Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Polarization property changes of optical beam transmission in atmospheric turbulent channels

Not Accessible

Your library or personal account may give you access

Abstract

We theoretically analyze and experimentally verify the performance of multiple polarization parameters in the presence of atmospheric turbulence for a terrestrial optical transmission. First, both the first- and second-moment characteristic of polarization parameters are derived based on the extended Huygens–Fresnel principle. Then, numerical simulations are presented for different propagating distances, optical source properties, and turbulent strengths. Finally, a series of well-designed experiments are carried out to verify the theory with turbulence-controlled conditions, where the polarization states are measured at two wavelengths, respectively. As a result, the theoretical predictions conform closely to the experimental data, and both show that with the increasing turbulent strength, the first-order moment of polarization parameters varies in different trends, while their second-order moment increases. The proposed approach is promising for building a comprehensive statistical model of polarization and improving the performance of a free-space optical communication link.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarization properties of Gaussian–Schell model beams propagating in a space-to-ground optical communication downlink

Jing Ma, Jiajie Wu, Liying Tan, and Siyuan Yu
Appl. Opt. 56(6) 1781-1787 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.