Abstract

Liquid-filled tunable-focus lenses have been demonstrated to be suitable for autofocus eyewear applications. Traditionally, these lenses are constructed using an elastomeric polymer chamber filled with a high-index liquid. In this work, we investigate the effect of elastomeric creep on the deformation and eventual degradation of these tunable lenses. We use numerical analysis of a deformable circular disk representative of the lens and provide rigorous experimental results testing the creep property of a number of elastomers. Finally, we provide a comparative study of different elastomeric materials and select the best one for this application.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. INTRODUCTION

Tunable-focus liquid-filled lenses [113] have recently been demonstrated to be ideal for developing variable focus eyewear applications [1418]. These autofocus eyeglasses aim to restore the natural accommodation of the human eye that degrades over time due to refractive errors of vision such as myopia (nearsightedness); hyperopia (farsightedness), astigmatism, and presbyopia [1927]. A healthy human eye has the ability to change the focal length of the biological lens in the eyeball by changing the radius of curvature of the crystalline lens using muscles connected to the lens that contract and relax, thereby changing the radius of curvature of the lens. However, most people lose the ability to naturally tune the focal length of their biological lens with progression of age, with an average decrease in the accommodation range from 11 diopters at age 20 to about 1–2 diopters at age 50 [18].

We have recently demonstrated eyeglasses with automatic tunable focus implemented using liquid-filled variable focus lenses [1418]. We demonstrated large aperture (32 mm) lightweight (<15gm) low-power (<20mW) tunable lenses with the ability to tune an optical power range of 5.6 diopters. A schematic of this lens is shown in Fig. 1. The working principle of the tunable-focus lens involves the use of a chamber constructed using elastomeric material that can be stretched, the chamber being filled with high-index liquid such as glycerol (refractive index n1.47). A transparent piston connected to the back side of this chamber is driven by three connected piezo actuators, thus increasing or reducing the chamber pressure and thereby changing the radius of curvature of the front elastic membrane. In our previous demonstrations of these tunable-focus liquid-filled membrane lenses, we used polydimethylsiloxane (PDMS) as the elastomer for the top and bottom membranes. The front membrane is 0.6mm thick. It is well-known that elastomeric membranes that are subject to numerous flexing/relaxation cycles experience creep over time, which reduces their ability to deflect appropriately given the same amount of force [2833]. The creep thus causes drifts in the power versus deflection characteristics, which are critical to maintain for autofocus eyeglasses applications. It is desirable to develop autofocus eyeglasses that exhibit small optical power drift rate <120mD/yr or 0.36D over three years, for a commercially viable product lifetime. In this work, first, we have studied the creep of different materials that are potential candidates for the membranes used in tunable focus liquid lenses. For this study, we have constructed a mechanical setup that rigorously investigates the material properties that determine the creep for different materials on circular membranes. We have correlated the experimental data to the loss of diopter range over time and selected the best material suitable for our application. Experimentally realized tunable lenses using different membranes have also been compared and the data presented.

 figure: Fig. 1.

Fig. 1. Schematic of tunable-focus liquid-filled lenses excluding the actuators. The actuators connect to the transparent piston and are responsible for imparting the force Fpiston. The change in the radius of curvature of the lens front membrane is responsible for change in the optical power of the lens.

Download Full Size | PPT Slide | PDF

2. EXPERIMENTAL INVESTIGATION OF ELASTOMERIC CREEP DUE TO PERIODIC DEFLECTION

Figure 2 shows a schematic diagram of the setup constructed to periodically produce flexure in a membrane. This setup was used to test the deflection and mechanical properties of different membranes, simply by changing the membrane while keeping other components the same. Different liquids may also be used in this same setup. Because the membrane deflection is caused by fluid flow, it is effectively de-coupled from the piezo-actuator-controlled deflection mechanism used in the tunable lenses. Hence, this setup allows us to study the mechanical properties of membranes, free from the influence of piezo-actuators. We have opted to use water as the liquid in the experiments reported in this paper due to the low viscosity of water, enabling us to use high-frequency deflection cycles.

 figure: Fig. 2.

Fig. 2. Schematic of the experimental setup used to analyze mechanical properties of membranes for tunable-focus liquid-filled lenses subject to periodic deflections.

Download Full Size | PPT Slide | PDF

A. Membrane Flexure Setup

The setup consists of an air-tight chamber (custom 3D printed), the top surface of which is closed using a tensed membrane, the mechanical properties of which are being tested. The chamber is made air-tight using strategically located fixtures, gaskets, and air-tight fittings. The chamber has only one inlet/outlet. This is connected to a liquid reservoir, through a drain valve and a fluid column, fed from the liquid reservoir using a fill pump and a pressure sensor. The fluid column stores the liquid and is kept at a higher height with respect to the chamber (450mm), and the liquid is allowed to flow into the chamber due to this pressure difference. Because the chamber is air-tight, the liquid inflow causes the membrane to bulge upward. At this stage, the drain valve (6 V DC solenoid valve) is kept closed. Next, the drain valve is opened. The tension in the membrane releases, allowing the liquid to flow out of the chamber through the drain valve and into the liquid reservoir. Again, once the drain valve is closed, the liquid flows from the fluid column down to deflect the membrane upward. The liquid is returned from the reservoir to the fluid column using a fill pump (12 V DC peristaltic pump). The fluid column is also provided with an overflow drain that drains back to the liquid reservoir, if required. A tiny metal patch of negligible weight is placed, centered on top of the membrane. The deflection of the membrane is recorded using an optical displacement sensor (Micro-epsilon optoNCDT IL 1420 visible laser displacement sensor). A laser beam from the sensor module reflects off the top of the metal patch on top of the membrane and is detected by a photodetector integrated into the displacement sensor. The membrane position is measured by the optical displacement sensor, and the data are recorded into a computer.

It is to be noted that a large number of flex/relax cycles would be required to effectively observe any elastomeric creep in the membrane. This would require an extremely long experimental times ( months to years). In order to reduce this time, we resorted to using an accelerated failure model to study the elastomeric creep based on the Arrhenius approach [3436]. In this method, the chamber is heated using a silicon strip heater (30 W 120 V DC), the temperature of which is monitored using a temperature sensor (standard thermocouple) and a PID temperature controller. The entire system is fully automated using a computer control and a USB relay (Ontrak ADU208 relay box) and necessary control circuits. The heating of the chamber, the liquid inside, and, subsequently, the membrane when it is undergoing constant flex/relax cycles allowed us to observe creep and failure at an accelerated rate and thereby analyze the mechanical properties of the membranes over a short time period. Figures 3(a)3(c) show the complete constructed setup.

 figure: Fig. 3.

Fig. 3. Experimental setup used to analyze mechanical properties of membranes for tunable-focus liquid-filled lenses. (a) Setup showing different components: ODS, optical displacement (laser) sensor; FP, fill pump; DV, drain valve; CC, control circuits. (b) Close-up view of a flexed membrane with a tiny metal patch and laser spot from the optical displacement sensor. (c) Close-up view of the air-tight chamber, heater, and displacement sensor assembly.

Download Full Size | PPT Slide | PDF

B. Membrane Tensor Setup

In our previous work, we demonstrated liquid-filled membrane lenses using PDMS membranes. PDMS membranes inherently possess slight tension when cured. However, because this may not be repeatable every time and, also, because we aim to switch to inorganic membranes in the future, it was required to develop a mechanical setup that can introduce tension in elastomeric membranes in a repeatable manner. Figure 4 shows a schematic of such a setup. A membrane is stretched across a Teflon outer ring and held securely in place using screws. Then, three force points are introduced on this ring at equi-angular locations (120 deg apart). This outer ring with the stretched membrane is gradually lowered over an inner ring, which creates tension in the membrane. The tension can then be calculated from the values of the forces applied at the three points, recorded by three connected force gauges (Nidec-Shimpo FG-3000), and the values of the displacement for these three points as recorded by three displacement gauges (clockwise digital dial indicator displacement gauges) connected to the force gauges and in turn to the three force points. This allows us to accurately record the forces applied as well as the displacement values at the three force-point locations.

 figure: Fig. 4.

Fig. 4. Experimental setup used to introduce tension in elastomeric membranes in a repeatable manner. (a) Schematic showing the two-ring assembly and force points. (b) Schematic showing the introduction of tension in a membrane using this tensor setup. (c) Constructed setup showing the three force gauges and the three displacement gauges with (d) its close-up view showing a Teflon ring glued to a tensed membrane that is then used to transfer the stressed membrane to the flexure setup.

Download Full Size | PPT Slide | PDF

Once tension is created in the membrane, a connecting acrylic ring is attached to preserve the tension using UV-cured glue (Norland Optical Adhesive 68). Once the glue is cured, the tension is retained in the membrane. This is then removed, reshaped, and fitted into the flexure setup discussed in the previous section as the top surface of the air-tight chamber.

3. RESULTS AND ANALYSES OF THE MECHANICAL PROPERTIES OF DIFFERENT ELASTOMERIC MEMBRANES

A. Membrane Creep Study

The periodic membrane deflection setup allows us to quantitatively measure the deflection of any membrane under controlled circumstances and study its mechanical properties. This section describes tests and results of different membranes. Figure 5(a) shows the basic measurement of the deflection of the membrane by the periodic membrane flexure setup described in Section 2.1. When the drain valve (Fig. 1) is closed, the fluid from the fluid column fills the chamber and causes the membrane to flex upward. After a specified time, the drain valve is opened, the tension in the membrane is released, and the fluid is pushed out from the chamber, causing the membrane to flex downward. The optical displacement sensor records these two positions (h1 and h2). A tiny metal patch is placed on top of the membrane, at the centermost point (here, the deflection is maximum) to facilitate the reflection of the laser spot for the optical sensor. The absolute position is measured from the plane of the sensor downward; hence, this corresponds to the plane of the sensor being at h=0, the upward flexed location at h=h1, and the downward flexed location at h=h2, where h2>h1. The drain valve, pump, optical sensor, etc. are controlled using the control circuit shown in Fig. 3(a) and connected to a computer control that also constantly records the displacement values from the optical sensor. Figure 5(b) shows a small data set of about 700 s extracted from a three to four day-long run. The periodicity of the flex/relax cycle can be clearly observed. The period is 30s. Here, h1=3.4mm and h2=4.6mm (approximate average); hence, the amplitude of deflection 1.2mm.

 figure: Fig. 5.

