## Abstract

A varifocal mirror is used to vibrate a virtual image of a subject through the object plane of a large aperture, low *f*-number lens. With such a lens, essentially one depth plane at a time will be focused on a back projection screen at the image plane. The sequence of two-dimensional planes displayed on the screen is transmitted by closed-circuit TV to a monitor. A virtual image of the monitor is formed by a second varifocal mirror vibrating 180° out of phase with the first. It correctly positions the two-dimensional planes along the depth axis and reconstructs a three-dimensional autostereoscopic image of the original subject.

© 1970 Optical Society of America

Full Article |

PDF Article
### Equations (22)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$1/S+1/{S}^{\prime}=2/r,$$
(2)
$${\sigma}^{\prime}=-\sigma /\left(1+4\sigma \delta \right),$$
(3)
$$m=1/\left(1+4\sigma \delta \right),$$
(4)
$$\sigma =\frac{{S}_{F}}{R}\phantom{\rule{0.2em}{0ex}}\sigma ,\frac{{S}^{\prime}}{R},\delta =\frac{\Delta}{R},m=-{S}^{\prime}/S.$$
(5)
$$m={m}_{1}{m}_{2}\equiv 1.$$
(6)
$${m}_{1}=1/\left(1+4{\sigma}_{1}{\delta}_{1}\right),$$
(7)
$${m}_{2}=1/\left(1+4{\sigma}_{2}{\delta}_{2}\right).$$
(8)
$${\sigma}_{1}={{-\sigma}_{1}}^{\prime}/\left(1+{{4\sigma}_{1}}^{\prime}{\delta}_{1}\right).$$
(9)
$${m}_{1}=1+{{4\sigma}_{1}}^{\prime}{\delta}_{1}.$$
(10)
$$A={\delta}_{2}/{\delta}_{1}.$$
(11)
$${m}_{2}=1/\left(1+4{\sigma}_{2}A{\delta}_{1}\right).$$
(12)
$$m={m}_{1}{m}_{2}=\frac{1+{{4\sigma}_{1}}^{\prime}{\delta}_{1}}{1+4A{\sigma}_{2}{\delta}_{1}}\equiv 1,$$
(13)
$${{\sigma}_{1}}^{\prime}=A{\sigma}_{2}.$$
(14)
$${{\sigma}_{1}}^{\prime}=-{\sigma}_{1}/\left(1+4{\sigma}_{1}{\delta}_{1}\right).$$
(15)
$${\sigma}_{2}={{-\sigma}_{2}}^{\prime}/\left(1+{{4\sigma}_{2}}^{\prime}A{\delta}_{1}\right).$$
(16)
$${\sigma}_{1}={{A\sigma}_{2}}^{\prime},$$
(17)
$${M}_{L}={{-dS}_{2}}^{\prime}/d{S}_{1}.$$
(18)
$${M}_{L}={{-dS}_{2}}^{\prime}/d{S}_{1}\simeq {{-dS}_{F,2}}^{\prime}/d{S}_{F,1}={{-d\sigma}_{2}}^{\prime}/d{\sigma}_{1}.$$
(20)
$${M}_{T}=M\times m,$$
(21)
$${M}_{T}={M}_{L}.$$