Abstract

Optical antennas are an emerging concept in physical optics. Similar to radiowave and microwave antennas, their purpose is to convert the energy of free propagating radiation to localized energy, and vice versa. Optical antennas exploit the unique properties of metal nanostructures, which behave as strongly coupled plasmas at optical frequencies. The tutorial provides an account of the historical origins and the basic concepts and parameters associated with optical antennas. It also reviews recent work in the field and discusses areas of application, such as light-emitting devices, photovoltaics, and spectroscopy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ISO Standard ISO/TS 27687, TC 229 (ISO, 2008).
  2. Aristotle, De Animalibus, Theodorus Gaza, trans. (Johannes de Colonia and Johannes Manthen, 1476).
  3. Aristotle, History of Animals (c. 340 B.C.E.).
  4. T. G. Tucker, “Antemna, antenna,” in A Concise Etymological Dictionary of Latin (Max Niemeyer Verlag, 1931), p. 19.
  5. C. Watkins, “ten-,” in The American Heritage Dictionary of Indo-European Roots (Houghton Mifflin, 2000), p. 90.
  6. E. Klein, “Antenna,” in A Comprehensive Etymological Dictionary of the English Language (Elsevier, 1966), p. 82.
  7. J. A. Simpson, E. S. C. Weiner, “Antennas,” in The Oxford English Dictionary (Oxford Univ. Press, 1989), p. 506.
  8. F. E. Gardiol, Y. Fournier, “Salvan: cradle of wireless,” Microwave J. 49, 124–136 (2006).
  9. W. P. Jolly, Marconi (Constable, 1972).
  10. G. Marconi, “Wireless telegraphic communication,” Nobel Lecture, December 11, 1909.
  11. G. W. Pierce, “Experiments on resonance in wireless telegraph circuits,” Phys. Rev. 19, 196–217 (1904).
  12. J. A. Fleming, “Telegraphy,” The New Volumes of the Encyclopedia Britannica, 10th ed., vol. XXXIII (1902).
  13. S. Walter, E. Bolmont, A. Coret, “La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs,” in Publications of the Henri Poincaré Archives (Birkhäuser, 2007), chap. 8.
    [CrossRef]
  14. A. Broca, La télégraphie sans fils (Gauthier Villars, 1899).
  15. B. Franklin, in The Papers of Benjamin Franklin, L. W. Labaree, ed. (Yale Univ. Press, 1961), vol. 3, pp. 156–164.
  16. M. C. H. E. Rodriguez-Garcia, “Systéme de télégraphie sans fil par ondes hertziennes,” French Patent 301264 (June 14, 1900).
  17. E. Ducretet, “Transmitting and receiving apparatus for Hertzian waves,” U.S. Patent 726413 (April 28, 1903).
  18. M. C. H. E. Rodriguez-Garcia, “Wireless telegraphy,” U.S. Patent 795762 (July 25, 1905).
  19. Antenna Standards Committee of the IEEE Antennas and Propagation Society, “IEEE standard definitions of terms for antennas,” (IEEE, 1993).
  20. L. Novotny, “The history of near-field optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2007), vol. 50, pp. 137–184.
    [CrossRef]
  21. Nobel Lectures, Chemistry 1922–1941 (Elsevier, 1966).
  22. J. Wessel, “Surface-enhanced optical microscopy,” J. Opt. Soc. Am. B 2, 1538–1540 (1985).
    [CrossRef]
  23. P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef]
  24. S. Kühn, U. Hakanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  25. G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).
  26. M. Fleischmann, P. J. Hendra, A. J. McQuillian, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
    [CrossRef]
  27. D. L. Jeanmaire, R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
    [CrossRef]
  28. M. G. Albrecht, J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977).
    [CrossRef]
  29. J. Gersten, A. Nitzan, “Electromagnetic theory of enhanced Raman scattering of molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
    [CrossRef]
  30. A. Wokaun, J. Gordon, P. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
    [CrossRef]
  31. A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  32. H. Metiu, Surface Enhanced Spectroscopy, vol. 17 of Progress in Surface Science, I. Prigogine and S. A. Rice, eds. (Pergamon, 1984), pp. 153–320.
  33. M. Meier, A. Wokaun, P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Raleigh limit,” J. Opt. Soc. Am. B 2, 931–949 (1985).
    [CrossRef]
  34. U. C. Fischer, D. W. Pohl, “Observation on single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
    [CrossRef] [PubMed]
  35. J. Jackson, S. Westcott, L. Hirsch, J. West, N. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
    [CrossRef]
  36. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 320, 419–422 (2003).
    [CrossRef]
  37. L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [CrossRef]
  38. L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
    [CrossRef]
  39. L. O. Hocker, D. R. Sokoloff, A. S. V. Daneu, A. Javan, “Frequency mixing in the infrared and far-infrared using metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
    [CrossRef]
  40. L. M. Matarrese, K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
    [CrossRef]
  41. A. Kirschke, K. Rothammel, Rothammels Antennenbuch (DARC Verlag, 2001).
  42. G. Boreman, “Infrared microantennas,” Proc. SPIE 3110, 882–885 (1997).
    [CrossRef]
  43. J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
    [CrossRef]
  44. F. González, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 146, 418–428 (2004).
  45. C. Fumeaux, G. Boreman, W. Herrmann, H. Rothuizen, F. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485–6490 (1997).
    [CrossRef]
  46. I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001).
    [CrossRef]
  47. C. Middlebrook, P. Krenz, B. Lail, G. Boreman, “Infrared phased-array antenna,” Microwave Opt. Technol. Lett. 50, 719–723 (2008).
    [CrossRef]
  48. R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
    [CrossRef]
  49. D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X. Zhu and M. Ohtsu, eds. (World Scientific, 2000), pp. 9–21.
    [CrossRef]
  50. L. Allen, J. H. Eberly, Optical Resonance and Two-level Atoms (Dover Publications, Inc., Mineola, NY, 1987).
  51. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
    [CrossRef]
  52. K. Joulain, R. Carminati, J. P. Mulet, J. J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
    [CrossRef]
  53. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
    [CrossRef]
  54. K. H. Drexhage, M. Fleck, F. Shäfer, W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1179 (1966).
  55. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
    [CrossRef]
  56. P. Goy, J. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
    [CrossRef]
  57. M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003).
    [CrossRef] [PubMed]
  58. O. Labeau, P. Tamarat, H. Courtois, G. S. Agarwal, B. Lounis, “Laser-induced resonance shifts of single molecules self-coupled by a metallic surface,” Phys. Rev. Lett. 98, 143003 (2007).
    [CrossRef] [PubMed]
  59. L. Novotny, S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
    [CrossRef] [PubMed]
  60. J.-J. Greffet, Institut d'Optique, Paris, France (personal communication, 2008).
  61. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
    [CrossRef]
  62. T. H. Taminiau, F. D. Stefani, F. B. Segerink, N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
    [CrossRef]
  63. R. J. Moerland, N. F. van Hulst, H. Gersen, L. Kuipers, “Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection,” Opt. Eng. 13, 1604–1614 (2005).
  64. H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312 (2000).
    [CrossRef]
  65. C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
    [CrossRef]
  66. R. Carminati, M. Nieto-Vesperinas, J.-J. Greffet, “Reciprocity of evanescent electromagnetic waves,” J. Opt. Soc. Am. A 15, 706–712 (1998).
    [CrossRef]
  67. T. H. Taminiau, F. D. Stefani, N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
    [CrossRef] [PubMed]
  68. T. H. Taminiau, N. F. Van Hulst, ICFO—The Institute of Photonic Sciences, Castelldefels (Barcelona), Spain (personal communication, 2008).
  69. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
    [CrossRef] [PubMed]
  70. J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  71. P. Bharadwaj, L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
    [CrossRef] [PubMed]
  72. R. Loudon, The Quantum Theory of Light, 2nd ed., Oxford Science Publications (Clarendon, 1983).
  73. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
    [CrossRef]
  74. H. Xu, E. J. Bjernfeld, M. Käll, L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
    [CrossRef]
  75. K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  76. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
    [CrossRef] [PubMed]
  77. P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
    [CrossRef]
  78. G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
    [CrossRef]
  79. V. V. Klimov, M. Ducloy, V. S. Letokhov, “Spontaneous emission in the presence of nanobodies,” Quantum Electron. 31, 569–586 (2001).
    [CrossRef]
  80. V. V. Klimov, V. S. Letokhov, “Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface,” Laser Phys. 15, 61–73 (2005).
  81. A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79, 509–514 (1983).
    [CrossRef]
  82. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  83. G. W. Bryant, F. J. G. de Abajó, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
    [CrossRef] [PubMed]
  84. P. J. Burke, S. Li, Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance,” IEEE Trans. Nanotech. 5, 314–334 (2006).
    [CrossRef]
  85. A. Alù, N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
    [CrossRef] [PubMed]
  86. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61–137 (1996).
    [CrossRef]
  87. M. R. Beversluis, A. Bouhelier, L. Novotny, “Continum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
    [CrossRef]
  88. J. R. Zurita-Sanchez, L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement,” J. Opt. Soc. Am. B 19, 1355–1362 (2002).
    [CrossRef]
  89. J. R. Zurita-Sanchez, L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement,” J. Opt. Soc. Am. B 19, 2722–2726 (2002).
    [CrossRef]
  90. I. A. Larkin, M. I. Stockman, M. Achermann, V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation,” Phys. Rev. B 69, 121403(R) (2004).
    [CrossRef]
  91. J. Aizpurua, A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008).
    [CrossRef]
  92. F. J. G. de Abajó, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983–17987 (2008).
    [CrossRef]
  93. J. Zuloaga, E. Prodan, P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 88789 (2009).
    [CrossRef]
  94. R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbo3 and BBO crystals,” Opt. Commun. 229, 403–412 (2003).
    [CrossRef]
  95. N. Bloembergen, W. K. Burns, M. Matsuoka, “Reflected third harmonic generation by picosecond laser pulses,” Opt. Commun. 1, 195–198 (1969).
    [CrossRef]
  96. J. Renger, R. Quidant, N. V. Hulst, L. Novotny, “Optical four-wave mixing at planar noble metal surfaces,” submitted to Phys. Rev. Lett..
  97. A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
    [CrossRef] [PubMed]
  98. M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62–64 (2004).
    [CrossRef] [PubMed]
  99. M. Lippitz, M. A. van Dijk, M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799 (2005).
    [CrossRef] [PubMed]
  100. A. Bouhelier, M. R. Beversluis, L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
    [CrossRef]
  101. P. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  102. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
    [CrossRef] [PubMed]
  103. M. Danckwerts, L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
    [CrossRef] [PubMed]
  104. S. Palomba, L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
    [CrossRef] [PubMed]
  105. S. Palomba, M. Danckwerts, L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” submitted to J. Opt. A, Pure Appl. Opt..
  106. D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
    [CrossRef]
  107. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2006).
    [CrossRef]
  108. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
    [CrossRef]
  109. T. Søndergaard, S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198–4204 (2007).
    [CrossRef] [PubMed]
  110. T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 011520 (2008).
    [CrossRef]
  111. J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26, 121–124 (2009).
    [CrossRef]
  112. T. Laroche, C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006).
    [CrossRef]
  113. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
    [CrossRef] [PubMed]
  114. E. S. Barnard, J. S. White, A. Chandran, M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2006).
    [CrossRef]
  115. A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538–543 (2005).
    [CrossRef]
  116. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
    [CrossRef] [PubMed]
  117. N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15, 13227–13235 (2007).
    [CrossRef] [PubMed]
  118. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
    [CrossRef] [PubMed]
  119. J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
    [CrossRef]
  120. F. J. G. de Abajó, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
    [CrossRef]
  121. K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
    [CrossRef]
  122. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
    [CrossRef]
  123. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  124. A. Alù, N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
    [CrossRef]
  125. A. Alù, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
    [CrossRef]
  126. J. Sun, S. Carney, J. Schotland, “Strong tip effects in near-field optical tomography,” J. Appl. Phys. 102, 103103 (2007).
    [CrossRef]
  127. E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  128. A. Hartschuh, M. R. Beversluis, A. Bouhelier, L. Novotny, “Tip-enhanced optical spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 362, 807–819 (2003).
    [CrossRef]
  129. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem., Int. Ed. 47, 8178–8191 (2008).
    [CrossRef]
  130. E. Bailo, V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37, 921–930 (2008).
    [CrossRef] [PubMed]
  131. E. Fort, S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
    [CrossRef]
  132. R. Bachelot, P. Gleyzes, A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
    [CrossRef] [PubMed]
  133. S. Kawata, Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy 57, 313–317 (1995).
    [CrossRef]
  134. B. Deutsch, R. Hillenbrand, L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494–501 (2008).
    [CrossRef] [PubMed]
  135. R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245, 2255–2260 (2008).
    [CrossRef]
  136. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
    [CrossRef] [PubMed]
  137. B. Knoll, F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
    [CrossRef]
  138. R. Hillenbrand, F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
    [CrossRef] [PubMed]
  139. F. Keilmann, R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787–797 (2004).
    [CrossRef]
  140. M. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16, 12302–12312 (2008).
    [CrossRef] [PubMed]
  141. X. S. Xie, J. K. Trautman, “Optical studies of single molecules at room temperature,” Annu. Rev. Phys. Chem. 49, 441–480 (1998).
    [CrossRef]
  142. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
    [CrossRef]
  143. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
    [CrossRef] [PubMed]
  144. H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
    [CrossRef]
  145. R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
    [CrossRef]
  146. M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
    [CrossRef]
  147. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
    [CrossRef] [PubMed]
  148. A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Lett. 5, 2310 (2005).
    [CrossRef] [PubMed]
  149. H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363–1367 (2008).
    [CrossRef] [PubMed]
  150. H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
    [CrossRef] [PubMed]
  151. F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92, 177401 (2004).
    [CrossRef] [PubMed]
  152. F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496501 (2007).
    [CrossRef]
  153. J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
    [CrossRef]
  154. H. Mertens, J. S. Biteen, H. A. Atwater, A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
    [CrossRef] [PubMed]
  155. N. A. Issa, R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131–12144 (2007).
    [CrossRef] [PubMed]
  156. Y. Chen, K. Munechika, D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7, 690–696 (2007).
    [CrossRef] [PubMed]
  157. Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
    [CrossRef]
  158. M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics 2, 201–203 (2008).
    [CrossRef]
  159. C. Höppener, L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8, 642–646 (2008).
    [CrossRef]
  160. C. Höppener, L. Novotny, “Imaging of membrane proteins using antenna-based optical microscopy,” Nanotechnology 19, 384012 (2008).
    [CrossRef] [PubMed]
  161. H. Frey, F. Keilmann, A. Kriele, R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81, 5530–5532 (2002).
    [CrossRef]
  162. H. G. Frey, S. Witt, K. Felderer, R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
    [CrossRef] [PubMed]
  163. R. Esteban, M. Laroche, J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
    [CrossRef]
  164. S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275, 1102 (1997).
    [CrossRef] [PubMed]
  165. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasary, M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [CrossRef]
  166. A. M. Michaels, J. Jiang, L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. C 104, 11965–11971 (2000).
  167. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
    [CrossRef]
  168. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
    [CrossRef]
  169. R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
    [CrossRef]
  170. A. Hartschuh, E. Sanchez, X. Xie, L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
    [CrossRef] [PubMed]
  171. A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Tip-enhanced optical spectroscopy of single-walled carbon nanotubes,” in Tip Enhancement, S. Kawata and V. M. Shalaev, eds., Advances in Nano-Optics and Nano-Photonics (Elsevier, 2007), pp. 157–176.
    [CrossRef]
  172. N. Anderson, A. Hartschuh, L. Novotny, “Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy,” Nano Lett. 7, 577–582 (2007).
    [CrossRef] [PubMed]
  173. A. Rasmussen, V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311–317 (2006).
    [CrossRef]
  174. U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
    [CrossRef] [PubMed]
  175. J. Steidtner, B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100, 236101 (2008).
    [CrossRef]
  176. C. C. Neacsu, J. Dreyer, N. Behr, M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73, 193406 (2006).
    [CrossRef]
  177. W. Zhang, B. S. Yeo, T. Schmid, R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
    [CrossRef]
  178. W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microwave Theory Tech. 32, 1230–1242 (1984).
    [CrossRef]
  179. R. L. Bailey, “A proposed new concept for a solar-energy convertor,” J. Eng. Power 94, 73–77 (1972).
    [CrossRef]
  180. A. M. Marks, “Device for conversion of light to electric power,” U.S. Patent 4,445,050 (April 24, 1984).
  181. A. M. Marks, “Ordered dipolar light-electric power converter,” U.S. Patent 4,574,161 (March 4, 1986).
  182. A. M. Marks, “Femto diode and applications,” U.S. Patent 4,720,642 (January 19, 1988).
  183. R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
    [CrossRef]
  184. K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
    [CrossRef]
  185. C. Hägglund, “Nanoparticle plasmon influence on the charge carrier generation in solar cells,” Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden (2008).
  186. H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
    [CrossRef]
  187. K. R. Catchpole, S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100, 044504 (2006).
    [CrossRef]
  188. M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007).
    [CrossRef]
  189. S. Pillai, K. Catchpole, T. Trupke, M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  190. K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
    [CrossRef]
  191. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
    [CrossRef]
  192. C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
    [CrossRef]
  193. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Phys. Rev. E 92, 013504 (2008).
  194. S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
    [CrossRef]
  195. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
    [CrossRef]
  196. K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
    [CrossRef] [PubMed]
  197. B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
    [CrossRef]
  198. G. Zhao, H. Kozuka, T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46, 219–231 (1997).
    [CrossRef]
  199. C. Wen, K. Ishikawa, M. Kishima, K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61, 339–351 (2000).
    [CrossRef]
  200. C. Hägglund, M. Zäch, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
    [CrossRef]
  201. H. Kozuka, G. Zhao, T. Yoko, “Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles,” Thin Solid Films 277, 147–154 (1996).
    [CrossRef]
  202. Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
    [CrossRef] [PubMed]
  203. S. Wedge, J. A. E. Wasey, W. L. Barnes, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182–184 (2004).
    [CrossRef]
  204. C. Liu, V. Kamaev, Z. V. Vardenya, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
    [CrossRef]
  205. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  206. P. Ball, “Let there be light,” Nature 409, 974–976 (2001).
    [CrossRef] [PubMed]
  207. W. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17, 2170–2182 (1999).
    [CrossRef]
  208. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
    [CrossRef]
  209. Basic Research Needs for Solid-State Lighting, Report of the Basic Energy Sciences Workshop on Solid-State Lighting (U.S. Department of Energy,2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.
  210. S. Nakamura, T. Mukai, M. Senoh, “Candela-class high-brightness InGaN∕AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
    [CrossRef]
  211. C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J. S. Nelson, “GaInN∕GaN growth optimization for high power green light emitting diodes,” Appl. Phys. Lett. 85, 866–868 (2004).
    [CrossRef]
  212. P. Schlotter, R. Schmidt, J. Schneider, “Luminescence conversion of blue light mmitting diodes,” Appl. Phys. A 64, 417 (1997).
    [CrossRef]
  213. J. Sun, J. Khurgin, R. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748–1755 (2008).
    [CrossRef]
  214. M. Stockman, M. Kling, U. Kleinberg, F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nat. Photonics 1, 539–544 (2007).
    [CrossRef]
  215. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
    [CrossRef] [PubMed]
  216. H. Rabitz, M. Hsieh, C. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
    [CrossRef] [PubMed]
  217. S. Shi, A. Woody, H. Rabitz, “Optimal control of selective vibrational excitation in harmonic linear chain molecules,” J. Chem. Phys. 88, 6870–6883 (1988).
    [CrossRef]
  218. M. Stockman, D. Bergman, T. Kobayashi, “Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems,” Phys. Rev. B 69, 054202 (2004).
    [CrossRef]
  219. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  220. M. I. Stockman, S. V. Faleev, D. J. Bergman, “Coherently controlled femtosecond energy localization on nanoscale,” Appl. Phys. B 74, S63–S67 (2002).
    [CrossRef]
  221. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  222. M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys. 10, 025031 (2008).
    [CrossRef]
  223. T. Brixner, F. G. de Abajo, J. Schneider, W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
    [CrossRef] [PubMed]
  224. M. Sukharev, T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006).
    [CrossRef] [PubMed]
  225. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
    [CrossRef] [PubMed]