Fig. 5. (a) Schematic showing the flexing of the membrane in the periodic fluidic setup. (b) Small data set (700s of 3.45×105s) of real-time measurement of the membrane position versus time.

Download Full Size | PPT Slide | PDF

Following this method, we tested a number of membranes (with different tension values and at different temperatures. Then, we used the peak-to-trough deflection data at different temperatures over long time periods to estimate the accelerated failure characteristics using the Arrhenius relationships as outlined below:

The Arrhenius model is a widely accepted empirical accelerated life model based on the assumption that the degradation observed in the subject is due to physio-chemical causes. In the case of elastomeric membranes, creep is a purely physio-chemical phenomenon caused by the degradation of the chemical structure of the material due to repeated flex/relaxation cycles. The Arrhenius model [34] is widely regarded as one of the oldest and most reliable acceleration models that can predict the time-to-fail variation with temperature. Briefly, the mathematical form of this model is given by the equation (we state the mathematical expression of membrane creep deformation as follows)

S=1hdhdt,
where S is the normalized rate of drift (s1), h is the height of deflection (mm), and t is time (s).

However, this relationship does not allow us to measure the creep characteristics of the membranes being tested under accelerated conditions, which is required to avoid testing membranes for inordinate amounts of time (days/months), which would inevitably lead to stability issues in the experimental setup over time. Hence, we chose to use the Arrhenius model for accelerated life testing in order to calculate S without having to spend an inordinate amount of time observing decrease in h with respect to t in room conditions.

According to the Arrhenius model for accelerated life testing, we can again express S as follows:

S=A·exp(EakT),
where Ea’ is activation energy with unit of kJ/Mol, A is pre-exponential factor (s1), k is the Boltzmann constant (m2kgs2K1), and T is the absolute temperature, in K.

Using Eq. (2), for two different temperatures, T1 and T2, and two corresponding normalized rate of drift values, S1 and S2, which are the slopes of the two straight-line fits through actual observed peak-to-trough membrane deflection data, Ea can be calculated as follows:

S1S2=exp(Eak(1T11T2))
or
Ea=(k(1T11T2))ln(S1S2).
Next, using the value of Ea, as calculated from Eq. (3), we can calculate the value of the rate constant A as follows:
A=S1exp(EakT1)=S2exp(EakT2).
Using these values, we can calculate the normalized rate of drift for any membrane being tested at various temperatures.

First, we used this technique to analyze the membrane creep properties of a 600μm thick PDMS membrane with no added tension, as was used in our previous demonstrations of liquid-filled tunable-focus lenses. Figure 6(a) shows the normalized membrane peak-to-trough deflection v/s time (s) for the PDMS membrane for two different temperatures (55°C and 70°C). In order to calculate the normalized peak-to-trough deflection, the absolute measurement of the membrane position (mm) is first smoothed using a Savitzky–Golay filtering method in MATLAB, with filter order = 7 and frame length = 39. Then, the peaks and troughs are extracted using peak finding algorithms; finally, the difference of these is used to calculate the amplitude, which is smoothed through an eight-sample median filter to remove noise; lastly, this value was normalized. We used a linear fitting method to fit two straight lines through the two data sets corresponding to the two different temperatures, 55°C and 70°C. It is to be noted that these temperatures correspond to the temperature at which the heater-temperature sensor pair is run; hence, the fluidic chamber is heated. However, there are some ambient temperature fluctuations in the room that cannot be avoided, and these contribute to the noise in the data seen in Fig. 6(a). Hence, it is necessary to fit a straight line through the data set. The fitting parameters and the equation of the straight-line fits are shown in Fig. 6(a). We use the slopes of the fitted straight lines in Eq. (3) to calculate Ea and finally use the value of Ea in Eq. (4) to calculate the value of the rate constant A. The values for PDMS are as follows: Ea=2.3774×1020kJ/Mol and A=3.1206×105/s. Using these values, we can calculate the normalized rate of drift for PDMS at various temperatures. Figure 6(b) shows a plot of log10Sv/s temperature (°C). From this graph, we calculated that, at room temperature (27°C), S27=1.0035×107/s=3.6126×104/hr=3.16/yr.

 figure: Fig. 6.

Fig. 6. (a) Normalized membrane peak-to-trough deflection v/s time (s) and (b) log10(S)v/s temperature (°C) for nontensed PDMS membrane creep analysis study. The values at 55°C and 70°C were measured first while the membrane creep analysis was being conducted. The value at 30°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 30°C is 9.866%.

Download Full Size | PPT Slide | PDF

Using the same principle as described above, we also tested a 50 μm thick Cosmoshine membrane (Toyobo International Industrial films transparent film Cosmoshine A4100) under applied tension. However, in the case of the Cosmoshine membrane, we used the membrane tensor setup described in Section 2.2 to apply tension to the membrane. An average of 5.23 N force for an average net displacement of 1.454 mm (recorded using the force gauges and displacement gauges, respectively) was applied to the membrane. The results are as follows: Fig. 7(a) shows the normalized membrane peak-to-trough deflection versus time (s) for the Cosmoshine membrane for two different temperatures (30°C and 70°C). The data processing and fitting were performed using the same method as described in the previous section. The values for Cosmoshine are as follows: Ea=4.3234×1020kJ/Mol and A=0.0121/s. Figure 7(b) shows a plot of log10Sv/s temperature (°C) for this membrane. From this graph, we calculated that, at room temperature (27°C). S27=3.5534×107/s=0.0013/hr=11.2060/yr. Because a low rate of drift is desirable, this performance is much worse compared with that of PDMS membrane.

 figure: Fig. 7.

Fig. 7. (a) Normalized membrane peak-to-trough deflection v/s time (s) and (b) log10(S)v/s temperature (°C) for tensed Cosmoshine membrane creep analysis study. The values at 30°C and 70°C were measured first while the membrane creep analysis was being conducted. The value at 55°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 55°C is 0.27%.

Download Full Size | PPT Slide | PDF

Next, we tested a 50 μm thick SKC membrane (Skyrol Polyester Film SG00L) under applied tension. First, we applied an average of 5.06 N force (comparable with that applied to the Cosmoshine membrane) for an average net displacement of 1.624 mm (recorded using the force gauges and displacement gauges, respectively). However, we were able to see only a 0.070 mm peak-to-trough deflection for this membrane, after running the deflection test for two to three days. This is insignificant when compared with 1.2mm for PDMS and 0.5mm for Cosmoshine. This would also not give us the desired diopter range for the tunable-focus lenses. Next, we applied an average of 0.316 N force for an average net displacement of 1.002 mm (recorded using the force gauges and displacement gauges, respectively). However, again, we were able to see only a 0.070mm peak-to-trough deflection for this membrane, after running the deflection test for two to three days. Nevertheless, we recorded membrane peak-to-trough deflection data at two different temperatures (30°C and 50°C) and performed the similar analyses as described above. The results are as follows: Fig. 8(a) shows the normalized membrane peak-to-trough deflection v/s time (s) for the SKC membrane for two different temperatures (30°C and 70°C). The data processing and fitting were performed using the same method as described in the previous section. The values for SKC are as follows: Ea=1.8424×1019kJ/Mol and A=6.994×1013/s. Figure 8(b) shows a plot of log10Sv/s temperature (°C) for this membrane. From this graph, we calculated that, at room temperature (27°C), S27=3.36×106/s=0.0121/hr=106.07/yr. This performance was considerably unfavorable.

 figure: Fig. 8.

Fig. 8. (a) Normalized membrane peak-to-trough deflection v/s time (s) and (b) log10(S)v/s temperature (°C) for tensed SKC membrane creep analysis study. The values at 30°C and 50°C were measured first while the membrane creep analysis was being conducted. The value at 27°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 27°C is 21.44%.

Download Full Size | PPT Slide | PDF

Last, using the same principle as described above, we also tested a 400 μm thick PDMS membrane under tension (usually, the PDMS membrane used is 600μm thick but nontensed; because we applied tension, we reduced the thickness). An average of 3.1 N force for an average net displacement of 3.437 mm (recorded using force gauges and displacement gauges, respectively) was applied to the membrane. The results are as follows: Fig. 9(a) shows the normalized membrane peak-to-trough deflection v/s time (s) for the tensed PDMS membrane for two different temperatures (55°C and 70°C). The data processing and fitting were performed using the same method as described in the previous section. The values for tensed PDMS membrane are as follows: Ea=1.004×109kJ/Mol and A=3.927×103/s. Figure 9(b) shows a plot of log10Sv/s temperature (°C) for this membrane. From this graph, we calculated that, at room temperature (27°C), S27=1.166×107/s=4.1976×104/hr=3.3771/yr. This performance was considered close to the performance of the nontensed PDMS membrane.

 figure: Fig. 9.

Fig. 9. (a) Normalized membrane peak-to-trough deflection v/s time (s) and (b) log10(S)v/s temperature (°C) for tensed PDMS membrane creep analysis study. The values at 55°C and 70°C were measured first while the membrane creep analysis was being conducted. The value at 30°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 30°C is 6.68%.

Download Full Size | PPT Slide | PDF

It can be seen in Figs. 69 that the measured deflection values show significant fluctuations around the fitted linear trend. We attribute this fluctuation to the change in surrounding temperature in the laboratory. However, it can be seen that, for higher values of the temperature of the experimental setup, the variation is low, indicating that, when the temperature of the setup is significantly higher than ambient temperature, ambient temperature fluctuations have a lower effect on the variation in the data. At the moment, we are simply fitting the linear model through the average fluctuations and trying to observe the membrane creep, empirically.

Last, the optical power drift is directly related to the normalized rate of deflection drift [15] because the relation between the power of the lens and the height of the bulged membrane is

Popt=2h(n1)rt2.
Hence, due to creep, the induced change in the height of the bulged membrane directly relates to a change in the optical power as
ΔPopt=2Δh(n1)rt2.

B. Comparison of Tunable Lens Performance

Finally, we constructed two tunable-focus liquid-filled lenses using the methods discussed above and elsewhere [15,16] using PDMS and Cosmoshine as two representative membranes amongst the ones studied here. The characterization of the performance of the lenses was done following experimental setup and techniques discuss previously [14]. Figure 10 shows the comparison of the performance of the two membranes in their respective tunable lenses, by demonstrating the variation of the lens optical power as a function of the actuator voltage. The range of powers over which a PDMS lens was successfully tuned was 2.56D to +3.01D and that for a Cosmoshine lens was 1.88 D to 3.07 D for a voltage range of 250V to +250V. It can be clearly seen that, owing to its high value of Young’s modulus, rigidity, and creep characteristic, the lens made using Cosmoshine membrane performs much worse compared with the one made using PDMS membrane.

 figure: Fig. 10.

Fig. 10. Comparison of performance of two membranes PDMS and Cosmoshine in tunable-focus liquid-filled lenses. Tunable-focus liquid-filled lenses fabricated using (a) PDM membrane and (b) Cosmoshine membrane. (c) Lens optical power (at the lens center) as a function of voltage for the two lenses shown in (a) and (b).

Download Full Size | PPT Slide | PDF

We can see that, based on this careful study and analyses, it is difficult or near impossible to meet the creep rates for an elastic membrane liquid lens for the polymers tested.

4. CONCLUSIONS

In this work, we presented the analyses of the elastomeric creep property of different materials that are potential candidates for the membranes used in the tunable-focus liquid-filled lenses for our autofocus eyeglasses. We presented theoretical studies and experimental results to compare the performance of different elastomeric membranes.

Funding

National Science Foundation (P1819427).

REFERENCES

1. R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).

2. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

3. Varioptic, http://www.varioptic.com.

4. Optotune, http://www.optotune.com.

5. H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011). [CrossRef]  

6. L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015). [CrossRef]  

7. Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018). [CrossRef]  

8. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014). [CrossRef]  

9. C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017). [CrossRef]  

10. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004). [CrossRef]  

11. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007). [CrossRef]  

12. S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21, 8669–8676 (2013). [CrossRef]  

13. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006). [CrossRef]  

14. N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24, 13334–13342 (2016). [CrossRef]  

15. N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25, 1221–1233 (2017). [CrossRef]  

16. N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

17. J. Jarosz, N. Molliex, G. Chenon, and B. Berge, “Adaptive eyeglasses for presbyopia correction: an original variable-focus technology,” Opt. Express 27, 10533–10552 (2019). [CrossRef]  

18. C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018). [CrossRef]  

19. W. Tasman and E. A. Jaeger, Duane’s Ophthalmology (LLW, 2013).

20. M. P. Keating, Geometric, Physical and Visual Optics (Butterworth-Heinemann, 2002).

21. S. H. Schwartz, Geometrical and Visual Optics (McGraw-Hill, 2002).

22. D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth-Heinemann, 2001).

23. S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008). [CrossRef]  

24. C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35, 226–235 (1990). [CrossRef]  

25. L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007). [CrossRef]  

26. S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002). [CrossRef]  

27. T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006). [CrossRef]  

28. K. Watanabe, “Stress relaxation and creep of several vulcanized elastomers,” Rubber Chem. Technol. 35, 182–199 (1962). [CrossRef]  

29. K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015). [CrossRef]  

30. M. C. Throdahl, “Aging of elastomers—comparison of creep with some conventional aging methods,” Indust. Eng. Chem. 40, 2180–2184 (1948). [CrossRef]  

31. M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013). [CrossRef]  

32. A. Mikš and F. Šmejkal, “Dependence of the imaging properties of the liquid lens with variable focal length on membrane thickness,” Appl. Opt. 57, 6439–6445 (2018). [CrossRef]  

33. P. Pokorný, F. Šmejkal, P. Kulmon, P. Novák, J. Novák, A. Mikš, M. Horák, and M. Jirásek, “Calculation of nonlinearly deformed membrane shape of liquid lens caused by uniform pressure,” Appl. Opt. 56, 5939–5947 (2017). [CrossRef]  

