Abstract

Several variations are given of a relatively simple thin film optical cavity construction which can be designed either to induce absorption in a weak absorber or to induce thermal emission from a weak emitter. In both cases the cavity is very selective with respect to polarization and wavelength.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Harrick, A. F. Turner, J. Opt. Soc. Amer. 56, 533(A) (1966); U.S. Patent3,436,159 (1April1969).
  2. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, Interscience, New York, 1967).
  3. The optical behavior of a cavity can be greatly altered if the stipulations are relaxed that it be nonscattering and/or of infinite extent, see P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]
  4. P. H. Berning, Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1963), Vol. 1, p. 99.
  5. E. E. Hall, Phys. Rev. 15, 73 (1902).
  6. P. J. Leurgans, J. Opt. Soc. Amer. 41, 714 (1951).
    [CrossRef]
  7. A. Prostak, Harry B. Mark, Wilford N. Hansen, J. Phys. Chem. 72, 2576 (1968).
    [CrossRef]
  8. D. E. Gray, Ed., American Institute of Physics, Handbook (McGraw-Hill, New York, 1963).

1969 (1)

The optical behavior of a cavity can be greatly altered if the stipulations are relaxed that it be nonscattering and/or of infinite extent, see P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

1968 (1)

A. Prostak, Harry B. Mark, Wilford N. Hansen, J. Phys. Chem. 72, 2576 (1968).
[CrossRef]

1966 (1)

N. J. Harrick, A. F. Turner, J. Opt. Soc. Amer. 56, 533(A) (1966); U.S. Patent3,436,159 (1April1969).

1951 (1)

P. J. Leurgans, J. Opt. Soc. Amer. 41, 714 (1951).
[CrossRef]

1902 (1)

E. E. Hall, Phys. Rev. 15, 73 (1902).

Berning, P. H.

P. H. Berning, Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1963), Vol. 1, p. 99.

Hall, E. E.

E. E. Hall, Phys. Rev. 15, 73 (1902).

Hansen, Wilford N.

A. Prostak, Harry B. Mark, Wilford N. Hansen, J. Phys. Chem. 72, 2576 (1968).
[CrossRef]

Harrick, N. J.

N. J. Harrick, A. F. Turner, J. Opt. Soc. Amer. 56, 533(A) (1966); U.S. Patent3,436,159 (1April1969).

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, Interscience, New York, 1967).

Leurgans, P. J.

P. J. Leurgans, J. Opt. Soc. Amer. 41, 714 (1951).
[CrossRef]

Mark, Harry B.

A. Prostak, Harry B. Mark, Wilford N. Hansen, J. Phys. Chem. 72, 2576 (1968).
[CrossRef]

Martin, R. J.

The optical behavior of a cavity can be greatly altered if the stipulations are relaxed that it be nonscattering and/or of infinite extent, see P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Prostak, A.

A. Prostak, Harry B. Mark, Wilford N. Hansen, J. Phys. Chem. 72, 2576 (1968).
[CrossRef]

Tien, P. K.

The optical behavior of a cavity can be greatly altered if the stipulations are relaxed that it be nonscattering and/or of infinite extent, see P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Turner, A. F.

N. J. Harrick, A. F. Turner, J. Opt. Soc. Amer. 56, 533(A) (1966); U.S. Patent3,436,159 (1April1969).

Ulrich, R.

The optical behavior of a cavity can be greatly altered if the stipulations are relaxed that it be nonscattering and/or of infinite extent, see P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Appl. Phys. Lett. (1)

The optical behavior of a cavity can be greatly altered if the stipulations are relaxed that it be nonscattering and/or of infinite extent, see P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

J. Opt. Soc. Amer. (2)

N. J. Harrick, A. F. Turner, J. Opt. Soc. Amer. 56, 533(A) (1966); U.S. Patent3,436,159 (1April1969).

P. J. Leurgans, J. Opt. Soc. Amer. 41, 714 (1951).
[CrossRef]

J. Phys. Chem. (1)

A. Prostak, Harry B. Mark, Wilford N. Hansen, J. Phys. Chem. 72, 2576 (1968).
[CrossRef]

Phys. Rev. (1)

E. E. Hall, Phys. Rev. 15, 73 (1902).

Other (3)

D. E. Gray, Ed., American Institute of Physics, Handbook (McGraw-Hill, New York, 1963).

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, Interscience, New York, 1967).

P. H. Berning, Physics of Thin Films, G. Hass, Ed. (Academic, New York, 1963), Vol. 1, p. 99.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic representation of the optical cavity. The cavity proper is a high index (silicon) film. On its entrance face is an FTR (quartz) film reflector. The otherwise total reflection at its second face is attenuated by the presence of the absorber. At resonance the evanescent wave on this surface is intensified and absorption is enhanced.

Fig. 2
Fig. 2

Comparison of the absorption of the λ = 3.3 μm C–H band in chloroform for p polarization and incident angle 29.5° using (a) an uncoated Si hemicylinder, and (b) the p-design cavity of Table I. The 4% absorption in curve (a) is enhanced by over an order of magnitude in curve (b).

Fig. 3
Fig. 3

Schematic representation of an optical cavity design incorporating a semitransparent gold film electrode. Using the design parameters of Table II complete polarized absorption can be induced in the absorbing medium of complex index n0, cf. Table III.

Fig. 4
Fig. 4

The s-polarized thermal emittance Es vs angle of emission for the s-design cavity of Table IV calculated for λ = 5.0 μm, 5.5 μm, and 6.0 μm. The separation of the peaks indicates a resolving power in emission of ~0.5 μm.

Fig. 5
Fig. 5

Calculated absorptance (emittance) for p (∥) and s (⊥) polarization at λ = 4 μm vs angle of emission when a gold thermal emitter is substituted for the absorber in the s design of Table I. Strong p-polarized emission is predicted near ±28°.

Fig. 6
Fig. 6

Measured p- and s-polarized thermal emission vs angle in the wavelength band λ = 1.8 to 6.0 μm from the s-design cavity of Table I. A gold strip emitter replaces the absorber of Fig. 1. The p-polarized emission is enhanced at ±23°.

Tables (4)

Tables Icon

Table I Calculated Cavity Data for Induced Absorption in n0, α = 28.8°

Tables Icon

Table II Calculated Data for a Cavity with Semitransparent Gold Electrode. Absorption Induced at λ = 550 nm. α = 72.8°

Tables Icon

Table III Reflectances of Table II Designs With and Without Absorption in n0

Tables Icon

Table IV Calculated Cavity Data to Induce Epors = 1 at 5.5 μm from a Gold Thermal Emitter n0 at 5.5 μm. Construction of Fig. 1 with α = 28.8°

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 ϕ 1 σ 1 ρ 0 = 0,2 π , 4 π , ,

Metrics