Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effect of surface modification on wettability and tribology by laser texturing in Al2O3

Not Accessible

Your library or personal account may give you access

Abstract

The life of ceramic tools restricts the development of the manufacturing industry and can be increased through the enhancement of surface performance. Laser surface texturing is a feasible technology to improve ceramic tool life based on the relationship between surface properties and the laser-texturing process. In this study, ${{\rm Al}_2}{{\rm O}_3}$ substrates have been textured by an ytterbium fiber laser system with a wavelength of 1064 nm and a pulse duration of 50 ns. First, the damage threshold of ${{\rm Al}_2}{{\rm O}_3}$ was measured to provide a basis for selecting laser-texturing parameters. The surface morphology was characterized using a white confocal scanning microscope and a scanning electron microscope to investigate the characteristics of laser processing. Water contact angles were measured to investigate the relationship between laser parameters and changes in wettability. The surface energy of the superhydrophobic ceramic was calculated based on the contact angle. Combined X-ray photoelectron spectroscopy (XPS) measurement was used to explore the mechanism of wettability changes from the chemical component and microstructure perspectives. The friction coefficient of ${{\rm Al}_2}{{\rm O}_3}$ was determined by a ball-on-disc wear test. The results showed that laser texturing can significantly improve the surface hydrophobicity and friction stability.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Surface modification and effects on tribology by laser texturing in Al2O3

Xiubing Jing, Qilei Zhai, Shuxian Zheng, Du Zhang, Huan Qi, and Dawei Zhang
Appl. Opt. 60(31) 9696-9705 (2021)

Damage morphologies of Al2O3 and Fe particles attached on the input surface of fused silica after irradiation by a 355 nm laser

Yuhan Li, Caizhen Yao, Xinxiang Miao, Hairong Wang, and Xiaodong Jiang
Appl. Opt. 60(26) 8130-8136 (2021)

Properties of Ni-Al2O3 composite coating by laser-assisted pulse electrodeposition

Xu Miao, Haiyun Zhang, Yugang Zhao, Xingang Han, Weisheng Lin, Guangfen Jiang, Jianbing Meng, Zengbo Zhang, and Jinjian Zhang
Appl. Opt. 62(5) 1384-1391 (2023)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.