34. L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006). [CrossRef]  

35. W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998). [CrossRef]  

36. P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).
  2. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).
  3. Varioptic, http://www.varioptic.com .
  4. Optotune, http://www.optotune.com .
  5. H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
    [Crossref]
  6. L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
    [Crossref]
  7. Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
    [Crossref]
  8. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
    [Crossref]
  9. C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017).
    [Crossref]
  10. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y.-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783–787 (2004).
    [Crossref]
  11. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
    [Crossref]
  12. S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21, 8669–8676 (2013).
    [Crossref]
  13. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
    [Crossref]
  14. N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24, 13334–13342 (2016).
    [Crossref]
  15. N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25, 1221–1233 (2017).
    [Crossref]
  16. N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.
  17. J. Jarosz, N. Molliex, G. Chenon, and B. Berge, “Adaptive eyeglasses for presbyopia correction: an original variable-focus technology,” Opt. Express 27, 10533–10552 (2019).
    [Crossref]
  18. C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
    [Crossref]
  19. W. Tasman and E. A. Jaeger, Duane’s Ophthalmology (LLW, 2013).
  20. M. P. Keating, Geometric, Physical and Visual Optics (Butterworth-Heinemann, 2002).
  21. S. H. Schwartz, Geometrical and Visual Optics (McGraw-Hill, 2002).
  22. D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth-Heinemann, 2001).
  23. S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
    [Crossref]
  24. C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35, 226–235 (1990).
    [Crossref]
  25. L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
    [Crossref]
  26. S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
    [Crossref]
  27. T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006).
    [Crossref]
  28. K. Watanabe, “Stress relaxation and creep of several vulcanized elastomers,” Rubber Chem. Technol. 35, 182–199 (1962).
    [Crossref]
  29. K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
    [Crossref]
  30. M. C. Throdahl, “Aging of elastomers—comparison of creep with some conventional aging methods,” Indust. Eng. Chem. 40, 2180–2184 (1948).
    [Crossref]
  31. M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
    [Crossref]
  32. A. Mikš and F. Šmejkal, “Dependence of the imaging properties of the liquid lens with variable focal length on membrane thickness,” Appl. Opt. 57, 6439–6445 (2018).
    [Crossref]
  33. P. Pokorný, F. Šmejkal, P. Kulmon, P. Novák, J. Novák, A. Mikš, M. Horák, and M. Jirásek, “Calculation of nonlinearly deformed membrane shape of liquid lens caused by uniform pressure,” Appl. Opt. 56, 5939–5947 (2017).
    [Crossref]
  34. L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006).
    [Crossref]
  35. W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
    [Crossref]
  36. P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
    [Crossref]

2019 (1)

2018 (3)

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

A. Mikš and F. Šmejkal, “Dependence of the imaging properties of the liquid lens with variable focal length on membrane thickness,” Appl. Opt. 57, 6439–6445 (2018).
[Crossref]

2017 (3)

2016 (1)

2015 (2)

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
[Crossref]

2014 (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

2013 (2)

S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21, 8669–8676 (2013).
[Crossref]

M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
[Crossref]

2011 (2)

P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
[Crossref]

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

2008 (1)

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

2007 (2)

H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[Crossref]

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

2006 (3)

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[Crossref]

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006).
[Crossref]

L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006).
[Crossref]

2004 (1)

2002 (1)

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
[Crossref]

1998 (1)

W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
[Crossref]

1990 (1)

C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35, 226–235 (1990).
[Crossref]

1962 (1)

K. Watanabe, “Stress relaxation and creep of several vulcanized elastomers,” Rubber Chem. Technol. 35, 182–199 (1962).
[Crossref]

1948 (1)

M. C. Throdahl, “Aging of elastomers—comparison of creep with some conventional aging methods,” Indust. Eng. Chem. 40, 2180–2184 (1948).
[Crossref]

Anderson, P. A.

Banerjee, A.

Berdichevsky, Y.

Berge, B.

Buckley, J. G.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

Busfield, J. J. C.

K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
[Crossref]

Callina, T.

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006).
[Crossref]

Carpi, F.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Chau, F. S.

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

Chen, Q.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Chenon, G.

Clarke, D. R.

Clement, C. E.

C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017).
[Crossref]

Dayhew, J.

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
[Crossref]

Diebold, R. M.

Elliott, D. B.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

Ende, D. V. D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Escobar, L. A.

L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006).
[Crossref]

W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
[Crossref]

Fox, D.

Ghilardi, M.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Ghosh, C.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

Ghosh, T.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Goss, D. A.

D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth-Heinemann, 2001).

Hasan, N.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25, 1221–1233 (2017).
[Crossref]

N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24, 13334–13342 (2016).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Horák, M.

Howland, A.

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
[Crossref]

Jaeger, E. A.

W. Tasman and E. A. Jaeger, Duane’s Ophthalmology (LLW, 2013).

Jarosz, J.

Jirásek, M.

Johnson, L.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

Justis, N.

Karkhanis, M.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Keating, M. P.

M. P. Keating, Geometric, Physical and Visual Optics (Butterworth-Heinemann, 2002).

Khan, F.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Kim, H.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25, 1221–1233 (2017).
[Crossref]

N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24, 13334–13342 (2016).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Kulmon, P.

Lee, P.-H.

P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
[Crossref]

Letocha, C. E.

C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35, 226–235 (1990).
[Crossref]

Li, T.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Li, Z.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Lien, V.

Lin, Y.-C.

P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
[Crossref]

Lipinska-Chwalek, M.

M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
[Crossref]

Lo, Y.-H.

Long, J.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Lord, S. R.

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
[Crossref]

Lu, C. J.

W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
[Crossref]

Maffli, L.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Malzbender, J.

M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Mariotti, S. P.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

Mastrangelo, C.

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

Mastrangelo, C. H.

N. Hasan, A. Banerjee, H. Kim, and C. H. Mastrangelo, “Tunable-focus lens for adaptive eyeglasses,” Opt. Express 25, 1221–1233 (2017).
[Crossref]

N. Hasan, H. Kim, and C. H. Mastrangelo, “Large aperture tunable-focus liquid lens using shape memory alloy spring,” Opt. Express 24, 13334–13342 (2016).
[Crossref]

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Meeker, W. Q.

L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006).
[Crossref]

W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
[Crossref]

Mikš, A.

Mishra, K.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Molliex, N.

