 (2)

1964 (2)

A. W. Lohmann and D. P. Paris, “Superresolution for nonbirefringent objects,” Appl. Opt. 3, 1037–1043 (1964).
[Crossref]

A. S. G. Curtis, “Mechanism of adhesion of cells to glass—study by interference reflection microscopy,” J. Cell. Biol. 20, 199–215 (1964).
[Crossref]

1961 (1)

D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty—I,” Bell. Syst. Tech. J. 40, 43–63 (1961).
[Crossref]

1960 (1)

A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spectrosc. 9, 394–398 (1960).

1955 (3)

P. B. Fellgett and E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

F. Zernike, “How I discovered phase contrast,” Science 121, 345–349(1955).
[Crossref]

G. Toraldo di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497–501 (1955).
[Crossref]

1952 (2)

M. Françon, “Amelioration de resolution d’optique,” Nuovo Cimento Suppl. 9, 283–287 (1952).

G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–438 (1952).
[Crossref]

1949 (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 37, 10–21 (1949).
[Crossref]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

1942 (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–698 (1942).
[Crossref]

1914 (1)

M. V. Laue, “Die Freiheitsgrade von Strahlenbündeln,” Ann. Phys. 349, 1197–1212 (1914).
[Crossref]

1908 (1)

G. Lippmann, “Epreuves reversible donnant la sensation durelief,” J. Phys. Theor. Appl. 7, 821–825 (1908).
[Crossref]

1907 (1)

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 328, 846–866 (1907).
[Crossref]

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902).
[Crossref]

1896 (1)

Lord Rayleigh, “On the theory of optical images, with special reference to the microscope,” Philos. Mag. 42(255), 167–195 (1896).
[Crossref]

1873 (1)

E. Abbe, “Beitrage zür Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Archiv. Microskopische Anat. 9, 413–418 (1873).
[Crossref]

Aakhte, M.

Abbas, A.

M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19, 085504 (2017).
[Crossref]

Abbasian, V.

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A. R. Moradi, “Super-resolved microsphere-assisted Mirau digital holography by oblique illumination,” J. Opt. 20, 065301 (2018).
[Crossref]

M. Aakhte, V. Abbasian, E. A. Akhlaghi, A. R. Moradi, A. Anand, and B. Javidi, “Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification,” Appl. Opt. 56, D8–D13 (2017).
[Crossref]

Abbe, E.

E. Abbe, “Beitrage zür Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Archiv. Microskopische Anat. 9, 413–418 (1873).
[Crossref]

Agour, M.

Akbari, N.

Akhlaghi, E. A.

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A. R. Moradi, “Super-resolved microsphere-assisted Mirau digital holography by oblique illumination,” J. Opt. 20, 065301 (2018).
[Crossref]

Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. R. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
[Crossref]

M. Aakhte, V. Abbasian, E. A. Akhlaghi, A. R. Moradi, A. Anand, and B. Javidi, “Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification,” Appl. Opt. 56, D8–D13 (2017).
[Crossref]

Akimov, D.

Aknoun, S.

Alexandrov, S. A.

Alfieri, D.

Alieva, T.

Allen, K. W.

Allier, C. P.

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 254 (2013).
[Crossref]

Y. Hennequin, C. P. Allier, E. McLeod, O. Mudanyali, D. Migliozzi, A. Ozcan, and J. M. Dinten, “Optical detection and sizing of single nanoparticles using continuous wetting films,” ACS Nano 7, 7601–7609 (2013).
[Crossref]

C. P. Allier, G. Hiernard, V. Poher, and J. M. Dinten, “Bacteria detection with thin wetting film lensless imaging,” Biomed. Opt. Express 1, 762–770 (2010).
[Crossref]

Almoro, P.

Almoro, P. F.

Amin, T.

Anand, A.

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref]

Andres, P.

Andresen, M.

T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching,” Nat. Biotechnol. 29, 942–947(2011).
[Crossref]

Antebi, Y.

G. A. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. H. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894(2011).
[Crossref]

Antkowiak, M.

Antos, M.

Arpali, C.

S. A. Arpali, C. Arpali, A. F. Coskun, H. H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12, 4968–4971 (2012).
[Crossref]

Arpali, S. A.

S. A. Arpali, C. Arpali, A. F. Coskun, H. H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12, 4968–4971 (2012).
[Crossref]

Arvidson, R. S.

R. S. Arvidson, C. Fischer, D. S. Sawyer, G. D. Scott, D. Natelson, and A. Luttge, “Lateral resolution enhancement of vertical scanning interferometry by sub-pixel sampling,” Microsc. Microanal. 20, 90–98 (2014).
[Crossref]

Ash, W. M.

Astratov, V. N.

K. W. Allen, N. Farahi, Y. C. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23, 24484–24496 (2015).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).
[Crossref]

Asundi, A.

C. Zuo, J. S. Sun, J. J. Li, J. L. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref]

C. Zuo, Q. Chen, W. J. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21, 24060–24075 (2013).
[Crossref]

Axelrod, D.

D. Axelrod, “Cell-substrate contacts illuminated by total internal-reflection fluorescence,” J. Cell. Biol. 89, 141–145 (1981).
[Crossref]

Babacan, S. D.

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, and G. Popescu, “Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography,” PLoS One 7, e39816 (2012).
[Crossref]

Babcock, H.

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102, 2391–2400 (2012).
[Crossref]

Babovsky, H.

J. Buhl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
[Crossref]

Bachl, A.

Backman, V.

Badie, N.

N. T. Shaked, Y. Z. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[Crossref]

Badizadegan, K.

Baganizi, D.

Balduzzi, D.

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Banville, F. A.

Bao, P.

Barbastathis, G.

Bartels, R. A.

Barty, A.

Bashkansky, M.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Bastiaans, M. J.

Bates, M.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[Crossref]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Battle, P. R.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Bednarz, M.

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, and G. Popescu, “Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography,” PLoS One 7, e39816 (2012).
[Crossref]

Belashov, A. V.

Belkebir, K.

Ben-Aryeh, Y.

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface-plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[Crossref]

Bernardo, L. M.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

Berns, M. W.

Besbes, M.

Bespalov, V. G.

Best-Popescu, C. A.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Bhaduri, B.

Bhattacharya, K.

Bianco, V.

Binet, R.

Bishara, W.

Bo, F.

C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Bokor, J.

Bon, P.

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Boss, D.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Boyd, R. W.

M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19, 085504 (2017).
[Crossref]

Brady, D.

Brady, D. J.

Brakemann, T.

T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching,” Nat. Biotechnol. 29, 942–947(2011).
[Crossref]

Brakenhoff, G. J.

Bratcher, A.

Bredebusch, I.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[Crossref]

Brooker, G.

Brueck, S. R. J.

Bryanston-Cross, P.

Buhl, J.

J. Buhl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
[Crossref]

Bunk, O.

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109, 338–343 (2009).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

Bursac, N.

N. T. Shaked, Y. Z. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15, 030503 (2010).
[Crossref]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, “Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy,” Biomed. Opt. Express 1, 706–719 (2010).
[Crossref]

Burton, D.

Cai, Y. J.

G. F. Wu, F. Wang, and Y. J. Cai, “Generation and self-healing of a radially polarized Bessel-Gauss beam,” Phys. Rev. A 89, 043807 (2014).
[Crossref]

Calabuig, A.

Calemczuk, R.

Callens, N.

Camacho, L.

Campagnola, P. J.

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7, 654–669 (2012).
[Crossref]

P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5, 13–26 (2011).
[Crossref]

Campos, J.

Canva, M.

Cao, L. C.

Cao, L. L.

R. Ye, Y. H. Ye, H. F. Ma, L. L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref]

Cao, Y. R.

Carabe, A.

Carbonell-Leal, M.

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[Crossref]

Centurion, M.

Chad, J. E.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref]

Chang, C. L.

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13, 4170–4191 (2013).
[Crossref]

Chang, N. S.

Chang, S. F.

Q. W. Lin, D. Y. Wang, Y. X. Wang, L. Rong, and S. F. Chang, “Super-resolution imaging in digital holography by using dynamic grating with a spatial light modulator,” Opt. Laser Eng. 66, 279–284 (2015).
[Crossref]

Charette, P. G.

Charriere, F.

Charsooghi, M. A.

Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. R. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
[Crossref]

Chaumet, P. C.

Chen, C.

Chen, H.

Chen, H. S.

Chen, J. L.

Chen, M.

Chen, Q.

C. Zuo, J. S. Sun, J. J. Li, J. L. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref]

J. S. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref]

J. L. Zhang, J. S. Sun, Q. Chen, J. J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy,” Sci. Rep. 7, 11777 (2017).
[Crossref]

C. Zuo, Q. Chen, W. J. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21, 24060–24075 (2013).
[Crossref]

Chen, S. J.

Chen, X. D.

Chen, X. Y.

X. Y. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7, 654–669 (2012).
[Crossref]

Chen, Y.

Chen, Y. K.

S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt. 10, 034005 (2005).
[Crossref]

Chen, Z. C.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, and M. H. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Chen, Z. P.

Cheng, C. J.

Chhaniwal, V.

Chiang, H. H.

S. A. Arpali, C. Arpali, A. F. Coskun, H. H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12, 4968–4971 (2012).
[Crossref]

Chiu, K. C.

Chmelik, R.

Cho, J.

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13, 4170–4191 (2013).
[Crossref]

Choi, I.

T. W. Su, I. Choi, J. W. Feng, K. Huang, E. McLeod, and A. Ozcan, “Sperm trajectories form chiral ribbons,” Sci. Rep. 3, 1664 (2013).
[Crossref]

Choi, I. H.

Choi, K.

Choi, W.

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

H. Yu, T. R. Hillman, W. Choi, J. O. Lee, M. S. Feld, R. R. Dasari, and Y. Park, “Measuring large optical transmission matrices of disordered media,” Phys. Rev. Lett. 111, 153902 (2013).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. J. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett. 36, 4263–4265 (2011).
[Crossref]

D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35, 2370–2372 (2010).
[Crossref]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009).
[Crossref]

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Choi, Y.

T. D. Yang, H. J. Kim, K. J. Lee, B. M. Kim, and Y. Choi, “Single-shot and phase-shifting digital holographic microscopy using a 2-D grating,” Opt. Express 24, 9480–9488 (2016).
[Crossref]

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. J. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett. 36, 4263–4265 (2011).
[Crossref]

Chowdhury, S.

Christensen, P.

R. Hellwarth and P. Christensen, “Nonlinear optical microscope using second-harmonic generation,” Appl. Opt. 14, 247–248 (1975).
[Crossref]

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974).
[Crossref]

Chu, Y. S.

Chung, J.

Claus, D.

Clemente, P.

Cloetens, P.

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref]

Cojoc, D.

Colineau, J.

Collakova, J.

V. Kollarova, J. Collakova, Z. Dostal, P. Vesely, and R. Chmelik, “Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope,” J. Biomed. Opt. 20, 111206 (2015).
[Crossref]

Collot, L.

Colomb, T.

Conboy, J. C.

Coppola, G.

Coskun, A. F.

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 254 (2013).
[Crossref]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T. W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889–895 (2012).
[Crossref]

S. A. Arpali, C. Arpali, A. F. Coskun, H. H. Chiang, and A. Ozcan, “High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging,” Lab Chip 12, 4968–4971 (2012).
[Crossref]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensfree fluorescent on-chip imaging of transgenic Caenorhabditis elegans over an ultra-wide field-of-view,” PLoS One 6, e15955 (2011).
[Crossref]

A. F. Coskun, T. W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10, 824–827 (2010).
[Crossref]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
[Crossref]

A. F. Coskun, I. Sencan, T. W. Su, and A. Ozcan, “Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects,” Opt. Express 18, 10510–10523 (2010).
[Crossref]

Costa, J. B.

Cotte, Y.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

Cox, I. J.

Cuche, E.

Cui, X. Q.

Curtis, A. S. G.

A. S. G. Curtis, “Mechanism of adhesion of cells to glass—study by interference reflection microscopy,” J. Cell. Biol. 20, 199–215 (1964).
[Crossref]

Dai, D.

D. Dai, R. Timofte, and L. Van Gool, “Jointly optimized regressors for image super-resolution,” Comput. Graph. Forum 34, 95–104 (2015).
[Crossref]

Dai, S. Q.

Daloglu, M. U.

M. U. Daloglu and A. Ozcan, “Computational imaging of sperm locomotion,” Biol. Reprod. 97, 182–188 (2017).
[Crossref]

Dan, D.

Danan, Y.

T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular superresolved imaging of multiple markers using temporally flickering nanoparticles,” Sci. Rep. 5, 10965 (2015).
[Crossref]

T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular imaging using temporally flickering nanoparticles,” Sci. Rep. 5, 8244 (2015).
[Crossref]

Dao, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

Darafsheh, A.

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Carabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40, 5–8 (2015).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).
[Crossref]

Das, B.

Das, T.

Dasari, R.

Dasari, R. R.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

H. Yu, T. R. Hillman, W. Choi, J. O. Lee, M. S. Feld, R. R. Dasari, and Y. Park, “Measuring large optical transmission matrices of disordered media,” Phys. Rev. Lett. 111, 153902 (2013).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. J. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35, 2370–2372 (2010).
[Crossref]

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[Crossref]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004).
[Crossref]

Dashtdar, M.

S. Ebrahimi, M. Dashtdar, E. Sanchez-Ortiga, M. Martinez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

David, C.

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

De Nicola, S.

Debruijn, H. E.

Deflores, L. P.

Demetrakopoulos, T. H.

Demirci, U.

A. Ozcan and U. Demirci, “Ultra wide-field lens-free monitoring of cells on-chip,” Lab Chip 8, 98–106 (2008).
[Crossref]

Dempsey, G. T.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[Crossref]

den Dekker, A. J.

Deng, Y.

F. G. Wang, S. L. Yang, H. F. Ma, P. Shen, N. Wei, M. Wang, Y. Xia, Y. Deng, and Y. H. Ye, “Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion,” Appl. Phys. Lett. 112, 023101 (2018).
[Crossref]

S. L. Yang, F. G. Wang, Y. H. Ye, Y. Xia, Y. Deng, J. G. Wang, and Y. R. Cao, “Influence of the photonic nanojet of microspheres on microsphere imaging,” Opt. Express 25, 27551–27558 (2017).
[Crossref]

X. L. Yu, X. Ding, F. F. Liu, and Y. Deng, “A novel surface plasmon resonance imaging interferometry for protein array detection,” Sens. Actuators B Chem. 130, 52–58 (2008).
[Crossref]

Dennis, M. R.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref]

Depeursinge, C.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

N. Pavillon, J. Kuhn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7, e30912 (2012).
[Crossref]

M. F. Toy, J. Kuhn, S. Richard, J. Parent, M. Egli, and C. Depeursinge, “Accelerated autofocusing of off-axis holograms using critical sampling,” Opt. Lett. 37, 5094–5096 (2012).
[Crossref]

E. Shaffer, P. Marquet, and C. Depeursinge, “Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy,” Opt. Express 18, 17392–17403 (2010).
[Crossref]

E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett. 35, 4102–4104 (2010).
[Crossref]

E. Shaffer, N. Pavillon, J. Kuhn, and C. Depeursinge, “Digital holographic microscopy investigation of second harmonic generated at a glass/air interface,” Opt. Lett. 34, 2450–2452 (2009).
[Crossref]

F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[Crossref]

Derov, J. S.

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).
[Crossref]

Devaney, A. J.

Dhalla, A. H.

Di, J. L.

Y. Li, J. L. Di, C. J. Ma, J. W. Zhang, J. Z. Zhong, K. Q. Wang, T. L. Xi, and J. L. Zhao, “Quantitative phase microscopy for cellular dynamics based on transport of intensity equation,” Opt. Express 26, 586–593 (2018).
[Crossref]

J. W. Zhang, S. Q. Dai, J. Z. Zhong, T. L. Xi, C. J. Ma, Y. Li, J. L. Di, and J. L. Zhao, “Wavelength-multiplexing surface plasmon holographic microscopy,” Opt. Express 26, 13549–13560 (2018).
[Crossref]

J. W. Zhang, S. Q. Dai, C. J. Ma, J. L. Di, and J. L. Zhao, “Compact surface plasmon holographic microscopy for near-field film mapping,” Opt. Lett. 42, 3462–3465 (2017).
[Crossref]

J. W. Zhang, S. Q. Dai, C. J. Ma, J. L. Di, and J. L. Zhao, “Common-path digital holographic microscopy for near-field phase imaging based on surface plasmon resonance,” Appl. Opt. 56, 3223–3228 (2017).
[Crossref]

J. W. Zhang, C. J. Ma, S. Q. Dai, J. L. Di, Y. Li, T. L. Xi, and J. L. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41, 3844–3847 (2016).
[Crossref]

C. J. Ma, J. L. Di, J. W. Zhang, Y. Li, T. L. Xi, E. P. Li, and J. L. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55, 9435–9439 (2016).
[Crossref]

J. W. Zhang, J. L. Di, Y. Li, T. L. Xi, and J. L. Zhao, “Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection,” Opt. Express 23, 27328–27334 (2015).
[Crossref]

H. Z. Jiang, J. L. Zhao, and J. L. Di, “Digital color holographic recording and reconstruction using synthetic aperture and multiple reference waves,” Opt. Commun. 285, 3046–3049 (2012).
[Crossref]

J. L. Zhao, X. B. Yan, W. W. Sun, and J. L. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35, 3519–3521 (2010).
[Crossref]

H. Z. Jiang, J. L. Zhao, J. L. Di, and C. A. Qin, “Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography,” Opt. Express 17, 18836–18842 (2009).
[Crossref]

J. L. Di, J. L. Zhao, H. Z. Jiang, P. Zhang, Q. Fan, and W. W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47, 5654–5659 (2008).
[Crossref]

Di Caprio, G.

Dierolf, M.

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref]

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109, 338–343 (2009).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

Diez-Silva, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

Dilworth, D.

Dilworth, D. S.

Dincer, T. U.

E. McLeod, T. U. Dincer, M. Veli, Y. N. Ertas, C. Nguyen, W. Luo, A. Greenbaum, A. Feizi, and A. Ozcan, “High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy,” ACS Nano 9, 3265–3273 (2015).
[Crossref]

Ding, H. F.

Ding, L. L.

D. Q. Wang, L. L. Ding, W. Zhang, Z. F. Luo, H. C. Ou, E. Y. Zhang, and X. L. Yu, “A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging,” Meas. Sci. Technol. 23, 065701 (2012).
[Crossref]

Ding, X.

X. L. Yu, X. Ding, F. F. Liu, and Y. Deng, “A novel surface plasmon resonance imaging interferometry for protein array detection,” Sens. Actuators B Chem. 130, 52–58 (2008).
[Crossref]

Dinten, J. M.

Y. Hennequin, C. P. Allier, E. McLeod, O. Mudanyali, D. Migliozzi, A. Ozcan, and J. M. Dinten, “Optical detection and sizing of single nanoparticles using continuous wetting films,” ACS Nano 7, 7601–7609 (2013).
[Crossref]

C. P. Allier, G. Hiernard, V. Poher, and J. M. Dinten, “Bacteria detection with thin wetting film lensless imaging,” Biomed. Opt. Express 1, 762–770 (2010).
[Crossref]

Dirksen, D.

