Abstract

Retrievals of inherent optical properties (IOPs) and chlorophyll-a concentration (Chla) were investigated for AVNIR-2 images with 30 m spatial resolution and four bands in the southwest tropical lagoon of New Caledonia. We corrected the atmospheric and sea-surface reflectance iteratively through the retrieval of IOPs. After an additional correction of seafloor reflectance, the estimated IOPs and Chla agreed well with the in situ measurements even in the lagoon areas. This study provides a method to allow a local optimal estimation of IOPs and Chla with a high-resolution sensor by preparing the candidate spectra for the target areas.

© 2013 Optical Society of America

1. Introduction

A. Ocean-Color Retrievals in the Coastal Areas

Ocean-color retrieval is a challenge in coastal areas, but it is a powerful tool for coastal surveys. Sea-surface reflection, including sunglint and whitecap, cause significant errors in ocean-color estimation [13]. Sea-surface reflection can be estimated from a statistic scheme, such as that presented by Cox and Munk [4], using low-resolution wind-speed data from a microwave radiometer, a scatterometer, or objective analysis data [5,6]. The correction based on the wind-speed data is problematic in coastal areas, however, because of fine variations in the distribution of surface reflection due to variable winds, fetch length, and air-sea stability caused by the fine structure of the coastal geography. Several studies have investigated high–spatial resolution sunglint correction using hyperspectral bands or small-scale glint variations [7,8]. Murakami and Frouin [9] demonstrated the possibility of sunglint (ρg) correction by using 500 m resolution near infrared (NIR) and shortwave infrared (SWIR) bands of moderate resolution imaging spectroradiometer (MODIS). Higher (10–30 m) spatial resolution sensors are expected to capture higher resolution spatial structures of ocean-color phenomena, especially in the coastal areas. They, however, have a limited number of spectral bands generally (e.g., without SWIR bands), which prevents the precise estimation of aerosol properties and the distinction between aerosol and sea-surface reflection.

In addition to these sensor limitations, coastal areas present difficulties for ocean-color retrievals (i.e., high NIR reflectance by suspended matter), complex inherent optical properties (IOPs) due to various material inputs from the land, and bottom reflectance in the shallow areas. This explains why the blue–green ratio of remote sensing reflectance (Rrs), which traditionally is used in the empirical estimation of chlorophyll-a concentration (Chla), does not allow to calculate Chla in most cases of the coastal area (see Table 1 for symbol definitions and units).

Tables Icon

Table 1. Symbols and Definitions

B. New Caledonia Lagoon

The New Caledonia lagoon is a large, almost continuous lagoon (22177km2) lying in the southwestern tropical Pacific from 20°S to 22°S and 166°E to 167°E (Fig. 1). Its heterogeneous bathymetry (25 m as a mean depth) is due to a complex geomorphology with the presence of sedimentary plains and a high proportion of shallow waters and numerous small sand islands [1012]. It is largely connected to the open ocean along its southern side, but only by narrow passes in its southwestern side. It is an example of a coral reef lagoon system, which are sensitive to anthropogenic (nutrients, mining) perturbations [10,11] as well as to interannual changes linked to the balance between dry El Niño and wet La Niña episodes [13,14], which are amplified in lagoons [12]. The central lagoon is characterized by oligotrophic to mesotrophic waters (yearly average Chla of 0.25±0.01mgm3) [15,16] and exhibits a strong seasonal cycle with higher values in austral winter (July) or austral summer (February) during nitrogen-fixing Trichodesmium blooms [1720]. Upwelling at the barrier reefs [21] as well as internal waves in the southern part of the lagoon are two major mechanisms of exchange with the sea, which can modify the phytoplanktonic assemblage [22].

 

Fig. 1. New Caledonia lagoon and in situ observation stations used in this study (B50, B03, B08, GD10, Ile aux Canards, M33, G003, and OC1). The background image is the RGB image of Rrs at 652, 560, and 463 nm derived from this study.

Download Full Size | PPT Slide | PDF

Rain also can induce large chlorophyll enrichments in the lagoon [23]. With relatively low river inputs and a low turbidity range (0.2016gm3), its trophic state is linked to spatial variations in flushing times [12,16,24]. Similar to “optically complex” Case 2 European waters [25] or coastal bays [26], reflectance in the New Caledonia lagoon can be highly variable [27] as in other tropical environments [28], in the Australian Great Barrier Reef [29], and in tropical estuaries [30] with a high influence of mineral particles from river discharge in bays [31] or colored dissolved organic matter (CDOM) [32]. Additionally, bottom reflectance, which represents a strong component in clear tropical shallow waters, may influence Rrs [3336].

To improve the challenge of remote sensing in coastal environments [37], surface-water IOPs (absorption and backscattering) were measured during several observation campaigns (e.g., coastal stations of Diapalis in 2003, Bissecote, Echolag, Valhybio, and the Valhybio Monthly Survey cruises from 2008 to 2011) in the lagoon and at different seasons [27,38,39]. The bathymetry of the Southern New Caledonia lagoon was compiled [12].

C. ALOS AVNIR-2

Advanced Land Observation Satellite (ALOS) was operated by JAXA from 24 January 2006 to 12 May 2011, and carried the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2). AVNIR-2 has four spectral bands (centered at 463, 560, 652, and 821 nm) with a 10 m spatial resolution, a 70 km field of view, and a mechanical pointing function (by moving mirror) along the cross-track direction (±44deg) for effective global land observation. To achieve the ALOS mission objectives (cartography, regional observation, disaster monitoring, resources survey, and technology development) and to expand to quantitative applications, such as determination of vegetation density, coastal water color, and time dependencies, it is important to evaluate, improve, and maintain the radiometric calibration accuracy of AVNIR-2 (the predefined target is absolute error less than 10% [40]). The cross calibration with MODIS indicated that the difference in top of atmosphere (TOA) radiance is less than 3% in the visible bands, and the temporal stability of the radiance is less than 2% per 1000 days [41].

D. Scope of Study

Atmospheric and sea-surface correction and IOP estimation were conducted using the four bands of 30 m images averaged from AVNIR-2 10 m resolution images (see Section 2.A). The linear matrix inversion (LMI) of IOPs [4244] and atmospheric plus surface reflection correction was simplified to allow the four-band and high–spatial resolution AVNIR-2 retrievals. Influence of the bottom reflectance was reduced by using bathymetry data with a unique spectrum of bottom reflectance. We compared the IOP estimates by different candidate IOP spectra (observed particles plus CDOM absorption [apg] and particle backscattering [bbp] spectra) in the LMI scheme. Chla was estimated by two ways, from a statistical relationship with apg, or from the blue–green ratio of Rrs. For the series of AVNIR2 images available over the New Caledonia lagoon, we validated the derived IOPs (apg and bbp) and Chla using in situ measurements around the AVNIR-2 observation dates.

2. Data and Methods

A. AVNIR-2 Images and Radiance Correction

AVNIR-2 data have 10 m spatial resolution but only 8 bit digital resolution with relatively low gain designed for the land-surface observations. We averaged AVNIR-2 TOA radiance images to a 30 m (0.0003 deg equal latitude–longitude) grid to reduce the sensor noise before the atmospheric correction because the ocean-color signal is much lower than the atmospheric signal in the visible wavelengths.

The AVNIR-2 in-orbit radiometric performance was evaluated through a comparison with Aqua MODIS by the cross-calibration scheme [41]. This scheme uses the TOA reflectance functions of the satellite zenith angle estimated by Aqua MODIS observations within ±16 days from the AVNIR-2 observation over temporally and spatially stable ground areas. The cross calibration with the Aqua MODIS over the Antarctic snow fields allow us to correct AVNIR-2 bands 1–4 by the correction coefficients shown in Table 2. We calculated the TOA reflectance of standard gas absorption conditions (column ozone=343.8DU, water vapor=14.19mm, and pressure=1013.25hPa) from the AVNIR-2 radiance observation as shown in Appendix A.

Tables Icon

Table 2. AVNIR-2 Bands, Cross-Cal Coefficients, and Gas Abruption Coefficients

Seventeen clear AVNIR-2 scenes were captured around the target area in the ALOS mission period. The dates were 10 and 27 September in 2006; 12 February, 3 March, 15 May, and 31 July in 2007; 31 October and 17 November in 2008; 3 September and 20 November in 2009; 5 January, 3 February, 21 March, 8 August, and 22 December in 2010; and 24 March and 10 April in 2011. Some scenes (27 September 2006, 12 February 2007, 31 October and 17 November 2008, 20 November 2009, and 5 January 2010) were covered by the sunglint. Match-ups with in situ measurements were obtained (total 15 points) on 3 September 2009 (time difference from the AVNIR-2 observation ΔD=5 days), 17–18 November 2009 (ΔD=2 days), and 11 January 2010 (ΔD=6 days).

B. Simplification of the Atmospheric and Surface Corrections

At each solar and sensor geometry condition, the TOA reflectance ρt, for which gaseous absorption is normalized by standard atmosphere condition, can be described as follows:

ρt(λb)=ρr(λb)+ρa(λb,τa,M)+t(λb,τa,M)×ρg(λb)+T(λb,τa,M)×ρwc(λb)+T(λb,τa,M)×ρw(λb),
where ρr is the atmospheric molecule reflectance, ρa is the aerosol reflectance, including aerosol-molecule interaction, ρw is the water-leaving reflectance, ρg is the sunglint reflectance, ρwc is the whitecap reflectance, t is the atmospheric direct transmittance (sun-surface+surface-satellite), and T is the direct+diffuse transmittance (sun-surface+surface-satellite), λb is the center wavelength of sensor spectral band, τa is the aerosol optical thickness, and M is the aerosol model. ρg can be estimated by a statistical equation [4] using wind speed and the refractive index of water at each wavelength. There is no simultaneous 30 m resolution wind-speed data, however, and the statistical relation is not always consistent with the real complicated sea surface.

The Rayleigh scattering of ρr and T (at τa=0) can be estimated by atmospheric radiative transfer simulation. To achieve this, we used Pstar2b [45], which takes into account atmospheric polarization, provided by the National Institute for Environmental Studies (NIES) GOSAT project and the OpenCLASTR project [4648]. We prepared look-up tables of ρr(λb) (including sea-surface reflection with wind speed=0) and T at each geometric condition.

The Rayleigh-scattering subtracted reflectance (ρagw) can be described by the following Eq. (2):

ρagw(λb)(ρt(λb)ρr(λb))/T(λb,τa=0)=[ρa(λb,τa,M)/T(λb,τa=0)+t(λb,τa,M)/T(λb,τa=0)×ρg(λb)+T(λb,τa,M)/T(λb,τa=0)×ρwc(λb)]+T(λb,τa,M)/T(λb,τa=0)×ρw(λb).
The T(λb=1,2,3and4,τa=0) are about 0.83, 0.91, 0.95, and 0.98, respectively, at θsun=θsat=0. T(λb,τa,M)/T(λb,τa=0) can be approximated as 1.0 because it is >0.9 when τa<0.5. We simplified aerosol and surface reflection (ρagρa+ρg) as the following form [Eq. (3)] because ρag is to be spectrally smooth and, in most cases, can be approximated by a power function α of the wavelength ratio [49]:
ρag(λb)ρag(821nm)×(λb×cwl/821nm)α.

The spectral shape of ρag was improved by a correction factor, cwl (=0.99 at band 3 [652 nm] and 1.0 at other bands), which was derived from the atmospheric radiative transfer simulation (the root mean square error of ρag is 0.004 at 463 nm for the tropospheric, oceanic, and their mixed aerosols in the case of aerosol optical thickness=0.3 and air mass pl<4). The α ranged from 0.5 to +0.3 for the oceanic aerosols and from 1.8 to 1.2 for the tropospheric aerosols.

The variables about the aerosol and surface reflection, α and ρag(821 nm), could be estimated using the AVNIR-2 data through an iteration with the IOP retrieval described in Section 2.C. The approximation of Eq. (3) enabled quick processing, including the iteration scheme.

C. IOP and Water-Leaving Reflectance Estimation

Most of the IOP algorithms [50] are based on the equation of remote-sensing reflectance below the surface (rrs), the total absorption coefficient (a), and the backscattering coefficient (bb) proposed by Gordon et al. [51]:

rrs(λ)=g1×u(λ)+g2×u(λ)2,
a(λ)=aw(λ)+aph(λ)+ad(λ)+ag(λ),
bb(λ)=bbw(λ)+bbp(λ)
with
u(λ)=bb(λ)/(bb(λ)+a(λ)),
where g1=0.0949 and g2=0.0794 [51]. aw, aph, ad, and ag are the absorption spectra of water, phytoplankton, detritus, and CDOM, respectively. bbw and bbp are backscattering coefficients of water and particles. Remote-sensing reflectance above the surface, Rrs is estimated from rrs using the relation from [51,52] as follows:
Rrs(λ)=0.52×rrs(λ)/(11.7×rrs(λ)).

The water-leaving reflectance ρw in Eq. (1) is simply calculated from the Rrs:

ρw(λ)=π×Rrs(λ).

We used the LMI scheme [4244] to estimate IOPs. The scheme requires aw, bbw, and model spectra, aph, adg (absorption of detritus+CDOM), and bbp, which is normalized at a specific wavelength (442 nm was used in this study). We used aw and bbw values from [53,54] weighted by the AVNIR-2 spectral response (shown in Table 3). Wavelength functions of adg and bbp were as follows:

adg(λb)=adg0×adg(λ),
bbp(λb)=bbp0×bbp(λb)
where
adg(λ)=exp(S×(λ442)),
bbp(λ)=(λ/442)Y,
where adg0 is adg at 442 nm, bbp0 is bbp at 442 nm, S=0.010 or 0.018, and Y=1.4, 0, or +2. S=0.010 and Y=1.4 were derived from the New Caledonia in situ measurements of adg and bbp, respectively.

Tables Icon

Table 3. Spectra of aw, bbw, and apha

The inversion process was simplified to use only two IOP parameters, apg(ap+agaph+adg) and bbp, and two AVNIR-2 bands, band 1 (463 nm) and band 2 (560 nm). We set the apg as follows:

apg(λb)=apg0×apg(λb)=apg0×{(1rpg)×aph(λb)+rpg×adg(λb)},
where apg0 is apg at 442 nm. The ratio of aph and adg at 442 nm, rpg, was set to 0.52/(1+0.52), considering the normal conditions observed in the New Caledonia in situ data [32]. We can estimate two parameters of IOPs, apg0 and bbp0, by the iteration processes of the IOP forward calculation and LMI [4244].

If we have an initial value of apg0 and bbp0, ρw can be calculated by Eqs. (4)–(14). Using the ρw, ρag at 652 and 821 nm can be calculated using molecular scattering corrected reflectance derived from satellite observation (ρagw) as follows:

ρag(λ)=ρagw(λ)ρw(λ),
where λ=652 and 821 nm. Considering an approximation of Eq. (3), α can be calculated by Eq. (16):
α=log(ρag(652nm)/ρag(821nm))/log(652×cwl/821).

Then, ρw at 463 and 560 nm are calculated by Eqs. (3) and (15). Using the ρw at the two visible bands, apg0 and bbp0 can be calculated by the LMI [4244].

The iteration process to derive the final value of apg0 and bbp0 is shown in Fig. 2. The first process (a) aims to estimate α except for shallow areas (bathymetry<20m) where the bottom reflectance can influence rrs. The iteration was repeated to find optimal values of apg0 and bbp0 by minimizing the difference between bbp0 preset in Eq. (11) and bbp0 calculated by the inversion matrix. The initial value of apg0 was set to 0.01, which does not affect the final apg0 estimates because apg is relatively small in the total a in red and NIR wavelengths. The subprocess is repeated until |apg0apg0|<0.0001 (practically less than four times in most pixels) with revision of apg0 and the search range of bbp0(bbp0(max)), which is set by ρag at 821 nm and the extremely high apg0=20m1. After completing the first process, we smoothed α for each 0.1deg×0.1deg area to reduce the AVNIR-2 sensor noise and extrapolate to the shallow (<20m) areas where we did not estimate α in the first process. The second process (b) derives ρag apg, bbp, and Rrs for every 30 m grid using the same equations. We can derive IOPs and Rrs at any wavelengths (AVNIR-2 bands at 463 and 560 nm and the wavelengths of the in situ measurements at 442 and 555 nm) using the IOP spectra apg(λ) and bbp(λ) (see Section 2.D).

 

Fig. 2. Processing flow of the IOP and aerosol correction. The operation starts from the asterisk. (a) First flow produces the α, which is used in (b) the second flow. After apg0 is converted (|apg0apg0|<0.0001, (c) the sea-floor correction is applied.

Download Full Size | PPT Slide | PDF

D. Chlorophyll-a Estimation

Chla was estimated by regression of apg (442 nm) and the empirical blue–green ratio was calculated as follows:

log10(Chla)=0.9706+1.1835×log10(apg(442nm)),
log10(Chla)=0.14641.7953r+0.9718r20.8319r30.8073r4,
where
r=log10(Rrs(463nm)/Rrs(560nm)).

The relationship between Chla and apg(443nm) was derived from apg and the fluorometric Chla data included in the NASA bio-Optical Marine Algorithm Data set (NOMAD) [55] (Fig. 3). The MODIS OC2M-HI equation developed by the NASA Ocean Biology Processing Group (OBPG) using the NOMAD database [6] was used for the two-channel equation because AVNIR-2 has only two channels in blue and green wavelengths.

 

Fig. 3. Relation between Chla and apg or blue–green Rrs ratio (log10 base) based on NOMAD [55]. N, RMSD, and r indicate sample number, root mean square error of the regression (log10 scale), and the correlation. a0 and a1 are coefficients of the linear regression, that is, log10(Chla)=0.9706+1.1835log10(apg).

Download Full Size | PPT Slide | PDF

E. In Situ Bio-Optical Measurements

Field measurements of the two IOPs, the absorption coefficient, a, and the backscattering coefficient, bb, were obtained at stations in the southwest part of the lagoon (Fig. 1) during various seasons from 2006 to 2010. The bb was measured with a Hydroscat-6 profiler (H6: HobiLabs, wavebands (λ) centered at 442, 488, 510, 550, 620, and 670 nm with a bandwidth of 10 nm for the 442–550 nm bands and 20 nm for the 620 and 670 nm bands) [19,27]. The particulate backscattering coefficient, bbp(λ), was calculated by subtracting from bb(λ) the theoretical “pure water spectrum,” bbw(λ) (calculated as bbw(λ)=0.5×bw(λ)) [51]. The particulate absorption coefficient, ap(λ), was measured with the filter-pad technique [56], using water samples filtered onto 25mmGF/F Whatman filters. For pigments, the filters were dipped in 5.4 ml 100% acetone (final concentration 90% acetone taking into account water retention by the filter, e.g., 0.621±0.034ml) and ground with the freshly broken end of a glass rod for chlorophyll and phaeopigment extraction [57]. For comparison with the satellite-estimated Chla, we used the sum of Chla and divinyl chlorophyll-a, Chla (in mg m3), as measured by spectrofluorometry, and well correlated with fluorometry in the Caledonian lagoon [15,27].

For the LMI, we prepared the model spectra of apg and bbp optimized for the New Caledonia in situ samples (six samples of aph and adg in 2003, and 112 samples of bbp in 2006–2010). The samples of aph and adg were distributed around the lagoon of the southeast New Caledonia but not near bays of the mainland. The spectral shape adg and bbp (relative values from λ=442nm) were modeled by Eqs. (12) and (13), respectively. The model spectra from the averages of the New Caledonia measurements were used as the standard in sensitivity tests.

We tested the sensitivity of different sets of model spectra: (A) apg and bbp from the New Caledonia measurements (e.g., same as the above); (B) same as (A) but aph from a picoplankton spectra [58]; (c) same as (A) except for aph from a microplankton spectra [58]; (D) same as (A) except for adg with S=0.018; (E) same as (A) except for bbp with Y=0.0; and (F) same as (A) except for bbp with Y=2.0 (Fig. 4). These aph spectra are listed in Table 3.

 

Fig. 4. Model spectra of apg and bbp used in this study. Models of apg (A) and bbp (Y=1.4) were set from the New Caledonia measurements. S was defined as adg=exp(S×(λ442)) as in Eq. (12), and Y was defined as bbp=(λ/442)Y in Eq. (13). The spectra for picoplankton (B) and microplankton (C) from [58] were used for comparison. Curves are indicated for different Y slopes for bbp (Y=0 and Y=2, see also Table 4). Bars show standard deviation of the in situ measurements.

Download Full Size | PPT Slide | PDF

F. Correction of Seafloor Reflection

The Rrs and IOP estimation might be influenced by bottom reflectance especially in low absorption and shallow areas, such as site G003 near the barrier reef (11 m depth, bottom composed of white sands). In shallow areas, rrs was approximated by the following equation (from Lee et al. [59]):

rrsrrsdp×[1exp{κH×(1/cosθ0w+DuC/cosθw)}]+ρb/π×exp{κH×(1/cosθ0w+DuB/cosθw)},
where ρb is the bottom albedo, H is the bottom depth, θ0w is the subsurface solar zenith angle, θw is the subsurface viewing angle from nadir (θw=sin1(1/1.34×sinθa), θa is the above-surface angle), rrsdp is the remote-sensing reflectance for optically deep water, and κ is the attenuation coefficient (κ(λ)=a(λ)+bb(λ)). DuC and DuB are optical path-elongation factors for scattered photons from the water column and bottom, respectively, which are described by functions of u(λ) following [59].

Because ρb is unknown at each image grid in this study, we used a ρb spectrum of coral sand shown by Fig. 6 of [60] (ρb=0.33 and 0.47 at 442 and 555 nm, respectively). The similar ρb spectra of the sandy sea bottom were reported around the coral reef system by [61,62]. We use H compiled in Ouillon et al. [12] (Fig. 5). Attenuation coefficient, κ(λ), is iteratively calculated through the IOP estimation described in Section 2.C by changing H from enough deep depth (1000 m) to the actual sea-floor depth gradually. Such an approach has been used to retrieve bathymetry [36].

 

Fig. 5. Bathymetry in the target area [12]. Deep areas (>60m) are filled by black.

Download Full Size | PPT Slide | PDF

G. MODIS Ocean-Color Products

NASA OBPG Aqua MODIS products, Rrs at 443 nm, Rrs at 555 nm, and Chla (processing version 2009.1) [6], were used to compare our results. The global accuracies of the MODIS data set, reported as the median absolute percent differences of normalized water-leaving radiance (Lwn) at 443 nm, Lwn at 555 nm, and Chla from global in situ observations, are 18%, 17%, and 37%, respectively [6,63]. We selected clear MODIS scenes ±1 day from AVNIR-2 observations or between the AVNIR-2 and in situ observation dates.

3. Results

A. Rrs and ρag

Figure 6 shows results of the ρagw (463 nm), ρag (463 nm), α, ρw (463 nm) without bottom correction, and ρw (463 nm) with bottom correction on 17 November 2008 and 3 September 2009. On 17 November 2008, the area was covered by sunglint [brighter on the right side in Figs. 6(a) and 6(b)]. In Fig. 6(b), ρag showed small-scale structures of the surface reflection caused by the winds and geographical features. In Figs. 6(c) and 6(h), α was smoothed in each 0.1deg×0.1deg grid after the first process [Fig. 2(a)]. The estimated ρw [Fig. 6(d)] was smooth offshore and showed fine structures inside the lagoon. On 3 September 2009, aerosol with small clouds extended northwest to southeast over the area [Fig. 6(g)]. The aerosol pattern was removed effectively in the ρw image [Fig. 6(i)] by subtracting ρag [Fig. 6(g)] from ρagw [Fig. 6(f)]. High reflectance areas remained inside the lagoon with a dark area along the outside of the barrier reef.

 

Fig. 6. Examples of AVNIR-2-derived ρagw, ρag, α, ρw without bottom correction, and ρw at 463 nm with bottom correction (a)–(e) for 17 November 2008 and (f)–(j) for 3 September 2009 [using model (A) in Table 4]. The field measurement sites are shown in each panel.

Download Full Size | PPT Slide | PDF

The comparison between AVNIR Rrs and MODIS Rrs at 442 (or 443 nm) and 555 nm is shown in Fig. 7. AVNIR-2 Rrs at 555 nm appears slightly higher, but the results are closely correlated (0.77 and 0.54 at 442 and 555 nm, respectively, and the root mean square difference [RMSD] was about 40% and 63% of the average Rrs for AVNIR-2 and MODIS, respectively) except for some samples at the shallow stations (e.g., B50 and B03). An outlier at station G003 in Fig. 7(a) (AVNIR-2 Rrs at 442 nm is about 0.03) seemed to be influenced by the cloud edge in the AVNIR-2 image on 31 July 2007.

 

Fig. 7. Comparison between AVNIR-2 Rrs at 442 nm and MODIS Rrs at (a) 443 nm and (b) 555 nm for 44 samples. The markers distinguish between the different observation stations. The horizontal bars show the standard deviation of the multiple MODIS scenes.

Download Full Size | PPT Slide | PDF

Figures 6(e) and 6(j) show the AVNIR-2 ρw at 463 nm with the correction of bottom reflectance. The correction decreases ρw inside of the lagoon (e.g., at stations M33 and G003) and reduces the pattern of the bathymetry (Fig. 5) in most areas in the ρw images. It seems, however, to cause overcorrection in some areas (e.g., around the islands and the barrier reef).

B. apg and bbp

Figures 8(a) and 8(b) shows apg at 442 nm and bbp at 555 nm without the bottom correction (using model spectra (A) in Table 4). apg was high along the coast and in bays near the main land. On the other hand, bbp was high inside the lagoon especially at shallow bottom areas (e.g., G003). Scatter plots between the in situ (ap×1.52) and the AVNIR-2 apg and bbp estimates are shown in Figs. 9(a) and 9(b). They show that AVNIR-2 apg is well correlated with in situ values for apg [r=0.91 in Fig. 9(a)] even though the factor 1.52 may vary with changing proportions of ap or ag in apg=ap+ag. AVNIR-2 bbp showed a high correlation coefficient (about 0.94 at 555 nm), but some values of bbp were higher than the in situ bbp. The overestimated samples were found in shallow areas (3.6, 6, 5, and 11 m at stations B50, B03, Ile aux Canards, and G003, respectively).

 

Fig. 8. AVNIR-2 estimation of (a) apg at 442 nm and (b) bbp at 555 nm on 3 September 2009 [using model spectra (A) in Table 4 and no correction of the bottom reflection]. (c) and (d) are same as (a) and (b) except applying the correction of the bottom reflection. Markers show in situ observation stations.

Download Full Size | PPT Slide | PDF

 

Fig. 9. Scatter diagrams of (a) AVNIR-2 apg and in situ ap (×1.52) at 442 nm, (b) bbp at 555 nm from model (A) in Table 4. (c) and (d) are same as (a) and (b) except applying the correction of the bottom reflection. N, sample number; r, correlation coefficient; bias, bias of AVNIR-2 from in situ; RMSD, root mean square difference; xavg, the average of in situ data (in m1). (e)–(h) are same as (a)–(d) except they are derived from model (D).

Download Full Size | PPT Slide | PDF

Tables Icon

Table 4. Comparison between in situ and AVNIR-2 IOP Estimates Using Different Sets of IOP Spectraa

Figures 8(c) and 8(d) show apg and bbp with the bottom reflectance correction on 3 September 2009. The correction decreased apg and bbp in the lagoon areas. The comparison to the in situ observations [Figs. 9(c) and 9(d)] showed that the correction improved the agreement especially at stations M33, Ile aux Canards, and G003, where the bottom depth is shallow and apg is relatively low. The AVNIR-2 apg was still higher than the in situ apg at stations B50 and B03 around the Boulari Bay. Bias of apg(bbp) were improved from 0.188 to 0.118 (from 0.023 to 0.015), and RMSD of apg(bbp) from 0.489 to 0.290 (from 0.042 to 0.025) by the bottom correction.

Table 4 shows the results for the 15 match-ups by using different spectra of apg and bbp. Superscripts and + show results with smaller or larger bias or RMSD (statistically significance level of 95%) than ones by the model spectrum (A). The results depended on the model spectra significantly, and the model (D) brought the smallest RMSD of both apg and bbp with the bottom reflectance correction. The microplankton for aph [58] gives larger RMSD than those measured around New Caledonia. Similarly, a slope of Y=2 is too different from those measured and would not allow a proper retrieval of IOPs from AVNIR-2. Figures 9(e)9(h) show the scatter plots by the model spectrum (D). RMSDs of apg and bbp are significantly decreased (especially stations B50 and B03) by the optimal model spectrum.

C. Chlorophyll-a Concentration

Figures 10 and 11 show the comparison among Chla estimated from apg [by the optimal model (D)], Chla calculated by OC2M-HI (using Rrs by AVNIR-2), and the MODIS standard (OC3M) 1 km Chla. Chla estimated from apg [Figs. 10(a) and 11(a)] was slightly smaller than Chla determined by other algorithms in the lagoon areas (e.g., sites B08 and Ile aux Canards in Figs. 10 and 11). The AVNIR-2 OC2M-HI Chla was larger than indicated by the in situ data and similar to the MODIS standard value in the lagoon [see around sites M33 and G003 in Figs. 10(b) and 10(e) and Figs. 11(b) and 11(e)]. The scatter plots show that Chla from apg provides the best agreement among the three methods in the lagoon [RMSD=0.47, 0.61, and 0.60 in Figs. 10(a), 10(b), and 10(e)]. The MODIS data at stations M33 and GD10 were scattered because they were too near the coast or the lagoon islands compared with the 1 km resolution products.