2009 (3)

J. Zuloaga, E. Prodan, P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 88789 (2009).
[CrossRef]

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26, 121–124 (2009).
[CrossRef]

R. Esteban, M. Laroche, J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[CrossRef]

2008 (38)

Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics 2, 201–203 (2008).
[CrossRef]

C. Höppener, L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8, 642–646 (2008).
[CrossRef]

C. Höppener, L. Novotny, “Imaging of membrane proteins using antenna-based optical microscopy,” Nanotechnology 19, 384012 (2008).
[CrossRef] [PubMed]

M. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16, 12302–12312 (2008).
[CrossRef] [PubMed]

H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363–1367 (2008).
[CrossRef] [PubMed]

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 011520 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

S. Palomba, L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[CrossRef] [PubMed]

F. J. G. de Abajó, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[CrossRef]

A. Alù, N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

A. Alù, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem., Int. Ed. 47, 8178–8191 (2008).
[CrossRef]

E. Bailo, V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37, 921–930 (2008).
[CrossRef] [PubMed]

E. Fort, S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

B. Deutsch, R. Hillenbrand, L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494–501 (2008).
[CrossRef] [PubMed]

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245, 2255–2260 (2008).
[CrossRef]

J. Aizpurua, A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008).
[CrossRef]

F. J. G. de Abajó, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983–17987 (2008).
[CrossRef]

G. W. Bryant, F. J. G. de Abajó, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[CrossRef] [PubMed]

A. Alù, N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
[CrossRef] [PubMed]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

C. Middlebrook, P. Krenz, B. Lail, G. Boreman, “Infrared phased-array antenna,” Microwave Opt. Technol. Lett. 50, 719–723 (2008).
[CrossRef]

J. Steidtner, B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100, 236101 (2008).
[CrossRef]

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Phys. Rev. E 92, 013504 (2008).

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

C. Hägglund, M. Zäch, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

J. Sun, J. Khurgin, R. Soref, “Plasmonic light-emission enhancement with isolated metal nanoparticles and their coupled arrays,” J. Opt. Soc. Am. B 25, 1748–1755 (2008).
[CrossRef]

M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys. 10, 025031 (2008).
[CrossRef]

2007 (24)

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

M. Stockman, M. Kling, U. Kleinberg, F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nat. Photonics 1, 539–544 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007).
[CrossRef]

S. Pillai, K. Catchpole, T. Trupke, M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

W. Zhang, B. S. Yeo, T. Schmid, R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

O. Labeau, P. Tamarat, H. Courtois, G. S. Agarwal, B. Lounis, “Laser-induced resonance shifts of single molecules self-coupled by a metallic surface,” Phys. Rev. Lett. 98, 143003 (2007).
[CrossRef] [PubMed]

P. Bharadwaj, L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[CrossRef] [PubMed]

P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

J. Sun, S. Carney, J. Schotland, “Strong tip effects in near-field optical tomography,” J. Appl. Phys. 102, 103103 (2007).
[CrossRef]

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

M. Danckwerts, L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15, 13227–13235 (2007).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198–4204 (2007).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496501 (2007).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

N. A. Issa, R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131–12144 (2007).
[CrossRef] [PubMed]

Y. Chen, K. Munechika, D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7, 690–696 (2007).
[CrossRef] [PubMed]

N. Anderson, A. Hartschuh, L. Novotny, “Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy,” Nano Lett. 7, 577–582 (2007).
[CrossRef] [PubMed]

2006 (22)

A. Rasmussen, V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311–317 (2006).
[CrossRef]

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

T. Laroche, C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006).
[CrossRef]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[CrossRef] [PubMed]

E. S. Barnard, J. S. White, A. Chandran, M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2006).
[CrossRef]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2006).
[CrossRef]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

P. J. Burke, S. Li, Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance,” IEEE Trans. Nanotech. 5, 314–334 (2006).
[CrossRef]

L. Novotny, S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

S. Kühn, U. Hakanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

F. E. Gardiol, Y. Fournier, “Salvan: cradle of wireless,” Microwave J. 49, 124–136 (2006).

K. R. Catchpole, S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

C. C. Neacsu, J. Dreyer, N. Behr, M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73, 193406 (2006).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

M. Sukharev, T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006).
[CrossRef] [PubMed]

2005 (17)

T. Brixner, F. G. de Abajo, J. Schneider, W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

C. Liu, V. Kamaev, Z. V. Vardenya, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

V. V. Klimov, V. S. Letokhov, “Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface,” Laser Phys. 15, 61–73 (2005).

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

R. J. Moerland, N. F. van Hulst, H. Gersen, L. Kuipers, “Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection,” Opt. Eng. 13, 1604–1614 (2005).

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

M. Lippitz, M. A. van Dijk, M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799 (2005).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538–543 (2005).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

P. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[CrossRef] [PubMed]

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Lett. 5, 2310 (2005).
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

2004 (12)

H. G. Frey, S. Witt, K. Felderer, R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

F. Keilmann, R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787–797 (2004).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92, 177401 (2004).
[CrossRef] [PubMed]

I. A. Larkin, M. I. Stockman, M. Achermann, V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation,” Phys. Rev. B 69, 121403(R) (2004).
[CrossRef]

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62–64 (2004).
[CrossRef] [PubMed]

F. González, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 146, 418–428 (2004).

S. Wedge, J. A. E. Wasey, W. L. Barnes, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182–184 (2004).
[CrossRef]

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J. S. Nelson, “GaInN∕GaN growth optimization for high power green light emitting diodes,” Appl. Phys. Lett. 85, 866–868 (2004).
[CrossRef]

H. Rabitz, M. Hsieh, C. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
[CrossRef] [PubMed]

M. Stockman, D. Bergman, T. Kobayashi, “Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems,” Phys. Rev. B 69, 054202 (2004).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

2003 (13)

M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003).
[CrossRef] [PubMed]

K. Joulain, R. Carminati, J. P. Mulet, J. J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[CrossRef]

J. Jackson, S. Westcott, L. Hirsch, J. West, N. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 320, 419–422 (2003).
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbo3 and BBO crystals,” Opt. Commun. 229, 403–412 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, L. Novotny, “Continum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

A. Hartschuh, E. Sanchez, X. Xie, L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

A. Bouhelier, M. R. Beversluis, L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
[CrossRef]

A. Hartschuh, M. R. Beversluis, A. Bouhelier, L. Novotny, “Tip-enhanced optical spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 362, 807–819 (2003).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

2002 (6)

H. Frey, F. Keilmann, A. Kriele, R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81, 5530–5532 (2002).
[CrossRef]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

J. R. Zurita-Sanchez, L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement,” J. Opt. Soc. Am. B 19, 1355–1362 (2002).
[CrossRef]

J. R. Zurita-Sanchez, L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement,” J. Opt. Soc. Am. B 19, 2722–2726 (2002).
[CrossRef]

M. I. Stockman, S. V. Faleev, D. J. Bergman, “Coherently controlled femtosecond energy localization on nanoscale,” Appl. Phys. B 74, S63–S67 (2002).
[CrossRef]

R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
[CrossRef]

2001 (3)

P. Ball, “Let there be light,” Nature 409, 974–976 (2001).
[CrossRef] [PubMed]

V. V. Klimov, M. Ducloy, V. S. Letokhov, “Spontaneous emission in the presence of nanobodies,” Quantum Electron. 31, 569–586 (2001).
[CrossRef]

