Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analytical-performance improvement of laser-induced breakdown spectroscopy for the processing degree of wheat flour using a continuous wavelet transform

Not Accessible

Your library or personal account may give you access

Abstract

Quality and safety of food are two of the most important matters in our lives. Wheat is one of the most important products in the modern agricultural processing industry. Issues of mislabeling and adulteration are of increasingly serious concern in the grain market. They threaten the credibility of producers and traders and the rights of the consumers. Therefore, it is very significant to guarantee the processing degree of wheat flour. In this work, two different spectral peak recognition methods, i.e., artificial spectral peak recognition and automatic spectral peak recognition, are carried out to study the adulteration problem in the food industry. Three grades of the processing degree of wheat flour from northern China are classified by laser-induced breakdown spectroscopy (LIBS). To search for an automatic classification model, continuous wavelet transform is used for the automatic recognition of the LIBS spectrum peak. Principal component analysis is used to reduce the collinearity of LIBS spectra data. First, 20 principal components were selected to represent the spectral data for the following discrimination analysis by a support vector machine. The results showed that the classification accuracies of automatic spectral peak recognition are better than those of artificial spectral peak recognition. The classification accuracies of artificial spectral peak recognition and automatic spectral peak recognition are 95.33% and 98.67%; the fivefold cross-validation classification accuracies are 94.67% and 96.67%; and the operation times were 240 min and 2 min, respectively. It can be concluded that LIBS can provide simpler and faster classification without the use of any chemical reagent, which represents a decisive advantage for applications dedicated to rapidly detecting the processing degree of wheat flour and other cereals.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser-induced breakdown spectroscopy assisted chemometric methods for rice geographic origin classification

Ping Yang, Ran Zhou, Wen Zhang, Shisong Tang, Zhongqi Hao, Xiangyou Li, Yongfeng Lu, and Xiaoyan Zeng
Appl. Opt. 57(28) 8297-8302 (2018)

Continuous-wavelet-transform-based automatic curve fitting method for laser-induced breakdown spectroscopy

Wenbin Yang, Bincheng Li, Jiangning Zhou, Yanling Han, and Qiang Wang
Appl. Opt. 57(26) 7526-7532 (2018)

Identification of Huanglongbing-infected navel oranges based on laser-induced breakdown spectroscopy combined with different chemometric methods

Gangfu Rao, Lin Huang, Muhua Liu, Tianbing Chen, Jinyin Chen, Ziyi Luo, Fanghao Xu, Xuehong Xu, and Mingyin Yao
Appl. Opt. 57(29) 8738-8742 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.