Abstract

Using holographic interferometry, the rotation of a rigid cylinder and the torsion of a flexible shaft (RTV silastic rubber) have been observed. The experimentally generated fringe patterns are compared with computed ones and good agreement is obtained.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Haines, B. P. Hilderbrand, Appl. Opt. 5, 595 (1966).
    [CrossRef] [PubMed]
  2. L. O. Heflinger et al., J. Appl. Phys. 37, 642 (1956).
    [CrossRef]
  3. M. L. Horman, Appl. Opt. 4, 333 (1965).
    [CrossRef]
  4. W. G. Gottenberg, Exp. Mech. 8, 405(1968).
    [CrossRef]
  5. J. H. Holds, A. E. Fuhs, J. Appl. Phys. 38, 5408 (1967).
    [CrossRef]

1968

W. G. Gottenberg, Exp. Mech. 8, 405(1968).
[CrossRef]

1967

J. H. Holds, A. E. Fuhs, J. Appl. Phys. 38, 5408 (1967).
[CrossRef]

1966

1965

1956

L. O. Heflinger et al., J. Appl. Phys. 37, 642 (1956).
[CrossRef]

Fuhs, A. E.

J. H. Holds, A. E. Fuhs, J. Appl. Phys. 38, 5408 (1967).
[CrossRef]

Gottenberg, W. G.

W. G. Gottenberg, Exp. Mech. 8, 405(1968).
[CrossRef]

Haines, K. A.

Heflinger, L. O.

L. O. Heflinger et al., J. Appl. Phys. 37, 642 (1956).
[CrossRef]

Hilderbrand, B. P.

Holds, J. H.

J. H. Holds, A. E. Fuhs, J. Appl. Phys. 38, 5408 (1967).
[CrossRef]

Horman, M. L.

Appl. Opt.

Exp. Mech.

W. G. Gottenberg, Exp. Mech. 8, 405(1968).
[CrossRef]

J. Appl. Phys.

J. H. Holds, A. E. Fuhs, J. Appl. Phys. 38, 5408 (1967).
[CrossRef]

L. O. Heflinger et al., J. Appl. Phys. 37, 642 (1956).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Illuminating and receiving geometry of a generalized surface is shown in initial and perturbed states.

Fig. 2
Fig. 2

Illuminating and scattering geometry of a rotatable cylinder is shown in initial and angularly displaced states.

Fig. 3
Fig. 3

Computed fringe pattern is shown for axially symmetric rigid body rotated 349 μrad (72 sec of arc). Solid lines are the centers of the dark fringes, and the dashed lines are the centers of the bright fringes.

Fig. 4
Fig. 4

Shown is the fringe intensity vs normalized position projected onto a plane perpendicular to viewing and illuminating directions for angular rotations of cylinder of (a) 23 μrad, (b) 47 μrad, and (c) 93 μrad (4.8 sec of arc, 9.6 sec of arc, and 19 sec of arc).

Fig. 5
Fig. 5

Computed fringes are plotted for a shaft 1.2 cm diam and in torsion. Assumed is a linear distribution of twist along the shaft, except a section of the right end is held rigid. The left end is clamped. The maximum rotation of the right end is 223 μrad. Dashed lines are the centers of the bright fringes (phase change , n even); solid lines are the centers of dark fringes (phase change = , n odd).

Fig. 6
Fig. 6

Apparatus used in experiments.

Fig. 7
Fig. 7

Rigid cylinder is rotated through angles of (in μrad) (a) 0, (b) 70, and (c) 93, (d) 186, and (e) 349 (or in sec of arc 0, 14, 19, 38, and 72).

Fig. 8
Fig. 8

Cylinder of silastic is rotated through angles of (in μrad) (a) 0, (b 139, (c) 233, and (d) 279 (or in sec of arc 0, 29, 48, and 58).

Fig. 9
Fig. 9

Shown is distribution of twist for Fig. 8(c). Silastic radius = 0.603 cm; maximum angular displacement is 233 μrad.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 π λ d ˆ · ( r ˆ + î ) ,
Δ ϕ = ( 2 π λ ) | d | [ cos ( γ + α 2 θ i π 2 ) cos ( γ + α 2 θ r + π 2 ) ] = ( 4 π λ ) 2 ρ sin ( α 2 ) × cos ( θ i θ r 2 ) sin ( γ + α 2 θ i + θ r 2 ) .
Δ ϕ = 4 π λ 2 ρ sin α 2 sin ( γ + α 2 ) .
Δ ϕ ( 4 π / λ ) ρ α sin γ .
| Δ ϕ / Δ x | ( 4 π / λ ) α .

Metrics