I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001).
[CrossRef]

2000 (7)

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312 (2000).
[CrossRef]

A. M. Michaels, J. Jiang, L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. C 104, 11965–11971 (2000).

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

B. Knoll, F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[CrossRef]

R. Hillenbrand, F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

C. Wen, K. Ishikawa, M. Kishima, K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61, 339–351 (2000).
[CrossRef]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

1999 (2)

W. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17, 2170–2182 (1999).
[CrossRef]

H. Xu, E. J. Bjernfeld, M. Käll, L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

1998 (3)

R. Carminati, M. Nieto-Vesperinas, J.-J. Greffet, “Reciprocity of evanescent electromagnetic waves,” J. Opt. Soc. Am. A 15, 706–712 (1998).
[CrossRef]

L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

X. S. Xie, J. K. Trautman, “Optical studies of single molecules at room temperature,” Annu. Rev. Phys. Chem. 49, 441–480 (1998).
[CrossRef]

1997 (8)

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasary, M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

G. Boreman, “Infrared microantennas,” Proc. SPIE 3110, 882–885 (1997).
[CrossRef]

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

C. Fumeaux, G. Boreman, W. Herrmann, H. Rothuizen, F. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485–6490 (1997).
[CrossRef]

G. Zhao, H. Kozuka, T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46, 219–231 (1997).
[CrossRef]

P. Schlotter, R. Schmidt, J. Schneider, “Luminescence conversion of blue light mmitting diodes,” Appl. Phys. A 64, 417 (1997).
[CrossRef]

1996 (3)

H. Kozuka, G. Zhao, T. Yoko, “Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles,” Thin Solid Films 277, 147–154 (1996).
[CrossRef]

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61–137 (1996).
[CrossRef]

1995 (2)

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
[CrossRef] [PubMed]

S. Kawata, Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy 57, 313–317 (1995).
[CrossRef]

1994 (1)

S. Nakamura, T. Mukai, M. Senoh, “Candela-class high-brightness InGaN∕AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
[CrossRef]

1991 (1)

B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[CrossRef]

1989 (1)

U. C. Fischer, D. W. Pohl, “Observation on single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

1988 (1)

S. Shi, A. Woody, H. Rabitz, “Optimal control of selective vibrational excitation in harmonic linear chain molecules,” J. Chem. Phys. 88, 6870–6883 (1988).
[CrossRef]

1985 (2)

1984 (2)

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microwave Theory Tech. 32, 1230–1242 (1984).
[CrossRef]

1983 (2)

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79, 509–514 (1983).
[CrossRef]

P. Goy, J. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

1982 (2)

A. Wokaun, J. Gordon, P. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[CrossRef]

G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).

1981 (1)

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

1980 (1)

J. Gersten, A. Nitzan, “Electromagnetic theory of enhanced Raman scattering of molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[CrossRef]

1977 (2)

D. L. Jeanmaire, R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

M. G. Albrecht, J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977).
[CrossRef]

1974 (2)

M. Fleischmann, P. J. Hendra, A. J. McQuillian, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

1972 (1)

R. L. Bailey, “A proposed new concept for a solar-energy convertor,” J. Eng. Power 94, 73–77 (1972).
[CrossRef]

1970 (2)

H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
[CrossRef]

L. M. Matarrese, K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[CrossRef]

1969 (1)

N. Bloembergen, W. K. Burns, M. Matsuoka, “Reflected third harmonic generation by picosecond laser pulses,” Opt. Commun. 1, 195–198 (1969).
[CrossRef]

1968 (1)

L. O. Hocker, D. R. Sokoloff, A. S. V. Daneu, A. Javan, “Frequency mixing in the infrared and far-infrared using metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

1966 (1)

K. H. Drexhage, M. Fleck, F. Shäfer, W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1179 (1966).

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

1904 (1)

G. W. Pierce, “Experiments on resonance in wireless telegraph circuits,” Phys. Rev. 19, 196–217 (1904).

Achermann, M.

I. A. Larkin, M. I. Stockman, M. Achermann, V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation,” Phys. Rev. B 69, 121403(R) (2004).
[CrossRef]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Agarwal, G. S.

O. Labeau, P. Tamarat, H. Courtois, G. S. Agarwal, B. Lounis, “Laser-induced resonance shifts of single molecules self-coupled by a metallic surface,” Phys. Rev. Lett. 98, 143003 (2007).
[CrossRef] [PubMed]

Aizpurua, J.

J. Aizpurua, A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008).
[CrossRef]

G. W. Bryant, F. J. G. de Abajó, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[CrossRef] [PubMed]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Albrecht, M. G.

M. G. Albrecht, J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977).
[CrossRef]

Alda, J.

J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Allegrini, M.

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62–64 (2004).
[CrossRef] [PubMed]

Allen, L.

L. Allen, J. H. Eberly, Optical Resonance and Two-level Atoms (Dover Publications, Inc., Mineola, NY, 1987).

Alù, A.

A. Alù, N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

A. Alù, N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

A. Alù, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

Anderson, N.

H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363–1367 (2008).
[CrossRef] [PubMed]

N. Anderson, A. Hartschuh, L. Novotny, “Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy,” Nano Lett. 7, 577–582 (2007).
[CrossRef] [PubMed]

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Lett. 5, 2310 (2005).
[CrossRef] [PubMed]

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Tip-enhanced optical spectroscopy of single-walled carbon nanotubes,” in Tip Enhancement, S. Kawata and V. M. Shalaev, eds., Advances in Nano-Optics and Nano-Photonics (Elsevier, 2007), pp. 157–176.
[CrossRef]

Anger, P.

P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[CrossRef]

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Araujo, P. T.

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

Arias-Gonzalez, J. R.

M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

Atwater, H.

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Atwater, H. A.

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

H. Mertens, J. S. Biteen, H. A. Atwater, A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

Aussenegg, F. R.

A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538–543 (2005).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Bachelot, R.

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
[CrossRef] [PubMed]

Bailey, R. L.

R. L. Bailey, “A proposed new concept for a solar-energy convertor,” J. Eng. Power 94, 73–77 (1972).
[CrossRef]

Bailo, E.

E. Bailo, V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37, 921–930 (2008).
[CrossRef] [PubMed]

Bakker, R. M.

Ball, P.

P. Ball, “Let there be light,” Nature 409, 974–976 (2001).
[CrossRef] [PubMed]

Barnard, E. S.

Barnes, W.

Barnes, W. L.

S. Wedge, J. A. E. Wasey, W. L. Barnes, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182–184 (2004).
[CrossRef]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Bawendi, M. G.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Becher, C.

M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003).
[CrossRef] [PubMed]

Beermann, J.

J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26, 121–124 (2009).
[CrossRef]

T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 011520 (2008).
[CrossRef]

Behr, N.

C. C. Neacsu, J. Dreyer, N. Behr, M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73, 193406 (2006).
[CrossRef]

Benham, G.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

Bergli, J.

M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007).
[CrossRef]

Bergman, D.

M. Stockman, D. Bergman, T. Kobayashi, “Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems,” Phys. Rev. B 69, 054202 (2004).
[CrossRef]

Bergman, D. J.

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, D. J. Bergman, “Coherently controlled femtosecond energy localization on nanoscale,” Appl. Phys. B 74, S63–S67 (2002).
[CrossRef]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, L. Novotny, “Continum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

A. Hartschuh, M. R. Beversluis, A. Bouhelier, L. Novotny, “Tip-enhanced optical spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 362, 807–819 (2003).
[CrossRef]

Bharadwaj, P.

P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[CrossRef]

P. Bharadwaj, L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Binnig, G.

G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).

Biteen, J. S.

H. Mertens, J. S. Biteen, H. A. Atwater, A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Bjernfeld, E. J.

H. Xu, E. J. Bjernfeld, M. Käll, L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

Blatt, R.

M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003).
[CrossRef] [PubMed]

Bloembergen, N.

N. Bloembergen, W. K. Burns, M. Matsuoka, “Reflected third harmonic generation by picosecond laser pulses,” Opt. Commun. 1, 195–198 (1969).
[CrossRef]

Boccara, A. C.

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
[CrossRef] [PubMed]

Bolmont, E.

S. Walter, E. Bolmont, A. Coret, “La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs,” in Publications of the Henri Poincaré Archives (Birkhäuser, 2007), chap. 8.
[CrossRef]

Boltasseva, A.

Boreman, G.

C. Middlebrook, P. Krenz, B. Lail, G. Boreman, “Infrared phased-array antenna,” Microwave Opt. Technol. Lett. 50, 719–723 (2008).
[CrossRef]

J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

F. González, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 146, 418–428 (2004).

G. Boreman, “Infrared microantennas,” Proc. SPIE 3110, 882–885 (1997).
[CrossRef]

C. Fumeaux, G. Boreman, W. Herrmann, H. Rothuizen, F. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485–6490 (1997).
[CrossRef]

Boreman, G. D.

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[CrossRef] [PubMed]

I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001).
[CrossRef]

Börjesson, L.

H. Xu, E. J. Bjernfeld, M. Käll, L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

Bouhelier, A.

C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[CrossRef]

A. Bouhelier, M. R. Beversluis, L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

M. R. Beversluis, A. Bouhelier, L. Novotny, “Continum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

A. Hartschuh, M. R. Beversluis, A. Bouhelier, L. Novotny, “Tip-enhanced optical spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 362, 807–819 (2003).
[CrossRef]

Bour, D.

Bozhevolnyi, S. I.

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

T. Brixner, F. G. de Abajo, J. Schneider, W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

Broca, A.

A. Broca, La télégraphie sans fils (Gauthier Villars, 1899).

Brongersma, M. L.

Brown, W. C.

W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microwave Theory Tech. 32, 1230–1242 (1984).
[CrossRef]

Brus, L.

A. M. Michaels, J. Jiang, L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. C 104, 11965–11971 (2000).

Brus, L. E.

F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92, 177401 (2004).
[CrossRef] [PubMed]

Bruyant, A.

C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[CrossRef]

Bryant, G. W.

G. W. Bryant, F. J. G. de Abajó, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[CrossRef] [PubMed]

Budich, C.

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[CrossRef] [PubMed]

Burger, S.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Burke, P. J.

P. J. Burke, S. Li, Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance,” IEEE Trans. Nanotech. 5, 314–334 (2006).
[CrossRef]

Burns, W. K.

N. Bloembergen, W. K. Burns, M. Matsuoka, “Reflected third harmonic generation by picosecond laser pulses,” Opt. Commun. 1, 195–198 (1969).
[CrossRef]

Bushev, P.

M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003).
[CrossRef] [PubMed]

Capasso, F.

Carlson, J.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

Carminati, R.

M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

K. Joulain, R. Carminati, J. P. Mulet, J. J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[CrossRef]

R. Carminati, M. Nieto-Vesperinas, J.-J. Greffet, “Reciprocity of evanescent electromagnetic waves,” J. Opt. Soc. Am. A 15, 706–712 (1998).
[CrossRef]

Carney, S.

J. Sun, S. Carney, J. Schotland, “Strong tip effects in near-field optical tomography,” J. Appl. Phys. 102, 103103 (2007).
[CrossRef]

Catchpole, K.

S. Pillai, K. Catchpole, T. Trupke, M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

K. R. Catchpole, S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

Cerullo, G.

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62–64 (2004).
[CrossRef] [PubMed]

Chance, R. R.

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

Chandran, A.

Chang, D. E.

D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

Chen, W. V.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

Chen, Y.

Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Y. Chen, K. Munechika, D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7, 690–696 (2007).
[CrossRef] [PubMed]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Codreanu, I.

I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001).
[CrossRef]

Colliex, C.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

Coret, A.

S. Walter, E. Bolmont, A. Coret, “La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs,” in Publications of the Henri Poincaré Archives (Birkhäuser, 2007), chap. 8.
[CrossRef]

Corkish, R.

R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
[CrossRef]

Cornelius, T. W.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

Corzine, S.

Courtois, H.

O. Labeau, P. Tamarat, H. Courtois, G. S. Agarwal, B. Lounis, “Laser-induced resonance shifts of single molecules self-coupled by a metallic surface,” Phys. Rev. Lett. 98, 143003 (2007).
[CrossRef] [PubMed]

Creighton, J. A.

M. G. Albrecht, J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977).
[CrossRef]

Crozier, K. B.

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15, 13227–13235 (2007).
[CrossRef] [PubMed]

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Cubukcu, E.

Cvitkovic, A.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Danckwerts, M.

M. Danckwerts, L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

S. Palomba, M. Danckwerts, L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” submitted to J. Opt. A, Pure Appl. Opt..

Daneu, A. S. V.

L. O. Hocker, D. R. Sokoloff, A. S. V. Daneu, A. Javan, “Frequency mixing in the infrared and far-infrared using metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

Dasary, R. R.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasary, M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

de Abajo, F. G.

T. Brixner, F. G. de Abajo, J. Schneider, W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

de Abajo, F. J. G.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

de Abajó, F. G.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

de Abajó, F. J. G.

F. J. G. de Abajó, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[CrossRef]

F. J. G. de Abajó, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983–17987 (2008).
[CrossRef]

G. W. Bryant, F. J. G. de Abajó, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[CrossRef] [PubMed]

de Vivie-Riedle, R.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

Deckert, V.

E. Bailo, V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37, 921–930 (2008).
[CrossRef] [PubMed]

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[CrossRef] [PubMed]

A. Rasmussen, V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311–317 (2006).
[CrossRef]

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

Dereux, A.

C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[CrossRef]

Derkacs, D.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

des Francs, G. C.

C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[CrossRef]

Detchprohm, T.

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J. S. Nelson, “GaInN∕GaN growth optimization for high power green light emitting diodes,” Appl. Phys. Lett. 85, 866–868 (2004).
[CrossRef]

Deutsch, B.

B. Deutsch, R. Hillenbrand, L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494–501 (2008).
[CrossRef] [PubMed]

Diehl, L.

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538–543 (2005).
[CrossRef]

Dmitriev, A.

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245, 2255–2260 (2008).
[CrossRef]

Dorfmüller, J.

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245, 2255–2260 (2008).
[CrossRef]

Dorner, U.

M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003).
[CrossRef] [PubMed]

Drachev, V. P.

Drexhage, K. H.

K. H. Drexhage, M. Fleck, F. Shäfer, W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1179 (1966).

Dreyer, J.

C. C. Neacsu, J. Dreyer, N. Behr, M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73, 193406 (2006).
[CrossRef]

Ducloy, M.

V. V. Klimov, M. Ducloy, V. S. Letokhov, “Spontaneous emission in the presence of nanobodies,” Quantum Electron. 31, 569–586 (2001).
[CrossRef]

Ducretet, E.

E. Ducretet, “Transmitting and receiving apparatus for Hertzian waves,” U.S. Patent 726413 (April 28, 1903).

Dukovic, G.

F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92, 177401 (2004).
[CrossRef] [PubMed]

Duyne, R. P. V.

D. L. Jeanmaire, R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

Eberly, J. H.

L. Allen, J. H. Eberly, Optical Resonance and Two-level Atoms (Dover Publications, Inc., Mineola, NY, 1987).

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Eisler, H.-J.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef] [PubMed]

Eng, L. M.

Engheta, N.

A. Alù, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

A. Alù, N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

A. Alù, N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

Ernst, R. R.

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79, 509–514 (1983).
[CrossRef]

Eschner, J.

M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003).
[CrossRef] [PubMed]

Esteban, R.

R. Esteban, M. Laroche, J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[CrossRef]

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245, 2255–2260 (2008).
[CrossRef]

Evenson, K. M.

L. M. Matarrese, K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[CrossRef]

Fahsold, G.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, D. J. Bergman, “Coherently controlled femtosecond energy localization on nanoscale,” Appl. Phys. B 74, S63–S67 (2002).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasary, M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Felderer, K.

H. G. Frey, S. Witt, K. Felderer, R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Felidj, N.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Finot, E.

C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[CrossRef]

Fischer, U. C.

U. C. Fischer, D. W. Pohl, “Observation on single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Fleck, M.

K. H. Drexhage, M. Fleck, F. Shäfer, W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1179 (1966).

Fleischmann, M.

M. Fleischmann, P. J. Hendra, A. J. McQuillian, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Fleming, J. A.

J. A. Fleming, “Telegraphy,” The New Volumes of the Encyclopedia Britannica, 10th ed., vol. XXXIII (1902).

Ford, G. W.

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

Fort, E.

E. Fort, S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

Fournier, Y.

F. E. Gardiol, Y. Fournier, “Salvan: cradle of wireless,” Microwave J. 49, 124–136 (2006).

Franklin, B.

B. Franklin, in The Papers of Benjamin Franklin, L. W. Labaree, ed. (Yale Univ. Press, 1961), vol. 3, pp. 156–164.

Frey, H.

H. Frey, F. Keilmann, A. Kriele, R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81, 5530–5532 (2002).
[CrossRef]

Frey, H. G.

H. G. Frey, S. Witt, K. Felderer, R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Fumeaux, C.

Galperin, Y. M.

M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbo3 and BBO crystals,” Opt. Commun. 229, 403–412 (2003).
[CrossRef]

Garcia-Parajo, M. F.

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics 2, 201–203 (2008).
[CrossRef]

García-Parajó, M. F.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312 (2000).
[CrossRef]

Gardiol, F. E.

F. E. Gardiol, Y. Fournier, “Salvan: cradle of wireless,” Microwave J. 49, 124–136 (2006).

Geddes, C. D.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

Georgi, C.

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363–1367 (2008).
[CrossRef] [PubMed]

Gersen, H.

R. J. Moerland, N. F. van Hulst, H. Gersen, L. Kuipers, “Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection,” Opt. Eng. 13, 1604–1614 (2005).

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312 (2000).
[CrossRef]

Gersten, J.

J. Gersten, A. Nitzan, “Electromagnetic theory of enhanced Raman scattering of molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[CrossRef]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

Ginger, D. S.

Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Y. Chen, K. Munechika, D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7, 690–696 (2007).
[CrossRef] [PubMed]

Girard, C.

T. Laroche, C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006).
[CrossRef]

Gleyzes, P.

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
[CrossRef] [PubMed]

Gokus, T.

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

González, F.

F. González, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 146, 418–428 (2004).

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496501 (2007).
[CrossRef]

Gordon, J.

A. Wokaun, J. Gordon, P. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[CrossRef]

Goy, P.

P. Goy, J. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Grafström, S.

Grätzel, M.

B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[CrossRef]

Green, A. A.

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363–1367 (2008).
[CrossRef] [PubMed]

Green, M.

S. Pillai, K. Catchpole, T. Trupke, M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
[CrossRef]

Greffet, J. J.

K. Joulain, R. Carminati, J. P. Mulet, J. J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[CrossRef]

Greffet, J.-J.

R. Esteban, M. Laroche, J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

R. Carminati, M. Nieto-Vesperinas, J.-J. Greffet, “Reciprocity of evanescent electromagnetic waves,” J. Opt. Soc. Am. A 15, 706–712 (1998).
[CrossRef]

J.-J. Greffet, Institut d'Optique, Paris, France (personal communication, 2008).

Gregorczyk, K.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

Gresillon, S.

Grésillon, S.

E. Fort, S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Gross, M.

P. Goy, J. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Gryczynski, I.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

Guckenberger, R.

N. A. Issa, R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131–12144 (2007).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

H. G. Frey, S. Witt, K. Felderer, R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

H. Frey, F. Keilmann, A. Kriele, R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81, 5530–5532 (2002).
[CrossRef]

Guenot, A.

C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

C. Hägglund, M. Zäch, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

C. Hägglund, “Nanoparticle plasmon influence on the charge carrier generation in solar cells,” Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden (2008).

Hakanson, U.

S. Kühn, U. Hakanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Håkanson, U.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Halas, N.

J. Jackson, S. Westcott, L. Hirsch, J. West, N. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496501 (2007).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 320, 419–422 (2003).
[CrossRef]

Hall, D. G.

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

Haroche, S.

P. Goy, J. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Härtling, T.

Hartmann, N.

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

Hartschuh, A.

H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363–1367 (2008).
[CrossRef] [PubMed]

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem., Int. Ed. 47, 8178–8191 (2008).
[CrossRef]

N. Anderson, A. Hartschuh, L. Novotny, “Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy,” Nano Lett. 7, 577–582 (2007).
[CrossRef] [PubMed]

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Lett. 5, 2310 (2005).
[CrossRef] [PubMed]

A. Hartschuh, M. R. Beversluis, A. Bouhelier, L. Novotny, “Tip-enhanced optical spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 362, 807–819 (2003).
[CrossRef]

A. Hartschuh, E. Sanchez, X. Xie, L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Tip-enhanced optical spectroscopy of single-walled carbon nanotubes,” in Tip Enhancement, S. Kawata and V. M. Shalaev, eds., Advances in Nano-Optics and Nano-Photonics (Elsevier, 2007), pp. 157–176.
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
[CrossRef]

Heinz, T. F.

F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92, 177401 (2004).
[CrossRef] [PubMed]

Helm, M.

Hendra, P. J.

M. Fleischmann, P. J. Hendra, A. J. McQuillian, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Henkel, C.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Henrard, L.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

Herczynski, A.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

Herrmann, W.

Hersam, M. C.

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363–1367 (2008).
[CrossRef] [PubMed]

Hillenbrand, R.

B. Deutsch, R. Hillenbrand, L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494–501 (2008).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

F. Keilmann, R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787–797 (2004).
[CrossRef]

R. Hillenbrand, F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

Hirsch, L.

J. Jackson, S. Westcott, L. Hirsch, J. West, N. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Hocker, L. O.

L. O. Hocker, D. R. Sokoloff, A. S. V. Daneu, A. Javan, “Frequency mixing in the infrared and far-infrared using metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

Höfler, G.

Hohenau, A.

A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538–543 (2005).
[CrossRef]

Höppener, C.

C. Höppener, L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8, 642–646 (2008).
[CrossRef]

C. Höppener, L. Novotny, “Imaging of membrane proteins using antenna-based optical microscopy,” Nanotechnology 19, 384012 (2008).
[CrossRef] [PubMed]

Hsieh, M.

H. Rabitz, M. Hsieh, C. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
[CrossRef] [PubMed]

Huang, C.

C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[CrossRef]

Huang, Z.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

Hulst, N. V.

J. Renger, R. Quidant, N. V. Hulst, L. Novotny, “Optical four-wave mixing at planar noble metal surfaces,” submitted to Phys. Rev. Lett..

Inouye, Y.

S. Kawata, Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy 57, 313–317 (1995).
[CrossRef]

Ishikawa, K.

C. Wen, K. Ishikawa, M. Kishima, K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61, 339–351 (2000).
[CrossRef]

Issa, N. A.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasary, M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Jackson, J.

J. Jackson, S. Westcott, L. Hirsch, J. West, N. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Javan, A.

L. O. Hocker, D. R. Sokoloff, A. S. V. Daneu, A. Javan, “Frequency mixing in the infrared and far-infrared using metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

Jeanmaire, D. L.

D. L. Jeanmaire, R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

Jiang, J.

A. M. Michaels, J. Jiang, L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. C 104, 11965–11971 (2000).

Jo, J.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496501 (2007).
[CrossRef]

Jolly, W. P.

W. P. Jolly, Marconi (Constable, 1972).

Jones, A. C.

Jorio, A.

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

Joulain, K.

K. Joulain, R. Carminati, J. P. Mulet, J. J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[CrossRef]

Julien, C.

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[CrossRef] [PubMed]

Jung, J.

Kalkbrenner, T.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Käll, M.

H. Xu, E. J. Bjernfeld, M. Käll, L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

Kamaev, V.

C. Liu, V. Kamaev, Z. V. Vardenya, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

Karim, S.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

C. Hägglund, M. Zäch, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

Kawata, S.

S. Kawata, Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy 57, 313–317 (1995).
[CrossRef]

Kehr, S. C.

Keilmann, F.

F. Keilmann, R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787–797 (2004).
[CrossRef]

H. Frey, F. Keilmann, A. Kriele, R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81, 5530–5532 (2002).
[CrossRef]

B. Knoll, F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[CrossRef]

R. Hillenbrand, F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

Kempa, K.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

Kern, K.

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245, 2255–2260 (2008).
[CrossRef]

Khurgin, J.

Kildishev, A. V.

Kim, D.-Y.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

Kim, S.-S.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

Kimball, B.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

King, A. P.

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79, 509–514 (1983).
[CrossRef]

Kinkhabwala, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

Kino, G. S.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Kirkengen, M.

M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007).
[CrossRef]

Kirschke, A.

A. Kirschke, K. Rothammel, Rothammels Antennenbuch (DARC Verlag, 2001).

Kishima, M.

C. Wen, K. Ishikawa, M. Kishima, K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61, 339–351 (2000).
[CrossRef]

Klein, E.

E. Klein, “Antenna,” in A Comprehensive Etymological Dictionary of the English Language (Elsevier, 1966), p. 82.

Kleinberg, U.

M. Stockman, M. Kling, U. Kleinberg, F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nat. Photonics 1, 539–544 (2007).
[CrossRef]

Kleppner, D.

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

Klimov, V. I.

I. A. Larkin, M. I. Stockman, M. Achermann, V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation,” Phys. Rev. B 69, 121403(R) (2004).
[CrossRef]

Klimov, V. V.

V. V. Klimov, V. S. Letokhov, “Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface,” Laser Phys. 15, 61–73 (2005).

V. V. Klimov, M. Ducloy, V. S. Letokhov, “Spontaneous emission in the presence of nanobodies,” Quantum Electron. 31, 569–586 (2001).
[CrossRef]

Kling, M.

M. Stockman, M. Kling, U. Kleinberg, F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nat. Photonics 1, 539–544 (2007).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasary, M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasary, M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kneubühl, F.

Knoll, B.

B. Knoll, F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[CrossRef]

Kobayashi, T.

M. Stockman, D. Bergman, T. Kobayashi, “Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems,” Phys. Rev. B 69, 054202 (2004).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Kociak, M.

F. J. G. de Abajó, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[CrossRef]

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

Kolb, T.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

Kompa, K.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Kozuka, H.

G. Zhao, H. Kozuka, T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46, 219–231 (1997).
[CrossRef]

H. Kozuka, G. Zhao, T. Yoko, “Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles,” Thin Solid Films 277, 147–154 (1996).
[CrossRef]

Krausz, F.

M. Stockman, M. Kling, U. Kleinberg, F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nat. Photonics 1, 539–544 (2007).
[CrossRef]

Krenn, J. R.

A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538–543 (2005).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Krenz, P.

C. Middlebrook, P. Krenz, B. Lail, G. Boreman, “Infrared phased-array antenna,” Microwave Opt. Technol. Lett. 50, 719–723 (2008).
[CrossRef]

Krenz, P. M.

Kriele, A.

H. Frey, F. Keilmann, A. Kriele, R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81, 5530–5532 (2002).
[CrossRef]

Kuhn, H.

H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
[CrossRef]

Kühn, S.

S. Kühn, U. Hakanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

R. J. Moerland, N. F. van Hulst, H. Gersen, L. Kuipers, “Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection,” Opt. Eng. 13, 1604–1614 (2005).

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312 (2000).
[CrossRef]

Kulagin, I. A.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbo3 and BBO crystals,” Opt. Commun. 229, 403–412 (2003).
[CrossRef]

Labardi, M.

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62–64 (2004).
[CrossRef] [PubMed]

Labeau, O.