 

Fig. 10. Scatter diagrams of in situ Chla and (a) Chla from AVNIR-2 apg, (b) Chla from AVNIR-2 OC2M-HI, (c) and (d) are same as (a) and (b) except applying the bottom correction, (e) Chla from the MODIS standard OC3M (1 km), and (f) the scatter plot between AVNIR-2 apg Chla and the MODIS OC3M Chla. Bars show the standard deviation of the multiple MODIS scenes around the AVNIR-2 observation dates or the standard deviation of 3×3 pixels of AVNIR-2 data. N, show sample number; r, correlation coefficient; bias, bias; RMSD, root mean square difference; xvag, average of x axis variables in log10 scale.

Download Full Size | PPT Slide | PDF

 

Fig. 11. (a), (b), and (e) are Chla from apg, Chla from OC2M-HI (3 September 2009) and the MODIS standard Chla(average from 3–9 September 2009). (c) and (d) are the same as (a) and (b) except applying the bottom correction. Markers show the in situ observation stations on 9 September 2009.

Download Full Size | PPT Slide | PDF

Figures 11(c) and 11(d) show results with the bottom correction. OC2M-HI Chla [Fig. 11(d)] was calculated by Rrs from rrsdp [Eq. (8)]. Usual high biases of apg and bbp in the shallow areas (B50, B03, and Ile aux Canards) around lagoon islands were decreased by the correction [Figs. 8(c) and 8(d)]. It reduced the overestimation of Chla by both apg and OC2 schemes, and it improved the agreement with the in situ match-ups inside the lagoon [Figs. 10(c) and 10(d)].

4. Discussion

A. apg and bbp Estimates and Spectral Models

Agreement with in situ data was dependent on spectra of apg and bbp (Table 4). For example, the aph spectrum of microplankton [58] (model C) and bbp spectrum of Y=2.0 (F) caused worse results than the spectrum modeled from New Caledonia in situ measurements (A) (Table 4). The agreement may be improved further if we optimize the spectra to more specific water types (e.g., bays near the main land, middle-lagoon waters, and waters outside of the barrier reef, such as open ocean). For example, modification of the spectral slope of adg improved the IOP estimate especially around the Boulari Bay [model (D) in Fig. (9)].

The correlation coefficients of apg at 442 nm and bbp at 555 nm by the model (D) were r=0.91 and r=0.75 [Figs. 9(g) and 9(h)], respectively. They were better than ones calculated by the quasi-analytical algorithm (QAA) [52,64] by using the 1 km Aqua-MODIS Rrs products (r=0.84 and 0.72 for apg 443 nm and bbp 555 nm, respectively). The QAA needs two blue bands and can not apply to the limited AVNIR-2 bands (figures of the QAA results are not shown here).

Such an optimization with the best-candidate spectra can be a useful way to obtain locally optimized environmental monitoring from satellite observations with a theoretical understanding of the local optical environment. This study cannot determine spectral models, such as the ratio between ap and ag (or aph and adg), because AVNIR-2 has only two channels in the blue and green wavelengths. More bands at 250–300 m of spatial resolution from sensors, such as Second-Generation Global Imager (SGLI) and Ocean and Land Color Imager (OLCI) may be able to improve the discrimination of the IOPs.

The IOP retrieval schemes have been developed for observations by narrow (about 10–20 nm) bandwidth sensors, and estimates of absorption coefficients by the wide band can cause errors reaching about 20% [65] by the QAA [52,64] through the integration of the IOP spectra in the band wavelengths. Our estimates rely on relatively wide bands (about 90 nm) of AVNIR-2. We confirmed that our apg retrievals by the LMI can be influenced about 20% (mostly overestimated) because of the bandwidth using simulated Rrs from our in-situ apg and bbp. The error is still much smaller than the error due to differences of the model IOP spectra; however, it will need to be considered for more precise estimate in the future.

B. Aerosol and Sea-Surface Reflection Estimation

Most of the iteration schemes for the atmospheric correction use the relationship between NIR Rrs and Chla. This study uses the relationships among apg, bbp, ρag, and α based on the convergence of bbp. This scheme can avoid negative IOPs by tuning the aerosol parameters α and ρag in the iteration process. Another merit of this aerosol estimation is the fast processing time (2–3 min for our study area (2001×1334 pixels) by a wide-use Linux machine) because it does not require time to access the aerosol look-up table that is used in the standard ocean-color atmospheric correction algorithms.

The New Caledonia lagoon area has a relatively clear atmosphere compared with coasts in the northern hemisphere, such as the Asian coasts. This scheme does not consider absorptive aerosols that cannot be described by the simple Eq. (3). For more complex atmosphere (aerosol) conditions, more bands may be necessary than the two that were used for the aerosol characterization (this study used 652 and 821 nm). If the sensor has lower noise and SWIR bands (e.g., MODIS 500 m bands and SGLI 250 m band), we may be able to estimate α at each pixel and obtain more realistic measurements of α and ρag. The absorptive aerosol correction, however, may still be difficult using the simple Eq. (3).

C. Bottom Effect

AVNIR-2 bbp seemed to be influenced by the bottom reflectance. Bottom sands can be seen from satellite if bathymetry is shallow. For example, the bottom depth of the station G003 is 11 m with a relatively low apg. Agreement between AVNIR-2 IOPs and in situ IOPs were improved by considering the bottom reflectance generally, but they seemed to be overcorrected in some areas around the islands and along the barrier reef [Fig. 6(j)]. They are supposed to be influenced by coverage of live corals or sediment from the land, which may cause a different spectrum of the bottom reflectance from the coral sand reflectance [6062]. This indicates that our IOP estimation could be improved if the precise bottom depth and real bottom reflectance are used [36].

D. Cloud Shadow and Adjacent Scattering

For the 10 m resolution data, it is important to consider cloud shadow and sea-surface reflection of scattered light from the cloud bottom. Identification of clouds around the coast (including over the land) and geometric calculation considering the cloud height are required. In addition, the clouds and land area can influence the coastal ocean-color estimation, which is known as the adjacent effect [66]. The influence of the cloud shadow seemed to affect bbp, but not apg as observed in the southeastern part of Fig. 8. Further study is needed to determine bbp in the absence of the influence of the cloud effects.

5. Conclusion

This study investigated the correction of atmospheric scattering and sea-surface reflection in the southwest region of the New Caledonia lagoon using AVNIR-2 images, which have four bands from visible to NIR wavelengths with 10 m resolution. Our processing was conducted after averaging for 30 m (3×3) grids. We applied corrections for gas absorption, molecule scattering, and ρa+ρg using the iteration scheme for converging bbp through IOPs from visible bands. This scheme was able to correct fine structure patterns of the ρa+ρg successfully. The AVNIR-2-estimated Rrs agreed well with the MODIS Rrs (RMSD/average of Rrs at 443nm=40%). Future projects, for example, the Global Change Observation Mission, using the Second-Generation Global Imager (SGLI) and the Sentinel-3 Ocean and Land Color Imager (OLCI), will have finer (250–300 m) spatial resolution aiming for coastal monitoring with a swath of more than 1150 km. These missions will require a correction of the surface reflection with high spatial resolution and a reduction of masked areas to increase the observation frequency in the coastal areas.

With the bottom correction, the AVNIR-2-estimated IOPs agreed well with in situ IOP measurements (correlation coefficients were more than 0.9). Overcorrection appeared in the muddy bays and along the barrier reef, and it suggested that a constant bottom reflectance was not applicable in these areas.

This study showed that the AVNIR-2-estimated Chla from the apg regression scheme in the lagoon area improved the overestimation observed with the blue–green Rrs ratio. This also confirms that the relationship between Chla and apg in the lagoon area is not different from the apgChla relationship of the NOMAD database as already shown in Dupouy et al. [27]. The NOMAD relationship cannot be used in bays (e.g., B50), where the apgChla relationship is disturbed by absorbing mineral particles and irregular ag due to river discharge.

Our atmospheric correction and IOP estimation scheme, which requires only four bands in the visible and NIR wavelengths, can be applied to other satellite sensors, such as the MODIS 500 m bands, and other multiband sensors, such as SGLI 250 m bands. The performance depends on the candidate spectra of IOPs and aerosols based on in situ measurements in the target areas. This reinforces the need to construct databases of the various spectra of IOPs and aerosols in various regions through international collaboration to develop globally applicable approaches. The target of this study is not to make a fixed algorithm but rather to demonstrate the method to make local optimal estimate of the IOPs and Chla. So, the algorithm should not be applied elsewhere without a similar effort (i.e., preparation of the candidate spectra for the target areas).

Appendix A: Calculation of TOA Reflectance with Gaseous Absorption Correction

ρt(b)=Lavnir2(b)/fvc(b)×π×d2/F0(b)/cos(θsun)/toz/twv/tO2,
where
toz=exp(koz(b)×(oz343.8)×pl),
twv=exp({kwv(b)×(ptw14.19)×pl+kwv2(b)×((ptw×pl)2(14.19×pl)2)}),
tO2=exp(kO2(b)×(prs1013.25)×0.2095×pl),
pl=1/cos(θsun)+1/cos(θsat).
Lavnir2 is the AVNIR-2-observed radiance [W/W/m2/μm/sr, b represents the AVNIR-2 spectral bands, fvc is the vicarious calibration factor defined as ratio of AVNIR-2 radiance to radiance simulated by MODIS observation, d is the Sun–Earth distance [AU], F0 is the solar irradiance at 1 AU [67], θsun is the solar zenith angle [rad], θsat is the satellite zenith angle [rad], oz is the column ozone [DU], ptw is the column water vapor [mm], and prs is the sea-level pressure [hPa]. The gas absorption coefficients koz, kwv, and kO2 were calculated by MODTRAN 4 [68] considering the spectral response of the AVNIR-2 bands (Table 2). We used ptw and prs from the National Centers for Environmental Prediction (NCEP) and oz from the Ozone Monitoring Instrument (OMI), which is distributed by Goddard Space Flight Center.

The authors are grateful to the OpenCLASTR project and the NIES GOSAT project for the use of the Rstar6b and Pstar2b packages in this research. MODIS L2 Rrs and chlorophyll-a data were provided by NASA OBPG. OMI ozone data were provided by the Goddard Space Flight Center. NCEP wind-speed and sea-level pressure data were provided by the NCEP/NCAR Reanalysis Project. ALOS AVNIR-2 data were provided by the JAXA EORC ALOS research and application project. In situ data were obtained in the frame of INSU PNTS ValHyBio and processed using the SeaDAS and home package. The apgChla relationship was calculated using NOMAD Version 2.0 ALPHA, which was compiled by the NASA OBPG, Goddard Space Flight Center.

References

1. R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996). [CrossRef]  

2. K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000). [CrossRef]  

3. J.-M. Nicolas, P.-Y. Deschamps, and R. Frouin, “Spectral reflectance of oceanic whitecaps in the visible and near infrared: aircraft measurements over open ocean,” Geophys. Res. Lett. 28, 4445–4448 (2001). [CrossRef]  

4. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954). [CrossRef]  

5. M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001). [CrossRef]  

6. G. C. Feldman, “The OC2 algorithm for MODIS,” Seadas Forum, NASA-GSFC, NASA Ocean Color, 2009http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/.

7. E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution IKONOS images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41, 1724–1729 (2003). [CrossRef]  

8. J. A. Goodman, Z.-P. Lee, and S. L. Ustin, “Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii,” Appl. Opt. 47, F1–F11(2008). [CrossRef]  

9. H. Murakami and R. Frouin, “Correction of sea surface reflection in the coastal area,” Proc. SPIE 7150, 715004 (2008). [CrossRef]  

10. R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008). [CrossRef]  

11. R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010). [CrossRef]  

12. S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010). [CrossRef]  

13. J. Lefèvre, P. C. Marchesiello, N. C. Jourdain, C. Menkes, and A. Leroy, “Weather regimes and orographic circulation around New Caledonia,” Mar. Pollut. Bull. 61, 413–431 (2010). [CrossRef]  

14. R. Fuchs, C. Dupouy, P. Douillet, F. Dumas, M. Caillaud, A. Mangin, and C. Pinazo, “Modelling the impact of a La Niña event on a South West Pacific Lagoon,” Mar. Pollut. Bull.64, 1596–1613 (2012).

15. J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009). [CrossRef]  

16. J. P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Mar. Pollut. Bull. 61, 335–348 (2010). [CrossRef]  

17. C. Dupouy, G. Dirberg, J. Neveux, M. Tenorio, and A. Le Bouteiller, “The contribution of Trichodesmiumto inherent optical properties of a tropical oligotrophic archipelago,” presented at Ocean Optics XVII, Fremantle, Australia, 26 October–3 November 2004.

18. C. Dupouy, D. Benielli-Gary, Y. Dandonneau, J. Neveux, G. Dirberg, and T. Westberry, “On the feasibility of detecting Trichodesmium blooms with SeaWiFS in the South Western Tropical Pacific,” Proc. SPIE 7150, 715010 (2008). [CrossRef]  

19. C. Dupouy, J. Neveux, G. Dirberg, M. M. B. Tenorio, R. Rottgers, and S. Ouillon, “Bio-optical properties of marine cyanobacteria Trichodesmium, spp.,” J. Appl. Remote Sens. 2, 023503 (2008). [CrossRef]  

20. C. Dupouy, D. Benielli-Gary, J. Neveux, Y. Dandonneau, and T. Westberry, “An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific,” Biogeosciences 8, 1–17 (2011). [CrossRef]  

21. A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010). [CrossRef]  

22. J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010). [CrossRef]  

23. C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008). [CrossRef]  

24. R. Fuchs, C. Pinazo, P. Douillet, C. Dupouy, and V. Faure, “New Caledonia Surface lagoon chlorophyll modeling as coastal reef area health indicator,” Proc. SPIE 7858, 785820 (2010). [CrossRef]  

25. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, and G. Obolenski, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003). [CrossRef]  

26. C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium resolution bands: initial results from Tampa Bay, FL.,” Remote Sens. Environ. 93, 423–441 (2004). [CrossRef]  

27. C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010). [CrossRef]  

28. J. G. Acker, A. Vasilkov, D. Nadeau, and N. Kuring, “Use of SeaWiFS ocean color data to estimate neritic sediment mass transport from carbonate platforms for two hurricane-forced events,” Coral Reef. 23, 39–47 (2004). [CrossRef]  

29. D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009). [CrossRef]  

30. K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006). [CrossRef]  

31. S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008). [CrossRef]  

32. C. Dupouy and R. Roettgers, “Absorption by different components during a high freshwater event of the 2008 La Nina episode in a tropical lagoon,” presented at Bio-Optics and Biogeochemistry, Ocean Optics XX, Anchorage, Alaska, USA, 25–30 September 2010.

