Abstract

A spectral scanning technique is described which is capable of spectral scanning in the ultraviolet, visible, and infrared regions in times as short as fractions of a microsecond, with scan repetition rates of the order of a reciprocal scan time. The technique utilizes an electrooptic material to deflect the dispersed light in a monochromator past a fixed exit slit. Scan ranges up to two hundred times the theoretical resolution of the monochromator employed can be obtained in the visible spectral region. Results are presented for scans in the visible and infrared (2.7 μm) spectral regions using LiNbO3 as the electrooptic element.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
    [CrossRef]
  2. G. C. Pimentel, Appl. Opt. 7, 2155 (1968); D. J. Baker, A. J. Steed, Appl. Opt. 7, 2190 (1968); M. Delhaye, Appl. Opt. 7, 2195 (1968); J. Koszewski, J. Jasny, Z. R. Grabowski, Appl. Opt. 7, 2178 (1968).
    [CrossRef] [PubMed]
  3. T. C. Lee, J. David Zook, IEEE J. Quantum Electron. 4, 442 (1968)
    [CrossRef]
  4. P. V. Lenzo, E. G. Spencer, K. Nassau, J. Opt. Soc. Amer. 56, 633 (1966).
    [CrossRef]
  5. Ralph A. Sawyer, Experimental Spectroscopy (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1944).
  6. Leo Beiser, J. Opt. Soc. Amer. 57, 929 (1967).
  7. Union Carbide Corporation, Linde Division, 3651 Dellano Blvd., Torrance, Calif.
  8. “Linobate,” Crystal Technology, Inc., 2510 East Middlefield Rd., Mountain View, Calif. 94040.
  9. L. M. Lambert, J. Phys. Chem. Solids 26, 1409 (1965).
    [CrossRef]
  10. L. Ho, C. F. Buhrer, Appl. Opt. 2, 657 (1963).
    [CrossRef]

1968 (2)

1967 (1)

Leo Beiser, J. Opt. Soc. Amer. 57, 929 (1967).

1966 (2)

P. V. Lenzo, E. G. Spencer, K. Nassau, J. Opt. Soc. Amer. 56, 633 (1966).
[CrossRef]

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[CrossRef]

1965 (1)

L. M. Lambert, J. Phys. Chem. Solids 26, 1409 (1965).
[CrossRef]

1963 (1)

Beiser, Leo

Leo Beiser, J. Opt. Soc. Amer. 57, 929 (1967).

Buhrer, C. F.

Chen, F. S.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[CrossRef]

David Zook, J.

T. C. Lee, J. David Zook, IEEE J. Quantum Electron. 4, 442 (1968)
[CrossRef]

Geusic, J. E.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[CrossRef]

Ho, L.

Kurtz, S. K.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[CrossRef]

Lambert, L. M.

L. M. Lambert, J. Phys. Chem. Solids 26, 1409 (1965).
[CrossRef]

Lee, T. C.

T. C. Lee, J. David Zook, IEEE J. Quantum Electron. 4, 442 (1968)
[CrossRef]

Lenzo, P. V.

P. V. Lenzo, E. G. Spencer, K. Nassau, J. Opt. Soc. Amer. 56, 633 (1966).
[CrossRef]

Nassau, K.

P. V. Lenzo, E. G. Spencer, K. Nassau, J. Opt. Soc. Amer. 56, 633 (1966).
[CrossRef]

Pimentel, G. C.

Sawyer, Ralph A.

Ralph A. Sawyer, Experimental Spectroscopy (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1944).

Skinner, J. G.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[CrossRef]

Spencer, E. G.

P. V. Lenzo, E. G. Spencer, K. Nassau, J. Opt. Soc. Amer. 56, 633 (1966).
[CrossRef]

Wemple, S. H.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

T. C. Lee, J. David Zook, IEEE J. Quantum Electron. 4, 442 (1968)
[CrossRef]

J. Appl. Phys. (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[CrossRef]

J. Opt. Soc. Amer. (2)

Leo Beiser, J. Opt. Soc. Amer. 57, 929 (1967).

P. V. Lenzo, E. G. Spencer, K. Nassau, J. Opt. Soc. Amer. 56, 633 (1966).
[CrossRef]

J. Phys. Chem. Solids (1)

L. M. Lambert, J. Phys. Chem. Solids 26, 1409 (1965).
[CrossRef]

Other (3)

Union Carbide Corporation, Linde Division, 3651 Dellano Blvd., Torrance, Calif.

“Linobate,” Crystal Technology, Inc., 2510 East Middlefield Rd., Mountain View, Calif. 94040.

Ralph A. Sawyer, Experimental Spectroscopy (Prentice-Hall, Inc., Englewood Cliffs, N. J., 1944).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Convergent-beam inhomogeneous deflector configuration (top view, electrodes not shown).

Fig. 2
Fig. 2

(a) Convergent-beam inhomogeneous deflector configuration, single electroded. (b) Experimental configuration.

Fig. 3
Fig. 3

Inhomogeneous deflector—double electroded.

Fig. 4
Fig. 4

Inhomogeneous deflector, ray tracing.

Fig. 5
Fig. 5

Comparison of electrooptic and mechanical spectral scans—Hg orange doublet (5771 Å/5792 Å) and green (5461 Å).

Fig. 6
Fig. 6

Effect of dispersion element on electrooptic scan—Hg orange (5792 Å/5771 Å), (a) CaF2 prism; (b) NaCl prism.

Fig. 7
Fig. 7

5-μsec electrooptic scan—Hg green (5461 Å).

Fig. 8
Fig. 8

5-μsec electrooptic scan—Hg orange (5771 Å/5792 Å).

Fig. 9
Fig. 9

(a). Comparison of electrooptic and mechanical spectral scans—2.577-μ region (8 msec) (atmosphere band); (b) Electrooptic spectral scan 2.577-μ vegion (8 msec) (atmosphere band).

Fig. 10
Fig. 10

Comparison of electrooptic (8 msec and 1.25 msec) and mechanical spectral scans (2.7-μ region)-(atmosphere band).

Fig. 11
Fig. 11

D vs E LiNbO3 (60 Hz).

Fig. 12
Fig. 12

Forward and reverse electrooptic spectral scan (Hg green—5461 Å) showing effect of hysteresis.

Fig. 13
Fig. 13

Comparison of mechanical scan and derivative scan (mechanical plus electrooptic) Hg orange 5771 Å/5792 Å and green 5461 Å.

Fig. 14
Fig. 14

Electrooptic prism configuration.

Fig. 15
Fig. 15

Condensed-beam inhomogeneous deflector configuration.

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

sin θ T ( n 2 2 sin 2 θ ) 1 2 = sin α T ( n 1 2 sin 2 α ) 1 2 ,
Δ = ( n e 3 / 2 ) r 33 E 3 ,
( d θ ) p = ( d θ / d n ) ( d n / d λ ) p d λ = ( d θ ) E O ,
( t / D ) ( d n / d λ ) p d λ = 2 T E Δ ,
d λ = 2 T E Δ ( t / D ) ( d n / d λ ) p F ,
d λ = 4 T E p Δ F ( t / D ) ( d n / d λ ) p ,
d λ = 4 A ( cos β ) T E p Δ F / n N
δ λ = λ A ( t / D ) ( d n / d λ ) p | prism = λ n N | grating .
scan range theoretical resolution = a λ δ λ = R = A 4 T E p Δ F λ | prism = 4 A ( cos β ) T E p Δ F λ | grating
W d = G a L ( 2 π ν / Q ) ,
R = 4 A ( L / W ) ( F / λ ) Δ = 6.6 × 10 8 A ( L / W ) ( F / λ ) E ( Δ = 1.65 × 10 8 E for LiNbO 3 ) .
E 2 = R 2 W 2 λ 2 / [ 43 × 10 16 L 2 ( A F ) 2 ] .
E 2 = λ 2 R 2 / ( 4.3 × 10 15 L 2 ) , E 2 = 2.3 × 10 14 λ 2 ( R 2 / L 2 ) .
W d = 64 κ ( W t / Q ) λ 2 ( ν R 2 / L ) .
W d 7.4 × 10 10 ν R 2 / L .
Δ T W D / L 1 / 8 K 2 W D / L .
Δ n D = 3 × 10 5 Δ T = 6 × 10 5 W D / L 4.5 10 14 ν R 2 / L 2 .
Δ n D = 2 × 10 4 .
d n / d T = α ,
d n T = α Δ T α 2 W D / L ,
d θ T = ( L / W ) d n T = 2 α W D / W .
d θ D λ / D ,
d θ T / d θ D = ( 2 α W D / λ ) ( D / W ) .
d θ T / d θ D 5 W D 3.8 × 10 9 ( ν R 2 / L ) .
d n = ( d n / d λ ) d λ ,
d λ = 2 d n E . O . / ( d n / d λ ) E . O ,
δ λ = λ l ( d n / d λ ) E . O . ,
d λ / δ λ = ( 2 t / λ ) E . O . = R .
d λ = [ 4 T d n E O / ( t / D ) p ( d n / d λ ) p ] ( W / D ) ,
d λ / δ λ = R = 4 T W d n E O / λ ,
sin θ T ( n 2 2 sin 2 θ ) 1 2 = sin α T ( n 1 2 sin 2 α ) 1 2 ,
θ = α + 2 T Δ .
d θ / d λ = ( θ / α ) ( d α / d λ ) + ( θ / n 0 ) ( d n 0 / d λ ) ,
θ α = ( 1 T sin α ( n 1 2 sin 2 α ) 1 2 ) cos / ( 1 T sin θ ( n 2 2 sin 2 θ ) 1 2 ) cos θ ,
θ / n 0 = { ( n 0 + Δ ) / [ ( n 2 2 sin 2 θ ) 1 2 + T sin θ ] ( n 0 Δ ) ( n 2 2 sin 2 θ ) 1 2 / [ ( n 2 2 sin 2 θ ) 1 2 + T sin θ ] × ( n 1 2 sin 2 α ) 1 2 } ( T / cos θ ) .
d α / d λ = ( t / D ) ( d n / d λ ) p ,
Δ , Δ 2 n 0 2 , sin 2 α n 0 2 , sin α = α , cos α = cos θ = 1 , sin θ = θ , d θ / d λ ( t / D ) ( d n / d λ ) p ,

Metrics