Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).
  2. J. Comly, E. Garmire, A. Yariv, J. Appl. Phys. 38, 4091 (1967).
    [CrossRef]
  3. J. E. Kiefer, A. Yariv, Appl. Phys. Letters 15, 26 (1969); R. Weil, J. Appl. Phys. 40, 2857 (1969). These authors point out that the specific heat used in Ref. 2 was in error by a factor of two.
    [CrossRef]
  4. W. B. Gandrud, G. D. Boyd, J. H. McFee, F. H. Wehmeier, Appl. Phys. Lett. 16, 59 (1970).
    [CrossRef]
  5. W. B. Gandrud, R. L. Abrams, unpublished data.
  6. S. T. Hsu, Engineering Heat Transfer (Van Nostrand, Inc., Princeton, 1963), pp. 3–10.

1970 (1)

W. B. Gandrud, G. D. Boyd, J. H. McFee, F. H. Wehmeier, Appl. Phys. Lett. 16, 59 (1970).
[CrossRef]

1969 (2)

J. E. Kiefer, A. Yariv, Appl. Phys. Letters 15, 26 (1969); R. Weil, J. Appl. Phys. 40, 2857 (1969). These authors point out that the specific heat used in Ref. 2 was in error by a factor of two.
[CrossRef]

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

1967 (1)

J. Comly, E. Garmire, A. Yariv, J. Appl. Phys. 38, 4091 (1967).
[CrossRef]

Abrams, R. L.

W. B. Gandrud, R. L. Abrams, unpublished data.

Boyd, G. D.

W. B. Gandrud, G. D. Boyd, J. H. McFee, F. H. Wehmeier, Appl. Phys. Lett. 16, 59 (1970).
[CrossRef]

Comly, J.

J. Comly, E. Garmire, A. Yariv, J. Appl. Phys. 38, 4091 (1967).
[CrossRef]

Gandrud, W. B.

W. B. Gandrud, G. D. Boyd, J. H. McFee, F. H. Wehmeier, Appl. Phys. Lett. 16, 59 (1970).
[CrossRef]

W. B. Gandrud, R. L. Abrams, unpublished data.

Garmire, E.

J. Comly, E. Garmire, A. Yariv, J. Appl. Phys. 38, 4091 (1967).
[CrossRef]

Horrigan, F.

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

Hsu, S. T.

S. T. Hsu, Engineering Heat Transfer (Van Nostrand, Inc., Princeton, 1963), pp. 3–10.

Kiefer, J. E.

J. E. Kiefer, A. Yariv, Appl. Phys. Letters 15, 26 (1969); R. Weil, J. Appl. Phys. 40, 2857 (1969). These authors point out that the specific heat used in Ref. 2 was in error by a factor of two.
[CrossRef]

Klein, C.

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

McFee, J. H.

W. B. Gandrud, G. D. Boyd, J. H. McFee, F. H. Wehmeier, Appl. Phys. Lett. 16, 59 (1970).
[CrossRef]

Rudko, R.

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

Wehmeier, F. H.

W. B. Gandrud, G. D. Boyd, J. H. McFee, F. H. Wehmeier, Appl. Phys. Lett. 16, 59 (1970).
[CrossRef]

Wilson, D.

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

Yariv, A.

J. E. Kiefer, A. Yariv, Appl. Phys. Letters 15, 26 (1969); R. Weil, J. Appl. Phys. 40, 2857 (1969). These authors point out that the specific heat used in Ref. 2 was in error by a factor of two.
[CrossRef]

J. Comly, E. Garmire, A. Yariv, J. Appl. Phys. 38, 4091 (1967).
[CrossRef]

Appl. Phys. Lett. (1)

W. B. Gandrud, G. D. Boyd, J. H. McFee, F. H. Wehmeier, Appl. Phys. Lett. 16, 59 (1970).
[CrossRef]

Appl. Phys. Letters (1)

J. E. Kiefer, A. Yariv, Appl. Phys. Letters 15, 26 (1969); R. Weil, J. Appl. Phys. 40, 2857 (1969). These authors point out that the specific heat used in Ref. 2 was in error by a factor of two.
[CrossRef]

J. Appl. Phys. (1)

J. Comly, E. Garmire, A. Yariv, J. Appl. Phys. 38, 4091 (1967).
[CrossRef]

Microwaves (1)

F. Horrigan, C. Klein, R. Rudko, D. Wilson, Microwaves 8, 68 (1969).

Other (2)

W. B. Gandrud, R. L. Abrams, unpublished data.

S. T. Hsu, Engineering Heat Transfer (Van Nostrand, Inc., Princeton, 1963), pp. 3–10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Aluminum calorimeter box with top removed.

Tables (1)

Tables Icon

Table I Errors in α1 for the Cases n1 = 3.4 and α1l = 0.02

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

a 1 P 1 = m C ( d T 1 / d t ) + σ A ( T 1 4 T 0 4 ) + γ ( T 1 T 0 ) ,
a 1 P 1 ( 4 σ A T 0 3 + γ ) Δ T 1 .
a 2 P 2 = ( 4 σ A T 0 3 + γ ) Δ T 2 .
a 1 P 1 / a 2 P 2 = Δ T 1 / Δ T 2 = V 1 / V 2 ,
a 1 = a 2 ( P 2 / P 1 ) ( V 1 / V 2 ) .
r 1 = [ ( n 1 1 ) / ( n 1 + 1 ) ] 2 .
a 1 = ( 1 r 1 ) 1 exp ( α 1 l ) 1 r 1 exp ( α 1 l ) .
α 1 = ( 1 / l ) ln [ 1 r 1 ( 1 + a 1 ) 1 r 1 a 1 ] .
Δ T 2 / Δ T 2 = cosh [ ( h C / k A ) 1 2 l ] = ξ ,
a 2 P 2 = Δ T 2 ( k A h C ) 1 2 tanh [ ( h C / k A ) 1 2 l ] .
a 1 P 1 a 2 P 2 = Δ T 1 Δ T 2 ( h C / k A ) 1 2 l tanh [ ( h C / k A ) 1 2 l ] = Δ T 1 Δ T 2 ln [ ξ + ( ξ 2 1 ) 1 2 ] ( 1 ξ 2 ) 1 2 ,

Metrics