O. Labeau, P. Tamarat, H. Courtois, G. S. Agarwal, B. Lounis, “Laser-induced resonance shifts of single molecules self-coupled by a metallic surface,” Phys. Rev. Lett. 98, 143003 (2007).
[CrossRef] [PubMed]

Lail, B.

C. Middlebrook, P. Krenz, B. Lail, G. Boreman, “Infrared phased-array antenna,” Microwave Opt. Technol. Lett. 50, 719–723 (2008).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

Lamprecht, B.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Larkin, I. A.

I. A. Larkin, M. I. Stockman, M. Achermann, V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation,” Phys. Rev. B 69, 121403(R) (2004).
[CrossRef]

Laroche, M.

R. Esteban, M. Laroche, J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[CrossRef]

Laroche, T.

T. Laroche, C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Leitner, A.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538–543 (2005).
[CrossRef]

Letokhov, V. S.

V. V. Klimov, V. S. Letokhov, “Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface,” Laser Phys. 15, 61–73 (2005).

V. V. Klimov, M. Ducloy, V. S. Letokhov, “Spontaneous emission in the presence of nanobodies,” Quantum Electron. 31, 569–586 (2001).
[CrossRef]

Lewis, N.

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Li, K.

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Li, P.

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J. S. Nelson, “GaInN∕GaN growth optimization for high power green light emitting diodes,” Appl. Phys. Lett. 85, 866–868 (2004).
[CrossRef]

Li, S.

P. J. Burke, S. Li, Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance,” IEEE Trans. Nanotech. 5, 314–334 (2006).
[CrossRef]

Liao, P.

A. Wokaun, J. Gordon, P. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[CrossRef]

Liao, P. F.

Lim, S. H.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

Lippitz, M.

M. Lippitz, M. A. van Dijk, M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799 (2005).
[CrossRef] [PubMed]

Liu, C.

C. Liu, V. Kamaev, Z. V. Vardenya, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

Liu, Z.

Liz-Marzán, L. M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

López-Alonso, J.

J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light, 2nd ed., Oxford Science Publications (Clarendon, 1983).

Lounis, B.

O. Labeau, P. Tamarat, H. Courtois, G. S. Agarwal, B. Lounis, “Laser-induced resonance shifts of single molecules self-coupled by a metallic surface,” Phys. Rev. Lett. 98, 143003 (2007).
[CrossRef] [PubMed]

Lovrincic, R.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

Lukin, M. D.

D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

Lutz, H.-P.

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79, 509–514 (1983).
[CrossRef]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Maier, S. A.

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[CrossRef] [PubMed]

Malicka, J.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

Marconi, G.

G. Marconi, “Wireless telegraphic communication,” Nobel Lecture, December 11, 1909.

Marks, A. M.

A. M. Marks, “Device for conversion of light to electric power,” U.S. Patent 4,445,050 (April 24, 1984).

A. M. Marks, “Ordered dipolar light-electric power converter,” U.S. Patent 4,574,161 (March 4, 1986).

A. M. Marks, “Femto diode and applications,” U.S. Patent 4,720,642 (January 19, 1988).

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Matarrese, L. M.

L. M. Matarrese, K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

Matheu, P. M.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

Matsuoka, M.

N. Bloembergen, W. K. Burns, M. Matsuoka, “Reflected third harmonic generation by picosecond laser pulses,” Opt. Commun. 1, 195–198 (1969).
[CrossRef]

McQuillian, A. J.

M. Fleischmann, P. J. Hendra, A. J. McQuillian, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

Meier, M.

Meixner, A. J.

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Lett. 5, 2310 (2005).
[CrossRef] [PubMed]

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Tip-enhanced optical spectroscopy of single-walled carbon nanotubes,” in Tip Enhancement, S. Kawata and V. M. Shalaev, eds., Advances in Nano-Optics and Nano-Photonics (Elsevier, 2007), pp. 157–176.
[CrossRef]

Mertens, H.

H. Mertens, J. S. Biteen, H. A. Atwater, A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Metiu, H.

H. Metiu, Surface Enhanced Spectroscopy, vol. 17 of Progress in Surface Science, I. Prigogine and S. A. Rice, eds. (Pergamon, 1984), pp. 153–320.

Michaels, A. M.

A. M. Michaels, J. Jiang, L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. C 104, 11965–11971 (2000).

Middlebrook, C.

C. Middlebrook, P. Krenz, B. Lail, G. Boreman, “Infrared phased-array antenna,” Microwave Opt. Technol. Lett. 50, 719–723 (2008).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

R. J. Moerland, N. F. van Hulst, H. Gersen, L. Kuipers, “Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection,” Opt. Eng. 13, 1604–1614 (2005).

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Phys. Rev. E 92, 013504 (2008).

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

Motzkus, M.

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Mukai, T.

S. Nakamura, T. Mukai, M. Senoh, “Candela-class high-brightness InGaN∕AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
[CrossRef]

Mulet, J. P.

K. Joulain, R. Carminati, J. P. Mulet, J. J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[CrossRef]

Munechika, K.

Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Y. Chen, K. Munechika, D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7, 690–696 (2007).
[CrossRef] [PubMed]

Munro, A. M.

Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

Na, S.-I.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

Nah, Y.-C.

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

Nakamura, S.

S. Nakamura, T. Mukai, M. Senoh, “Candela-class high-brightness InGaN∕AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
[CrossRef]

Nakayama, K.

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Neacsu, C. C.

C. C. Neacsu, J. Dreyer, N. Behr, M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73, 193406 (2006).
[CrossRef]

Nelayah, J.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

Nelson, J. S.

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J. S. Nelson, “GaInN∕GaN growth optimization for high power green light emitting diodes,” Appl. Phys. Lett. 85, 866–868 (2004).
[CrossRef]

Neubrech, F.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

Neugebauer, U.

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[CrossRef] [PubMed]

Neumann, R.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

Nie, S.

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

Nitzan, A.

J. Gersten, A. Nitzan, “Electromagnetic theory of enhanced Raman scattering of molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[CrossRef]

Nordlander, P.

J. Zuloaga, E. Prodan, P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 88789 (2009).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 320, 419–422 (2003).
[CrossRef]

Novotny, L.

S. Palomba, L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef] [PubMed]

C. Höppener, L. Novotny, “Imaging of membrane proteins using antenna-based optical microscopy,” Nanotechnology 19, 384012 (2008).
[CrossRef] [PubMed]

C. Höppener, L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8, 642–646 (2008).
[CrossRef]

H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363–1367 (2008).
[CrossRef] [PubMed]

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

B. Deutsch, R. Hillenbrand, L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494–501 (2008).
[CrossRef] [PubMed]

N. Anderson, A. Hartschuh, L. Novotny, “Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy,” Nano Lett. 7, 577–582 (2007).
[CrossRef] [PubMed]

M. Danckwerts, L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

P. Bharadwaj, L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

L. Novotny, S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef] [PubMed]

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Lett. 5, 2310 (2005).
[CrossRef] [PubMed]

A. Hartschuh, M. R. Beversluis, A. Bouhelier, L. Novotny, “Tip-enhanced optical spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 362, 807–819 (2003).
[CrossRef]

A. Hartschuh, E. Sanchez, X. Xie, L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

M. R. Beversluis, A. Bouhelier, L. Novotny, “Continum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

J. R. Zurita-Sanchez, L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement,” J. Opt. Soc. Am. B 19, 1355–1362 (2002).
[CrossRef]

J. R. Zurita-Sanchez, L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement,” J. Opt. Soc. Am. B 19, 2722–2726 (2002).
[CrossRef]

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312 (2000).
[CrossRef]

L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

L. Novotny, “The history of near-field optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2007), vol. 50, pp. 137–184.
[CrossRef]

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
[CrossRef]

J. Renger, R. Quidant, N. V. Hulst, L. Novotny, “Optical four-wave mixing at planar noble metal surfaces,” submitted to Phys. Rev. Lett..

S. Palomba, M. Danckwerts, L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” submitted to J. Opt. A, Pure Appl. Opt..

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Tip-enhanced optical spectroscopy of single-walled carbon nanotubes,” in Tip Enhancement, S. Kawata and V. M. Shalaev, eds., Advances in Nano-Optics and Nano-Photonics (Elsevier, 2007), pp. 157–176.
[CrossRef]

O’Regan, B.

B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[CrossRef]

Ocelic, N.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Olk, P.

Olmon, R. L.

Orrit, M.

M. Lippitz, M. A. van Dijk, M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799 (2005).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Palomba, S.

S. Palomba, L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef] [PubMed]

S. Palomba, M. Danckwerts, L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” submitted to J. Opt. A, Pure Appl. Opt..

Pastoriza-Santos, I.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

Pedersen, R. H.

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Pettinger, B.

J. Steidtner, B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100, 236101 (2008).
[CrossRef]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

T. Brixner, F. G. de Abajo, J. Schneider, W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

Pflügl, C.

Pierce, G. W.

G. W. Pierce, “Experiments on resonance in wireless telegraph circuits,” Phys. Rev. 19, 196–217 (1904).

Pillai, S.

S. Pillai, K. Catchpole, T. Trupke, M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

K. R. Catchpole, S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

Plante, I. J.-L.

Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

U. C. Fischer, D. W. Pohl, “Observation on single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X. Zhu and M. Ohtsu, eds. (World Scientific, 2000), pp. 9–21.
[CrossRef]

Polli, D.

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62–64 (2004).
[CrossRef] [PubMed]

Polman, A.

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

H. Mertens, J. S. Biteen, H. A. Atwater, A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Popp, J.

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[CrossRef] [PubMed]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

Prodan, E.

J. Zuloaga, E. Prodan, P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 88789 (2009).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 320, 419–422 (2003).
[CrossRef]

Pucci, A.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Puzzer, T.

R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
[CrossRef]

Qian, H.

H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363–1367 (2008).
[CrossRef] [PubMed]

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Lett. 5, 2310 (2005).
[CrossRef] [PubMed]

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Tip-enhanced optical spectroscopy of single-walled carbon nanotubes,” in Tip Enhancement, S. Kawata and V. M. Shalaev, eds., Advances in Nano-Optics and Nano-Photonics (Elsevier, 2007), pp. 157–176.
[CrossRef]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Quidant, R.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

J. Renger, R. Quidant, N. V. Hulst, L. Novotny, “Optical four-wave mixing at planar noble metal surfaces,” submitted to Phys. Rev. Lett..

Rabitz, H.

H. Rabitz, M. Hsieh, C. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
[CrossRef] [PubMed]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

S. Shi, A. Woody, H. Rabitz, “Optimal control of selective vibrational excitation in harmonic linear chain molecules,” J. Chem. Phys. 88, 6870–6883 (1988).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 320, 419–422 (2003).
[CrossRef]

Raimond, J.

P. Goy, J. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Raschke, M. B.

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[CrossRef] [PubMed]

C. C. Neacsu, J. Dreyer, N. Behr, M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73, 193406 (2006).
[CrossRef]

Rasmussen, A.

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[CrossRef] [PubMed]

A. Rasmussen, V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311–317 (2006).
[CrossRef]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Phys. Rev. E 92, 013504 (2008).

Ren, Z. F.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

Renger, J.

J. Renger, R. Quidant, N. V. Hulst, L. Novotny, “Optical four-wave mixing at planar noble metal surfaces,” submitted to Phys. Rev. Lett..

Rico-García, J.

J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

Rivacoba, A.

J. Aizpurua, A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008).
[CrossRef]

Rivas, J. G.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

Rodriguez-Garcia, M. C. H. E.

M. C. H. E. Rodriguez-Garcia, “Systéme de télégraphie sans fil par ondes hertziennes,” French Patent 301264 (June 14, 1900).

M. C. H. E. Rodriguez-Garcia, “Wireless telegraphy,” U.S. Patent 795762 (July 25, 1905).

Rogobete, L.

S. Kühn, U. Hakanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Rohrer, H.

G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Phys. Rev. E 92, 013504 (2008).

Rösch, P.

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[CrossRef] [PubMed]

Rosenthal, C.

H. Rabitz, M. Hsieh, C. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
[CrossRef] [PubMed]

Rothammel, K.

A. Kirschke, K. Rothammel, Rothammels Antennenbuch (DARC Verlag, 2001).

Rothuizen, H.

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Phys. Rev. E 92, 013504 (2008).

Ryasnyansky, A. I.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbo3 and BBO crystals,” Opt. Commun. 229, 403–412 (2003).
[CrossRef]

Rybczynski, J.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

Salagaj, T.

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J. S. Nelson, “GaInN∕GaN growth optimization for high power green light emitting diodes,” Appl. Phys. Lett. 85, 866–868 (2004).
[CrossRef]

Salerno, M.

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Sanchez, E.

A. Hartschuh, E. Sanchez, X. Xie, L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Sanchez, E. J.

L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

Sánchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Kühn, U. Hakanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Schädle, A.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Schaich, W. L.

A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538–543 (2005).
[CrossRef]

Schider, G.

A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538–543 (2005).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Schlotter, P.

P. Schlotter, R. Schmidt, J. Schneider, “Luminescence conversion of blue light mmitting diodes,” Appl. Phys. A 64, 417 (1997).
[CrossRef]

Schmid, T.

W. Zhang, B. S. Yeo, T. Schmid, R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

Schmidt, R.

P. Schlotter, R. Schmidt, J. Schneider, “Luminescence conversion of blue light mmitting diodes,” Appl. Phys. A 64, 417 (1997).
[CrossRef]

Schmidt-Kaler, F.

M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003).
[CrossRef] [PubMed]

Schmitt, M.

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[CrossRef] [PubMed]

Schneider, J.

T. Brixner, F. G. de Abajo, J. Schneider, W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

P. Schlotter, R. Schmidt, J. Schneider, “Luminescence conversion of blue light mmitting diodes,” Appl. Phys. A 64, 417 (1997).
[CrossRef]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Schotland, J.

J. Sun, S. Carney, J. Schotland, “Strong tip effects in near-field optical tomography,” J. Appl. Phys. 102, 103103 (2007).
[CrossRef]

Schuck, P.

P. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

Seideman, T.

M. Sukharev, T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006).
[CrossRef] [PubMed]

Senoh, M.

S. Nakamura, T. Mukai, M. Senoh, “Candela-class high-brightness InGaN∕AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
[CrossRef]

Shäfer, F.

K. H. Drexhage, M. Fleck, F. Shäfer, W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1179 (1966).

Shalaev, V. M.

Shi, S.

S. Shi, A. Woody, H. Rabitz, “Optimal control of selective vibrational excitation in harmonic linear chain molecules,” J. Chem. Phys. 88, 6870–6883 (1988).
[CrossRef]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

Silvestri, S. D.

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62–64 (2004).
[CrossRef] [PubMed]

Simpson, J. A.

J. A. Simpson, E. S. C. Weiner, “Antennas,” in The Oxford English Dictionary (Oxford Univ. Press, 1989), p. 506.

Skrabalak, S. E.

Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Sokoloff, D. R.

L. O. Hocker, D. R. Sokoloff, A. S. V. Daneu, A. Javan, “Frequency mixing in the infrared and far-infrared using metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

Søndergaard, T.

Soref, R.

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

Sperling, W.

K. H. Drexhage, M. Fleck, F. Shäfer, W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1179 (1966).

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Steidtner, J.

J. Steidtner, B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100, 236101 (2008).
[CrossRef]

Stéphan, O.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

Stöckle, R. M.

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Stockman, M.

M. Stockman, M. Kling, U. Kleinberg, F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nat. Photonics 1, 539–544 (2007).
[CrossRef]

M. Stockman, D. Bergman, T. Kobayashi, “Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems,” Phys. Rev. B 69, 054202 (2004).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys. 10, 025031 (2008).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

I. A. Larkin, M. I. Stockman, M. Achermann, V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation,” Phys. Rev. B 69, 121403(R) (2004).
[CrossRef]

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, D. J. Bergman, “Coherently controlled femtosecond energy localization on nanoscale,” Appl. Phys. B 74, S63–S67 (2002).
[CrossRef]

Stranick, S. J.

L. Novotny, S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef] [PubMed]

Stuart, H. R.

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

Suh, Y. D.

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Sukharev, M.

M. Sukharev, T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Sun, J.

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Svelto, O.

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62–64 (2004).
[CrossRef] [PubMed]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496501 (2007).
[CrossRef]

Tamarat, P.

O. Labeau, P. Tamarat, H. Courtois, G. S. Agarwal, B. Lounis, “Laser-induced resonance shifts of single molecules self-coupled by a metallic surface,” Phys. Rev. Lett. 98, 143003 (2007).
[CrossRef] [PubMed]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

T. H. Taminiau, N. F. Van Hulst, ICFO—The Institute of Photonic Sciences, Castelldefels (Barcelona), Spain (personal communication, 2008).

Tanabe, K.

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Tatsuma, T.

Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

Taverna, D.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

Tencé, M.

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

Thomas, M.

M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

Tian, Y.

Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

Toimil-Molares, M. E.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

Trautman, J. K.

X. S. Xie, J. K. Trautman, “Optical studies of single molecules at room temperature,” Annu. Rev. Phys. Chem. 49, 441–480 (1998).
[CrossRef]

Trupke, T.

S. Pillai, K. Catchpole, T. Trupke, M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

Tucker, T. G.

T. G. Tucker, “Antemna, antenna,” in A Concise Etymological Dictionary of Latin (Max Niemeyer Verlag, 1931), p. 19.

Tugushev, R. I.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbo3 and BBO crystals,” Opt. Commun. 229, 403–412 (2003).
[CrossRef]

Usmanov, T.

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbo3 and BBO crystals,” Opt. Commun. 229, 403–412 (2003).
[CrossRef]

van de Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Phys. Rev. E 92, 013504 (2008).

van Dijk, M. A.

M. Lippitz, M. A. van Dijk, M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799 (2005).
[CrossRef] [PubMed]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

R. J. Moerland, N. F. van Hulst, H. Gersen, L. Kuipers, “Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection,” Opt. Eng. 13, 1604–1614 (2005).

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312 (2000).
[CrossRef]

T. H. Taminiau, N. F. Van Hulst, ICFO—The Institute of Photonic Sciences, Castelldefels (Barcelona), Spain (personal communication, 2008).

Vardenya, Z. V.

C. Liu, V. Kamaev, Z. V. Vardenya, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

Veerman, J. A.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312 (2000).
[CrossRef]

Vidan, A.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

Vogelgesang, R.

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245, 2255–2260 (2008).
[CrossRef]

Walter, S.

S. Walter, E. Bolmont, A. Coret, “La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs,” in Publications of the Henri Poincaré Archives (Birkhäuser, 2007), chap. 8.
[CrossRef]

Wang, F.

F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92, 177401 (2004).
[CrossRef] [PubMed]

Wang, Y.

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasary, M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Wasey, J. A. E.

S. Wedge, J. A. E. Wasey, W. L. Barnes, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182–184 (2004).
[CrossRef]

Watkins, C.

C. Watkins, “ten-,” in The American Heritage Dictionary of Indo-European Roots (Houghton Mifflin, 2000), p. 90.

Weber, W. H.

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

Wedge, S.

S. Wedge, J. A. E. Wasey, W. L. Barnes, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182–184 (2004).
[CrossRef]

Weeber, J.-C.

C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[CrossRef]

Weiner, E. S. C.

J. A. Simpson, E. S. C. Weiner, “Antennas,” in The Oxford English Dictionary (Oxford Univ. Press, 1989), p. 506.

Weitz, R. T.

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245, 2255–2260 (2008).
[CrossRef]

Wen, C.

C. Wen, K. Ishikawa, M. Kishima, K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61, 339–351 (2000).
[CrossRef]

Wenzel, M.

Wessel, J.

West, J.

J. Jackson, S. Westcott, L. Hirsch, J. West, N. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Westcott, S.

J. Jackson, S. Westcott, L. Hirsch, J. West, N. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

Wetzel, C.

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J. S. Nelson, “GaInN∕GaN growth optimization for high power green light emitting diodes,” Appl. Phys. Lett. 85, 866–868 (2004).
[CrossRef]

White, J. S.

Wild, U. P.

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79, 509–514 (1983).
[CrossRef]

Wilson, M. A.

M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003).
[CrossRef] [PubMed]

Winnerl, S.

Witt, S.

H. G. Frey, S. Witt, K. Felderer, R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Wokaun, A.

M. Meier, A. Wokaun, P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Raleigh limit,” J. Opt. Soc. Am. B 2, 931–949 (1985).
[CrossRef]

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79, 509–514 (1983).
[CrossRef]

A. Wokaun, J. Gordon, P. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[CrossRef]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Woody, A.

S. Shi, A. Woody, H. Rabitz, “Optimal control of selective vibrational excitation in harmonic linear chain molecules,” J. Chem. Phys. 88, 6870–6883 (1988).
[CrossRef]

Xia, Y.

Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Xie, X.

A. Hartschuh, E. Sanchez, X. Xie, L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Xie, X. S.

X. S. Xie, J. K. Trautman, “Optical studies of single molecules at room temperature,” Annu. Rev. Phys. Chem. 49, 441–480 (1998).
[CrossRef]

L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Xu, H.

H. Xu, E. J. Bjernfeld, M. Käll, L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

Yamada, K.

C. Wen, K. Ishikawa, M. Kishima, K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61, 339–351 (2000).
[CrossRef]

Yeo, B. S.

W. Zhang, B. S. Yeo, T. Schmid, R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

Yoko, T.

G. Zhao, H. Kozuka, T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46, 219–231 (1997).
[CrossRef]

H. Kozuka, G. Zhao, T. Yoko, “Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles,” Thin Solid Films 277, 147–154 (1996).
[CrossRef]

Yu, E. T.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

Yu, N.

Yu, P. K. L.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

Yu, Z.

P. J. Burke, S. Li, Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance,” IEEE Trans. Nanotech. 5, 314–334 (2006).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

C. Hägglund, M. Zäch, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

Zavelani-Rossi, M.

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62–64 (2004).
[CrossRef] [PubMed]

Zenobi, R.

W. Zhang, B. S. Yeo, T. Schmid, R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Zhang, G.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

Zhang, W.

W. Zhang, B. S. Yeo, T. Schmid, R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

Zhao, G.

G. Zhao, H. Kozuka, T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46, 219–231 (1997).
[CrossRef]

H. Kozuka, G. Zhao, T. Yoko, “Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles,” Thin Solid Films 277, 147–154 (1996).
[CrossRef]

Zhao, J.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

Zhu, J.

Zuloaga, J.

J. Zuloaga, E. Prodan, P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 88789 (2009).
[CrossRef]

Zurita-Sanchez, J. R.

Adv. Mater. (Weinheim, Ger.) (1)

K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon nanotubes as optical antennae,” Adv. Mater. (Weinheim, Ger.) 19, 421–426 (2007).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171–194 (2005).
[CrossRef] [PubMed]

Angew. Chem., Int. Ed. (1)

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem., Int. Ed. 47, 8178–8191 (2008).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

L. Novotny, S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

X. S. Xie, J. K. Trautman, “Optical studies of single molecules at room temperature,” Annu. Rev. Phys. Chem. 49, 441–480 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88, 161102 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

J. Jackson, S. Westcott, L. Hirsch, J. West, N. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett. 82, 257–259 (2003).
[CrossRef]

L. M. Matarrese, K. M. Evenson, “Improved coupling to infrared whisker diodes by use of antenna theory,” Appl. Phys. Lett. 17, 8–10 (1970).
[CrossRef]

A. Bouhelier, M. R. Beversluis, L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
[CrossRef]

K. Nakayama, K. Tanabe, H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[CrossRef]

M. Thomas, J.-J. Greffet, R. Carminati, J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004).
[CrossRef]

J. S. Biteen, N. Lewis, H. Atwater, H. Mertens, A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88, 131109 (2006).
[CrossRef]

Y. Chen, K. Munechika, I. J.-L. Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
[CrossRef]

Appl. Phys. A (1)

P. Schlotter, R. Schmidt, J. Schneider, “Luminescence conversion of blue light mmitting diodes,” Appl. Phys. A 64, 417 (1997).
[CrossRef]

Appl. Phys. B (1)

M. I. Stockman, S. V. Faleev, D. J. Bergman, “Coherently controlled femtosecond energy localization on nanoscale,” Appl. Phys. B 74, S63–S67 (2002).
[CrossRef]

Appl. Phys. Lett. (13)

S. Nakamura, T. Mukai, M. Senoh, “Candela-class high-brightness InGaN∕AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687–1689 (1994).
[CrossRef]

C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, J. S. Nelson, “GaInN∕GaN growth optimization for high power green light emitting diodes,” Appl. Phys. Lett. 85, 866–868 (2004).
[CrossRef]

S. Wedge, J. A. E. Wasey, W. L. Barnes, “Coupled surface plasmon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure,” Appl. Phys. Lett. 85, 182–184 (2004).
[CrossRef]

C. Liu, V. Kamaev, Z. V. Vardenya, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

H. R. Stuart, D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

C. Hägglund, M. Zäch, B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

H. Frey, F. Keilmann, A. Kriele, R. Guckenberger, “Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe,” Appl. Phys. Lett. 81, 5530–5532 (2002).
[CrossRef]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89, 253104 (2006).
[CrossRef]

T. Laroche, C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89, 233119 (2006).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

L. O. Hocker, D. R. Sokoloff, A. S. V. Daneu, A. Javan, “Frequency mixing in the infrared and far-infrared using metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

K. H. Drexhage, M. Fleck, F. Shäfer, W. Sperling, “Beeinflussung der Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys. Chem. 20, 1179 (1966).

Chem. Phys. Lett. (2)

M. Fleischmann, P. J. Hendra, A. J. McQuillian, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974).
[CrossRef]

R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Chem. Soc. Rev. (1)

E. Bailo, V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37, 921–930 (2008).
[CrossRef] [PubMed]

ChemPhysChem (1)

U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich, V. Deckert, “On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy,” ChemPhysChem 7, 1428–1430 (2006).
[CrossRef] [PubMed]

Europhys. Lett. (1)

A. Hohenau, J. R. Krenn, G. Schider, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, “Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles,” Europhys. Lett. 69, 538–543 (2005).
[CrossRef]

Helv. Phys. Acta (1)

G. Binnig, H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726–735 (1982).

IEEE Trans. Nanotech. (1)

P. J. Burke, S. Li, Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance,” IEEE Trans. Nanotech. 5, 314–334 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microwave Theory Tech. 32, 1230–1242 (1984).
[CrossRef]

Infrared Phys. Technol. (1)

F. González, G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 146, 418–428 (2004).

J. Appl. Phys. (1)

M. Kirkengen, J. Bergli, Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007).
[CrossRef]

J. Chem. Phys. (1)

S. Shi, A. Woody, H. Rabitz, “Optimal control of selective vibrational excitation in harmonic linear chain molecules,” J. Chem. Phys. 88, 6870–6883 (1988).
[CrossRef]

J. Am. Chem. Soc. (1)

M. G. Albrecht, J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977).
[CrossRef]

J. Am. Chem. Soc. (1)

Y. Tian, T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

K. R. Catchpole, S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100, 044504 (2006).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
[CrossRef]

J. Appl. Phys. (4)

S. Pillai, K. Catchpole, T. Trupke, M. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

R. Esteban, M. Laroche, J.-J. Greffet, “Influence of metallic nanoparticles on upconversion processes,” J. Appl. Phys. 105, 033107 (2009).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

J. Sun, S. Carney, J. Schotland, “Strong tip effects in near-field optical tomography,” J. Appl. Phys. 102, 103103 (2007).
[CrossRef]

J. Chem. Phys. (1)

R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60, 2744–2748 (1974).
[CrossRef]

J. Chem. Phys. (4)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
[CrossRef]

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys. 79, 509–514 (1983).
[CrossRef]

J. Gersten, A. Nitzan, “Electromagnetic theory of enhanced Raman scattering of molecules adsorbed on rough surfaces,” J. Chem. Phys. 73, 3023–3037 (1980).
[CrossRef]

J. Electroanal. Chem. (1)

D. L. Jeanmaire, R. P. V. Duyne, “Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84, 1–20 (1977).
[CrossRef]

J. Eng. Power (1)

R. L. Bailey, “A proposed new concept for a solar-energy convertor,” J. Eng. Power 94, 73–77 (1972).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (6)

J. Phys. D (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

J. Phys. C (1)

A. M. Michaels, J. Jiang, L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. C 104, 11965–11971 (2000).

J. Phys. Chem. C (1)

W. Zhang, B. S. Yeo, T. Schmid, R. Zenobi, “Single molecule tip-enhanced Raman spectroscopy with silver tips,” J. Phys. Chem. C 111, 1733–1738 (2007).
[CrossRef]

J. Phys. Chem. C (1)

F. J. G. de Abajó, “Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides,” J. Phys. Chem. C 112, 17983–17987 (2008).
[CrossRef]

J. Phys. D (1)

E. Fort, S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

J. Raman Spectrosc. (2)

A. Rasmussen, V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37, 311–317 (2006).
[CrossRef]

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

Laser Phys. (1)

V. V. Klimov, V. S. Letokhov, “Electric and magnetic dipole transitions of an atom in the presence of spherical dielectric interface,” Laser Phys. 15, 61–73 (2005).

