Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Slow light in narrow-core hollow optical waveguide with low loss and large bandwidth

Not Accessible

Your library or personal account may give you access

Abstract

A narrow-core hollow waveguide with low loss is proposed that exhibits slow light characteristics. The slow light is guided in air between the top and bottom mirrors, each based on high-index-contrast gratings. The proposed design shows a low propagation loss of 1.8 dB/cm at a 1-μm-thick narrow air core, and the loss remains low for a broad range of wavelengths from 1200 to 1600 nm. Also, the flat band slow light is realized at a grating period of 0.8 μm in 1-μm-thick narrow air core. Further design analysis reveals a large fabrication tolerance of the proposed hollow structure with respect to the grating period.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings

Ye Zhou, Vadim Karagodsky, Bala Pesala, Forrest G. Sedgwick, and Connie J. Chang-Hasnain
Opt. Express 17(3) 1508-1517 (2009)

Slow-light-assisted electrical tuning in hollow optical waveguide via carrier depletion in silicon and indium tin oxide subwavelength gratings

Swati Rajput, Vishal Kaushik, Sourabh Jain, and Mukesh Kumar
J. Opt. Soc. Am. B 37(8) 2360-2365 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved