Abstract

A simple but unorthodox application of third-order aberration theory enables one to design a simple form of highly corrected off-axis telescope. Known as the tilted component telescope, with subclasses (a) Schiefspiegler, (b) Yolo, and (c) catadioptric herschelian (cht), is it distinguished by axially symmetric components that frequently require only spherical curvature.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Buchroeder, Sky and Telescope 38, 418 (1969).
  2. R. A. Buchroeder, Opt. Sci. Center Newsletter (University of Arizona, Tucson) 3, 14 (1969).
  3. R. A. Buchroeder, Proc. 3rd Nationwide Amateur Astronomers Convention (1969).
  4. A. Kutter, Der Schiefspiegler (Fritz Weichhard, Biberach/Riss, Germany, 1953). (Condensation and transl, of details in “The Schiefspiegler,” Bull. A, Sky Publishing Corp., Cambridge, Mass.)
  5. A. Kutter, Sky and Telescope 18, 64 (1958).
  6. A. S. Leonard, Proc. 7th Ann. Convention, Western Amateur Astronomers (1955).
  7. A. S. Leonard, Proc. 17th Ann. Convention, Western Amateur Astronomers (1965).
  8. A. S. Leonard, Proc. 21st Ann. Convention, Western Amateur Astronomers (1969).
  9. G. R. Rosendahl, J. Opt. Soc. Amer. 51, 1 (1961); J. Opt. Soc. Amer. 52, 408, 412 (1962).
    [CrossRef]

1969 (2)

R. A. Buchroeder, Sky and Telescope 38, 418 (1969).

R. A. Buchroeder, Opt. Sci. Center Newsletter (University of Arizona, Tucson) 3, 14 (1969).

1961 (1)

G. R. Rosendahl, J. Opt. Soc. Amer. 51, 1 (1961); J. Opt. Soc. Amer. 52, 408, 412 (1962).
[CrossRef]

1958 (1)

A. Kutter, Sky and Telescope 18, 64 (1958).

Buchroeder, R. A.

R. A. Buchroeder, Sky and Telescope 38, 418 (1969).

R. A. Buchroeder, Opt. Sci. Center Newsletter (University of Arizona, Tucson) 3, 14 (1969).

R. A. Buchroeder, Proc. 3rd Nationwide Amateur Astronomers Convention (1969).

Kutter, A.

A. Kutter, Sky and Telescope 18, 64 (1958).

A. Kutter, Der Schiefspiegler (Fritz Weichhard, Biberach/Riss, Germany, 1953). (Condensation and transl, of details in “The Schiefspiegler,” Bull. A, Sky Publishing Corp., Cambridge, Mass.)

Leonard, A. S.

A. S. Leonard, Proc. 17th Ann. Convention, Western Amateur Astronomers (1965).

A. S. Leonard, Proc. 7th Ann. Convention, Western Amateur Astronomers (1955).

A. S. Leonard, Proc. 21st Ann. Convention, Western Amateur Astronomers (1969).

Rosendahl, G. R.

G. R. Rosendahl, J. Opt. Soc. Amer. 51, 1 (1961); J. Opt. Soc. Amer. 52, 408, 412 (1962).
[CrossRef]

J. Opt. Soc. Amer. (1)

G. R. Rosendahl, J. Opt. Soc. Amer. 51, 1 (1961); J. Opt. Soc. Amer. 52, 408, 412 (1962).
[CrossRef]

Opt. Sci. Center Newsletter (University of Arizona, Tucson) (1)

R. A. Buchroeder, Opt. Sci. Center Newsletter (University of Arizona, Tucson) 3, 14 (1969).

Sky and Telescope (2)

R. A. Buchroeder, Sky and Telescope 38, 418 (1969).

A. Kutter, Sky and Telescope 18, 64 (1958).

Other (5)

A. S. Leonard, Proc. 7th Ann. Convention, Western Amateur Astronomers (1955).

A. S. Leonard, Proc. 17th Ann. Convention, Western Amateur Astronomers (1965).

A. S. Leonard, Proc. 21st Ann. Convention, Western Amateur Astronomers (1969).

R. A. Buchroeder, Proc. 3rd Nationwide Amateur Astronomers Convention (1969).

A. Kutter, Der Schiefspiegler (Fritz Weichhard, Biberach/Riss, Germany, 1953). (Condensation and transl, of details in “The Schiefspiegler,” Bull. A, Sky Publishing Corp., Cambridge, Mass.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ S i j / Δ θ ,
Δ ( Δ S i j / Δ θ ) Δ ( cv , th , index , tilt , etc . ) j .
a = S 1 of mirror 1 . b = S 1 of mirror 2 . k 1 and k 2 = i ¯ / i of mirror 1 and 2 , respectively . a k 1 + b k 2 = 0.0 , when axial coma = 0.0.
a k 1 2 + b k 1 2 = 0.0 , when axial astigmatism = 0.0.
b k 2 2 ( b / a + 1.0 ) = 0.0.
a k 1 + b k 2 + c k 3 = 0.0 , when axial coma = 0.0.
a k 1 2 + b k 2 2 + c k 3 2 = 0.0 , when axial astigmatism = 0.0.
a k 1 2 + ( c k 3 + a k 1 ) 2 / b + c k 3 2 = 0.0.
k 3 / k 1 = a / ( b + c ) { 1.0 [ 1.0 ( 1 + b / a ) ( 1 + b / c ) ] 1 2 } , k 2 / k 1 = [ a / b + ( c / b ) ( k 3 / k 1 ) ] = a / ( b + c ) { 1.0 ± ( c / b ) [ 1.0 ( 1 + b / a ) ( 1 + b / c ) ] 1 2 } .
a k 1 3 + b k 2 3 + c k 3 3 = 0.0.
k 1 3 [ h ( a , b , c ) ] = 0.0.

Metrics