Microwave J. (1)

F. E. Gardiol, Y. Fournier, “Salvan: cradle of wireless,” Microwave J. 49, 124–136 (2006).

Microwave Opt. Technol. Lett. (2)

I. Codreanu, G. D. Boreman, “Infrared microstrip dipole antennas—FDTD predictions versus experiment,” Microwave Opt. Technol. Lett. 29, 381–383 (2001).
[CrossRef]

C. Middlebrook, P. Krenz, B. Lail, G. Boreman, “Infrared phased-array antenna,” Microwave Opt. Technol. Lett. 50, 719–723 (2008).
[CrossRef]

Nano Lett. (4)

J. Zuloaga, E. Prodan, P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 88789 (2009).
[CrossRef]

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Lett. 5, 2310 (2005).
[CrossRef] [PubMed]

H. Mertens, J. S. Biteen, H. A. Atwater, A. Polman, “Polarization-selective plasmon-enhanced silicon quantum-dot luminescence,” Nano Lett. 6, 2622–2625 (2006).
[CrossRef] [PubMed]

N. Anderson, A. Hartschuh, L. Novotny, “Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy,” Nano Lett. 7, 577–582 (2007).
[CrossRef] [PubMed]

Nano Lett. (10)

F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496501 (2007).
[CrossRef]

Y. Chen, K. Munechika, D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7, 690–696 (2007).
[CrossRef] [PubMed]

C. Höppener, L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8, 642–646 (2008).
[CrossRef]

M. Sukharev, T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006).
[CrossRef] [PubMed]

H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, “Exciton transfer and propagation in carbon nanotubes studied by near-field optical microscopy,” Nano Lett. 8, 1363–1367 (2008).
[CrossRef] [PubMed]

H. Qian, P. T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A. A. Green, A. Jorio, M. C. Hersam, L. Novotny, A. Hartschuh, “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Lett. 8, 2706–2711 (2008).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, J. G. Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[CrossRef] [PubMed]

G. W. Bryant, F. J. G. de Abajó, J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
[CrossRef] [PubMed]

M. Lippitz, M. A. van Dijk, M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799 (2005).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

Nanotechnology (3)

P. Bharadwaj, P. Anger, L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18, 044017 (2007).
[CrossRef]

J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16, S230–S234 (2005).
[CrossRef]

C. Höppener, L. Novotny, “Imaging of membrane proteins using antenna-based optical microscopy,” Nanotechnology 19, 384012 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

A. Alù, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

Nat. Photonics (3)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photonics 2, 201–203 (2008).
[CrossRef]

M. Stockman, M. Kling, U. Kleinberg, F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nat. Photonics 1, 539–544 (2007).
[CrossRef]

Nat. Phys. (2)

J. Nelayah, M. Kociak, O. Stéphan, F. J. G. de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348–353 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, E. A. Demler, M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

Nature (3)

P. Ball, “Let there be light,” Nature 409, 974–976 (2001).
[CrossRef] [PubMed]

B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. G. de Abajó, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

New J. Phys. (1)

M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys. 10, 025031 (2008).
[CrossRef]

Opt. Commun. (1)

R. A. Ganeev, I. A. Kulagin, A. I. Ryasnyansky, R. I. Tugushev, T. Usmanov, “Characterization of nonlinear optical parameters of KDP, LiNbo3 and BBO crystals,” Opt. Commun. 229, 403–412 (2003).
[CrossRef]

Opt. Express (2)

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[CrossRef] [PubMed]

B. Deutsch, R. Hillenbrand, L. Novotny, “Near-field amplitude and phase recovery using phase-shifting interferometry,” Opt. Express 16, 494–501 (2008).
[CrossRef] [PubMed]

Opt. Lett. (2)

R. Bachelot, P. Gleyzes, A. C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
[CrossRef] [PubMed]

M. Labardi, M. Allegrini, M. Zavelani-Rossi, D. Polli, G. Cerullo, S. D. Silvestri, O. Svelto, “Highly efficient second-harmonic nanosource for near-field optics and microscopy,” Opt. Lett. 29, 62–64 (2004).
[CrossRef] [PubMed]

Opt. Commun. (2)

N. Bloembergen, W. K. Burns, M. Matsuoka, “Reflected third harmonic generation by picosecond laser pulses,” Opt. Commun. 1, 195–198 (1969).
[CrossRef]

B. Knoll, F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[CrossRef]

Opt. Eng. (1)

R. J. Moerland, N. F. van Hulst, H. Gersen, L. Kuipers, “Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection,” Opt. Eng. 13, 1604–1614 (2005).

Opt. Express (10)

T. H. Taminiau, F. D. Stefani, N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
[CrossRef] [PubMed]

P. Bharadwaj, L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[CrossRef] [PubMed]

M. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16, 12302–12312 (2008).
[CrossRef] [PubMed]

N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15, 13227–13235 (2007).
[CrossRef] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[CrossRef] [PubMed]

E. S. Barnard, J. S. White, A. Chandran, M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2006).
[CrossRef]

T. Søndergaard, S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198–4204 (2007).
[CrossRef] [PubMed]

R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15, 13682–13688 (2006).
[CrossRef]

K. R. Catchpole, A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

N. A. Issa, R. Guckenberger, “Fluorescence near metal tips: the roles of energy transfer and surface plasmon polaritons,” Opt. Express 15, 12131–12144 (2007).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London, Ser. A (1)

F. Keilmann, R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc. London, Ser. A 362, 787–797 (2004).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. A (1)

A. Hartschuh, M. R. Beversluis, A. Bouhelier, L. Novotny, “Tip-enhanced optical spectroscopy,” Philos. Trans. R. Soc. London, Ser. A 362, 807–819 (2003).
[CrossRef]

Phys. Rev. E (1)

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Phys. Rev. E 92, 013504 (2008).

Phys. Rev. Lett. (3)

F. J. G. de Abajó, M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[CrossRef]

A. Alù, N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 043901 (2008).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H.-J. Eisler, B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Phys. Rep. (2)

G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[CrossRef]

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272, 61–137 (1996).
[CrossRef]

Phys. Rev. B (2)

C. Huang, A. Bouhelier, G. C. des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas,” Phys. Rev. B 78, 155407 (2008).
[CrossRef]

C. C. Neacsu, J. Dreyer, N. Behr, M. B. Raschke, “Scanning-probe Raman spectroscopy with single-molecule sensitivity,” Phys. Rev. B 73, 193406 (2006).
[CrossRef]

Phys. Rev. Lett. (9)

J. Steidtner, B. Pettinger, “Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution,” Phys. Rev. Lett. 100, 236101 (2008).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasary, M. S. Feld, “Single molecule detection using surface enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

A. Hartschuh, E. Sanchez, X. Xie, L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

H. Xu, E. J. Bjernfeld, M. Käll, L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[CrossRef]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

U. C. Fischer, D. W. Pohl, “Observation on single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62, 458–461 (1989).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

S. Palomba, L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett. 101, 056802 (2008).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef] [PubMed]

Phys. Rev. (2)

G. W. Pierce, “Experiments on resonance in wireless telegraph circuits,” Phys. Rev. 19, 196–217 (1904).

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. B (8)

K. Joulain, R. Carminati, J. P. Mulet, J. J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[CrossRef]

T. Søndergaard, J. Beermann, A. Boltasseva, S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 011520 (2008).
[CrossRef]

M. R. Beversluis, A. Bouhelier, L. Novotny, “Continum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

I. A. Larkin, M. I. Stockman, M. Achermann, V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation,” Phys. Rev. B 69, 121403(R) (2004).
[CrossRef]

J. Aizpurua, A. Rivacoba, “Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams,” Phys. Rev. B 78, 035404 (2008).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005).
[CrossRef]

A. Alù, N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

M. Stockman, D. Bergman, T. Kobayashi, “Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems,” Phys. Rev. B 69, 054202 (2004).
[CrossRef]

Phys. Rev. Lett. (21)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

H. G. Frey, S. Witt, K. Felderer, R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

T. Brixner, F. G. de Abajo, J. Schneider, W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97, 060801 (2006).
[CrossRef] [PubMed]

R. Hillenbrand, F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz, “Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes,” Phys. Rev. Lett. 92, 177401 (2004).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

P. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805 (2008).
[CrossRef] [PubMed]

M. Danckwerts, L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[CrossRef] [PubMed]

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

P. Goy, J. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C. Becher, R. Blatt, U. Dorner, “Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror,” Phys. Rev. Lett. 91, 213602 (2003).
[CrossRef] [PubMed]

O. Labeau, P. Tamarat, H. Courtois, G. S. Agarwal, B. Lounis, “Laser-induced resonance shifts of single molecules self-coupled by a metallic surface,” Phys. Rev. Lett. 98, 143003 (2007).
[CrossRef] [PubMed]

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312 (2000).
[CrossRef]

K. Li, M. I. Stockman, D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef]

S. Kühn, U. Hakanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

A. Wokaun, J. Gordon, P. Liao, “Radiation damping in surface-enhanced Raman scattering,” Phys. Rev. Lett. 48, 957–960 (1982).
[CrossRef]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Phys. Status Solidi B (1)

R. Vogelgesang, J. Dorfmüller, R. Esteban, R. T. Weitz, A. Dmitriev, K. Kern, “Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM),” Phys. Status Solidi B 245, 2255–2260 (2008).
[CrossRef]

Proc. SPIE (1)

G. Boreman, “Infrared microantennas,” Proc. SPIE 3110, 882–885 (1997).
[CrossRef]

Quantum Electron. (1)

V. V. Klimov, M. Ducloy, V. S. Letokhov, “Spontaneous emission in the presence of nanobodies,” Quantum Electron. 31, 569–586 (2001).
[CrossRef]

Science (7)

E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 320, 419–422 (2003).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

S. Nie, S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[CrossRef] [PubMed]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824–828 (2000).
[CrossRef] [PubMed]

H. Rabitz, M. Hsieh, C. Rosenthal, “Quantum optimally controlled transition landscapes,” Science 303, 1998–2001 (2004).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Sol. Energy (1)

R. Corkish, M. A. Green, T. Puzzer, “Solar energy collection by antennas,” Sol. Energy 73, 395–401 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

C. Wen, K. Ishikawa, M. Kishima, K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells 61, 339–351 (2000).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

G. Zhao, H. Kozuka, T. Yoko, “Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO2 film electrodes prepared by sol-gel method,” Sol. Energy Mater. Sol. Cells 46, 219–231 (1997).
[CrossRef]

Thin Solid Films (1)

H. Kozuka, G. Zhao, T. Yoko, “Sol-gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles,” Thin Solid Films 277, 147–154 (1996).
[CrossRef]

Ultramicroscopy (2)

S. Kawata, Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy 57, 313–317 (1995).
[CrossRef]

L. Novotny, E. J. Sanchez, X. S. Xie, “Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

Other (36)

A. Kirschke, K. Rothammel, Rothammels Antennenbuch (DARC Verlag, 2001).

A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).

H. Metiu, Surface Enhanced Spectroscopy, vol. 17 of Progress in Surface Science, I. Prigogine and S. A. Rice, eds. (Pergamon, 1984), pp. 153–320.

W. P. Jolly, Marconi (Constable, 1972).

G. Marconi, “Wireless telegraphic communication,” Nobel Lecture, December 11, 1909.

ISO Standard ISO/TS 27687, TC 229 (ISO, 2008).

Aristotle, De Animalibus, Theodorus Gaza, trans. (Johannes de Colonia and Johannes Manthen, 1476).

Aristotle, History of Animals (c. 340 B.C.E.).

T. G. Tucker, “Antemna, antenna,” in A Concise Etymological Dictionary of Latin (Max Niemeyer Verlag, 1931), p. 19.

C. Watkins, “ten-,” in The American Heritage Dictionary of Indo-European Roots (Houghton Mifflin, 2000), p. 90.

E. Klein, “Antenna,” in A Comprehensive Etymological Dictionary of the English Language (Elsevier, 1966), p. 82.

J. A. Simpson, E. S. C. Weiner, “Antennas,” in The Oxford English Dictionary (Oxford Univ. Press, 1989), p. 506.

J. A. Fleming, “Telegraphy,” The New Volumes of the Encyclopedia Britannica, 10th ed., vol. XXXIII (1902).

S. Walter, E. Bolmont, A. Coret, “La correspondance entre Henri Poincaré et les physiciens, chimistes et ingénieurs,” in Publications of the Henri Poincaré Archives (Birkhäuser, 2007), chap. 8.
[CrossRef]

A. Broca, La télégraphie sans fils (Gauthier Villars, 1899).

B. Franklin, in The Papers of Benjamin Franklin, L. W. Labaree, ed. (Yale Univ. Press, 1961), vol. 3, pp. 156–164.

M. C. H. E. Rodriguez-Garcia, “Systéme de télégraphie sans fil par ondes hertziennes,” French Patent 301264 (June 14, 1900).

