Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Martens, D. D. Doonan, Appl. Opt. 9, (1970).
  2. H. Quenzel, Appl. Opt. 8, 165 (1969).
    [CrossRef] [PubMed]
  3. J. R. Hodkinson, J. R. Greenfield, Appl. Opt. 4, 1463 (1965).
    [CrossRef]

1970 (1)

A. E. Martens, D. D. Doonan, Appl. Opt. 9, (1970).

1969 (1)

1965 (1)

Doonan, D. D.

A. E. Martens, D. D. Doonan, Appl. Opt. 9, (1970).

Greenfield, J. R.

Hodkinson, J. R.

Martens, A. E.

A. E. Martens, D. D. Doonan, Appl. Opt. 9, (1970).

Quenzel, H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical configuration of the Bausch & Lomb counter.

Fig. 2
Fig. 2

Scattering functions of single particles vs particle size. Half-cone of illuminating beam 13.75°. Collection aperture 23.75° to 53.75° (Bausch & Lomb counter).

Fig. 3
Fig. 3

Scattering functions of single particles vs particle size. Half-cone of illuminating beam 13.75°. Collection aperture 30.75° to 53.75° (Bausch & Lomb counter, newest model).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( m , φ ) = o ( λ 2 π ) 2 i 1 ( κ , m , φ ) + i 2 ( κ , m , φ ) 2 E ( λ ) S ( λ ) d λ ,
A ( r , m , α 1 , α 2 , β 1 , β 2 ) = 4 π o π α 1 α 2 β 1 β 2 I ( m , φ ) sin α sin β d β d α d γ ,

Metrics