Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temperature sensing through long period fiber gratings mechanically induced on tapered optical fibers

Not Accessible

Your library or personal account may give you access

Abstract

In this work the feasibility of employing two well-known techniques already used on designing optical fiber sensors is explored. The first technique employed involves monomode tapered fibers, which were fabricated using a taper machine designed, built, and implemented in our laboratory. This implementation greatly reduced the costs and fabrication time allowing us to produce the desired taper length and transmission conditions. The second technique used fiber Bragg gratings, which we decided to have mechanically induced and for that reason we devised and produced our own mechanical gratings with the help of a computer numerical control tool. This grating had to be fabricated with aluminum to withstand temperatures of up to 600°C. When light traveling through an optical fiber reaches a taper it couples into the cladding layer and comes back into the core when the taper ends. In the same manner, when the light encounters gratings in the fiber, it couples to the cladding modes, and when the gratings end, the light couples back into the core. For our experimentation, the tapering machine was programmed to fabricate single-mode tapers with 3 cm length, and the mechanically induced gratings characteristics were 5 cm length, and had a period of 500 μm and depth of the period of 300 μm. For the conducting tests, the tapered fiber is positioned in between two aluminum slabs, one grooved and the other plane. These two blocks accomplish the mechanically induced long period grating (LPG); the gratings on the grooved plaque are imprinted on the taper forming the period gratings. An optical spectrum analyzer is used to observe the changes on the transmission spectrum as the temperature varies from 20°C to 600°C. The resultant attenuation peak wavelength in the transmission spectrum shifts up to 8 nm, which is a higher shift compared to what has been reported using nontapered fibers. As the temperature increases there is no longer a shift, but there is significant power loss. Such a characteristic can be used as well for sensing applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Widely tunable LP11 cladding-mode resonance in a twisted mechanically induced long-period fiber grating

Anitha S. Nair, V. P. Sudeep Kumar, and Hubert Joe
Appl. Opt. 54(8) 2007-2010 (2015)

Design and analysis of long-period fiber gratings in tapered multimode chalcogenide glass fiber for temperature measurement

Leilei Wang, Wenqiang Ma, Peiqing Zhang, Dandan Yang, Liang Zhu, Xunsi Wang, and Shixun Dai
J. Opt. Soc. Am. B 36(7) 1792-1798 (2019)

CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation

Yi-Ping Wang, Dong Ning Wang, and Wei Jin
Appl. Opt. 45(31) 7966-7970 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.