Do, M. N.

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, and G. Popescu, “Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography,” PLoS One 7, e39816 (2012).
[Crossref]

Domschke, W.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[Crossref]

Dong, C.

C. Dong, C. C. Loy, K. M. He, and X. O. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. 38, 295–307 (2016).
[Crossref]

Dong, C. Y.

P. J. Campagnola and C. Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photon. Rev. 5, 13–26 (2011).
[Crossref]

Dong, S. Y.

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

Dorn, A.

Dorsch, R. G.

Dostal, Z.

V. Kollarova, J. Collakova, Z. Dostal, P. Vesely, and R. Chmelik, “Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope,” J. Biomed. Opt. 20, 111206 (2015).
[Crossref]

T. Slaby, P. Kolman, Z. Dostal, M. Antos, M. Lost’ak, and R. Chmelik, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Opt. Express 21, 14747–14762 (2013).
[Crossref]

Dou, J. T.

Duan, Y. B.

Dubois, F.

Duffieux, P. M.

P. M. Duffieux, L’intégrale de Fourier et ses Applications à l’Optique (Faculté des Sciences, 1946).

Duncan, M. D.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Duran, V.

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref]

Ebrahimi, S.

S. Ebrahimi, M. Dashtdar, E. Sanchez-Ortiga, M. Martinez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

Eckhouse, V.

V. Eckhouse, Z. Zalevsky, N. Konforti, and D. Mendlovic, “Subwavelength structure imaging,” Opt. Eng. 43, 2462–2468 (2004).
[Crossref]

Eggeling, C.

T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching,” Nat. Biotechnol. 29, 942–947(2011).
[Crossref]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[Crossref]

Egli, M.

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref]

Eichinger, D.

S. A. Lee, J. Erath, G. A. Zheng, X. Z. Ou, P. Willems, D. Eichinger, A. Rodriguez, and C. H. Yang, “Imaging and identification of waterborne parasites using a chip-scale microscope,” PLoS One 9, e89712 (2014).
[Crossref]

Eigenthaler, U.

Eikema, K. S. E.

El Maghnouji, A.

Eldar, Y. C.

Eldridge, W. J.

Ellenbogen, T.

Elowitz, M. B.

G. A. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. H. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894(2011).
[Crossref]

Emery, Y.

Enders, B.

M. Stockmar, P. Cloetens, I. Zanette, B. Enders, M. Dierolf, F. Pfeiffer, and P. Thibault, “Near-field ptychography: phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).
[Crossref]

Erath, J.

S. A. Lee, J. Erath, G. A. Zheng, X. Z. Ou, P. Willems, D. Eichinger, A. Rodriguez, and C. H. Yang, “Imaging and identification of waterborne parasites using a chip-scale microscope,” PLoS One 9, e89712 (2014).
[Crossref]

Erlinger, A.

T. W. Su, S. O. Isikman, W. Bishara, D. Tseng, A. Erlinger, and A. Ozcan, “Multi-angle lensless digital holography for depth resolved imaging on a chip,” Opt. Express 18, 9690–9711 (2010).
[Crossref]

S. Seo, T. W. Su, A. Erlinger, and A. Ozcan, “Multi-color LUCAS: lensfree on-chip cytometry using tunable monochromatic illumination and digital noise reduction,” Cell. Mol. Bioeng. 1, 146–156 (2008).
[Crossref]

Ertas, Y. N.

E. McLeod, T. U. Dincer, M. Veli, Y. N. Ertas, C. Nguyen, W. Luo, A. Greenbaum, A. Feizi, and A. Ozcan, “High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy,” ACS Nano 9, 3265–3273 (2015).
[Crossref]

Falaggis, K.

Falldorf, C.

Fan, Q.

Fang, Y.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. J. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Farahi, N.

Faridian, A.

Fattal, R.

G. Freedman and R. Fattal, “Image and video upscaling from local self-examples,” ACM Trans. Graphic 30, 12 (2011).
[Crossref]

Faulkner, H. M. L.

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref]

Feizi, A.

Y. Rivenson, Y. C. Wu, H. D. Wang, Y. B. Zhang, A. Feizi, and A. Ozcan, “Sparsity-based multi-height phase recovery in holographic microscopy,” Sci. Rep. 6, 37862 (2016).
[Crossref]

W. Luo, Y. Zhang, A. Feizi, Z. Gorocs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5, e16060 (2016).
[Crossref]

E. McLeod, T. U. Dincer, M. Veli, Y. N. Ertas, C. Nguyen, W. Luo, A. Greenbaum, A. Feizi, and A. Ozcan, “High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy,” ACS Nano 9, 3265–3273 (2015).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21, 12469–12483 (2013).
[Crossref]

Feld, M. S.

H. Yu, T. R. Hillman, W. Choi, J. O. Lee, M. S. Feld, R. R. Dasari, and Y. Park, “Measuring large optical transmission matrices of disordered media,” Phys. Rev. Lett. 111, 153902 (2013).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. J. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative DIC microscopy using an off-axis self-interference approach,” Opt. Lett. 35, 2370–2372 (2010).
[Crossref]

Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17, 12285–12292 (2009).
[Crossref]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[Crossref]

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2505 (2004).
[Crossref]

Fellgett, P. B.

P. B. Fellgett and E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

Feng, J. W.

T. W. Su, I. Choi, J. W. Feng, K. Huang, E. McLeod, and A. Ozcan, “Sperm trajectories form chiral ribbons,” Sci. Rep. 3, 1664 (2013).
[Crossref]

Feng, P.

Feng, S. T.

Ferraro, P.

B. Mandracchia, O. Gennari, V. Marchesano, M. Paturzo, and P. Ferraro, “Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy,” J. Biophoton. 10, 1163–1170 (2017).
[Crossref]

B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87, 4124–4128 (2015).
[Crossref]

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

V. Bianco, M. Paturzo, and P. Ferraro, “Spatio-temporal scanning modality for synthesizing interferograms and digital holograms,” Opt. Express 22, 22328–22339 (2014).
[Crossref]

A. Calabuig, M. Matrecano, M. Paturzo, and P. Ferraro, “Common-path configuration in total internal reflection digital holography microscopy,” Opt. Lett. 39, 2471–2474 (2014).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

F. Merola, L. Miccio, M. Paturzo, A. Finizio, S. Grilli, and P. Ferraro, “Driving and analysis of micro-objects by digital holographic microscope in microfluidics,” Opt. Lett. 36, 3079–3081 (2011).
[Crossref]

M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009).
[Crossref]

M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
[Crossref]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29, 854–856 (2004).
[Crossref]

Ferreira, C.

J. A. Picazo-Bueno, Z. Zalevsky, J. Garcia, C. Ferreira, and V. Mico, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
[Crossref]

L. Granero, C. Ferreira, Z. Zalevsky, J. Garcia, and V. Mico, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]

O. Wagner, A. Schwarz, A. Shemer, C. Ferreira, J. Garcia, and Z. Zalevsky, “Superresolved imaging based on wavelength multiplexing of projected unknown speckle patterns,” Appl. Opt. 54, D51–D60 (2015).
[Crossref]

V. Mico, C. Ferreira, Z. Zalevsky, and J. Garcia, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]

V. Mico, C. Ferreira, and J. Garcia, “Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects,” Appl. Opt. 52, 6390–6400 (2013).
[Crossref]

V. Mico, C. Ferreira, and J. Garcia, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20, 9382–9395 (2012).
[Crossref]

A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Mico, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]

A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]

V. Mico, Z. Zalevsky, C. Ferreira, and J. Garcia, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
[Crossref]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
[Crossref]

Fienup, J. R.

Finizio, A.

Finlay, J. C.

Fischer, C.

R. S. Arvidson, C. Fischer, D. S. Sawyer, G. D. Scott, D. Natelson, and A. Luttge, “Lateral resolution enhancement of vertical scanning interferometry by sub-pixel sampling,” Microsc. Microanal. 20, 90–98 (2014).
[Crossref]

Fish, E.

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Mico, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A 11, 085406 (2009).
[Crossref]

Fixler, D.

Flaes, D. E. B.

Foster, R.

Françon, M.

M. Françon, “Amelioration de resolution d’optique,” Nuovo Cimento Suppl. 9, 283–287 (1952).

Freedman, G.

G. Freedman and R. Fattal, “Image and video upscaling from local self-examples,” ACM Trans. Graphic 30, 12 (2011).
[Crossref]

Frieden, B. R.

B. R. Frieden, “On arbitrarily perfect imagery with a finite aperture,” Opt. Acta 16, 795–807 (1969).
[Crossref]

Froning, P.

Fu, D.

Fu, L.

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5, 13580 (2015).
[Crossref]

Fuentes, J. L. M.

A. Hussain and J. L. M. Fuentes, “Resolution enhancement using simultaneous couple illumination,” J. Opt. 18, 105702 (2016).
[Crossref]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Galli, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[Crossref]

Ganjkhani, Y.

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A. R. Moradi, “Super-resolved microsphere-assisted Mirau digital holography by oblique illumination,” J. Opt. 20, 065301 (2018).
[Crossref]

Y. Ganjkhani, M. A. Charsooghi, E. A. Akhlaghi, and A. R. Moradi, “Super-resolved Mirau digital holography by structured illumination,” Opt. Commun. 404, 110–117 (2017).
[Crossref]

Gannaway, J. N.

J. N. Gannaway and C. J. R. Sheppard, “Second harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10, 435–439 (1978).
[Crossref]

Gao, P.

