Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temperature measurements in metalized propellant combustion using hybrid fs/ps coherent anti-Stokes Raman scattering

Abstract

We apply ultrafast pure-rotational coherent anti-Stokes Raman scattering (CARS) for temperature and relative oxygen concentration measurements in the plume emanating from a burning, aluminized ammonium-perchlorate propellant strand. Combustion of these metal-based propellants is a particularly hostile environment for laser-based diagnostics, with intense background luminosity and scattering from hot metal particles as large as several hundred micrometers in diameter. CARS spectra that were previously obtained using nanosecond pulsed lasers in an aluminum-particle-seeded flame are examined and are determined to be severely impacted by nonresonant background, presumably as a result of the plasma formed by particulate-enhanced laser-induced breakdown. Introduction of femtosecond/picosecond (fs/ps) laser pulses improves CARS detection by providing time-gated elimination of strong nonresonant background interference. Single-laser-shot fs/ps CARS spectra were acquired from the burning propellant plume, with picosecond probe-pulse delays of 0 and 16 ps from the femtosecond pump and Stokes pulses. At zero delay, nonresonant background overwhelms the Raman-resonant spectroscopic features. Time-delayed probing results in the acquisition of background-free spectra that were successfully fit for temperature and relative oxygen content. Temperature probability densities and temperature/oxygen correlations were constructed from ensembles of several thousand single-laser-shot measurements with the CARS measurement volume positioned within 3 mm or less of the burning propellant surface. The results show that ultrafast CARS is a potentially enabling technology for probing harsh, particle-laden flame environments.

Full Article  |  PDF Article
More Like This
Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature

Joseph D. Miller, Mikhail N. Slipchenko, and Terrence R. Meyer
Opt. Express 19(14) 13326-13333 (2011)

Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry

Daniel R. Richardson, Hans U. Stauffer, Sukesh Roy, and James R. Gord
Appl. Opt. 56(11) E37-E49 (2017)

Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O2-based pure rotational coherent anti-Stokes Raman scattering

Sascha R. Engel, Andreas F. Koegler, Yi Gao, Daniel Kilian, Michael Voigt, Thomas Seeger, Wolfgang Peukert, and Alfred Leipertz
Appl. Opt. 51(25) 6063-6075 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.