Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-loss polarization-maintaining THz photonic crystal fiber with a triple-hole core

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we report a novel low-loss and polarization-maintaining terahertz (THz) photonic crystal fiber with a triple-hole unit inside the core. The properties of birefringence, effective material loss, confinement loss, bending loss, power fraction, dispersion, and single-mode condition are analyzed in detail by using the finite element methods. Simulation results show that high birefringence at a level of 102 can be achieved by simply reducing the diameter of one air hole of the triple-hole core. And low effective material loss down to 30% of its bulk material loss can be achieved in our interested band around 3 THz, due to the high core porosity of the designed triple-hole core. Moreover, this design dramatically facilitates the fabrication process, because of the typical hexagonal structure with all circular air holes and avoiding the troublesome multiple sub-wavelength air holes in the core area. The results reveal that this proposal has potential for efficient THz transmission and other functional applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance

Md. Rabiul Hasan, Md. Shamim Anower, Md. Ariful Islam, and S. M. A. Razzak
Appl. Opt. 55(15) 4145-4152 (2016)

Design and numerical analysis of a THz square porous-core photonic crystal fiber for low flattened dispersion, ultrahigh birefringence

Jianfeng Luo, Fengjun Tian, Hongkun Qu, Li Li, Jianzhong Zhang, Xinhua Yang, and Libo Yuan
Appl. Opt. 56(24) 6993-7001 (2017)

Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance

Kawsar Ahmed, Sawrab Chowdhury, Bikash Kumar Paul, Md. Shadidul Islam, Shuvo Sen, Md. Ibadul Islam, and Sayed Asaduzzaman
Appl. Opt. 56(12) 3477-3483 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.