33. Z.-P. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11651 (2001). [CrossRef]  

34. J. P. Cannizaro and K. L. Carder, “Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters,” Remote Sens. Environ. 101, 13–24 (2006). [CrossRef]  

35. A. Minghelli-Roman, L. Polidori, S. Mathieu-Blanc, L. Loubersac, and F. Cauneau, “Bathymetric estimation using MeRIS images in coastal sea waters,” IEEE Trans. Geosci. Remote Sens. 4, 274–277 (2007). [CrossRef]  

36. A. Minghelli-Roman, C. Dupouy, C. Chevillon, and P. Douillet, “Bathymetry retrieval and sea bed mapping in the lagoon of New Caledonia with MeRIS images,” Proc. SPIE 7858, 78580Y (2010). [CrossRef]  

37. S. Andréfouët, M. J. Costello, M. Rast, and S. Sathyendranath, “Preface: earth observations for marine and coastal biodiversity and ecosystems,” Remote Sens. Environ. 112, 3297–3299 (2008). [CrossRef]  

38. C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.

39. C. Dupouy, G. Wattelez, R. Fuchs, J. Lefèvre, M. Mangeas, H. Murakami, and R. Frouin, “The colour of the Coral Sea,” Proceedings of the 12th International Coral Reef Symposium, 18E–The future of the Coral Sea reefs and sea mounts, Cairns, Australia, 9–13 July 2012, ICRS2012_18E-2.

40. T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).

41. H. Murakami, T. Tadono, H. Imai, J. Nieke, and M. Shimada, “Improvement of AVNIR-2 radiometric calibration by comparison of cross-calibration and on-board lamp calibration,” IEEE Trans. Geosci. Remote Sens. 47, 4051–4059 (2009). [CrossRef]  

42. F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996). [CrossRef]  

43. F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: methods for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999). [CrossRef]  

44. P. Lyon and F. Hoge, “The linear matrix inversion algorithm,” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, 2006), Chap. 7, pp. 49–56.

45. Y. Ota, A. Higurashi, T. Nakajima, and T. Yokota, “Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 111, 878–894 (2010). [CrossRef]  

46. T. Nakajima and M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986). [CrossRef]  

47. T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988). [CrossRef]  

48. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988). [CrossRef]  

49. R. Frouin, P.-Y. Deschamps, L. Gross-Colzy, H. Murakami, and T. Y. Nakajima, “Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II global imager data,” J. Oceanogr. 62, 331–337 (2006). [CrossRef]  

50. R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing?” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, Dartmouth, Canada, 2006), Chap. 1, pp. 3–11.

51. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988). [CrossRef]  

52. Z.-P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002). [CrossRef]  

53. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]  

54. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65–2.5 μm spectral range,” Appl. Opt. 32, 3531–3540 (1993). [CrossRef]  

55. P. J. Werdell and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005). [CrossRef]  

56. C. Dupouy, J. Neveux, and J. M. Andre, “Spectral absorption coefficient of photosynthetically active pigments in the equatorial Pacific Ocean (165°E–150°W),” Deep-Sea Res. Part II 44, 1881–1906 (1997). [CrossRef]  

57. J. Neveux and F. Lantoine, “Spectrofluorometric assay of chlorophylls and pheophytins using the least squares approximation technique,” Deep-Sea Res. Part I 40, 1747–1765 (1993). [CrossRef]  

58. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and spectral shape of the absorption coefficient,” Limnol. Oceanog. 47, 404–417 (2002). [CrossRef]  

59. Z.-P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999). [CrossRef]  

60. S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanog. 39, 1689–1703 (1994). [CrossRef]  

61. S. Ouillon, Y. Lucas, and J. Gaggelli, “Hyperspectral detection of sand,” presented at the 7th International Conference on Remote Sensing for Marine and Coastal Environments, Miami, Florida, USA, 20–22 May 2002.

62. S. J. Purkis and R. Pasterkamp, “Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat mapping,” Coral Reef. 23, 5–20 (2004). [CrossRef]  

63. B. A. Franz, “Methods for assessing the quality and consistency of ocean color products,” http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/validation.

64. Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007). [CrossRef]  

65. Z. P. Lee, “Applying narrowband remote-sensing reflectance models to wideband data,” Appl. Opt. 48, 3177–3183 (2009). [CrossRef]  

66. R. Frouin, P.-Y. Deschamps, and F. Steinmetz, “Environmental effects in ocean color remote sensing,” Proc. SPIE 7459, 745906 (2009). [CrossRef]  

67. G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003). [CrossRef]  

68. A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd Jr., S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
    [CrossRef]
  2. K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
    [CrossRef]
  3. J.-M. Nicolas, P.-Y. Deschamps, and R. Frouin, “Spectral reflectance of oceanic whitecaps in the visible and near infrared: aircraft measurements over open ocean,” Geophys. Res. Lett. 28, 4445–4448 (2001).
    [CrossRef]
  4. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [CrossRef]
  5. M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001).
    [CrossRef]
  6. G. C. Feldman, “The OC2 algorithm for MODIS,” Seadas Forum, NASA-GSFC, NASA Ocean Color, 2009 http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ .
  7. E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution IKONOS images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41, 1724–1729 (2003).
    [CrossRef]
  8. J. A. Goodman, Z.-P. Lee, and S. L. Ustin, “Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii,” Appl. Opt. 47, F1–F11(2008).
    [CrossRef]
  9. H. Murakami and R. Frouin, “Correction of sea surface reflection in the coastal area,” Proc. SPIE 7150, 715004 (2008).
    [CrossRef]
  10. R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
    [CrossRef]
  11. R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
    [CrossRef]
  12. S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
    [CrossRef]
  13. J. Lefèvre, P. C. Marchesiello, N. C. Jourdain, C. Menkes, and A. Leroy, “Weather regimes and orographic circulation around New Caledonia,” Mar. Pollut. Bull. 61, 413–431 (2010).
    [CrossRef]
  14. R. Fuchs, C. Dupouy, P. Douillet, F. Dumas, M. Caillaud, A. Mangin, and C. Pinazo, “Modelling the impact of a La Niña event on a South West Pacific Lagoon,” Mar. Pollut. Bull.64, 1596–1613 (2012).
  15. J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009).
    [CrossRef]
  16. J. P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Mar. Pollut. Bull. 61, 335–348 (2010).
    [CrossRef]
  17. C. Dupouy, G. Dirberg, J. Neveux, M. Tenorio, and A. Le Bouteiller, “The contribution of Trichodesmiumto inherent optical properties of a tropical oligotrophic archipelago,” presented at Ocean Optics XVII, Fremantle, Australia, 26 October–3 November 2004.
  18. C. Dupouy, D. Benielli-Gary, Y. Dandonneau, J. Neveux, G. Dirberg, and T. Westberry, “On the feasibility of detecting Trichodesmium blooms with SeaWiFS in the South Western Tropical Pacific,” Proc. SPIE 7150, 715010 (2008).
    [CrossRef]
  19. C. Dupouy, J. Neveux, G. Dirberg, M. M. B. Tenorio, R. Rottgers, and S. Ouillon, “Bio-optical properties of marine cyanobacteria Trichodesmium, spp.,” J. Appl. Remote Sens. 2, 023503 (2008).
    [CrossRef]
  20. C. Dupouy, D. Benielli-Gary, J. Neveux, Y. Dandonneau, and T. Westberry, “An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific,” Biogeosciences 8, 1–17 (2011).
    [CrossRef]
  21. A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
    [CrossRef]
  22. J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
    [CrossRef]
  23. C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
    [CrossRef]
  24. R. Fuchs, C. Pinazo, P. Douillet, C. Dupouy, and V. Faure, “New Caledonia Surface lagoon chlorophyll modeling as coastal reef area health indicator,” Proc. SPIE 7858, 785820 (2010).
    [CrossRef]
  25. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, and G. Obolenski, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
    [CrossRef]
  26. C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium resolution bands: initial results from Tampa Bay, FL.,” Remote Sens. Environ. 93, 423–441 (2004).
    [CrossRef]
  27. C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010).
    [CrossRef]
  28. J. G. Acker, A. Vasilkov, D. Nadeau, and N. Kuring, “Use of SeaWiFS ocean color data to estimate neritic sediment mass transport from carbonate platforms for two hurricane-forced events,” Coral Reef. 23, 39–47 (2004).
    [CrossRef]
  29. D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
    [CrossRef]
  30. K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
    [CrossRef]
  31. S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
    [CrossRef]
  32. C. Dupouy and R. Roettgers, “Absorption by different components during a high freshwater event of the 2008 La Nina episode in a tropical lagoon,” presented at Bio-Optics and Biogeochemistry, Ocean Optics XX, Anchorage, Alaska, USA, 25–30 September 2010.
  33. Z.-P. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11651 (2001).
    [CrossRef]
  34. J. P. Cannizaro and K. L. Carder, “Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters,” Remote Sens. Environ. 101, 13–24 (2006).
    [CrossRef]
  35. A. Minghelli-Roman, L. Polidori, S. Mathieu-Blanc, L. Loubersac, and F. Cauneau, “Bathymetric estimation using MeRIS images in coastal sea waters,” IEEE Trans. Geosci. Remote Sens. 4, 274–277 (2007).
    [CrossRef]
  36. A. Minghelli-Roman, C. Dupouy, C. Chevillon, and P. Douillet, “Bathymetry retrieval and sea bed mapping in the lagoon of New Caledonia with MeRIS images,” Proc. SPIE 7858, 78580Y (2010).
    [CrossRef]
  37. S. Andréfouët, M. J. Costello, M. Rast, and S. Sathyendranath, “Preface: earth observations for marine and coastal biodiversity and ecosystems,” Remote Sens. Environ. 112, 3297–3299 (2008).
    [CrossRef]
  38. C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.
  39. C. Dupouy, G. Wattelez, R. Fuchs, J. Lefèvre, M. Mangeas, H. Murakami, and R. Frouin, “The colour of the Coral Sea,” Proceedings of the 12th International Coral Reef Symposium, 18E–The future of the Coral Sea reefs and sea mounts, Cairns, Australia, 9–13 July 2012, ICRS2012_18E-2.
  40. T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).
  41. H. Murakami, T. Tadono, H. Imai, J. Nieke, and M. Shimada, “Improvement of AVNIR-2 radiometric calibration by comparison of cross-calibration and on-board lamp calibration,” IEEE Trans. Geosci. Remote Sens. 47, 4051–4059 (2009).
    [CrossRef]
  42. F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
    [CrossRef]
  43. F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: methods for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
    [CrossRef]
  44. P. Lyon and F. Hoge, “The linear matrix inversion algorithm,” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, 2006), Chap. 7, pp. 49–56.
  45. Y. Ota, A. Higurashi, T. Nakajima, and T. Yokota, “Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 111, 878–894 (2010).
    [CrossRef]
  46. T. Nakajima, and M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
    [CrossRef]
  47. T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
    [CrossRef]
  48. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [CrossRef]
  49. R. Frouin, P.-Y. Deschamps, L. Gross-Colzy, H. Murakami, and T. Y. Nakajima, “Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II global imager data,” J. Oceanogr. 62, 331–337 (2006).
    [CrossRef]
  50. R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing?” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, Dartmouth, Canada, 2006), Chap. 1, pp. 3–11.
  51. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
    [CrossRef]
  52. Z.-P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
    [CrossRef]
  53. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  54. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65–2.5 μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
    [CrossRef]
  55. P. J. Werdell, and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005).
    [CrossRef]
  56. C. Dupouy, J. Neveux, and J. M. Andre, “Spectral absorption coefficient of photosynthetically active pigments in the equatorial Pacific Ocean (165°E–150°W),” Deep-Sea Res. Part II 44, 1881–1906 (1997).
    [CrossRef]
  57. J. Neveux and F. Lantoine, “Spectrofluorometric assay of chlorophylls and pheophytins using the least squares approximation technique,” Deep-Sea Res. Part I 40, 1747–1765 (1993).
    [CrossRef]
  58. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and spectral shape of the absorption coefficient,” Limnol. Oceanog. 47, 404–417 (2002).
    [CrossRef]
  59. Z.-P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
    [CrossRef]
  60. S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanog. 39, 1689–1703 (1994).
    [CrossRef]
  61. S. Ouillon, Y. Lucas, and J. Gaggelli, “Hyperspectral detection of sand,” presented at the 7th International Conference on Remote Sensing for Marine and Coastal Environments, Miami, Florida, USA, 20–22 May 2002.
  62. S. J. Purkis and R. Pasterkamp, “Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat mapping,” Coral Reef. 23, 5–20 (2004).
    [CrossRef]
  63. B. A. Franz, “Methods for assessing the quality and consistency of ocean color products,” http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/validation .
  64. Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
    [CrossRef]
  65. Z. P. Lee, “Applying narrowband remote-sensing reflectance models to wideband data,” Appl. Opt. 48, 3177–3183 (2009).
    [CrossRef]
  66. R. Frouin, P.-Y. Deschamps, and F. Steinmetz, “Environmental effects in ocean color remote sensing,” Proc. SPIE 7459, 745906 (2009).
    [CrossRef]
  67. G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
    [CrossRef]
  68. A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
    [CrossRef]

2011 (1)

C. Dupouy, D. Benielli-Gary, J. Neveux, Y. Dandonneau, and T. Westberry, “An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific,” Biogeosciences 8, 1–17 (2011).
[CrossRef]

2010 (10)

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
[CrossRef]

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

J. Lefèvre, P. C. Marchesiello, N. C. Jourdain, C. Menkes, and A. Leroy, “Weather regimes and orographic circulation around New Caledonia,” Mar. Pollut. Bull. 61, 413–431 (2010).
[CrossRef]

J. P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Mar. Pollut. Bull. 61, 335–348 (2010).
[CrossRef]

R. Fuchs, C. Pinazo, P. Douillet, C. Dupouy, and V. Faure, “New Caledonia Surface lagoon chlorophyll modeling as coastal reef area health indicator,” Proc. SPIE 7858, 785820 (2010).
[CrossRef]

C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010).
[CrossRef]

A. Minghelli-Roman, C. Dupouy, C. Chevillon, and P. Douillet, “Bathymetry retrieval and sea bed mapping in the lagoon of New Caledonia with MeRIS images,” Proc. SPIE 7858, 78580Y (2010).
[CrossRef]

Y. Ota, A. Higurashi, T. Nakajima, and T. Yokota, “Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 111, 878–894 (2010).
[CrossRef]

2009 (5)

Z. P. Lee, “Applying narrowband remote-sensing reflectance models to wideband data,” Appl. Opt. 48, 3177–3183 (2009).
[CrossRef]

R. Frouin, P.-Y. Deschamps, and F. Steinmetz, “Environmental effects in ocean color remote sensing,” Proc. SPIE 7459, 745906 (2009).
[CrossRef]

H. Murakami, T. Tadono, H. Imai, J. Nieke, and M. Shimada, “Improvement of AVNIR-2 radiometric calibration by comparison of cross-calibration and on-board lamp calibration,” IEEE Trans. Geosci. Remote Sens. 47, 4051–4059 (2009).
[CrossRef]

