Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temperature sensitivity of scattering-type near-field nanoscopic imaging in the visible range

Abstract

Due to its superb imaging spatial resolution and spectroscopic viability, scattering-type scanning near-field optical microscopy (s-SNOM) has proven to be widely applicable for nanoscale surface imaging and characterization. However, limited works have investigated the sensitivity of the s-SNOM signal to sample temperature. This paper reports the sample temperature effect on the non-interferometric (self-homodyne) s-SNOM scheme at a visible wavelength (λ=638nm). Our s-SNOM measurements for an arrayed vanadium/quartz sample demonstrate a monotonic decrease in signal intensity as sample temperature increases. As a result, s-SNOM imaging cannot distinguish quartz or vanadium when the sample is heated to 309K: all signals are close to the root-mean-square noise of the detection scheme used for this study (i.e., 19 μV-rms). While further studies are required to better understand the underlying physics of such temperature dependence, the obtained results suggest that s-SNOM measurements should be carefully conducted to meet a constant sample temperature condition, particularly when a visible-spectrum laser is to be used as the light source.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy

T. Taubner, F. eilmann, and R. Hillenbrand
Opt. Express 13(22) 8893-8899 (2005)

Sub-terahertz scanning near-field optical microscope using a quartz tuning fork based probe

Xinxing Li, Jiandong Sun, Lin Jin, Yang Shangguan, Kebei Chen, and Hua Qin
Opt. Express 31(12) 19754-19765 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.