E. Ducretet, “Transmitting and receiving apparatus for Hertzian waves,” U.S. Patent 726413 (April 28, 1903).

M. C. H. E. Rodriguez-Garcia, “Wireless telegraphy,” U.S. Patent 795762 (July 25, 1905).

Antenna Standards Committee of the IEEE Antennas and Propagation Society, “IEEE standard definitions of terms for antennas,” (IEEE, 1993).

L. Novotny, “The history of near-field optics,” in Progress in Optics, E. Wolf, ed. (Elsevier, 2007), vol. 50, pp. 137–184.
[CrossRef]

Nobel Lectures, Chemistry 1922–1941 (Elsevier, 1966).

R. Loudon, The Quantum Theory of Light, 2nd ed., Oxford Science Publications (Clarendon, 1983).

T. H. Taminiau, N. F. Van Hulst, ICFO—The Institute of Photonic Sciences, Castelldefels (Barcelona), Spain (personal communication, 2008).

D. W. Pohl, “Near-field optics seen as an antenna problem,” in Near-field Optics, Principles and Applications, X. Zhu and M. Ohtsu, eds. (World Scientific, 2000), pp. 9–21.
[CrossRef]

L. Allen, J. H. Eberly, Optical Resonance and Two-level Atoms (Dover Publications, Inc., Mineola, NY, 1987).

L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
[CrossRef]

J.-J. Greffet, Institut d'Optique, Paris, France (personal communication, 2008).

S. Palomba, M. Danckwerts, L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” submitted to J. Opt. A, Pure Appl. Opt..

J. Renger, R. Quidant, N. V. Hulst, L. Novotny, “Optical four-wave mixing at planar noble metal surfaces,” submitted to Phys. Rev. Lett..

Basic Research Needs for Solid-State Lighting, Report of the Basic Energy Sciences Workshop on Solid-State Lighting (U.S. Department of Energy,2006), http://www.sc.doe.gov/bes/reports/files/SSL_rpt.pdf.

A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, L. Novotny, “Tip-enhanced optical spectroscopy of single-walled carbon nanotubes,” in Tip Enhancement, S. Kawata and V. M. Shalaev, eds., Advances in Nano-Optics and Nano-Photonics (Elsevier, 2007), pp. 157–176.
[CrossRef]

C. Hägglund, “Nanoparticle plasmon influence on the charge carrier generation in solar cells,” Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden (2008).

A. M. Marks, “Device for conversion of light to electric power,” U.S. Patent 4,445,050 (April 24, 1984).

A. M. Marks, “Ordered dipolar light-electric power converter,” U.S. Patent 4,574,161 (March 4, 1986).

A. M. Marks, “Femto diode and applications,” U.S. Patent 4,720,642 (January 19, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Antenna-based optical interactions: (a) antenna-coupled LED, (b) antenna-coupled photovoltaics, (c) antenna-coupled spectroscopy.

Fig. 2
Fig. 2

Examples of IR optical antennas fabricated by Boreman and co-workers: (a) asymmetric spiral antenna [45], (b) microstrip dipole antenna [46], (c) square spiral antenna [43], (d) phased-array antenna [47].

Fig. 3
Fig. 3

Problem statement of optical antenna theory. A receiver or transmitter (atom, ion, molecule...) interacts with free optical radiation via an optical antenna.

Fig. 4
Fig. 4

Illustration of reciprocity between two point emitters. The excitation rate Γ exc of p 1 is related to its radiative decay rate Γ rad and its directivity D ( θ , φ ) .

Fig. 5
Fig. 5

(a) An optical antenna in the form of a gold or silver nanoparticle attached to the end of a pointed glass tip is interacting with a single molecule. The inset shows an scanning electron microscope image of a 80 nm gold particle attached to a glass tip. (b) Theoretical model.

Fig. 6
Fig. 6

Radiation efficiency ε rad as a function of separation between a gold nanoparticle antenna and a molecule with different quantum efficiencies η i . The lower η i is, the higher the radiation enhancement can be. The curves are scaled to the same maximum value.

Fig. 7
Fig. 7

Effective wavelength scaling for linear gold antennas. (a) Intensity distribution ( E 2 , factor of 2 between contour lines) for a gold half-wave antenna irradiated with a plane wave ( λ = 1150 nm ) . (b) Amplitude and phase of the current density ( j ) evaluated along the axis of the antenna. (c) Effective wavelength scaling for gold rods of different radii (5, 10, and 20 nm ).

Fig. 8
Fig. 8

Spectrum of photons emitted from a pair of gold nanoparticles irradiated with laser pulses of wavelength λ 1 = 810 nm and λ 2 = 1210 nm . Each peak is associated with a different nonlinear process. From [105].

Fig. 9
Fig. 9

(a) Four-wave mixing photon count rate ( λ 4WM = 639 nm ) as a function of the separation of two 60 nm gold nanoparticles. Inset, detailed view on a log-log scale. Dots are data, and the curves are power-law fits. The kink in the curve indicates the formation of a conductive bridge. (b) Photon bursts generated by modulating the interparticle separation. Reprinted with permission from [103]. © 2007 American Physical Society.

Fig. 10
Fig. 10

Two-photon excited luminescence as a tool to characterize field intensity distributions in optical antennas. (a) Resonantly excited linear nanostrip antenna showing field enhancement at the ends. (b) TPL from a gap antenna, indicating a strong field enhancement in the gap for incoming light polarized along the long axis. Reprinted with permission from [102]. © 2008 American Physical Society.

Fig. 11
Fig. 11

Microscopy using environment-induced spectral changes of an optical antenna. (a) Schematic of the experiment. A white light source illuminates a 100 nm gold nanoparticle antenna from the side. (b) A spatial map of the width of the antenna’s plasmon resonance recorded by raster scanning the nanoparticle antenna over a sample consisting of a circular hole in a layer of 8 nm thick chromium (see inset). Adapted with permission from [76]. © 2005 American Physical Society.

Fig. 12
Fig. 12

PL from carbon nanotubes enhanced with gold tips. (a) Sample topography consisting of a DNA-wrapped nanotube on mica. (b) Corresponding PL image formed by integrating the signal from 850 to 1050 nm (laser excitation is at 633 nm ). (c) Variations of the peak emission frequency due to DNA wrapping. Reprinted with permission from [150]. © 2008 American Chemical Society.

Fig. 13
Fig. 13

Single-molecule fluorescence imaging using a λ 4 monopole antenna fabricated on the end face of an aperture-type near-field probe. (a) Electron micrographs showing monopoles of different lengths, resonant at correspondingly different wavelengths. From [61]. (b) Spatial fluorescence map of randomly oriented single molecules. The emitted polarization is color coded: red, horizontal; green, vertical; yellow, unpolarized. Scale bar, 1 μ m . Adapted from [62] by permission from Macmillan Publishers Ltd., Nature Photonics, © 2008.

Fig. 14
Fig. 14

Tip-enhanced Raman spectroscopy of a single-walled carbon nanotube. (a) Topographic image. The scale bar denotes 200 nm . (b) Near-field Raman spectra recorded at the locations marked in (a). The radial breathing mode frequency changes from 251 to 191 cm 1 , revealing a structural transition (inset) from a semiconducting (10, 3) tube to a metallic (12, 6) tube. Reprinted with permission from [172]. © 2007 American Chemical Society.

Fig. 15
Fig. 15

Schematic of different types of antenna effects in photovoltaics. (a) Far-field scattering, leading to a prolonged optical path. (b) Near-field scattering, causing locally increased absorption, and (c) direct injection of photoexcited carriers into the semiconductor. From [185].

Fig. 16
Fig. 16

A dye-sensitized solar cell decorated with gold nanodisk antennas for improved absorption of light. (a) Schematic of the device. Excitation of the dye molecules adsorbed on Ti O 2 is amplified near an antenna, leading to enhanced carrier injection from the dyes into the Ti O 2 . (b), (c) Electron micrographs showing electrical contacts and gold nanodisks fabricated on top of thin Ti O 2 . Reprinted with permission from [200]. © 2008 American Institute of Physics.

Fig. 17
Fig. 17

(a) Scanning electron microscope image of a silicon-on-insulator LED with silver nanoparticles on its surface. (b) Electroluminescence from an LED partially coated with silver nanoparticles. Brighter areas correspond to stronger electroluminescence intensity. Reprinted with permission from [208]. © 2008 American Institute of Physics.

Fig. 18
Fig. 18

Coherent control of photoelectron generation in an optical antenna structure. (a) Photoelectron distribution for an incident p-polarized pulse with no coherent control. (b) Electron micrograph of the test structure. (c) Photoelectron distribution for excitation pulse shown in (d). (e) Photoelectron distribution for excitation pulse shown in (f). Adapted from [225] by permission from Macmillan Publishers Ltd., Nature, © 2007.

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

Γ = π ω 3 ε o | g | p ̂ | e | 2 ρ p ( r o , ω ) ,
ρ p ( r o , ω ) = 6 ω π c 2 [ n p Im { G ( r o , r o , ω ) } n p ] ,
E ( r ) = 1 ε o ω 2 c 2 G ( r , r o , ω ) p .
ρ ( r o , ω ) = ρ p ( r o , ω ) = 2 ω π c 2 Im { Tr [ G ( r o , r o , ω ) ] } ,
P = 1 2 V Re { j * E } d V ,
j ( r ) = i ω p δ [ r r o ] ,
P = ω 2 Im { p * E ( r o ) } .
P = π ω 2 12 ε o | p | 2 ρ p ( r o , ω ) ,
ρ p ( r o , ω ) = ω 2 π 2 c 3 P P o .
P Γ = | p | 2 | g | p ̂ | e | 2 ω 4 .
Re { Z } = π 12 ε o ρ p ( r o , ω ) .
ε rad = P rad P = P rad P rad + P loss .
η i = P rad o P rad o + P intrinsic loss o ,
ε rad = P rad P rad o P rad P rad o + P antenna loss P rad o + [ 1 η i ] η i .
0 π 0 2 π p ( θ , φ ) sin θ d φ d θ = P rad .
D ( θ , φ ) = 4 π P rad p ( θ , φ ) .
D θ ( θ , φ ) = 4 π P rad p θ ( θ , φ ) , D φ ( θ , φ ) = 4 π P rad p φ ( θ , φ ) .
D ( θ , φ ) = D θ ( θ , φ ) + D φ ( θ , φ ) .
G = 4 π P p ( θ , φ ) = ε rad D .
V j 1 E 2 d V = V j 2 E 1 d V .
p 1 E 2 = p 2 E 1 .
P exc = ( ω 2 ) Im { p 1 * E 2 ( r 1 ) } = ( ω 2 ) Im { α 1 } | n p 1 E 2 ( r 1 ) | 2 .
P exc = ( ω 2 ) | p 2 p 1 | 2 Im { α 1 } | n p 2 E 1 ( r 2 ) | 2 .
D θ ( θ , φ ) = 4 π | n θ E ( R , θ , φ ) | 2 4 π | E ( R , θ , φ ) | 2 d Ω ,
P exc , θ ( θ , φ ) = ( ω 2 ) | p 2 p 1 | 2 Im { α 1 } P rad 2 π ε o c R 2 D θ ( θ , φ ) .
P exc , θ ( θ , φ ) P exc , θ o ( θ , φ ) = P rad P rad o D θ ( θ , φ ) D θ o ( θ , φ ) ,
Γ exc , θ ( θ , φ ) Γ exc , θ o ( θ , φ ) = Γ rad Γ rad o D θ ( θ , φ ) D θ o ( θ , φ ) ,
A ( θ , φ , n pol ) = P exc I = σ A ( θ , φ , n pol ) ,
P exc = ( ω 2 ) Im { α } | n p E | 2 .
σ = σ o | n p E | 2 | n p E o | 2 .
E = [ I + k 2 ε o α ( ω ) G ( r o , r p , ω ) ] E o = [ 1 + 2 α ̃ ( ω ) a 3 ( a + z ) 3 ] E o ,
p p = k 2 ε o α p ( ω ) G ( r p , r o , ω ) p = 2 α ̃ p ( ω ) a 3 ( a + z ) 3 p .
P exc P exc o = Γ exc Γ exc o = | 1 + 2 α ̃ p ( ω ) a 3 ( a + z ) 3 | 2 ,
P rad P rad o = Γ rad Γ rad o = | p + p p | 2 | p | 2 = | 1 + 2 α ̃ p ( ω ) a 3 ( a + z ) 3 | 2 ,
D ( θ , φ ) = D θ ( θ , φ ) = ( 3 2 ) sin 2 θ .
P loss P rad o = 3 4 Im [ ε ( ω ) 1 ε ( ω ) + 1 ] 1 ( k z ) 3 .
ρ z ( z ) = ω 2 π 2 c 3 [ | 1 + 2 [ ε ( ω ) 1 ε ( ω ) + 2 ] a 3 ( a + z ) 3 | 2 + 3 4 Im [ ε ( ω ) 1 ε ( ω ) + 1 ] 1 ( k z ) 3 ] .
σ = k ε o Im { α ( ω ) } | 1 + 2 [ ε ( ω ) 1 ε ( ω ) + 2 ] a 3 ( a + z ) 3 | 2 .
λ eff = n 1 + n 2 [ λ λ p ] ,
Γ fl = Γ exc o η i = Γ exc Γ rad o Γ rad o + Γ nr o .

Metrics