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009).
[CrossRef]

2008 (8)

C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
[CrossRef]

J. A. Goodman, Z.-P. Lee, and S. L. Ustin, “Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii,” Appl. Opt. 47, F1–F11(2008).
[CrossRef]

H. Murakami and R. Frouin, “Correction of sea surface reflection in the coastal area,” Proc. SPIE 7150, 715004 (2008).
[CrossRef]

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

C. Dupouy, D. Benielli-Gary, Y. Dandonneau, J. Neveux, G. Dirberg, and T. Westberry, “On the feasibility of detecting Trichodesmium blooms with SeaWiFS in the South Western Tropical Pacific,” Proc. SPIE 7150, 715010 (2008).
[CrossRef]

C. Dupouy, J. Neveux, G. Dirberg, M. M. B. Tenorio, R. Rottgers, and S. Ouillon, “Bio-optical properties of marine cyanobacteria Trichodesmium, spp.,” J. Appl. Remote Sens. 2, 023503 (2008).
[CrossRef]

S. Andréfouët, M. J. Costello, M. Rast, and S. Sathyendranath, “Preface: earth observations for marine and coastal biodiversity and ecosystems,” Remote Sens. Environ. 112, 3297–3299 (2008).
[CrossRef]

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[CrossRef]

2007 (2)

A. Minghelli-Roman, L. Polidori, S. Mathieu-Blanc, L. Loubersac, and F. Cauneau, “Bathymetric estimation using MeRIS images in coastal sea waters,” IEEE Trans. Geosci. Remote Sens. 4, 274–277 (2007).
[CrossRef]

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

2006 (4)

R. Frouin, P.-Y. Deschamps, L. Gross-Colzy, H. Murakami, and T. Y. Nakajima, “Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II global imager data,” J. Oceanogr. 62, 331–337 (2006).
[CrossRef]

J. P. Cannizaro and K. L. Carder, “Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters,” Remote Sens. Environ. 101, 13–24 (2006).
[CrossRef]

T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

2005 (1)

P. J. Werdell, and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005).
[CrossRef]

2004 (3)

S. J. Purkis and R. Pasterkamp, “Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat mapping,” Coral Reef. 23, 5–20 (2004).
[CrossRef]

J. G. Acker, A. Vasilkov, D. Nadeau, and N. Kuring, “Use of SeaWiFS ocean color data to estimate neritic sediment mass transport from carbonate platforms for two hurricane-forced events,” Coral Reef. 23, 39–47 (2004).
[CrossRef]

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium resolution bands: initial results from Tampa Bay, FL.,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

2003 (3)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, and G. Obolenski, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution IKONOS images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41, 1724–1729 (2003).
[CrossRef]

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

2002 (2)

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and spectral shape of the absorption coefficient,” Limnol. Oceanog. 47, 404–417 (2002).
[CrossRef]

Z.-P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[CrossRef]

2001 (3)

M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001).
[CrossRef]

J.-M. Nicolas, P.-Y. Deschamps, and R. Frouin, “Spectral reflectance of oceanic whitecaps in the visible and near infrared: aircraft measurements over open ocean,” Geophys. Res. Lett. 28, 4445–4448 (2001).
[CrossRef]

Z.-P. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11651 (2001).
[CrossRef]

2000 (1)

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

1999 (3)

1997 (2)

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

C. Dupouy, J. Neveux, and J. M. Andre, “Spectral absorption coefficient of photosynthetically active pigments in the equatorial Pacific Ocean (165°E–150°W),” Deep-Sea Res. Part II 44, 1881–1906 (1997).
[CrossRef]

1996 (2)

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
[CrossRef]

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

1994 (1)

S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanog. 39, 1689–1703 (1994).
[CrossRef]

1993 (2)

J. Neveux and F. Lantoine, “Spectrofluorometric assay of chlorophylls and pheophytins using the least squares approximation technique,” Deep-Sea Res. Part I 40, 1747–1765 (1993).
[CrossRef]

L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65–2.5 μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
[CrossRef]

1988 (3)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[CrossRef]

1986 (1)

T. Nakajima, and M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

1954 (1)

Acharya, P. K.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Acker, J. G.

J. G. Acker, A. Vasilkov, D. Nadeau, and N. Kuring, “Use of SeaWiFS ocean color data to estimate neritic sediment mass transport from carbonate platforms for two hurricane-forced events,” Coral Reef. 23, 39–47 (2004).
[CrossRef]

Adler-Golden, S. M.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Allred, C. L.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Anderson, G. P.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Andre, J. M.

C. Dupouy, J. Neveux, and J. M. Andre, “Spectral absorption coefficient of photosynthetically active pigments in the equatorial Pacific Ocean (165°E–150°W),” Deep-Sea Res. Part II 44, 1881–1906 (1997).
[CrossRef]

Andrefouet, S.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution IKONOS images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41, 1724–1729 (2003).
[CrossRef]

Andréfouët, S.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[CrossRef]

S. Andréfouët, M. J. Costello, M. Rast, and S. Sathyendranath, “Preface: earth observations for marine and coastal biodiversity and ecosystems,” Remote Sens. Environ. 112, 3297–3299 (2008).
[CrossRef]

Arnone, R.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Arnone, R. A.

Babin, M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, and G. Obolenski, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Bailey, S. W.

P. J. Werdell, and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005).
[CrossRef]

M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Barnard, A.

R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing?” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, Dartmouth, Canada, 2006), Chap. 1, pp. 3–11.

Bel Madani, A.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

Benielli-Gary, D.

C. Dupouy, D. Benielli-Gary, J. Neveux, Y. Dandonneau, and T. Westberry, “An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific,” Biogeosciences 8, 1–17 (2011).
[CrossRef]

C. Dupouy, D. Benielli-Gary, Y. Dandonneau, J. Neveux, G. Dirberg, and T. Westberry, “On the feasibility of detecting Trichodesmium blooms with SeaWiFS in the South Western Tropical Pacific,” Proc. SPIE 7150, 715010 (2008).
[CrossRef]

Berka, A.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Bernstein, L. S.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Blondeau-Patissier, D.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

Bonneton, P.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

Brando, V. E.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

Breau, L.

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Briand, E.

J. P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Mar. Pollut. Bull. 61, 335–348 (2010).
[CrossRef]

Bricaud, A.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, and G. Obolenski, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Brock, J. C.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium resolution bands: initial results from Tampa Bay, FL.,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Caillaud, M.

R. Fuchs, C. Dupouy, P. Douillet, F. Dumas, M. Caillaud, A. Mangin, and C. Pinazo, “Modelling the impact of a La Niña event on a South West Pacific Lagoon,” Mar. Pollut. Bull.64, 1596–1613 (2012).

Cannizaro, J. P.

J. P. Cannizaro and K. L. Carder, “Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters,” Remote Sens. Environ. 101, 13–24 (2006).
[CrossRef]

Carder, K. L.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

J. P. Cannizaro and K. L. Carder, “Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters,” Remote Sens. Environ. 101, 13–24 (2006).
[CrossRef]

Z.-P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[CrossRef]

Z.-P. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11651 (2001).
[CrossRef]

Z.-P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
[CrossRef]

Cauneau, F.

A. Minghelli-Roman, L. Polidori, S. Mathieu-Blanc, L. Loubersac, and F. Cauneau, “Bathymetric estimation using MeRIS images in coastal sea waters,” IEEE Trans. Geosci. Remote Sens. 4, 274–277 (2007).
[CrossRef]

Chen, R. F.

Z.-P. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11651 (2001).
[CrossRef]

Chen, Z. Q.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium resolution bands: initial results from Tampa Bay, FL.,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Chetwynd, J. H.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Chevillon, C.

A. Minghelli-Roman, C. Dupouy, C. Chevillon, and P. Douillet, “Bathymetry retrieval and sea bed mapping in the lagoon of New Caledonia with MeRIS images,” Proc. SPIE 7858, 78580Y (2010).
[CrossRef]

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Chifflet, S.

R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
[CrossRef]

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Chylek, P.

Ciotti, A. M.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and spectral shape of the absorption coefficient,” Limnol. Oceanog. 47, 404–417 (2002).
[CrossRef]

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Claustre, H.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, and G. Obolenski, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Clayton, T. D.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium resolution bands: initial results from Tampa Bay, FL.,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Clementson, L. A.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

Costello, M. J.

S. Andréfouët, M. J. Costello, M. Rast, and S. Sathyendranath, “Preface: earth observations for marine and coastal biodiversity and ecosystems,” Remote Sens. Environ. 112, 3297–3299 (2008).
[CrossRef]

Courties, C.

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

Cox, C.

Cullen, J. J.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and spectral shape of the absorption coefficient,” Limnol. Oceanog. 47, 404–417 (2002).
[CrossRef]

Dandonneau, Y.

C. Dupouy, D. Benielli-Gary, J. Neveux, Y. Dandonneau, and T. Westberry, “An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific,” Biogeosciences 8, 1–17 (2011).
[CrossRef]

C. Dupouy, D. Benielli-Gary, Y. Dandonneau, J. Neveux, G. Dirberg, and T. Westberry, “On the feasibility of detecting Trichodesmium blooms with SeaWiFS in the South Western Tropical Pacific,” Proc. SPIE 7150, 715010 (2008).
[CrossRef]

Daniel, P.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

Davis, C.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Dekker, A. G.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

Deschamps, P. Y.

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
[CrossRef]

Deschamps, P.-Y.

R. Frouin, P.-Y. Deschamps, and F. Steinmetz, “Environmental effects in ocean color remote sensing,” Proc. SPIE 7459, 745906 (2009).
[CrossRef]

R. Frouin, P.-Y. Deschamps, L. Gross-Colzy, H. Murakami, and T. Y. Nakajima, “Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II global imager data,” J. Oceanogr. 62, 331–337 (2006).
[CrossRef]

J.-M. Nicolas, P.-Y. Deschamps, and R. Frouin, “Spectral reflectance of oceanic whitecaps in the visible and near infrared: aircraft measurements over open ocean,” Geophys. Res. Lett. 28, 4445–4448 (2001).
[CrossRef]

Despinoy, M.

C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
[CrossRef]

C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.

Dirberg, G.

C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010).
[CrossRef]

C. Dupouy, D. Benielli-Gary, Y. Dandonneau, J. Neveux, G. Dirberg, and T. Westberry, “On the feasibility of detecting Trichodesmium blooms with SeaWiFS in the South Western Tropical Pacific,” Proc. SPIE 7150, 715010 (2008).
[CrossRef]

C. Dupouy, J. Neveux, G. Dirberg, M. M. B. Tenorio, R. Rottgers, and S. Ouillon, “Bio-optical properties of marine cyanobacteria Trichodesmium, spp.,” J. Appl. Remote Sens. 2, 023503 (2008).
[CrossRef]

C. Dupouy, G. Dirberg, J. Neveux, M. Tenorio, and A. Le Bouteiller, “The contribution of Trichodesmiumto inherent optical properties of a tropical oligotrophic archipelago,” presented at Ocean Optics XVII, Fremantle, Australia, 26 October–3 November 2004.

Dothe, H.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Douillet, P.

R. Fuchs, C. Pinazo, P. Douillet, C. Dupouy, and V. Faure, “New Caledonia Surface lagoon chlorophyll modeling as coastal reef area health indicator,” Proc. SPIE 7858, 785820 (2010).
[CrossRef]

R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
[CrossRef]

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

A. Minghelli-Roman, C. Dupouy, C. Chevillon, and P. Douillet, “Bathymetry retrieval and sea bed mapping in the lagoon of New Caledonia with MeRIS images,” Proc. SPIE 7858, 78580Y (2010).
[CrossRef]

J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009).
[CrossRef]

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[CrossRef]

R. Fuchs, C. Dupouy, P. Douillet, F. Dumas, M. Caillaud, A. Mangin, and C. Pinazo, “Modelling the impact of a La Niña event on a South West Pacific Lagoon,” Mar. Pollut. Bull.64, 1596–1613 (2012).

Dumas, F.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

R. Fuchs, C. Dupouy, P. Douillet, F. Dumas, M. Caillaud, A. Mangin, and C. Pinazo, “Modelling the impact of a La Niña event on a South West Pacific Lagoon,” Mar. Pollut. Bull.64, 1596–1613 (2012).

Dupouy, C.

C. Dupouy, D. Benielli-Gary, J. Neveux, Y. Dandonneau, and T. Westberry, “An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific,” Biogeosciences 8, 1–17 (2011).
[CrossRef]

R. Fuchs, C. Pinazo, P. Douillet, C. Dupouy, and V. Faure, “New Caledonia Surface lagoon chlorophyll modeling as coastal reef area health indicator,” Proc. SPIE 7858, 785820 (2010).
[CrossRef]

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010).
[CrossRef]

A. Minghelli-Roman, C. Dupouy, C. Chevillon, and P. Douillet, “Bathymetry retrieval and sea bed mapping in the lagoon of New Caledonia with MeRIS images,” Proc. SPIE 7858, 78580Y (2010).
[CrossRef]

J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009).
[CrossRef]

C. Dupouy, D. Benielli-Gary, Y. Dandonneau, J. Neveux, G. Dirberg, and T. Westberry, “On the feasibility of detecting Trichodesmium blooms with SeaWiFS in the South Western Tropical Pacific,” Proc. SPIE 7150, 715010 (2008).
[CrossRef]

C. Dupouy, J. Neveux, G. Dirberg, M. M. B. Tenorio, R. Rottgers, and S. Ouillon, “Bio-optical properties of marine cyanobacteria Trichodesmium, spp.,” J. Appl. Remote Sens. 2, 023503 (2008).
[CrossRef]

C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
[CrossRef]

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[CrossRef]

C. Dupouy, J. Neveux, and J. M. Andre, “Spectral absorption coefficient of photosynthetically active pigments in the equatorial Pacific Ocean (165°E–150°W),” Deep-Sea Res. Part II 44, 1881–1906 (1997).
[CrossRef]

C. Dupouy, G. Wattelez, R. Fuchs, J. Lefèvre, M. Mangeas, H. Murakami, and R. Frouin, “The colour of the Coral Sea,” Proceedings of the 12th International Coral Reef Symposium, 18E–The future of the Coral Sea reefs and sea mounts, Cairns, Australia, 9–13 July 2012, ICRS2012_18E-2.

C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.

C. Dupouy and R. Roettgers, “Absorption by different components during a high freshwater event of the 2008 La Nina episode in a tropical lagoon,” presented at Bio-Optics and Biogeochemistry, Ocean Optics XX, Anchorage, Alaska, USA, 25–30 September 2010.

R. Fuchs, C. Dupouy, P. Douillet, F. Dumas, M. Caillaud, A. Mangin, and C. Pinazo, “Modelling the impact of a La Niña event on a South West Pacific Lagoon,” Mar. Pollut. Bull.64, 1596–1613 (2012).

