Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Boundary condition thermometry using a thermographic-phosphor-coated thin filament

Abstract

Thermographic phosphors (TPs) exhibit a temperature sensitive emission spectrum when excited with ultraviolet radiation. In this study, 14 μm diameter SiC fibers are coated with ZnO or Dy:YAG using a ceramic binder to a total diameter of 70±9 μm. ZnO and Dy:YAG fibers were used to measure fiber temperatures in the range of 294–450 K and 450–1245 K, respectively. The coated fiber provides higher signal levels compared to TP particle seeding and is no more invasive than the commonly used thermocouple. A calibration is performed to relate fiber temperature to the ratio of luminescent signal collected within two different bands of the fiber emission spectrum. Temperature was measured along the inlet of a series of nitrogen diluted ethylene diffusion flames stabilized on the Yale coflow burner to determine suitable thermal boundary conditions for computational modeling. The boundary condition temperatures were derived from a spline fitting of data acquired from the two fiber types in order to obtain fiber temperature sensitivity from 294 to 1245 K. The peak near-burner temperature was found to be higher than ambient conditions and to increase and shift its location radially outward with increased fuel percentage.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Thin-filament pyrometry with a digital still camera

Jignesh D. Maun, Peter B. Sunderland, and David L. Urban
Appl. Opt. 46(4) 483-488 (2007)

High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles

Christopher Abram, Benoit Fond, and Frank Beyrau
Opt. Express 23(15) 19453-19468 (2015)

Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles

Benoit Fond, Christopher Abram, Andrew L Heyes, Andreas M Kempf, and Frank Beyrau
Opt. Express 20(20) 22118-22133 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.