J. J. Zheng, P. Gao, and X. P. Shao, “Aberration compensation and resolution improvement of focus modulation microscopy,” J. Opt. 19, 015302 (2017).
[Crossref]

J. J. Zheng, P. Gao, and X. P. Shao, “Opposite-view digital holographic microscopy with autofocusing capability,” Sci. Rep. 7, 4255 (2017).
[Crossref]

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

P. Gao and G. U. Nienhaus, “Precise background subtraction in stimulated emission double depletion nanoscopy,” Opt. Lett. 42, 831–834 (2017).
[Crossref]

J. J. Zheng, P. Gao, X. P. Shao, and G. U. Nienhaus, “Refractive index measurement of suspended cells using opposed-view digital holographic microscopy,” Appl. Opt. 56, 9000–9005 (2017).
[Crossref]

J. J. Zheng, D. Akimov, S. Heuke, M. Schmitt, B. L. Yao, T. Ye, M. Lei, P. Gao, and J. Popp, “Vibrational phase imaging in wide-field CARS for nonresonant background suppression,” Opt. Express 23, 10756–10763 (2015).
[Crossref]

J. J. Zheng, G. Pedrini, P. Gao, B. L. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” J. Opt. 17, 085301 (2015).
[Crossref]

P. Gao, G. Pedrini, C. Zuo, and W. Osten, “Phase retrieval using spatially modulated illumination,” Opt. Lett. 39, 3615–3618 (2014).
[Crossref]

W. Osten, A. Faridian, P. Gao, K. Korner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, “Recent advances in digital holography,” Appl. Opt. 53, G44–G63 (2014).
[Crossref]

J. J. Zheng, P. Gao, B. L. Yao, T. Ye, M. Lei, J. W. Min, D. Dan, Y. L. Yang, and S. H. Yan, “Digital holographic microscopy with phase-shift-free structured illumination,” Photon. Res. 2, 87–91 (2014).
[Crossref]

P. Gao, G. Pedrini, and W. Osten, “Phase retrieval with resolution enhancement by using structured illumination,” Opt. Lett. 38, 5204–5207 (2013).
[Crossref]

J. J. Zheng, B. L. Yao, Y. L. Yang, M. Lei, P. Gao, R. Z. Li, S. H. Yan, D. Dan, and T. Ye, “Investigation of Bessel beam propagation in scattering media with scalar diffraction method,” Chin. Opt. Lett. 11, 112601 (2013).

R. L. Guo, B. L. Yao, P. Gao, J. W. Min, M. L. Zhou, J. Han, X. Yu, X. H. Yu, M. Lei, S. H. Yan, Y. L. Yang, D. Dan, and T. Ye, “Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt. 52, 8233–8238 (2013).
[Crossref]

P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
[Crossref]

J. J. Zheng, Y. L. Yang, M. Lei, B. L. Yao, P. Gao, and T. Ye, “Fluorescence volume imaging with an axicon: simulation study based on scalar diffraction method,” Appl. Opt. 51, 7236–7245 (2012).
[Crossref]

J. J. Zheng, B. L. Yao, P. Gao, and T. Ye, “Phase contrast microscopy with fringe contrast adjustable by using grating-based phase-shifter,” Opt. Express 20, 16077–16082 (2012).
[Crossref]

P. Gao, B. L. Yao, I. Harder, N. Lindlein, and F. J. Torcal-Milla, “Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement,” Opt. Lett. 36, 4305–4307 (2011).
[Crossref]

P. Gao, B. L. Yao, J. W. Min, R. L. Guo, J. J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19, 1930–1935 (2011).
[Crossref]

P. Gao, I. Harder, V. Nercissian, K. Mantel, and B. L. Yao, “Phase-shifting point-diffraction interferometry with common-path and in-line configuration for microscopy,” Opt. Lett. 35, 712–714 (2010).
[Crossref]

P. Gao, B. L. Yao, N. Lindlein, K. Mantel, I. Harder, and E. Geist, “Phase-shift extraction for generalized phase-shifting interferometry,” Opt. Lett. 34, 3553–3555 (2009).
[Crossref]

Garcia, J.

J. A. Picazo-Bueno, M. Trusiak, J. Garcia, K. Patorski, and V. Mico, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43, 1007–1010 (2018).
[Crossref]

J. A. Picazo-Bueno, Z. Zalevsky, J. Garcia, and V. Mico, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42, 927–930 (2017).
[Crossref]

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. Garcia, and V. Mico, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

L. Granero, C. Ferreira, Z. Zalevsky, J. Garcia, and V. Mico, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]

J. A. Picazo-Bueno, Z. Zalevsky, J. Garcia, C. Ferreira, and V. Mico, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
[Crossref]

O. Wagner, A. Schwarz, A. Shemer, C. Ferreira, J. Garcia, and Z. Zalevsky, “Superresolved imaging based on wavelength multiplexing of projected unknown speckle patterns,” Appl. Opt. 54, D51–D60 (2015).
[Crossref]

M. Sanz, J. A. Picazo-Bueno, J. Garcia, and V. Mico, “Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm,” Opt. Express 23, 21352–21365 (2015).
[Crossref]

V. Mico, C. Ferreira, Z. Zalevsky, and J. Garcia, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]

V. Mico, C. Ferreira, and J. Garcia, “Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects,” Appl. Opt. 52, 6390–6400 (2013).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator,” Opt. Lett. 37, 4988–4990 (2012).
[Crossref]

V. Mico, C. Ferreira, and J. Garcia, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20, 9382–9395 (2012).
[Crossref]

A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Mico, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]

A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]

A. Gur, D. Fixler, V. Mico, J. Garcia, and Z. Zalevsky, “Linear optics based nanoscopy,” Opt. Express 18, 22222–22231 (2010).
[Crossref]

D. Sylman, V. Mico, J. Garcia, and Z. Zalevsky, “Random angular coding for superresolved imaging,” Appl. Opt. 49, 4874–4882 (2010).
[Crossref]

L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[Crossref]

L. Camacho, V. Mico, Z. Zalevsky, and J. Garcia, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6766 (2010).
[Crossref]

L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

V. Mico, L. Granero, Z. Zalevsky, and J. Garcia, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A 11, 125408 (2009).
[Crossref]

Z. Zalevsky, E. Fish, N. Shachar, Y. Vexberg, V. Mico, and J. Garcia, “Super-resolved imaging with randomly distributed, time- and size-varied particles,” J. Opt. A 11, 085406 (2009).
[Crossref]

Z. Zalevsky, V. Mico, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502 (2009).
[Crossref]

V. Mico, J. Garcia, and Z. Zalevsky, “Axial superresolution by synthetic aperture generation,” J. Opt. A 10, 125001 (2008).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008).
[Crossref]

J. Garcia, V. Mico, D. Cojoc, and Z. Zalevsky, “Full field of view super-resolution imaging based on two static gratings and white light illumination,” Appl. Opt. 47, 3080–3087 (2008).
[Crossref]

V. Mico, O. Limon, A. Gur, Z. Zalevsky, and J. Garcia, “Transverse resolution improvement using rotating-grating time-multiplexing approach,” J. Opt. Soc. Am. A 25, 1115–1129 (2008).
[Crossref]

V. Mico, Z. Zalevsky, C. Ferreira, and J. Garcia, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008).
[Crossref]

Z. Zalevsky, J. Garcia, and V. Mico, “Transversal superresolution with noncontact axial movement of periodic structures,” J. Opt. Soc. Am. A 24, 3220–3225 (2007).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[Crossref]

V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
[Crossref]

V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006).
[Crossref]

J. Garcia, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073–6078 (2005).
[Crossref]

V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Single-step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004).
[Crossref]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

García, J.

V. Micó, Z. Zalevsky, and J. García, “Edge processing by synthetic aperture superresolution in digital holographic microscopy,” 3D Res. 2, 01001 (2011).
[Crossref]

V. Micó, Z. Zalevsky, and J. García, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” Speckle 5, 110–123 (2009).
[Crossref]

Garcia-Martinez, P.

Garcia-Sucerouia, J.

Garcia-Sucerquia, J.

E. Sanchez-Ortiga, M. Martinez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39, 2086–2089 (2014).
[Crossref]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[Crossref]

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[Crossref]

Geist, E.

Genc, S.

Gennari, O.

B. Mandracchia, O. Gennari, V. Marchesano, M. Paturzo, and P. Ferraro, “Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy,” J. Biophoton. 10, 1163–1170 (2017).
[Crossref]

Gillette, M. U.

Giovannini, H.

Girirajan, T. P. K.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Girshovitz, P.

Gluckstad, J.

Goda, K.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[Crossref]

Goh, J.

M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Opt. Commun. 174, 75–80 (2000).
[Crossref]

Goldberg, K. A.

Golding, I.

M. Mir, S. D. Babacan, M. Bednarz, M. N. Do, I. Golding, and G. Popescu, “Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography,” PLoS One 7, e39816 (2012).
[Crossref]

Goodman, J. W.

J. P. Wilde, J. W. Goodman, Y. C. Eldar, and Y. Takashima, “Coherent superresolution imaging via grating-based illumination,” Appl. Opt. 56, A79–A88 (2017).
[Crossref]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2006).

J. W. Goodman, Statistical Optics (Wiley, 1983).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Gorocs, Z.

Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. B. Zhang, H. D. Wang, and A. Ozcan, “Deep learning microscopy,” Optica 4, 1437–1443 (2017).
[Crossref]

W. Luo, Y. Zhang, A. Feizi, Z. Gorocs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5, e16060 (2016).
[Crossref]

A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889–895 (2012).
[Crossref]

Goutte, R.

G. Jacquemod, C. Odet, and R. Goutte, “Image-resolution enhancement using subpixel camera displacement,” Signal Process. 26, 139–146 (1992).
[Crossref]

Granero, L.

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. Garcia, and V. Mico, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

L. Granero, C. Ferreira, Z. Zalevsky, J. Garcia, and V. Mico, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]

L. Granero, Z. Zalevsky, and V. Mico, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]

L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[Crossref]

L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

V. Mico, L. Granero, Z. Zalevsky, and J. Garcia, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A 11, 125408 (2009).
[Crossref]

Grange, R.

Grannell, S. M.

Greenbaum, A.

E. McLeod, T. U. Dincer, M. Veli, Y. N. Ertas, C. Nguyen, W. Luo, A. Greenbaum, A. Feizi, and A. Ozcan, “High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy,” ACS Nano 9, 3265–3273 (2015).
[Crossref]

W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
[Crossref]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T. W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 254 (2013).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21, 12469–12483 (2013).
[Crossref]

A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20, 3129–3143 (2012).
[Crossref]

A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889–895 (2012).
[Crossref]

Greve, J.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface-plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[Crossref]

H. E. Debruijn, R. P. H. Kooyman, and J. Greve, “Surface-plasmon resonance microscopy—improvement of the resolution by rotation of the object,” Appl. Opt. 32, 2426–2430 (1993).
[Crossref]

Grilli, S.

Grimm, M. A.

Gross, M.

Grotjohann, T.

T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching,” Nat. Biotechnol. 29, 942–947(2011).
[Crossref]

Gu, M.

N. Tian, L. Fu, and M. Gu, “Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam,” Sci. Rep. 5, 13580 (2015).
[Crossref]

Guardiola, C.

Guizar-Sicairos, M.

Gunaydin, H.

Guo, K. K.

Guo, R. L.

Guo, S.

Q. W. Lin, D. Y. Wang, Y. X. Wang, S. Guo, S. Panezai, L. T. Ouyang, L. Rong, and J. Zhao, “Super-resolution quantitative phase-contrast imaging by microsphere-based digital holographic microscopy,” Opt. Eng. 56, 034116 (2017).
[Crossref]

Y. X. Wang, S. Guo, D. Y. Wang, Q. W. Lin, L. Rong, and J. Zhao, “Resolution enhancement phase-contrast imaging by microsphere digital holography,” Opt. Commun. 366, 81–87 (2016).
[Crossref]

Guo, W.

L. Li, W. Guo, Y. Z. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, and M. H. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Gur, A.

Gusev, M. E.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87(2000).
[Crossref]

Gutzler, T.

Haeggstrom, E.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoi, P. Montgomery, and E. Haeggstrom, “3D super-resolution optical profiling using microsphere enhanced Mirau interferometry,” Sci. Rep. 7, 3683 (2017).
[Crossref]

S. Perrin, A. Leong-Hoi, S. Lecler, P. Pfeiffer, I. Kassamakov, A. Nolvi, E. Haeggstrom, and P. Montgomery, “Microsphere-assisted phase-shifting profilometry,” Appl. Opt. 56, 7249–7255 (2017).
[Crossref]

Hahn, J.

Hairaye, C.

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

Haist, T.

Han, J.

Han, K.

Hanson, S. G.

Hao, X.

Harder, I.

Harder, R.

Hawley, D.

S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–607 (1986).
[Crossref]

Hayasaki, Y.

He, K. M.

C. Dong, C. C. Loy, K. M. He, and X. O. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. 38, 295–307 (2016).
[Crossref]

He, X. L.

Hedde, P. N.

P. N. Hedde and G. U. Nienhaus, “Super-resolution localization microscopy with photoactivatable fluorescent marker proteins,” Protoplasma 251, 349–362 (2014).
[Crossref]

Heintzmann, R.

K. Wicker and R. Heintzmann, “Resolving a misconception about structured illumination,” Nat. Photonics 8, 342–344 (2014).
[Crossref]

Hell, S. W.

T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching,” Nat. Biotechnol. 29, 942–947(2011).
[Crossref]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[Crossref]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref]

Hellwarth, R.

R. Hellwarth and P. Christensen, “Nonlinear optical microscope using second-harmonic generation,” Appl. Opt. 14, 247–248 (1975).
[Crossref]

R. Hellwarth and P. Christensen, “Nonlinear optical microscopic examination of structure in polycrystalline ZnSe,” Opt. Commun. 12, 318–322 (1974).
[Crossref]

Hennequin, Y.

Y. Hennequin, C. P. Allier, E. McLeod, O. Mudanyali, D. Migliozzi, A. Ozcan, and J. M. Dinten, “Optical detection and sizing of single nanoparticles using continuous wetting films,” ACS Nano 7, 7601–7609 (2013).
[Crossref]

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 254 (2013).
[Crossref]

Heo, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13, 4170–4191 (2013).
[Crossref]

Herek, J. L.

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Hess, S. T.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Heuke, S.

Hezaveh, M. S.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imag. Syst. Tech. 16, 258–261 (2006).
[Crossref]

Hiernard, G.

Hillman, T. R.

Hirscher, M.

Ho, H. P.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 1–12(2012).
[Crossref]

Hoang, T. X.

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999).
[Crossref]

Hong, J.-Y.

Hong, K.

Hong, M. H.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, and M. H. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Hoover, B.

Hoover, B. G.

Hopp, D.

Hoppe, W.

W. Hoppe, “Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen,” Acta Crystallographica 25, 495–501 (1969).
[Crossref]

Horisaki, R.

Horstmeyer, R.

Hsieh, C. L.

Hsiu, F. M.

S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis,” J. Biomed. Opt. 10, 034005 (2005).
[Crossref]

Hu, C. Y.

C. Y. Hu, J. G. Zhong, and J. W. Weng, “Digital holographic microscopy by use of surface plasmon resonance for imaging of cell membranes,” J. Biomed. Opt. 15, 056015 (2010).
[Crossref]

Huang, B.

M. Bates, B. Huang, G. T. Dempsey, and X. W. Zhuang, “Multicolor super-resolution imaging with photo-switchable fluorescent probes,” Science 317, 1749–1753 (2007).
[Crossref]

Huang, K.

T. W. Su, I. Choi, J. W. Feng, K. Huang, E. McLeod, and A. Ozcan, “Sperm trajectories form chiral ribbons,” Sci. Rep. 3, 1664 (2013).
[Crossref]

Huang, P.

E. McLeod, C. Nguyen, P. Huang, W. Luo, M. Veli, and A. Ozcan, “Tunable vapor-condensed nanolenses,” ACS Nano 8, 7340–7349 (2014).
[Crossref]

Huang, T. S.

T. S. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
[Crossref]

Huang, X. J.

Huang, Y. H.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 1–12(2012).
[Crossref]

Humphry, M. J.

Hussain, A.

A. Hussain, T. Amin, C. F. Kuang, L. C. Cao, and X. Liu, “Simple fringe illumination technique for optical superresolution,” J. Opt. Soc. Am. B 34, B78–B84 (2017).
[Crossref]

A. Hussain and J. L. M. Fuentes, “Resolution enhancement using simultaneous couple illumination,” J. Opt. 18, 105702 (2016).
[Crossref]

A. Hussain and A. A. Mudassar, “Optical super resolution using tilted illumination coupled with object rotation,” Opt. Commun. 339, 34–40 (2015).
[Crossref]

A. Hussain, J. L. Martinez, A. Lizana, and J. Campos, “Super resolution imaging achieved by using on-axis interferometry based on a spatial light modulator,” Opt. Express 21, 9615–9623 (2013).
[Crossref]

A. Hussain and A. A. Mudassar, “Holography based super resolution,” Opt. Commun. 285, 2303–2310 (2012).
[Crossref]

A. A. Mudassar and A. Hussain, “Super-resolution of active spatial frequency heterodyning using holographic approach,” Appl. Opt. 49, 3434–3441(2010).
[Crossref]

Huttunen, M. J.

M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-free super-resolution with coherent nonlinear structured-illumination microscopy,” J. Opt. 19, 085504 (2017).
[Crossref]

Hwu, Y. K.

Ikeda, T.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[Crossref]

T. Sato, M. Ueda, and T. Ikeda, “Real-time superresolution by means of an ultrasonic light diffractor and TV system,” Appl. Opt. 13, 1318–1321 (1974).
[Crossref]

Iliescu, D.

Ilovitsh, T.

T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular imaging using temporally flickering nanoparticles,” Sci. Rep. 5, 8244 (2015).
[Crossref]

T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular superresolved imaging of multiple markers using temporally flickering nanoparticles,” Sci. Rep. 5, 10965 (2015).
[Crossref]

Indebetouw, G.

Iseppon, F.

Isikman, S. O.

A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889–895 (2012).
[Crossref]

T. W. Su, S. O. Isikman, W. Bishara, D. Tseng, A. Erlinger, and A. Ozcan, “Multi-angle lensless digital holography for depth resolved imaging on a chip,” Opt. Express 18, 9690–9711 (2010).
[Crossref]

Istasse, E.

Iwai, H.

Izatt, J.

Izatt, J. A.

Jacquemod, G.

G. Jacquemod, C. Odet, and R. Goutte, “Image-resolution enhancement using subpixel camera displacement,” Signal Process. 26, 139–146 (1992).
[Crossref]

Jahn, R.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440, 935–939 (2006).
[Crossref]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref]

Jakobs, S.

T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching,” Nat. Biotechnol. 29, 942–947(2011).
[Crossref]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[Crossref]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref]

Jang, S.

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref]

Javidi, B.

A. Anand, V. Chhaniwal, and B. Javidi, “Tutorial: common path self-referencing digital holographic microscopy,” APL Photon. 3, 071101 (2018).
[Crossref]

S. Ebrahimi, M. Dashtdar, E. Sanchez-Ortiga, M. Martinez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

V. Abbasian, Y. Ganjkhani, E. A. Akhlaghi, A. Anand, B. Javidi, and A. R. Moradi, “Super-resolved microsphere-assisted Mirau digital holography by oblique illumination,” J. Opt. 20, 065301 (2018).
[Crossref]

M. Aakhte, V. Abbasian, E. A. Akhlaghi, A. R. Moradi, A. Anand, and B. Javidi, “Microsphere-assisted super-resolved Mirau digital holographic microscopy for cell identification,” Appl. Opt. 56, D8–D13 (2017).
[Crossref]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41, 2354–2357 (2016).
[Crossref]

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617–23622 (2012).
[Crossref]

V. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37, 5127–5129 (2012).
[Crossref]

L. Martinez-Leon and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
[Crossref]

Jeong, Y.

Jericho, M. H.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[Crossref]

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002).
[Crossref]

W. B. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]

Jericho, S. K.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[Crossref]

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[Crossref]

Ji, H.

H. Ji and K. Wang, “Robust image deblurring with an inaccurate blur kernel,” IEEE Trans. Image Process. 21, 1624–1634 (2012).
[Crossref]

Jia, B. L.

H. S. S. Lai, F. F. Wang, Y. Li, B. L. Jia, L. Q. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11, e0165194 (2016).
[Crossref]

Jiang, H. Z.

Jiang, L. Y.

Jin, G. F.

Jo, Y.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13, 4170–4191 (2013).
[Crossref]

Joseph, J.

Jourdain, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

N. Pavillon, J. Kuhn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7, e30912 (2012).
[Crossref]

Jung, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13, 4170–4191 (2013).
[Crossref]

Jurna, M.

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[Crossref]

Kajdacsy-Balla, A.

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using spatial light interference microscopy (SLIM),” Sci. Rep. 8, 6875 (2018).
[Crossref]

Kandel, M. E.

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using spatial light interference microscopy (SLIM),” Sci. Rep. 8, 6875 (2018).
[Crossref]

Kang, P.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Kang, Y. H.

Karepov, S.

Kartashev, A. I.

A. I. Kartashev, “Optical systems with enhanced resolving power,” Opt. Spectrosc. 9, 394–398 (1960).

Kassamakov, I.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoi, P. Montgomery, and E. Haeggstrom, “3D super-resolution optical profiling using microsphere enhanced Mirau interferometry,” Sci. Rep. 7, 3683 (2017).
[Crossref]

S. Perrin, A. Leong-Hoi, S. Lecler, P. Pfeiffer, I. Kassamakov, A. Nolvi, E. Haeggstrom, and P. Montgomery, “Microsphere-assisted phase-shifting profilometry,” Appl. Opt. 56, 7249–7255 (2017).
[Crossref]

Katz, B.

Katz, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[Crossref]

Kazemzadeh, F.

F. Kazemzadeh and A. Wong, “Laser light-field fusion for wide-field lensfree on-chip phase contrast microscopy of nanoparticles,” Sci. Rep. 6, 38981(2016).
[Crossref]

Keller, J.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref]

Kelly, D. P.

Kemper, B.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014 (2011).
[Crossref]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[Crossref]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52–A61 (2008).
[Crossref]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[Crossref]

Kerwien, N.

W. Osten and N. Kerwien, “Resolution enhancement technologies in optical metrology,” Proc. SPIE 5776, 10–21 (2005).
[Crossref]

Khademhosseinieh, B.

A. Greenbaum, W. Luo, B. Khademhosseinieh, T. W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

Khan, A.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, and M. H. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Kiessling, A.

J. Buhl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
[Crossref]

Kim, B. M.

Kim, D.

Kim, G.

Kim, H. J.

Kim, J.

Kim, K.

K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]

K. Kim, J. S. Yoon, S. Y. Lee, S. A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13, 4170–4191 (2013).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Kim, K. H.

Kim, M.

M. Kim, W. Choi, Y. Choi, C. Yoon, and W. Choi, “Transmission matrix of a scattering medium and its applications in biophotonics,” Opt. Express 23, 12648–12668 (2015).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, K. Kim, R. R. Dasari, M. S. Feld, and W. Choi, “Three-dimensional differential interference contrast microscopy using synthetic aperture imaging,” J. Biomed. Opt. 17, 026003 (2012).
[Crossref]

Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett. 36, 4263–4265 (2011).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. J. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

Kim, M. K.

Kim, N.

A. H. Phan, J. H. Park, and N. Kim, “Super-resolution digital holographic microscopy for three dimensional sample using multipoint light source illumination,” Jpn. J. Appl. Phys. 50, 092503 (2011).
[Crossref]

Kim, Y.

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4, 6659 (2014).
[Crossref]

J. H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13, 1875–1884 (2005).
[Crossref]

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
[Crossref]

Knoll, W.

B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[Crossref]

Kollarova, V.

V. Kollarova, J. Collakova, Z. Dostal, P. Vesely, and R. Chmelik, “Quantitative phase imaging through scattering media by means of coherence-controlled holographic microscope,” J. Biomed. Opt. 20, 111206 (2015).
[Crossref]

Kolman, P.

Kondo, M.

M. Ueda, T. Sato, and M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[Crossref]

Konforti, N.

Kong, S. K.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol. 2012, 1–12(2012).
[Crossref]

Kooyman, R. P. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface-plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994).
[Crossref]

H. E. Debruijn, R. P. H. Kooyman, and J. Greve, “Surface-plasmon resonance microscopy—improvement of the resolution by rotation of the object,” Appl. Opt. 32, 2426–2430 (1993).
[Crossref]

Korner, K.

Korterik, J. P.

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[Crossref]

Kosmeier, S.

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

Kou, S. S.

Kowarschik, R.

J. Buhl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638 (2010).
[Crossref]

Kozacki, T.

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
[Crossref]

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik 119, 419–423 (2008).
[Crossref]

S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[Crossref]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002).
[Crossref]

W. B. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]

Kronrod, M. A.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Krzewina, L.

Kuang, C. F.

Kuehn, J.

Kuhn, J.

Kumar, A.

Kuznetsova, Y.

Labordus, E.

Lai, H. S. S.

H. S. S. Lai, F. F. Wang, Y. Li, B. L. Jia, L. Q. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11, e0165194 (2016).
[Crossref]

Lai, X. J.

Lai, X. M.

Lalor, M.

Lancis, J.

Langehanenberg, P.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008).
[Crossref]

B. Kemper, S. Kosmeier, P. Langehanenberg, G. von Bally, I. Bredebusch, W. Domschke, and J. Schnekenburger, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).
[Crossref]

Laplatine, L.

Laposata, M.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[Crossref]

Latifi, H.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imag. Syst. Tech. 16, 258–261 (2006).
[Crossref]

Laue, M. V.

M. V. Laue, “Die Freiheitsgrade von Strahlenbündeln,” Ann. Phys. 349, 1197–1212 (1914).
[Crossref]

Lauer, V.

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Le Clerc, F.

Lecler, S.

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoi, P. Montgomery, and E. Haeggstrom, “3D super-resolution optical profiling using microsphere enhanced Mirau interferometry,” Sci. Rep. 7, 3683 (2017).
[Crossref]

S. Perrin, A. Leong-Hoi, S. Lecler, P. Pfeiffer, I. Kassamakov, A. Nolvi, E. Haeggstrom, and P. Montgomery, “Microsphere-assisted phase-shifting profilometry,” Appl. Opt. 56, 7249–7255 (2017).
[Crossref]

Lee, B.

Lee, C.

Lee, D. J.

Lee, H. J.

Lee, J. O.

H. Yu, T. R. Hillman, W. Choi, J. O. Lee, M. S. Feld, R. R. Dasari, and Y. Park, “Measuring large optical transmission matrices of disordered media,” Phys. Rev. Lett. 111, 153902 (2013).
[Crossref]

Lee, K.

K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
[Crossref]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13, 4170–4191 (2013).
[Crossref]

Lee, K. J.

T. D. Yang, H. J. Kim, K. J. Lee, B. M. Kim, and Y. Choi, “Single-shot and phase-shifting digital holographic microscopy using a 2-D grating,” Opt. Express 24, 9480–9488 (2016).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012).
[Crossref]

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, “Overcoming the diffraction limit using multiple light scattering in a highly disordered medium,” Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Y. Choi, M. Kim, C. Yoon, T. D. Yang, K. J. Lee, and W. Choi, “Synthetic aperture microscopy for high resolution imaging through a turbid medium,” Opt. Lett. 36, 4263–4265 (2011).
[Crossref]

Lee, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13, 4170–4191 (2013).
[Crossref]

L. Li, W. Guo, Y. Z. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Lee, S. A.

S. A. Lee, J. Erath, G. A. Zheng, X. Z. Ou, P. Willems, D. Eichinger, A. Rodriguez, and C. H. Yang, “Imaging and identification of waterborne parasites using a chip-scale microscope,” PLoS One 9, e89712 (2014).
[Crossref]

S. A. Lee, G. A. Zheng, N. Mukherjee, and C. H. Yang, “On-chip continuous monitoring of motile microorganisms on an ePetri platform,” Lab Chip 12, 2385–2390 (2012).
[Crossref]

G. A. Zheng, S. A. Lee, Y. Antebi, M. B. Elowitz, and C. H. Yang, “The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM),” Proc. Natl. Acad. Sci. USA 108, 16889–16894(2011).
[Crossref]

G. A. Zheng, S. A. Lee, S. Yang, and C. H. Yang, “Sub-pixel resolving optofluidic microscope for on-chip cell imaging,” Lab Chip 10, 3125–3129 (2010).
[Crossref]

Lee, S. Y.

K. Kim, J. S. Yoon, S. Y. Lee, S. A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
[Crossref]

Lehureau, J. C.

Lei, M.

Leitgeb, R. A.

Leith, E.

Leith, E. N.

Leong-Hoi, A.

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoi, P. Montgomery, and E. Haeggstrom, “3D super-resolution optical profiling using microsphere enhanced Mirau interferometry,” Sci. Rep. 7, 3683 (2017).
[Crossref]

S. Perrin, A. Leong-Hoi, S. Lecler, P. Pfeiffer, I. Kassamakov, A. Nolvi, E. Haeggstrom, and P. Montgomery, “Microsphere-assisted phase-shifting profilometry,” Appl. Opt. 56, 7249–7255 (2017).
[Crossref]

Leroy, L.

Leutenegger, M.

T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, and S. Jakobs, “A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching,” Nat. Biotechnol. 29, 942–947(2011).
[Crossref]

Li, D. C.

J. Z. Ling, X. R. Wang, D. C. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
[Crossref]

Li, D. Y.

Li, E. P.

Li, H. Y.

H. Y. Li, L. Y. Zhong, Z. J. Ma, and X. X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272 (2011).
[Crossref]

Li, J. J.

J. L. Zhang, J. S. Sun, Q. Chen, J. J. Li, and C. Zuo, “Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy,” Sci. Rep. 7, 11777 (2017).
[Crossref]

C. Zuo, J. S. Sun, J. J. Li, J. L. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Sci. Rep. 7, 7654 (2017).
[Crossref]

Li, L.

L. Li, W. Guo, Y. Z. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, and M. H. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Li, R. Z.

Li, S. P.

Li, W. J.

H. S. S. Lai, F. F. Wang, Y. Li, B. L. Jia, L. Q. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11, e0165194 (2016).
[Crossref]

Li, X.

Li, X. Y.

Li, Y.

Y. Li, J. L. Di, C. J. Ma, J. W. Zhang, J. Z. Zhong, K. Q. Wang, T. L. Xi, and J. L. Zhao, “Quantitative phase microscopy for cellular dynamics based on transport of intensity equation,” Opt. Express 26, 586–593 (2018).
[Crossref]

J. W. Zhang, S. Q. Dai, J. Z. Zhong, T. L. Xi, C. J. Ma, Y. Li, J. L. Di, and J. L. Zhao, “Wavelength-multiplexing surface plasmon holographic microscopy,” Opt. Express 26, 13549–13560 (2018).
[Crossref]

J. Liu, Y. Li, W. B. Wang, H. Zhang, Y. H. Wang, J. B. Tan, and C. G. Liu, “Stable and robust frequency domain position compensation strategy for Fourier ptychographic microscopy,” Opt. Express 25, 28053–28067 (2017).
[Crossref]

J. W. Zhang, C. J. Ma, S. Q. Dai, J. L. Di, Y. Li, T. L. Xi, and J. L. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41, 3844–3847 (2016).
[Crossref]

C. J. Ma, J. L. Di, J. W. Zhang, Y. Li, T. L. Xi, E. P. Li, and J. L. Zhao, “Simultaneous measurement of refractive index distribution and topography by integrated transmission and reflection digital holographic microscopy,” Appl. Opt. 55, 9435–9439 (2016).
[Crossref]

H. S. S. Lai, F. F. Wang, Y. Li, B. L. Jia, L. Q. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11, e0165194 (2016).
[Crossref]

J. W. Zhang, J. L. Di, Y. Li, T. L. Xi, and J. L. Zhao, “Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection,” Opt. Express 23, 27328–27334 (2015).
[Crossref]

Y. Li, F. Lilley, D. Burton, and M. Lalor, “Evaluation and benchmarking of a pixel-shifting camera for superresolution lensless digital holography,” Appl. Opt. 49, 1643–1650 (2010).
[Crossref]

Li, Y. C.

Li, Y. H.

Liang, R. G.

S. Pacheco, G. A. Zheng, and R. G. Liang, “Reflective Fourier ptychography,” J. Biomed. Opt. 21, 026010 (2016).
[Crossref]

Lilley, F.

Lim, S.

Limberopoulos, N. I.

K. W. Allen, N. Farahi, Y. C. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers,” Opt. Express 23, 24484–24496 (2015).
[Crossref]

A. Darafsheh, N. I. Limberopoulos, J. S. Derov, D. E. Walker, and V. N. Astratov, “Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies,” Appl. Phys. Lett. 104, 061117 (2014).
[Crossref]

Limon, O.

Lin, Q. W.

Q. W. Lin, D. Y. Wang, Y. X. Wang, S. Guo, S. Panezai, L. T. Ouyang, L. Rong, and J. Zhao, “Super-resolution quantitative phase-contrast imaging by microsphere-based digital holographic microscopy,” Opt. Eng. 56, 034116 (2017).
[Crossref]

Y. X. Wang, S. Guo, D. Y. Wang, Q. W. Lin, L. Rong, and J. Zhao, “Resolution enhancement phase-contrast imaging by microsphere digital holography,” Opt. Commun. 366, 81–87 (2016).
[Crossref]

Q. W. Lin, D. Y. Wang, Y. X. Wang, L. Rong, and S. F. Chang, “Super-resolution imaging in digital holography by using dynamic grating with a spatial light modulator,” Opt. Laser Eng. 66, 279–284 (2015).
[Crossref]

Lin, Y. C.

Lindberg, J.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[Crossref]

Lindlein, N.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Linfoot, E. H.

P. B. Fellgett and E. H. Linfoot, “On the assessment of optical images,” Philos. Trans. R. Soc. London A 247, 369–407 (1955).
[Crossref]

Ling, J. Z.

J. Z. Ling, X. R. Wang, D. C. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
[Crossref]

Lingel, C.

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Lippmann, G.

G. Lippmann, “Epreuves reversible donnant la sensation durelief,” J. Phys. Theor. Appl. 7, 821–825 (1908).
[Crossref]

Lipson, S. G.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett. 76, 1665–1667 (2000).
[Crossref]

Liu, C.

X. L. He, C. Liu, and J. Q. Zhu, “Single-shot Fourier ptychography based on diffractive beam splitting,” Opt. Lett. 43, 214–217 (2018).
[Crossref]

C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Liu, C. G.

Liu, F. F.

X. L. Yu, X. Ding, F. F. Liu, and Y. Deng, “A novel surface plasmon resonance imaging interferometry for protein array detection,” Sens. Actuators B Chem. 130, 52–58 (2008).
[Crossref]

Liu, H. T.

Liu, J.

Liu, L. Q.

H. S. S. Lai, F. F. Wang, Y. Li, B. L. Jia, L. Q. Liu, and W. J. Li, “Super-resolution real imaging in microsphere-assisted microscopy,” PLoS One 11, e0165194 (2016).
[Crossref]

Liu, Q. L.

Liu, S. G.

Liu, X.

Liu, Z.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, and M. H. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Liu, Z. G.

C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Liu, Z. J.

Livache, T.

Lizana, A.

Lo, C. M.

Lohman, A. W.

D. Mendlovic, A. W. Lohman, and Z. Zalevsky, “Space–bandwidth product adaptation and its application for super resolution: examples,” J. Opt. Soc. Am. A 14, 562–567 (2009).
[Crossref]

D. Mendlovic and A. W. Lohman, “Space–bandwidth product adaptation and its application for super resolution: fundamentals,” J. Opt. Soc. Am. A 14, 558–562 (1997).
[Crossref]

Lohmann, A. W.

Lopez, J.

Lord Rayleigh,

Lord Rayleigh, “On the theory of optical images, with special reference to the microscope,” Philos. Mag. 42(255), 167–195 (1896).
[Crossref]

Lost’ak, M.

Loy, C. C.

C. Dong, C. C. Loy, K. M. He, and X. O. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans. Pattern Anal. 38, 295–307 (2016).
[Crossref]

Lu, H. W.

Lu, R.

Lu, X. X.

H. Y. Li, L. Y. Zhong, Z. J. Ma, and X. X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272 (2011).
[Crossref]

Luckhart, S.

W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, and A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11, 1276–1279 (2011).
[Crossref]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[Crossref]

Luhrmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref]

Luk’yanchuk, B.

Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, and M. H. Hong, “Optical virtual imaging at 50  nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
[Crossref]

Lukosz, W.

Luo, W.

W. Luo, Y. Zhang, A. Feizi, Z. Gorocs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5, e16060 (2016).
[Crossref]

Y. C. Wu, Y. B. Zhang, W. Luo, and A. Ozcan, “Demosaiced pixel super-resolution for multiplexed holographic color imaging,” Sci. Rep. 6, 28601 (2016).
[Crossref]

W. Luo, A. Greenbaum, Y. B. Zhang, and A. Ozcan, “Synthetic aperture-based on-chip microscopy,” Light Sci. Appl. 4, e261 (2015).
[Crossref]

E. McLeod, T. U. Dincer, M. Veli, Y. N. Ertas, C. Nguyen, W. Luo, A. Greenbaum, A. Feizi, and A. Ozcan, “High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy,” ACS Nano 9, 3265–3273 (2015).
[Crossref]

E. McLeod, C. Nguyen, P. Huang, W. Luo, M. Veli, and A. Ozcan, “Tunable vapor-condensed nanolenses,” ACS Nano 8, 7340–7349 (2014).
[Crossref]

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 254 (2013).
[Crossref]

A. Greenbaum, W. Luo, B. Khademhosseinieh, T. W. Su, A. F. Coskun, and A. Ozcan, “Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy,” Sci. Rep. 3, 1717 (2013).
[Crossref]

A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9, 889–895 (2012).
[Crossref]

Luo, Z. F.

D. Q. Wang, L. L. Ding, W. Zhang, Z. F. Luo, H. C. Ou, E. Y. Zhang, and X. L. Yu, “A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging,” Meas. Sci. Technol. 23, 065701 (2012).
[Crossref]

Luttge, A.