C. Dupouy, G. Dirberg, J. Neveux, M. Tenorio, and A. Le Bouteiller, “The contribution of Trichodesmiumto inherent optical properties of a tropical oligotrophic archipelago,” presented at Ocean Optics XVII, Fremantle, Australia, 26 October–3 November 2004.

Eldin, G.

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Faure, V.

R. Fuchs, C. Pinazo, P. Douillet, C. Dupouy, and V. Faure, “New Caledonia Surface lagoon chlorophyll modeling as coastal reef area health indicator,” Proc. SPIE 7858, 785820 (2010).
[CrossRef]

J. P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Mar. Pollut. Bull. 61, 335–348 (2010).
[CrossRef]

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Feldman, G. C.

G. C. Feldman, “The OC2 algorithm for MODIS,” Seadas Forum, NASA-GSFC, NASA Ocean Color, 2009 http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ .

Fernandez, J. M.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Ferrari, G. M.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, and G. Obolenski, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Fichez, R.

R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
[CrossRef]

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Ford, P. W.

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

Foujols, T.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Froidefond, J.-M.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[CrossRef]

Frouin, R.

C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010).
[CrossRef]

R. Frouin, P.-Y. Deschamps, and F. Steinmetz, “Environmental effects in ocean color remote sensing,” Proc. SPIE 7459, 745906 (2009).
[CrossRef]

H. Murakami and R. Frouin, “Correction of sea surface reflection in the coastal area,” Proc. SPIE 7150, 715004 (2008).
[CrossRef]

R. Frouin, P.-Y. Deschamps, L. Gross-Colzy, H. Murakami, and T. Y. Nakajima, “Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II global imager data,” J. Oceanogr. 62, 331–337 (2006).
[CrossRef]

J.-M. Nicolas, P.-Y. Deschamps, and R. Frouin, “Spectral reflectance of oceanic whitecaps in the visible and near infrared: aircraft measurements over open ocean,” Geophys. Res. Lett. 28, 4445–4448 (2001).
[CrossRef]

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
[CrossRef]

C. Dupouy, G. Wattelez, R. Fuchs, J. Lefèvre, M. Mangeas, H. Murakami, and R. Frouin, “The colour of the Coral Sea,” Proceedings of the 12th International Coral Reef Symposium, 18E–The future of the Coral Sea reefs and sea mounts, Cairns, Australia, 9–13 July 2012, ICRS2012_18E-2.

Fry, E. S.

Fuchs, R.

R. Fuchs, C. Pinazo, P. Douillet, C. Dupouy, and V. Faure, “New Caledonia Surface lagoon chlorophyll modeling as coastal reef area health indicator,” Proc. SPIE 7858, 785820 (2010).
[CrossRef]

R. Fuchs, C. Dupouy, P. Douillet, F. Dumas, M. Caillaud, A. Mangin, and C. Pinazo, “Modelling the impact of a La Niña event on a South West Pacific Lagoon,” Mar. Pollut. Bull.64, 1596–1613 (2012).

C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.

C. Dupouy, G. Wattelez, R. Fuchs, J. Lefèvre, M. Mangeas, H. Murakami, and R. Frouin, “The colour of the Coral Sea,” Proceedings of the 12th International Coral Reef Symposium, 18E–The future of the Coral Sea reefs and sea mounts, Cairns, Australia, 9–13 July 2012, ICRS2012_18E-2.

Gaggelli, J.

S. Ouillon, Y. Lucas, and J. Gaggelli, “Hyperspectral detection of sand,” presented at the 7th International Conference on Remote Sensing for Marine and Coastal Environments, Miami, Florida, USA, 20–22 May 2002.

Gallois, F.

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

Ganachaud, A.

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

Gentili, B.

S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanog. 39, 1689–1703 (1994).
[CrossRef]

Gerard, P.

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
[CrossRef]

Gérard, P.

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Gillotay, D.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Goodman, J. A.

Gordon, H. R.

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Grenz, C.

R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
[CrossRef]

Gross-Colzy, L.

R. Frouin, P.-Y. Deschamps, L. Gross-Colzy, H. Murakami, and T. Y. Nakajima, “Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II global imager data,” J. Oceanogr. 62, 331–337 (2006).
[CrossRef]

Gutierrez, F.

R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
[CrossRef]

Hashimoto, T.

T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).

Hédouin, L.

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Hersé, M.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Higurashi, A.

Y. Ota, A. Higurashi, T. Nakajima, and T. Yokota, “Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 111, 878–894 (2010).
[CrossRef]

Hochard, S.

C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010).
[CrossRef]

Hochberg, E.

E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution IKONOS images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41, 1724–1729 (2003).
[CrossRef]

Hoge, F.

P. Lyon and F. Hoge, “The linear matrix inversion algorithm,” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, 2006), Chap. 7, pp. 49–56.

Hoge, F. E.

F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: methods for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
[CrossRef]

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

Hoke, M. L.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Hu, C. M.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium resolution bands: initial results from Tampa Bay, FL.,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Imai, H.

H. Murakami, T. Tadono, H. Imai, J. Nieke, and M. Shimada, “Improvement of AVNIR-2 radiometric calibration by comparison of cross-calibration and on-board lamp calibration,” IEEE Trans. Geosci. Remote Sens. 47, 4051–4059 (2009).
[CrossRef]

Jacquet, S.

J. P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Mar. Pollut. Bull. 61, 335–348 (2010).
[CrossRef]

J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009).
[CrossRef]

Jayaweera, K.

Jeong, L. S.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Jouon, A.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
[CrossRef]

Jourdain, N. C.

J. Lefèvre, P. C. Marchesiello, N. C. Jourdain, C. Menkes, and A. Leroy, “Weather regimes and orographic circulation around New Caledonia,” Mar. Pollut. Bull. 61, 413–431 (2010).
[CrossRef]

Kawamoto, S.

T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).

Kindle, J.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Kou, L.

Kuring, N.

J. G. Acker, A. Vasilkov, D. Nadeau, and N. Kuring, “Use of SeaWiFS ocean color data to estimate neritic sediment mass transport from carbonate platforms for two hurricane-forced events,” Coral Reef. 23, 39–47 (2004).
[CrossRef]

Labrie, D.

Labs, D.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Laganier, R.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

Lantoine, F.

J. Neveux and F. Lantoine, “Spectrofluorometric assay of chlorophylls and pheophytins using the least squares approximation technique,” Deep-Sea Res. Part I 40, 1747–1765 (1993).
[CrossRef]

Lapetite, A.

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Le Borgne, R.

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

Le Bouteiller, A.

C. Dupouy, G. Dirberg, J. Neveux, M. Tenorio, and A. Le Bouteiller, “The contribution of Trichodesmiumto inherent optical properties of a tropical oligotrophic archipelago,” presented at Ocean Optics XVII, Fremantle, Australia, 26 October–3 November 2004.

Le Gendre, R.

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

Le Hir, P.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

Lee, Z. P.

Z. P. Lee, “Applying narrowband remote-sensing reflectance models to wideband data,” Appl. Opt. 48, 3177–3183 (2009).
[CrossRef]

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Lee, Z.-P.

J. A. Goodman, Z.-P. Lee, and S. L. Ustin, “Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii,” Appl. Opt. 47, F1–F11(2008).
[CrossRef]

Z.-P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[CrossRef]

Z.-P. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11651 (2001).
[CrossRef]

Z.-P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
[CrossRef]

R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing?” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, Dartmouth, Canada, 2006), Chap. 1, pp. 3–11.

Lefebvre, J. P.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

Lefebvre, J.-P.

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

Lefevre, J.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.

Lefèvre, J.

J. Lefèvre, P. C. Marchesiello, N. C. Jourdain, C. Menkes, and A. Leroy, “Weather regimes and orographic circulation around New Caledonia,” Mar. Pollut. Bull. 61, 413–431 (2010).
[CrossRef]

C. Dupouy, G. Wattelez, R. Fuchs, J. Lefèvre, M. Mangeas, H. Murakami, and R. Frouin, “The colour of the Coral Sea,” Proceedings of the 12th International Coral Reef Symposium, 18E–The future of the Coral Sea reefs and sea mounts, Cairns, Australia, 9–13 July 2012, ICRS2012_18E-2.

Leroy, A.

J. Lefèvre, P. C. Marchesiello, N. C. Jourdain, C. Menkes, and A. Leroy, “Weather regimes and orographic circulation around New Caledonia,” Mar. Pollut. Bull. 61, 413–431 (2010).
[CrossRef]

Lewis, M. R.

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and spectral shape of the absorption coefficient,” Limnol. Oceanog. 47, 404–417 (2002).
[CrossRef]

Loubersac, L.

A. Minghelli-Roman, L. Polidori, S. Mathieu-Blanc, L. Loubersac, and F. Cauneau, “Bathymetric estimation using MeRIS images in coastal sea waters,” IEEE Trans. Geosci. Remote Sens. 4, 274–277 (2007).
[CrossRef]

Lucas, Y.

S. Ouillon, Y. Lucas, and J. Gaggelli, “Hyperspectral detection of sand,” presented at the 7th International Conference on Remote Sensing for Marine and Coastal Environments, Miami, Florida, USA, 20–22 May 2002.

Lyon, P.

P. Lyon and F. Hoge, “The linear matrix inversion algorithm,” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, 2006), Chap. 7, pp. 49–56.

Lyon, P. E.

F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: methods for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
[CrossRef]

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

Maes, C.

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

Magand, O.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

Mandel, H.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Mangeas, M.

C. Dupouy, G. Wattelez, R. Fuchs, J. Lefèvre, M. Mangeas, H. Murakami, and R. Frouin, “The colour of the Coral Sea,” Proceedings of the 12th International Coral Reef Symposium, 18E–The future of the Coral Sea reefs and sea mounts, Cairns, Australia, 9–13 July 2012, ICRS2012_18E-2.

C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.

Mangin, A.

R. Fuchs, C. Dupouy, P. Douillet, F. Dumas, M. Caillaud, A. Mangin, and C. Pinazo, “Modelling the impact of a La Niña event on a South West Pacific Lagoon,” Mar. Pollut. Bull.64, 1596–1613 (2012).

Marchesiello, P.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

Marchesiello, P. C.

J. Lefèvre, P. C. Marchesiello, N. C. Jourdain, C. Menkes, and A. Leroy, “Weather regimes and orographic circulation around New Caledonia,” Mar. Pollut. Bull. 61, 413–431 (2010).
[CrossRef]

Maritorena, S.

S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanog. 39, 1689–1703 (1994).
[CrossRef]

Mathieu-Blanc, S.

A. Minghelli-Roman, L. Polidori, S. Mathieu-Blanc, L. Loubersac, and F. Cauneau, “Bathymetric estimation using MeRIS images in coastal sea waters,” IEEE Trans. Geosci. Remote Sens. 4, 274–277 (2007).
[CrossRef]

Matthew, M. W.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Menkes, C.

J. Lefèvre, P. C. Marchesiello, N. C. Jourdain, C. Menkes, and A. Leroy, “Weather regimes and orographic circulation around New Caledonia,” Mar. Pollut. Bull. 61, 413–431 (2010).
[CrossRef]

Minghelli-Roman, A.

A. Minghelli-Roman, C. Dupouy, C. Chevillon, and P. Douillet, “Bathymetry retrieval and sea bed mapping in the lagoon of New Caledonia with MeRIS images,” Proc. SPIE 7858, 78580Y (2010).
[CrossRef]

C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
[CrossRef]

A. Minghelli-Roman, L. Polidori, S. Mathieu-Blanc, L. Loubersac, and F. Cauneau, “Bathymetric estimation using MeRIS images in coastal sea waters,” IEEE Trans. Geosci. Remote Sens. 4, 274–277 (2007).
[CrossRef]

Mobley, C. D.

Moore, K. D.

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

Morel, A.

S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanog. 39, 1689–1703 (1994).
[CrossRef]

Mukaida, A.

T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).

Muller-Karger, F. E.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium resolution bands: initial results from Tampa Bay, FL.,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Munk, W.

Muñoz-Caravaca, A.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[CrossRef]

Murakami, H.

C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010).
[CrossRef]

H. Murakami, T. Tadono, H. Imai, J. Nieke, and M. Shimada, “Improvement of AVNIR-2 radiometric calibration by comparison of cross-calibration and on-board lamp calibration,” IEEE Trans. Geosci. Remote Sens. 47, 4051–4059 (2009).
[CrossRef]

H. Murakami and R. Frouin, “Correction of sea surface reflection in the coastal area,” Proc. SPIE 7150, 715004 (2008).
[CrossRef]

T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).

R. Frouin, P.-Y. Deschamps, L. Gross-Colzy, H. Murakami, and T. Y. Nakajima, “Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II global imager data,” J. Oceanogr. 62, 331–337 (2006).
[CrossRef]

C. Dupouy, G. Wattelez, R. Fuchs, J. Lefèvre, M. Mangeas, H. Murakami, and R. Frouin, “The colour of the Coral Sea,” Proceedings of the 12th International Coral Reef Symposium, 18E–The future of the Coral Sea reefs and sea mounts, Cairns, Australia, 9–13 July 2012, ICRS2012_18E-2.

Nadeau, D.

J. G. Acker, A. Vasilkov, D. Nadeau, and N. Kuring, “Use of SeaWiFS ocean color data to estimate neritic sediment mass transport from carbonate platforms for two hurricane-forced events,” Coral Reef. 23, 39–47 (2004).
[CrossRef]

Nakajima, T.

Y. Ota, A. Higurashi, T. Nakajima, and T. Yokota, “Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 111, 878–894 (2010).
[CrossRef]

T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

T. Nakajima, and M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

Nakajima, T. Y.

R. Frouin, P.-Y. Deschamps, L. Gross-Colzy, H. Murakami, and T. Y. Nakajima, “Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II global imager data,” J. Oceanogr. 62, 331–337 (2006).
[CrossRef]

Neveux, J.

C. Dupouy, D. Benielli-Gary, J. Neveux, Y. Dandonneau, and T. Westberry, “An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific,” Biogeosciences 8, 1–17 (2011).
[CrossRef]

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010).
[CrossRef]

J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009).
[CrossRef]

C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
[CrossRef]

C. Dupouy, J. Neveux, G. Dirberg, M. M. B. Tenorio, R. Rottgers, and S. Ouillon, “Bio-optical properties of marine cyanobacteria Trichodesmium, spp.,” J. Appl. Remote Sens. 2, 023503 (2008).
[CrossRef]

C. Dupouy, D. Benielli-Gary, Y. Dandonneau, J. Neveux, G. Dirberg, and T. Westberry, “On the feasibility of detecting Trichodesmium blooms with SeaWiFS in the South Western Tropical Pacific,” Proc. SPIE 7150, 715010 (2008).
[CrossRef]

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[CrossRef]

C. Dupouy, J. Neveux, and J. M. Andre, “Spectral absorption coefficient of photosynthetically active pigments in the equatorial Pacific Ocean (165°E–150°W),” Deep-Sea Res. Part II 44, 1881–1906 (1997).
[CrossRef]

J. Neveux and F. Lantoine, “Spectrofluorometric assay of chlorophylls and pheophytins using the least squares approximation technique,” Deep-Sea Res. Part I 40, 1747–1765 (1993).
[CrossRef]

C. Dupouy, G. Dirberg, J. Neveux, M. Tenorio, and A. Le Bouteiller, “The contribution of Trichodesmiumto inherent optical properties of a tropical oligotrophic archipelago,” presented at Ocean Optics XVII, Fremantle, Australia, 26 October–3 November 2004.