Mugele, F.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Novák, J.

Novák, P.

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Park, S.-Y.

C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017).
[Crossref]

Pascolini, D.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

Pecanac, G.

M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
[Crossref]

Pokharel, G. P.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

Pokorný, P.

Ren, H.

Ren, H. W.

Resnikoff, S.

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

Reynolds, T. P.

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006).
[Crossref]

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Rosset, S.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Scally, A. J.

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

Schwartz, S. H.

S. H. Schwartz, Geometrical and Visual Optics (McGraw-Hill, 2002).

Shea, H.

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Shian, S.

Sinha, S. K.

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

Šmejkal, F.

Tasman, W.

W. Tasman and E. A. Jaeger, Duane’s Ophthalmology (LLW, 2013).

Thio, S. K.

C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017).
[Crossref]

Thomas, A. G.

K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
[Crossref]

Throdahl, M. C.

M. C. Throdahl, “Aging of elastomers—comparison of creep with some conventional aging methods,” Indust. Eng. Chem. 40, 2180–2184 (1948).
[Crossref]

Torng, C.-C.

P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
[Crossref]

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).

Watanabe, K.

K. Watanabe, “Stress relaxation and creep of several vulcanized elastomers,” Rubber Chem. Technol. 35, 182–199 (1962).
[Crossref]

West, R. W.

D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth-Heinemann, 2001).

Wu, B.

Wu, S. T.

H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[Crossref]

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Wu, S.-T.

Yamaguchi, K.

K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
[Crossref]

Yu, H.

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

Zhang, D. Y.

Zhang, X.

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Zhou, G.

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

Adv. Funct. Mater. (1)

L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, “Tunable optics: ultrafast all-polymer electrically tunable silicone lenses (adv. funct. mater. 11/2015),” Adv. Funct. Mater. 25, 1614 (2015).
[Crossref]

Appl. Math. Model. (1)

P.-H. Lee, C.-C. Torng, and Y.-C. Lin, “Determination of the optimal accelerated burn-in time under Arrhenius-Lognormal distribution assumption,” Appl. Math. Model. 35, 4023–4030 (2011).
[Crossref]

Appl. Opt. (3)

Bull. World Health Organ. (1)

S. Resnikoff, D. Pascolini, S. P. Mariotti, and G. P. Pokharel, “Global magnitude of visual impairment caused by uncorrected refractive errors in 2004,” Bull. World Health Organ. 86, 63–70 (2008).
[Crossref]

Indust. Eng. Chem. (1)

M. C. Throdahl, “Aging of elastomers—comparison of creep with some conventional aging methods,” Indust. Eng. Chem. 40, 2180–2184 (1948).
[Crossref]

Internat. J. Non-Linear Mech. (1)

K. Yamaguchi, A. G. Thomas, and J. J. C. Busfield, “Stress relaxation, creep and set recovery of elastomers,” Internat. J. Non-Linear Mech. 68, 66–70 (2015).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

L. Johnson, J. G. Buckley, A. J. Scally, and D. B. Elliott, “Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly,” Invest. Ophthalmol. Vis. Sci. 48, 1466–1471 (2007).
[Crossref]

J. Am. Geriatr. Soc. (1)

S. R. Lord, J. Dayhew, and A. Howland, “Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people,” J. Am. Geriatr. Soc. 50, 1760–1766 (2002).
[Crossref]

J. Eur. Ceram. Soc. (1)

M. Lipińska-Chwałek, G. Pećanac, and J. Malzbender, “Creep behaviour of membrane and substrate materials for oxygen separation units,” J. Eur. Ceram. Soc. 33, 1841–1848 (2013).
[Crossref]

Micromachines (1)

Q. Chen, T. Li, Z. Li, J. Long, and X. Zhang, “Optofluidic tunable lenses for in-plane light manipulation,” Micromachines 9, 97 (2018).
[Crossref]

Ophthalmol. Clin. North Am. (1)

T. Callina and T. P. Reynolds, “Traditional methods for the treatment of presbyopia: spectacles, contact lenses, bifocal contact lenses,” Ophthalmol. Clin. North Am. 19, 25–33 (2006).
[Crossref]

Opt. Express (6)

Proc. SPIE (1)

C. Mastrangelo, F. Khan, N. Hasan, C. Ghosh, T. Ghosh, H. Kim, and M. Karkhanis, “Lightweight smart autofocusing eyeglasses,” Proc. SPIE 10545, 1054507 (2018).
[Crossref]

Rubber Chem. Technol. (1)

K. Watanabe, “Stress relaxation and creep of several vulcanized elastomers,” Rubber Chem. Technol. 35, 182–199 (1962).
[Crossref]

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. V. D. Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4, 6378 (2014).
[Crossref]

Sens. Actuators A, Phys. (1)

H. Yu, G. Zhou, F. S. Chau, and S. K. Sinha, “Tunable electromagnetically actuated liquid-filled lens,” Sens. Actuators A, Phys. 167, 602–607 (2011).
[Crossref]

Sens. Actuators B Chem. (1)

C. E. Clement, S. K. Thio, and S.-Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sens. Actuators B Chem. 240, 909–915 (2017).
[Crossref]

Stat. Sci. (1)

L. A. Escobar and W. Q. Meeker, “A review of accelerated test models,” Stat. Sci. 21, 552–577 (2006).
[Crossref]

Surv. Ophthalmol. (1)

C. E. Letocha, “The invention and early manufacture of bifocals,” Surv. Ophthalmol. 35, 226–235 (1990).
[Crossref]

Technometrics (1)

W. Q. Meeker, L. A. Escobar, and C. J. Lu, “Accelerated degradation tests: modeling and analysis,” Technometrics 40, 89–99 (1998).
[Crossref]

Other (9)

R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley, 2012).

