Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dynamic analysis and rotation experiment of an optical-trapped microsphere in air

Not Accessible

Your library or personal account may give you access

Abstract

A dual-fiber optical trap system to trap and rotate a borosilicate microsphere has been proposed and experimentally demonstrated. The trapping system can be used as a probe to measure environmental parameters, such as torque, force, and viscosity of the surrounding medium. Under various conditions with different fiber misalignments, optical power, and fiber separation, the trapped sphere will exhibit three motion profiles including random oscillation, round rotation, and abnormal rotation. The power spectrum analysis method is used to measure rotation rates up to 385 Hz, which can be further increased by increasing laser power. In addition, simulation and experiment show consistent results in rotation rates and motion trajectory, which verifies the validity and accuracy of dynamic analysis.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset

Xinlin Chen, Guangzong Xiao, Hui Luo, Wei Xiong, and Kaiyong Yang
Opt. Express 24(7) 7575-7584 (2016)

Orbital dynamics at atmospheric pressure in a lensed dual-beam optical trap

Amala Raj, William L. Schaich, and Bogdan Dragnea
J. Opt. Soc. Am. A 39(8) 1468-1478 (2022)

Measurement of optical trapping forces by use of the two-photon-excited fluorescence of microspheres

A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, D. S. Kaputa, A. N. Cartwright, and P. N. Prasad
Opt. Lett. 28(23) 2288-2290 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.