R. S. Arvidson, C. Fischer, D. S. Sawyer, G. D. Scott, D. Natelson, and A. Luttge, “Lateral resolution enhancement of vertical scanning interferometry by sub-pixel sampling,” Microsc. Microanal. 20, 90–98 (2014).
[Crossref]

Lv, X. H.

Lyu, M.

Ma, C. J.

Ma, H. F.

F. G. Wang, S. L. Yang, H. F. Ma, P. Shen, N. Wei, M. Wang, Y. Xia, Y. Deng, and Y. H. Ye, “Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion,” Appl. Phys. Lett. 112, 023101 (2018).
[Crossref]

R. Ye, Y. H. Ye, H. F. Ma, L. L. Cao, J. Ma, F. Wyrowski, R. Shi, and J. Y. Zhang, “Experimental imaging properties of immersion microscale spherical lenses,” Sci. Rep. 4, 3769 (2014).
[Crossref]

Ma, J.

Ma, Z. J.

H. Y. Li, L. Y. Zhong, Z. J. Ma, and X. X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272 (2011).
[Crossref]

Magistretti, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett. 35, 4102–4104 (2010).
[Crossref]

Magistretti, P. J.

Mahon, R.

J. A. Moon, P. R. Battle, M. Bashkansky, R. Mahon, M. D. Duncan, and J. Reintjes, “Achievable spatial resolution of time-resolved transillumination imaging systems which utilize multiply scattered light,” Phys. Rev. E 53, 1142–1155 (1996).
[Crossref]

Maiden, A. M.

Maire, G.

Majeed, H.

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using spatial light interference microscopy (SLIM),” Sci. Rep. 8, 6875 (2018).
[Crossref]

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

Mandracchia, B.

B. Mandracchia, O. Gennari, V. Marchesano, M. Paturzo, and P. Ferraro, “Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy,” J. Biophoton. 10, 1163–1170 (2017).
[Crossref]

B. Mandracchia, V. Pagliarulo, M. Paturzo, and P. Ferraro, “Surface plasmon resonance imaging by holographic enhanced mapping,” Anal. Chem. 87, 4124–4128 (2015).
[Crossref]

Manley, S.

G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical measurement of cell membrane tension,” Phys. Rev. Lett. 97, 218101 (2006).
[Crossref]

Mann, C. J.

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Mantel, K.

Marche, P. N.

Marchesano, V.

B. Mandracchia, O. Gennari, V. Marchesano, M. Paturzo, and P. Ferraro, “Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy,” J. Biophoton. 10, 1163–1170 (2017).
[Crossref]

Marian, A.

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

Marks, D. L.

Marom, E.

Marquet, P.

Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, “Marker-free phase nanoscopy,” Nat. Photonics 7, 113–117 (2013).
[Crossref]

N. Pavillon, J. Kuhn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Early cell death detection with digital holographic microscopy,” PLoS One 7, e30912 (2012).
[Crossref]

E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett. 35, 4102–4104 (2010).
[Crossref]

E. Shaffer, P. Marquet, and C. Depeursinge, “Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy,” Opt. Express 18, 17392–17403 (2010).
[Crossref]

F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
[Crossref]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361–9373 (2005).
[Crossref]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
[Crossref]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[Crossref]

Martinez, J. L.

Martinez-Corral, M.

S. Ebrahimi, M. Dashtdar, E. Sanchez-Ortiga, M. Martinez-Corral, and B. Javidi, “Stable and simple quantitative phase-contrast imaging by Fresnel biprism,” Appl. Phys. Lett. 112, 113701 (2018).
[Crossref]

E. Sanchez-Ortiga, M. Martinez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination,” Opt. Lett. 39, 2086–2089 (2014).
[Crossref]

Martinez-Leon, L.

Marx, V.

V. Marx, “Microscopy: Hello, adaptive optics,” Nat. Methods 14, 1133–1136 (2017).
[Crossref]

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]

Masihzadeh, O.

Mason, M. D.

S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Massig, J. H.

Massudi, R.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imag. Syst. Tech. 16, 258–261 (2006).
[Crossref]

Matrecano, M.

Maucort, G.

McLeod, E.

E. McLeod, T. U. Dincer, M. Veli, Y. N. Ertas, C. Nguyen, W. Luo, A. Greenbaum, A. Feizi, and A. Ozcan, “High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy,” ACS Nano 9, 3265–3273 (2015).
[Crossref]

E. McLeod, C. Nguyen, P. Huang, W. Luo, M. Veli, and A. Ozcan, “Tunable vapor-condensed nanolenses,” ACS Nano 8, 7340–7349 (2014).
[Crossref]

O. Mudanyali, E. McLeod, W. Luo, A. Greenbaum, A. F. Coskun, Y. Hennequin, C. P. Allier, and A. Ozcan, “Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses,” Nat. Photonics 7, 254 (2013).
[Crossref]

Y. Hennequin, C. P. Allier, E. McLeod, O. Mudanyali, D. Migliozzi, A. Ozcan, and J. M. Dinten, “Optical detection and sizing of single nanoparticles using continuous wetting films,” ACS Nano 7, 7601–7609 (2013).
[Crossref]

T. W. Su, I. Choi, J. W. Feng, K. Huang, E. McLeod, and A. Ozcan, “Sperm trajectories form chiral ribbons,” Sci. Rep. 3, 1664 (2013).
[Crossref]

McNulty, I.

Medda, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).
[Crossref]

Medecki, H.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002).
[Crossref]

W. B. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301–11305 (2001).
[Crossref]

Meir, R.

T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular imaging using temporally flickering nanoparticles,” Sci. Rep. 5, 8244 (2015).
[Crossref]

T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular superresolved imaging of multiple markers using temporally flickering nanoparticles,” Sci. Rep. 5, 10965 (2015).
[Crossref]

Meiri, A.

T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular superresolved imaging of multiple markers using temporally flickering nanoparticles,” Sci. Rep. 5, 10965 (2015).
[Crossref]

T. Ilovitsh, Y. Danan, R. Meir, A. Meiri, and Z. Zalevsky, “Cellular imaging using temporally flickering nanoparticles,” Sci. Rep. 5, 8244 (2015).
[Crossref]

Memmolo, P.

P. Memmolo, L. Miccio, M. Paturzo, G. Di Caprio, G. Coppola, P. A. Netti, and P. Ferraro, “Recent advances in holographic 3D particle tracking,” Adv. Opt. Photon. 7, 713–755 (2015).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[Crossref]

Mendlovic, D.

Mendoza-Yero, O.

Menzel, A.

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494, 68–71 (2013).
[Crossref]

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy 109, 338–343 (2009).
[Crossref]

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379–382 (2008).
[Crossref]

Merola, F.

Merzlyakov, N. S.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavsky, “Reconstruction of holograms with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Miccio, L.

Mico, V.

J. A. Picazo-Bueno, M. Trusiak, J. Garcia, K. Patorski, and V. Mico, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43, 1007–1010 (2018).
[Crossref]

J. A. Picazo-Bueno, D. Cojoc, F. Iseppon, V. Torre, and V. Mico, “Single-shot, dual-mode, water-immersion microscopy platform for biological applications,” Appl. Opt. 57, A242–A249 (2018).
[Crossref]

J. A. Picazo-Bueno, Z. Zalevsky, J. Garcia, and V. Mico, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42, 927–930 (2017).
[Crossref]

M. Sanz, J. A. Picazo-Bueno, L. Granero, J. Garcia, and V. Mico, “Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy,” Sci. Rep. 7, 43291 (2017).
[Crossref]

L. Granero, C. Ferreira, Z. Zalevsky, J. Garcia, and V. Mico, “Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration,” Opt. Laser Eng. 82, 104–112 (2016).
[Crossref]

J. A. Picazo-Bueno, Z. Zalevsky, J. Garcia, C. Ferreira, and V. Mico, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21, 106007 (2016).
[Crossref]

M. Sanz, J. A. Picazo-Bueno, J. Garcia, and V. Mico, “Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm,” Opt. Express 23, 21352–21365 (2015).
[Crossref]

V. Mico, C. Ferreira, Z. Zalevsky, and J. Garcia, “Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one,” Opt. Express 22, 14929–14943 (2014).
[Crossref]

V. Mico, C. Ferreira, and J. Garcia, “Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects,” Appl. Opt. 52, 6390–6400 (2013).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator,” Opt. Lett. 37, 4988–4990 (2012).
[Crossref]

V. Mico, C. Ferreira, and J. Garcia, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20, 9382–9395 (2012).
[Crossref]

A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Mico, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28, 2346–2358 (2011).
[Crossref]

L. Granero, Z. Zalevsky, and V. Mico, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]

A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36, 885–887 (2011).
[Crossref]

A. Gur, D. Fixler, V. Mico, J. Garcia, and Z. Zalevsky, “Linear optics based nanoscopy,” Opt. Express 18, 22222–22231 (2010).
[Crossref]

D. Sylman, V. Mico, J. Garcia, and Z. Zalevsky, “Random angular coding for superresolved imaging,” Appl. Opt. 49, 4874–4882 (2010).
[Crossref]

V. Mico and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
[Crossref]

L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[Crossref]

L. Camacho, V. Mico, Z. Zalevsky, and J. Garcia, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6766 (2010).
[Crossref]

L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

V. Mico, L. Granero, Z. Zalevsky, and J. Garcia, “Superresolved phase-shifting Gabor holography by CCD shift,” J. Opt. A 11, 125408 (2009).
[Crossref]

Z. Zalevsky, V. Mico, and J. Garcia, “Nanophotonics for optical super resolution from an information theoretical perspective: a review,” J. Nanophoton. 3, 032502