Nicolas, J.-M.

J.-M. Nicolas, P.-Y. Deschamps, and R. Frouin, “Spectral reflectance of oceanic whitecaps in the visible and near infrared: aircraft measurements over open ocean,” Geophys. Res. Lett. 28, 4445–4448 (2001).
[CrossRef]

Nieke, J.

H. Murakami, T. Tadono, H. Imai, J. Nieke, and M. Shimada, “Improvement of AVNIR-2 radiometric calibration by comparison of cross-calibration and on-board lamp calibration,” IEEE Trans. Geosci. Remote Sens. 47, 4051–4059 (2009).
[CrossRef]

Obolenski, G.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, and G. Obolenski, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Ota, Y.

Y. Ota, A. Higurashi, T. Nakajima, and T. Yokota, “Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 111, 878–894 (2010).
[CrossRef]

Oubelkheir, K.

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

Ouillon, S.

C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010).
[CrossRef]

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
[CrossRef]

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009).
[CrossRef]

C. Dupouy, J. Neveux, G. Dirberg, M. M. B. Tenorio, R. Rottgers, and S. Ouillon, “Bio-optical properties of marine cyanobacteria Trichodesmium, spp.,” J. Appl. Remote Sens. 2, 023503 (2008).
[CrossRef]

C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
[CrossRef]

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[CrossRef]

C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.

S. Ouillon, Y. Lucas, and J. Gaggelli, “Hyperspectral detection of sand,” presented at the 7th International Conference on Remote Sensing for Marine and Coastal Environments, Miami, Florida, USA, 20–22 May 2002.

Panche, J. Y.

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

Pasterkamp, R.

S. J. Purkis and R. Pasterkamp, “Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat mapping,” Coral Reef. 23, 5–20 (2004).
[CrossRef]

Patch, J. S.

Peacock, T. G.

Z.-P. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11651 (2001).
[CrossRef]

Peetermans, W.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Petit, M.

C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
[CrossRef]

C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.

Petrenko, A.

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[CrossRef]

Pinazo, C.

R. Fuchs, C. Pinazo, P. Douillet, C. Dupouy, and V. Faure, “New Caledonia Surface lagoon chlorophyll modeling as coastal reef area health indicator,” Proc. SPIE 7858, 785820 (2010).
[CrossRef]

C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
[CrossRef]

R. Fuchs, C. Dupouy, P. Douillet, F. Dumas, M. Caillaud, A. Mangin, and C. Pinazo, “Modelling the impact of a La Niña event on a South West Pacific Lagoon,” Mar. Pollut. Bull.64, 1596–1613 (2012).

Polidori, L.

A. Minghelli-Roman, L. Polidori, S. Mathieu-Blanc, L. Loubersac, and F. Cauneau, “Bathymetric estimation using MeRIS images in coastal sea waters,” IEEE Trans. Geosci. Remote Sens. 4, 274–277 (2007).
[CrossRef]

Pope, R. M.

Pringault, O.

J. P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Mar. Pollut. Bull. 61, 335–348 (2010).
[CrossRef]

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Pukall, B.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Purkis, S. J.

S. J. Purkis and R. Pasterkamp, “Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat mapping,” Coral Reef. 23, 5–20 (2004).
[CrossRef]

Radke, L. C.

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

Rast, M.

S. Andréfouët, M. J. Costello, M. Rast, and S. Sathyendranath, “Preface: earth observations for marine and coastal biodiversity and ecosystems,” Remote Sens. Environ. 112, 3297–3299 (2008).
[CrossRef]

Richtsmeier, S. C.

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Ridgway, K.

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

Rochelle-Newall, E.

J. P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Mar. Pollut. Bull. 61, 335–348 (2010).
[CrossRef]

Rodier, M.

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

Roettgers, R.

C. Dupouy and R. Roettgers, “Absorption by different components during a high freshwater event of the 2008 La Nina episode in a tropical lagoon,” presented at Bio-Optics and Biogeochemistry, Ocean Optics XX, Anchorage, Alaska, USA, 25–30 September 2010.

Rottgers, R.

C. Dupouy, J. Neveux, G. Dirberg, M. M. B. Tenorio, R. Rottgers, and S. Ouillon, “Bio-optical properties of marine cyanobacteria Trichodesmium, spp.,” J. Appl. Remote Sens. 2, 023503 (2008).
[CrossRef]

Röttgers, R.

C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
[CrossRef]

Sathyendranath, S.

S. Andréfouët, M. J. Costello, M. Rast, and S. Sathyendranath, “Preface: earth observations for marine and coastal biodiversity and ecosystems,” Remote Sens. Environ. 112, 3297–3299 (2008).
[CrossRef]

Savranski, T.

C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.

Schwindling, M.

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
[CrossRef]

Shimada, M.

H. Murakami, T. Tadono, H. Imai, J. Nieke, and M. Shimada, “Improvement of AVNIR-2 radiometric calibration by comparison of cross-calibration and on-board lamp calibration,” IEEE Trans. Geosci. Remote Sens. 47, 4051–4059 (2009).
[CrossRef]

T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).

Simon, P. C.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Stamnes, K.

Steinmetz, F.

R. Frouin, P.-Y. Deschamps, and F. Steinmetz, “Environmental effects in ocean color remote sensing,” Proc. SPIE 7459, 745906 (2009).
[CrossRef]

Steward, R. G.

Stramski, D.

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, and G. Obolenski, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

Swarzenski, P.

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium resolution bands: initial results from Tampa Bay, FL.,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Tadono, T.

H. Murakami, T. Tadono, H. Imai, J. Nieke, and M. Shimada, “Improvement of AVNIR-2 radiometric calibration by comparison of cross-calibration and on-board lamp calibration,” IEEE Trans. Geosci. Remote Sens. 47, 4051–4059 (2009).
[CrossRef]

T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).

Takaku, J.

T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).

Tanaka, M.

T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

T. Nakajima, and M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

Tenorio, M.

C. Dupouy, G. Dirberg, J. Neveux, M. Tenorio, and A. Le Bouteiller, “The contribution of Trichodesmiumto inherent optical properties of a tropical oligotrophic archipelago,” presented at Ocean Optics XVII, Fremantle, Australia, 26 October–3 November 2004.

Tenorio, M. M. B.

J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009).
[CrossRef]

C. Dupouy, J. Neveux, G. Dirberg, M. M. B. Tenorio, R. Rottgers, and S. Ouillon, “Bio-optical properties of marine cyanobacteria Trichodesmium, spp.,” J. Appl. Remote Sens. 2, 023503 (2008).
[CrossRef]

Thuillier, G.

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Torreton, J.-P.

J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009).
[CrossRef]

Torréton, J. P.

J. P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Mar. Pollut. Bull. 61, 335–348 (2010).
[CrossRef]

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Tsay, S.-C.

Tyler, M.

E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution IKONOS images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41, 1724–1729 (2003).
[CrossRef]

Ustin, S. L.

Vasilkov, A.

J. G. Acker, A. Vasilkov, D. Nadeau, and N. Kuring, “Use of SeaWiFS ocean color data to estimate neritic sediment mass transport from carbonate platforms for two hurricane-forced events,” Coral Reef. 23, 39–47 (2004).
[CrossRef]

Vega, A.

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

Voss, K. J.

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

Wang, M.

Wattelez, G.

C. Dupouy, G. Wattelez, R. Fuchs, J. Lefèvre, M. Mangeas, H. Murakami, and R. Frouin, “The colour of the Coral Sea,” Proceedings of the 12th International Coral Reef Symposium, 18E–The future of the Coral Sea reefs and sea mounts, Cairns, Australia, 9–13 July 2012, ICRS2012_18E-2.

Webster, I. T.

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

Weidemann, A.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Werdell, P. J.

P. J. Werdell, and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005).
[CrossRef]

Westberry, T.

C. Dupouy, D. Benielli-Gary, J. Neveux, Y. Dandonneau, and T. Westberry, “An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific,” Biogeosciences 8, 1–17 (2011).
[CrossRef]

C. Dupouy, D. Benielli-Gary, Y. Dandonneau, J. Neveux, G. Dirberg, and T. Westberry, “On the feasibility of detecting Trichodesmium blooms with SeaWiFS in the South Western Tropical Pacific,” Proc. SPIE 7150, 715010 (2008).
[CrossRef]

Wiscombe, W.

Yokota, T.

Y. Ota, A. Higurashi, T. Nakajima, and T. Yokota, “Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 111, 878–894 (2010).
[CrossRef]

Zaneveld, R.

R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing?” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, Dartmouth, Canada, 2006), Chap. 1, pp. 3–11.

Appl. Opt. (9)

M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40, 4790–4798 (2001).
[CrossRef]

J. A. Goodman, Z.-P. Lee, and S. L. Ustin, “Influence of atmospheric and sea-surface corrections on retrieval of bottom depth and reflectance using a semi-analytical model: a case study in Kaneohe Bay, Hawaii,” Appl. Opt. 47, F1–F11(2008).
[CrossRef]

F. E. Hoge and P. E. Lyon, “Spectral parameters of inherent optical property models: methods for satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
[CrossRef]

Z.-P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[CrossRef]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65–2.5 μm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
[CrossRef]

K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[CrossRef]

Z.-P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831–3843 (1999).
[CrossRef]

Z. P. Lee, “Applying narrowband remote-sensing reflectance models to wideband data,” Appl. Opt. 48, 3177–3183 (2009).
[CrossRef]

Asian Journal of Geoinformatics (1)

T. Tadono, M. Shimada, H. Murakami, T. Hashimoto, J. Takaku, A. Mukaida, and S. Kawamoto, “Initial results of calibration and validation for PRISM and AVNIR-2,” Asian Journal of Geoinformatics 6, 11–20 (2006).

Biogeosciences (1)

C. Dupouy, D. Benielli-Gary, J. Neveux, Y. Dandonneau, and T. Westberry, “An algorithm for detecting Trichodesmium surface blooms in the South Western Tropical Pacific,” Biogeosciences 8, 1–17 (2011).
[CrossRef]

Coral Reef. (2)

J. G. Acker, A. Vasilkov, D. Nadeau, and N. Kuring, “Use of SeaWiFS ocean color data to estimate neritic sediment mass transport from carbonate platforms for two hurricane-forced events,” Coral Reef. 23, 39–47 (2004).
[CrossRef]

S. J. Purkis and R. Pasterkamp, “Integrating in situ reef-top reflectance spectra with Landsat TM imagery to aid shallow-tropical benthic habitat mapping,” Coral Reef. 23, 5–20 (2004).
[CrossRef]

Deep-Sea Res. Part I (1)

J. Neveux and F. Lantoine, “Spectrofluorometric assay of chlorophylls and pheophytins using the least squares approximation technique,” Deep-Sea Res. Part I 40, 1747–1765 (1993).
[CrossRef]

Deep-Sea Res. Part II (1)

C. Dupouy, J. Neveux, and J. M. Andre, “Spectral absorption coefficient of photosynthetically active pigments in the equatorial Pacific Ocean (165°E–150°W),” Deep-Sea Res. Part II 44, 1881–1906 (1997).
[CrossRef]

Geophys. Res. Lett. (1)

J.-M. Nicolas, P.-Y. Deschamps, and R. Frouin, “Spectral reflectance of oceanic whitecaps in the visible and near infrared: aircraft measurements over open ocean,” Geophys. Res. Lett. 28, 4445–4448 (2001).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (3)

E. Hochberg, S. Andrefouet, and M. Tyler, “Sea surface correction of high spatial resolution IKONOS images to improve bottom mapping in near-shore environments,” IEEE Trans. Geosci. Remote Sens. 41, 1724–1729 (2003).
[CrossRef]

A. Minghelli-Roman, L. Polidori, S. Mathieu-Blanc, L. Loubersac, and F. Cauneau, “Bathymetric estimation using MeRIS images in coastal sea waters,” IEEE Trans. Geosci. Remote Sens. 4, 274–277 (2007).
[CrossRef]

H. Murakami, T. Tadono, H. Imai, J. Nieke, and M. Shimada, “Improvement of AVNIR-2 radiometric calibration by comparison of cross-calibration and on-board lamp calibration,” IEEE Trans. Geosci. Remote Sens. 47, 4051–4059 (2009).
[CrossRef]

Int. J. Oceanogr. (1)

J. Neveux, M. M. B. Tenorio, S. Jacquet, J.-P. Torreton, P. Douillet, S. Ouillon, and C. Dupouy, “Chlorophylls and phycoerythrins as markers of environmental forcings including cyclone Erica effect (March 2003) on phytoplankton in the southwest lagoon of New Caledonia and oceanic adjacent area,” Int. J. Oceanogr. 2009, 232513 (2009).
[CrossRef]

J. Appl. Remote Sens. (1)

C. Dupouy, J. Neveux, G. Dirberg, M. M. B. Tenorio, R. Rottgers, and S. Ouillon, “Bio-optical properties of marine cyanobacteria Trichodesmium, spp.,” J. Appl. Remote Sens. 2, 023503 (2008).
[CrossRef]

J. Geophys. Res. (9)

M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, and G. Obolenski, “Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108, 3211 (2003).
[CrossRef]

D. Blondeau-Patissier, V. E. Brando, K. Oubelkheir, A. G. Dekker, L. A. Clementson, and P. Daniel, “Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia,” J. Geophys. Res. 114, C05003 (2009).
[CrossRef]

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, “Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system,” J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing implications,” J. Geophys. Res. 101, 14361–14371 (1996).
[CrossRef]

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: their contribution to water-leaving radiance,” J. Geophys. Res. 105, 6493–6499 (2000).
[CrossRef]

F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

Z.-P. Lee, K. L. Carder, R. F. Chen, and T. G. Peacock, “Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” J. Geophys. Res. 106, 11639–11651 (2001).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10909–10924 (1988).
[CrossRef]

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

J. Mar. Syst. (1)

J. Neveux, J.-P. Lefebvre, R. Le Gendre, C. Dupouy, F. Gallois, C. Courties, P. Gerard, S. Ouillon, and J. M. Fernandez, “Phytoplankton dynamics in New-Caledonian lagoon during a southeast trade winds event,” J. Mar. Syst. 82, 230–244 (2010).
[CrossRef]

J. Oceanogr. (1)

R. Frouin, P.-Y. Deschamps, L. Gross-Colzy, H. Murakami, and T. Y. Nakajima, “Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II global imager data,” J. Oceanogr. 62, 331–337 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (3)

Y. Ota, A. Higurashi, T. Nakajima, and T. Yokota, “Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere-ocean system,” J. Quant. Spectrosc. Radiat. Transfer 111, 878–894 (2010).
[CrossRef]

T. Nakajima, and M. Tanaka, “Matrix formulation for the transfer of solar radiation in a plane-parallel scattering atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 35, 13–21 (1986).
[CrossRef]

T. Nakajima and M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

Journal de la Société des Océanistes (1)

R. Fichez, L. Breau, C. Chevillon, S. Chifflet, P. Douillet, V. Faure, J. M. Fernandez, P. Gérard, L. Hédouin, A. Lapetite, S. Ouillon, O. Pringault, and J. P. Torréton, “Origine, transport et devenir des apports naturels et anthropiques dans le lagon sud-ouest de Nouvelle-Calédonie,” Journal de la Société des Océanistes 126&127, 41–58 (2008).
[CrossRef]

Limnol. Oceanog. (2)

A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and spectral shape of the absorption coefficient,” Limnol. Oceanog. 47, 404–417 (2002).
[CrossRef]

S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanog. 39, 1689–1703 (1994).
[CrossRef]

Mar. Pollut. Bull. (6)

R. Fichez, S. Chifflet, P. Douillet, P. Gerard, F. Gutierrez, A. Jouon, S. Ouillon, and C. Grenz, “Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia),” Mar. Pollut. Bull. 61, 309–322 (2010).
[CrossRef]

S. Ouillon, P. Douillet, J. P. Lefebvre, R. Le Gendre, A. Jouon, P. Bonneton, J. M. Fernandez, C. Chevillon, O. Magand, J. Lefevre, P. Le Hir, R. Laganier, F. Dumas, P. Marchesiello, A. Bel Madani, S. Andrefouet, J. Y. Panche, and R. Fichez, “Circulation and suspended sediment transport in a coral reef lagoon: the southwest lagoon of New Caledonia,” Mar. Pollut. Bull. 61, 269–296 (2010).
[CrossRef]

J. Lefèvre, P. C. Marchesiello, N. C. Jourdain, C. Menkes, and A. Leroy, “Weather regimes and orographic circulation around New Caledonia,” Mar. Pollut. Bull. 61, 413–431 (2010).
[CrossRef]

J. P. Torréton, E. Rochelle-Newall, O. Pringault, S. Jacquet, V. Faure, and E. Briand, “Variability of primary and bacterial production in a coral reef lagoon (New Caledonia),” Mar. Pollut. Bull. 61, 335–348 (2010).
[CrossRef]

A. Ganachaud, A. Vega, M. Rodier, C. Dupouy, C. Maes, P. Marchesiello, G. Eldin, K. Ridgway, and R. Le Borgne, “Observed impact of upwelling on water properties and biological activity off the southwest coast of New Caledonia,” Mar. Pollut. Bull. 61, 449–464 (2010).
[CrossRef]

C. Dupouy, J. Neveux, S. Ouillon, R. Frouin, H. Murakami, S. Hochard, and G. Dirberg, “Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia,” Mar. Pollut. Bull. 61, 503–518 (2010).
[CrossRef]

Proc. SPIE (7)

C. Dupouy, A. Minghelli-Roman, M. Despinoy, R. Röttgers, J. Neveux, S. Ouillon, C. Pinazo, and M. Petit, “MODIS/Aqua chlorophyll monitoring of the New Caledonia lagoon: the VALHYBIO project,” Proc. SPIE 7150, 715014 (2008).
[CrossRef]

R. Fuchs, C. Pinazo, P. Douillet, C. Dupouy, and V. Faure, “New Caledonia Surface lagoon chlorophyll modeling as coastal reef area health indicator,” Proc. SPIE 7858, 785820 (2010).
[CrossRef]

A. Minghelli-Roman, C. Dupouy, C. Chevillon, and P. Douillet, “Bathymetry retrieval and sea bed mapping in the lagoon of New Caledonia with MeRIS images,” Proc. SPIE 7858, 78580Y (2010).
[CrossRef]

C. Dupouy, D. Benielli-Gary, Y. Dandonneau, J. Neveux, G. Dirberg, and T. Westberry, “On the feasibility of detecting Trichodesmium blooms with SeaWiFS in the South Western Tropical Pacific,” Proc. SPIE 7150, 715010 (2008).
[CrossRef]

H. Murakami and R. Frouin, “Correction of sea surface reflection in the coastal area,” Proc. SPIE 7150, 715004 (2008).
[CrossRef]

R. Frouin, P.-Y. Deschamps, and F. Steinmetz, “Environmental effects in ocean color remote sensing,” Proc. SPIE 7459, 745906 (2009).
[CrossRef]

A. Berka, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[CrossRef]

Remote Sens. Environ. (4)

J. P. Cannizaro and K. L. Carder, “Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters,” Remote Sens. Environ. 101, 13–24 (2006).
[CrossRef]

P. J. Werdell, and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005).
[CrossRef]

S. Andréfouët, M. J. Costello, M. Rast, and S. Sathyendranath, “Preface: earth observations for marine and coastal biodiversity and ecosystems,” Remote Sens. Environ. 112, 3297–3299 (2008).
[CrossRef]

C. M. Hu, Z. Q. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium resolution bands: initial results from Tampa Bay, FL.,” Remote Sens. Environ. 93, 423–441 (2004).
[CrossRef]

Sensors (1)

S. Ouillon, P. Douillet, A. Petrenko, J. Neveux, C. Dupouy, J.-M. Froidefond, S. Andréfouët, and A. Muñoz-Caravaca, “Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters,” Sensors 8, 4165–4185 (2008).
[CrossRef]

Sol. Phys. (1)

G. Thuillier, M. Hersé, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions,” Sol. Phys. 214, 1–22 (2003).
[CrossRef]

Other (10)

B. A. Franz, “Methods for assessing the quality and consistency of ocean color products,” http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/validation .

S. Ouillon, Y. Lucas, and J. Gaggelli, “Hyperspectral detection of sand,” presented at the 7th International Conference on Remote Sensing for Marine and Coastal Environments, Miami, Florida, USA, 20–22 May 2002.

R. Zaneveld, A. Barnard, and Z.-P. Lee, “Why are inherent optical properties needed in ocean-colour remote sensing?” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, Dartmouth, Canada, 2006), Chap. 1, pp. 3–11.

P. Lyon and F. Hoge, “The linear matrix inversion algorithm,” in IOCCG Report Number 5, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z. Lee, ed. (IOCCG, 2006), Chap. 7, pp. 49–56.

C. Dupouy and R. Roettgers, “Absorption by different components during a high freshwater event of the 2008 La Nina episode in a tropical lagoon,” presented at Bio-Optics and Biogeochemistry, Ocean Optics XX, Anchorage, Alaska, USA, 25–30 September 2010.

C. Dupouy, T. Savranski, J. Lefevre, M. Despinoy, M. Mangeas, R. Fuchs, S. Ouillon, and M. Petit, “Monitoring chlorophyll of the South West Tropical Pacific,” Communication at the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–14 April 2011.

C. Dupouy, G. Wattelez, R. Fuchs, J. Lefèvre, M. Mangeas, H. Murakami, and R. Frouin, “The colour of the Coral Sea,” Proceedings of the 12th International Coral Reef Symposium, 18E–The future of the Coral Sea reefs and sea mounts, Cairns, Australia, 9–13 July 2012, ICRS2012_18E-2.

G. C. Feldman, “The OC2 algorithm for MODIS,” Seadas Forum, NASA-GSFC, NASA Ocean Color, 2009 http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ .

C. Dupouy, G. Dirberg, J. Neveux, M. Tenorio, and A. Le Bouteiller, “The contribution of Trichodesmiumto inherent optical properties of a tropical oligotrophic archipelago,” presented at Ocean Optics XVII, Fremantle, Australia, 26 October–3 November 2004.

R. Fuchs, C. Dupouy, P. Douillet, F. Dumas, M. Caillaud, A. Mangin, and C. Pinazo, “Modelling the impact of a La Niña event on a South West Pacific Lagoon,” Mar. Pollut. Bull.64, 1596–1613 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

New Caledonia lagoon and in situ observation stations used in this study (B50, B03, B08, GD10, Ile aux Canards, M33, G003, and OC1). The background image is the RGB image of Rrs at 652, 560, and 463 nm derived from this study.

Fig. 2.
Fig. 2.

Processing flow of the IOP and aerosol correction. The operation starts from the asterisk. (a) First flow produces the α, which is used in (b) the second flow. After apg0 is converted (|apg0apg0|<0.0001, (c) the sea-floor correction is applied.

Fig. 3.
Fig. 3.

Relation between Chla and apg or blue–green Rrs ratio (log10 base) based on NOMAD [55]. N, RMSD, and r indicate sample number, root mean square error of the regression (log10 scale), and the correlation. a0 and a1 are coefficients of the linear regression, that is, log10(Chla)=0.9706+1.1835log10(apg).

Fig. 4.
Fig. 4.

Model spectra of apg and bbp used in this study. Models of apg (A) and bbp (Y=1.4) were set from the New Caledonia measurements. S was defined as adg=exp(S×(λ442)) as in Eq. (12), and Y was defined as bbp=(λ/442)Y in Eq. (13). The spectra for picoplankton (B) and microplankton (C) from [58] were used for comparison. Curves are indicated for different Y slopes for bbp (Y=0 and Y=2, see also Table 4). Bars show standard deviation of the in situ measurements.

Fig. 5.
Fig. 5.

Bathymetry in the target area [12]. Deep areas (>60m) are filled by black.

Fig. 6.
Fig. 6.

Examples of AVNIR-2-derived ρagw, ρag, α, ρw without bottom correction, and ρw at 463 nm with bottom correction (a)–(e) for 17 November 2008 and (f)–(j) for 3 September 2009 [using model (A) in Table 4]. The field measurement sites are shown in each panel.

Fig. 7.
Fig. 7.

Comparison between AVNIR-2 Rrs at 442 nm and MODIS Rrs at (a) 443 nm and (b) 555 nm for 44 samples. The markers distinguish between the different observation stations. The horizontal bars show the standard deviation of the multiple MODIS scenes.

Fig. 8.
Fig. 8.

AVNIR-2 estimation of (a) apg at 442 nm and (b) bbp at 555 nm on 3 September 2009 [using model spectra (A) in Table 4 and no correction of the bottom reflection]. (c) and (d) are same as (a) and (b) except applying the correction of the bottom reflection. Markers show in situ observation stations.

Fig. 9.
Fig. 9.

Scatter diagrams of (a) AVNIR-2 apg and in situ ap (×1.52) at 442 nm, (b) bbp at 555 nm from model (A) in Table 4. (c) and (d) are same as (a) and (b) except applying the correction of the bottom reflection. N, sample number; r, correlation coefficient; bias, bias of AVNIR-2 from in situ; RMSD, root mean square difference; xavg, the average of in situ data (in m1). (e)–(h) are same as (a)–(d) except they are derived from model (D).

Fig. 10.
Fig. 10.

Scatter diagrams of in situ Chla and (a) Chla from AVNIR-2 apg, (b) Chla from AVNIR-2 OC2M-HI, (c) and (d) are same as (a) and (b) except applying the bottom correction, (e) Chla from the MODIS standard OC3M (1 km), and (f) the scatter plot between AVNIR-2 apg Chla and the MODIS OC3M Chla. Bars show the standard deviation of the multiple MODIS scenes around the AVNIR-2 observation dates or the standard deviation of 3×3 pixels of AVNIR-2 data. N, show sample number; r, correlation coefficient; bias, bias; RMSD, root mean square difference; xvag, average of x axis variables in log10 scale.

Fig. 11.
Fig. 11.

(a), (b), and (e) are Chla from apg, Chla from OC2M-HI (3 September 2009) and the MODIS standard Chla(average from 3–9 September 2009). (c) and (d) are the same as (a) and (b) except applying the bottom correction. Markers show the in situ observation stations on 9 September 2009.

Tables (4)

Tables Icon

Table 1. Symbols and Definitions

Tables Icon

Table 2. AVNIR-2 Bands, Cross-Cal Coefficients, and Gas Abruption Coefficients

Tables Icon

Table 3. Spectra of aw, bbw, and apha

Tables Icon

Table 4. Comparison between in situ and AVNIR-2 IOP Estimates Using Different Sets of IOP Spectraa

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

ρt(λb)=ρr(λb)+ρa(λb,τa,M)+t(λb,τa,M)×ρg(λb)+T(λb,τa,M)×ρwc(λb)+T(λb,τa,M)×ρw(λb),
ρagw(λb)(ρt(λb)ρr(λb))/T(λb,τa=0)=[ρa(λb,τa,M)/T(λb,τa=0)+t(λb,τa,M)/T(λb,τa=0)×ρg(λb)+T(λb,τa,M)/T(λb,τa=0)×ρwc(λb)]+T(λb,τa,M)/T(λb,τa=0)×ρw(λb).
ρag(λb)ρag(821nm)×(λb×cwl/821nm)α.
rrs(λ)=g1×u(λ)+g2×u(λ)2,
a(λ)=aw(λ)+aph(λ)+ad(λ)+ag(λ),
bb(λ)=bbw(λ)+bbp(λ)
u(λ)=bb(λ)/(bb(λ)+a(λ)),
Rrs(λ)=0.52×rrs(λ)/(11.7×rrs(λ)).
ρw(λ)=π×Rrs(λ).
adg(λb)=adg0×adg(λ),
bbp(λb)=bbp0×bbp(λb)
adg(λ)=exp(S×(λ442)),
bbp(λ)=(λ/442)Y,
apg(λb)=apg0×apg(λb)=apg0×{(1rpg)×aph(λb)+rpg×adg(λb)},
ρag(λ)=ρagw(λ)ρw(λ),
α=log(ρag(652nm)/ρag(821nm))/log(652×cwl/821).
log10(Chla)=0.9706+1.1835×log10(apg(442nm)),
log10(Chla)=0.14641.7953r+0.9718r20.8319r30.8073r4,
r=log10(Rrs(463nm)/Rrs(560nm)).
rrsrrsdp×[1exp{κH×(1/cosθ0w+DuC/cosθw)}]+ρb/π×exp{κH×(1/cosθ0w+DuB/cosθw)},
ρt(b)=Lavnir2(b)/fvc(b)×π×d2/F0(b)/cos(θsun)/toz/twv/tO2,
toz=exp(koz(b)×(oz343.8)×pl),
twv=exp({kwv(b)×(ptw14.19)×pl+kwv2(b)×((ptw×pl)2(14.19×pl)2)}),
tO2=exp(kO2(b)×(prs1013.25)×0.2095×pl),
pl=1/cos(θsun)+1/cos(θsat).

Metrics