Abstract

No abstract available.

Full Article  |  PDF Article

Corrections

C. B. Burckhardt, "A Simplification of Lee’s Method of Generating Holograms. 2: Erratum," Appl. Opt. 9, 2813-2813 (1970)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-9-12-2813

References

  • View by:
  • |
  • |
  • |

  1. W. H. Lee, Appl. Opt. 9, 639 (1970).
    [CrossRef] [PubMed]
  2. K. S. Pennington, IBM Research Laboratories, Yorktown Heights, N.Y., private communication.
  3. C. B. Burckhardt, E. T. Doherty, Appl. Opt. 7, 1191 (1968).
    [CrossRef] [PubMed]

1970 (1)

1968 (1)

Burckhardt, C. B.

Doherty, E. T.

Lee, W. H.

Pennington, K. S.

K. S. Pennington, IBM Research Laboratories, Yorktown Heights, N.Y., private communication.

Appl. Opt. (2)

Other (1)

K. S. Pennington, IBM Research Laboratories, Yorktown Heights, N.Y., private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Decomposition of F(u,υ) into its components in the complex plane.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F ( u , υ ) = | F ( u , υ ) | exp [ j Φ ( u , υ ) ] = F 1 ( u , υ ) + F 2 ( u , υ ) exp ( j 2 π / 3 ) + F 3 ( u , υ ) exp ( j 4 π / 3 ) .
F 1 ( u , υ ) = | F ( u , υ ) | cos Φ + ( 3 ) 1 | F ( u , υ ) | sin Φ , F 2 ( u , υ ) = ( 3 ) 2 | F ( u , υ ) | sin Φ ,
F 3 ( u , υ ) = 0.
F 1 ( u , υ ) = 0 , F 2 ( u , υ ) = | F ( u , υ ) | cos Φ + ( 3 ) 1 | F ( u , υ ) | sin Φ ,
F 3 ( u , υ ) = ( 3 ) 2 | F ( u , υ ) | sin Φ .
F 1 ( u , υ ) = ( 3 ) 2 | F ( u , υ ) | sin Φ , F 2 ( u , υ ) = 0 ,
F 3 ( u , υ ) = | F ( u , υ ) | cos Φ + ( 3 ) 1 | F ( u , υ ) | sin Φ .

Metrics