Varioptic, http://www.varioptic.com .

Optotune, http://www.optotune.com .

W. Tasman and E. A. Jaeger, Duane’s Ophthalmology (LLW, 2013).

M. P. Keating, Geometric, Physical and Visual Optics (Butterworth-Heinemann, 2002).

S. H. Schwartz, Geometrical and Visual Optics (McGraw-Hill, 2002).

D. A. Goss and R. W. West, Introduction to the Optics of the Eye (Butterworth-Heinemann, 2001).

N. Hasan, M. Karkhanis, F. Khan, T. Ghosh, H. Kim, and C. H. Mastrangelo, “Adaptive optics for autofocusing eyeglasses,” in Imaging and Applied Optics (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest (online) (Optical Society of America, 2017), paper AM3A.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of tunable-focus liquid-filled lenses excluding the actuators. The actuators connect to the transparent piston and are responsible for imparting the force F piston . The change in the radius of curvature of the lens front membrane is responsible for change in the optical power of the lens.
Fig. 2.
Fig. 2. Schematic of the experimental setup used to analyze mechanical properties of membranes for tunable-focus liquid-filled lenses subject to periodic deflections.
Fig. 3.
Fig. 3. Experimental setup used to analyze mechanical properties of membranes for tunable-focus liquid-filled lenses. (a) Setup showing different components: ODS, optical displacement (laser) sensor; FP, fill pump; DV, drain valve; CC, control circuits. (b) Close-up view of a flexed membrane with a tiny metal patch and laser spot from the optical displacement sensor. (c) Close-up view of the air-tight chamber, heater, and displacement sensor assembly.
Fig. 4.
Fig. 4. Experimental setup used to introduce tension in elastomeric membranes in a repeatable manner. (a) Schematic showing the two-ring assembly and force points. (b) Schematic showing the introduction of tension in a membrane using this tensor setup. (c) Constructed setup showing the three force gauges and the three displacement gauges with (d) its close-up view showing a Teflon ring glued to a tensed membrane that is then used to transfer the stressed membrane to the flexure setup.
Fig. 5.
Fig. 5. (a) Schematic showing the flexing of the membrane in the periodic fluidic setup. (b) Small data set ( 700 s of 3.45 × 10 5 s ) of real-time measurement of the membrane position versus time.
Fig. 6.
Fig. 6. (a) Normalized membrane peak-to-trough deflection v/s time ( s ) and (b)  log 10 ( S ) v / s temperature (°C) for nontensed PDMS membrane creep analysis study. The values at 55°C and 70°C were measured first while the membrane creep analysis was being conducted. The value at 30°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 30°C is 9.866%.
Fig. 7.
Fig. 7. (a) Normalized membrane peak-to-trough deflection v/s time ( s ) and (b)  log 10 ( S ) v / s temperature (°C) for tensed Cosmoshine membrane creep analysis study. The values at 30°C and 70°C were measured first while the membrane creep analysis was being conducted. The value at 55°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 55°C is 0.27%.
Fig. 8.
Fig. 8. (a) Normalized membrane peak-to-trough deflection v/s time ( s ) and (b)  log 10 ( S ) v / s temperature (°C) for tensed SKC membrane creep analysis study. The values at 30°C and 50°C were measured first while the membrane creep analysis was being conducted. The value at 27°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 27°C is 21.44%.
Fig. 9.
Fig. 9. (a) Normalized membrane peak-to-trough deflection v/s time ( s ) and (b)  log 10 ( S ) v / s temperature (°C) for tensed PDMS membrane creep analysis study. The values at 55°C and 70°C were measured first while the membrane creep analysis was being conducted. The value at 30°C was measured by performing an experiment after the analysis was complete. The difference between the predicted value and experimentally measured value at 30°C is 6.68%.
Fig. 10.
Fig. 10. Comparison of performance of two membranes PDMS and Cosmoshine in tunable-focus liquid-filled lenses. Tunable-focus liquid-filled lenses fabricated using (a) PDM membrane and (b) Cosmoshine membrane. (c) Lens optical power (at the lens center) as a function of voltage for the two lenses shown in (a) and (b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S = 1 h d h d t ,
S = A · exp ( E a k T ) ,
S 1 S 2 = exp ( E a k ( 1 T 1 1 T 2 ) )
E a = ( k ( 1 T 1 1 T 2 ) ) ln ( S 1 S 2 ) .
A = S 1 exp ( E a k T 1 ) = S 2 exp ( E a k T 2 ) .
P opt = 2 h ( n 1 ) r t 2 .
Δ P opt = 2 Δ h ( n 1 ) r t 2 .

Metrics