Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Doppler-shift compensated spatial heterodyne spectroscopy for rapidly moving sources

Not Accessible

Your library or personal account may give you access

Abstract

High resolution luminosity product measurements of neutral beam emission in magnetized plasmas are severely limited by the artificial Doppler broadening inherent to the use of large diameter collection optics. In this paper, a broadening compensation method is developed for the spatial heterodyne spectroscopy interferometric technique. The compensation technique greatly reduces the artificial broadening, thereby enabling high resolution measurements at a significantly higher photon flux than previously available. Compensated and uncompensated measurements of emission generated by impact excitation of 61 keV deuterium neutrals in a tokamak plasma at the DIII-D National Fusion Facility are presented. The spectral width of the compensated measurement is ${\sim}0.13 \;{\rm{nm}}$, which is comparable to the instrument resolution. This width is ${\sim}4 \times$ smaller than the uncompensated width, which for the 20 cm diameter collection lens system utilized in this study is ${\sim}0.5 \;{\rm{nm}}$.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration

Christoph R. Englert, David D. Babcock, and John M. Harlander
Appl. Opt. 46(29) 7297-7307 (2007)

Spatial heterodyne spectroscopy at the Naval Research Laboratory

Christoph R. Englert, John M. Harlander, Charles M. Brown, and Kenneth D. Marr
Appl. Opt. 54(31) F158-F163 (2015)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.