Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design and analysis for a bend-resistant and large-mode-area photonic crystal fiber with hybrid cladding

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, an asymmetric large-mode-area photonic crystal fiber (LMA-PCF) with low bending loss at a smaller bending radius is designed. The finite-element method with a perfectly matched layer boundary is used to analyze the performance of the PCF. To achieve LMA-PCF with low bending loss, the air holes with double lattice constants and different sizes at the core are designed. Numerical results show that this structure can achieve low bending loss and LMA with a smaller bending radius at the wavelength of 1.55 μm. The effective mode area of the fundamental mode is larger than 1000μm2 when the bending radius is 10cm. The bending loss of the fundamental mode is just 0.0113 dB/m, and the difference between the fundamental and high-order modes of the bending loss is larger than 103 when the bending radius is 10 cm. Simulation results show this novel PCF can achieve LMA and have effective single-mode operation when the bending orientation angle ranges in ±110°. This novel photonic crystal has potential application in high-power fiber lasers.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Bend-resistant large-mode-area photonic crystal fiber with a triangular-core

Xin Wang, Shuqin Lou, and Wenliang Lu
Appl. Opt. 52(18) 4323-4328 (2013)

Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis

Than Singh Saini, Ajeet Kumar, and Ravindra Kumar Sinha
Appl. Opt. 55(9) 2306-2311 (2016)

Triangular-core large-mode-area photonic crystal fiber with low bending loss for high power applications

Than Singh Saini, Ajeet Kumar, and Ravindra Kumar Sinha
Appl. Opt. 53(31) 7246-7251 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved