Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik, in Lasers, Ed. A. K. Levine (M. Dekker, Inc.New York, 1966), Vol. 1.
  2. M. A. Karr, Bell Telephone Laboratories, Inc. (unpublished).
  3. Handbook of Chemistry and Physics (Chemical Rubber Publ. Co., Cleveland, 1960 and 1965), 42 and 47 eds.
  4. See for example, L. M. Osterink, J. D. Foster, Appl. Phys. Letters 12, 128 (1968).
    [CrossRef]
  5. T. Kushida, Phys. Rev. 185, 500 (1969).
    [CrossRef]

1969 (1)

T. Kushida, Phys. Rev. 185, 500 (1969).
[CrossRef]

1968 (1)

See for example, L. M. Osterink, J. D. Foster, Appl. Phys. Letters 12, 128 (1968).
[CrossRef]

Foster, J. D.

See for example, L. M. Osterink, J. D. Foster, Appl. Phys. Letters 12, 128 (1968).
[CrossRef]

Karr, M. A.

M. A. Karr, Bell Telephone Laboratories, Inc. (unpublished).

Kogelnik, H.

H. Kogelnik, in Lasers, Ed. A. K. Levine (M. Dekker, Inc.New York, 1966), Vol. 1.

Kushida, T.

T. Kushida, Phys. Rev. 185, 500 (1969).
[CrossRef]

Osterink, L. M.

See for example, L. M. Osterink, J. D. Foster, Appl. Phys. Letters 12, 128 (1968).
[CrossRef]

Appl. Phys. Letters (1)

See for example, L. M. Osterink, J. D. Foster, Appl. Phys. Letters 12, 128 (1968).
[CrossRef]

Phys. Rev. (1)

T. Kushida, Phys. Rev. 185, 500 (1969).
[CrossRef]

Other (3)

H. Kogelnik, in Lasers, Ed. A. K. Levine (M. Dekker, Inc.New York, 1966), Vol. 1.

M. A. Karr, Bell Telephone Laboratories, Inc. (unpublished).

Handbook of Chemistry and Physics (Chemical Rubber Publ. Co., Cleveland, 1960 and 1965), 42 and 47 eds.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

(a) Experimental sleeve-rod geometry. (b) Semi-infinite geometry employed to calculate thermal damping.

Tables (1)

Tables Icon

Table I Thermal Constants

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T ( z = 0 ) = ω , k A ( ω , k ) sin ω t sin k x ,
φ tan 1 { σ k 2 / c ω + [ 1 + ( σ k 2 / c ω ) 2 ] 1 2 } .
T ( t , x , z ) ~ sin ω t sin k x cos ( c ω 2 σ ) z 1 2 exp ( c ω 2 σ ) z 1 2 .
T R ( ρ ) = P ( R 2 ρ 2 ) 4 σ R + P R 2 2 σ S ln ( S / R ) + T 0 for 0 ρ R ,
T S ( ρ ) = T 0 + P R 2 2 σ S ln ( S / ρ ) for R ρ S ,
Δ T = ( P R 2 / 2 σ S ) ln ( S / R ) .

Metrics