Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Infrared target detection method based on the receptive field and lateral inhibition of human visual system

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, an infrared target adaptive detection method based on the receptive field and lateral inhibition (LI) of the human visual system is proposed. In the proposed method, the direction parameters of a Gabor filter are adaptively determined according to the gradient direction, so that edges in the image can be detected without manual intervention. Meanwhile, background prediction based on LI is used for regulating the gray value in the image to achieve background suppression and target enhancement. Experimental results indicate that the proposed method can extract both the small target and the area target from a complex background, and has satisfactory target detection ability.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Directional support value of Gaussian transformation for infrared small target detection

Changcai Yang, Jiayi Ma, Shengxiang Qi, Jinwen Tian, Sheng Zheng, and Xin Tian
Appl. Opt. 54(9) 2255-2265 (2015)

Robust method for infrared small-target detection based on Boolean map visual theory

Shengxiang Qi, Delie Ming, Jie Ma, Xiao Sun, and Jinwen Tian
Appl. Opt. 53(18) 3929-3940 (2014)

Adaptive method of dim small object detection with heavy clutter

Wei Meng, Tao Jin, and Xinwei Zhao
Appl. Opt. 52(10) D64-D74 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.