Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Microwave photonic filter-based interrogation system for multiple fiber Bragg grating sensors

Not Accessible

Your library or personal account may give you access

Abstract

Fiber optic sensors based on fiber Bragg gratings (FBGs) find potential use in condition monitoring because their spectral properties change according to external environmental and/or physical factors. We propose and demonstrate a technique for interrogating multiple FBG-based sensors based on microwave photonic (MWP) filtering. In particular, we exploit the spectrum-slicing properties of two different FBG Fabry–Perot cavities to implement a double passband MWP filter. Each sensor spectrum results in a unique MWP filter passband. As temperature is applied to a sensor, the corresponding MWP filter passband will shift in frequency; we track such shifts by monitoring the detected power at a fixed radio frequency. We discuss the use of a ratiometric approach for enhancing the sensitivity and the impact of cross-talk from the MWP filter responses in terms of simultaneous multi-sensor operation. Results show that we can monitor local temperatures at two (or multiple) different locations simultaneously and independently using a single measurement system.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Simultaneous interrogation of multiple fiber Bragg grating temperature sensors using a microwave photonic approach

Maria I. Comanici, Jingjing Hu, Parisa Moslemi, and Lawrence R. Chen
Appl. Opt. 57(28) 8338-8342 (2018)

Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques

Amelia Lavinia Ricchiuti, David Barrera, Salvador Sales, Luc Thevenaz, and José Capmany
Opt. Express 21(23) 28175-28181 (2013)

Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation

Qiang Wu, Agus Muhammad Hatta, Yuliya Semenova, and Gerald Farrell
Appl. Opt. 48(29) 5451-5458 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved