Abstract

Heterodyne detection of infrared radiation by cryogenically cooled extrinsic photoconductors is reviewed. Operational characteristics of a highly compensated Ge:Hg detector are calculated from experimentally determined material parameters. In many cases wideband, quantum noise limited performance can be obtained only if substantial refrigeration capacity is available at detector operating temperature.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Oliver, Proc. IRE 49, 1960 (1961).
  2. C. W. Helstrom, J. Opt. Soc. Amer. 57, 353 (1967).
    [Crossref]
  3. C. J. Buczek, G. S. Picus, Appl. Phys. Lett. 11, 125 (1967).
    [Crossref]
  4. A. Yariv, C. Buczek, G. S. Picus, Proc. Internat. Conf. Solid State Phys.9–10, 500 (Moscow, 1967).
  5. A. Van der Ziel, Noise (Prentice-Hall, Englewood Cliffs, N. J., 1956).
  6. P. Fisher, H. Y. Fan, Phys. Rev. Letters 5, 195 (1960).
    [Crossref]
  7. R. A. Chapman, W. G. Hutchinson, Solid State Comm. 3, 293 (1965).
    [Crossref]
  8. S. R. Borrello, H. Levinstein, J. Appl. Phys. 33, 2947 (1962).
    [Crossref]
  9. J. Blakemore, Semiconductor Statistics (Pergamon Press, New York, 1962), Chap. 3.
  10. K. M. van Vliet, Appl. Opt. 6, 1145 (1967).
    [Crossref] [PubMed]
  11. For a discussion of the physical mechanisms underlying the observed behavior of μ(T,E), τ(T,E), see Ref. 4.

1967 (3)

C. W. Helstrom, J. Opt. Soc. Amer. 57, 353 (1967).
[Crossref]

C. J. Buczek, G. S. Picus, Appl. Phys. Lett. 11, 125 (1967).
[Crossref]

K. M. van Vliet, Appl. Opt. 6, 1145 (1967).
[Crossref] [PubMed]

1965 (1)

R. A. Chapman, W. G. Hutchinson, Solid State Comm. 3, 293 (1965).
[Crossref]

1962 (1)

S. R. Borrello, H. Levinstein, J. Appl. Phys. 33, 2947 (1962).
[Crossref]

1961 (1)

B. M. Oliver, Proc. IRE 49, 1960 (1961).

1960 (1)

P. Fisher, H. Y. Fan, Phys. Rev. Letters 5, 195 (1960).
[Crossref]

Blakemore, J.

J. Blakemore, Semiconductor Statistics (Pergamon Press, New York, 1962), Chap. 3.

Borrello, S. R.

S. R. Borrello, H. Levinstein, J. Appl. Phys. 33, 2947 (1962).
[Crossref]

Buczek, C.

A. Yariv, C. Buczek, G. S. Picus, Proc. Internat. Conf. Solid State Phys.9–10, 500 (Moscow, 1967).

Buczek, C. J.

C. J. Buczek, G. S. Picus, Appl. Phys. Lett. 11, 125 (1967).
[Crossref]

Chapman, R. A.

R. A. Chapman, W. G. Hutchinson, Solid State Comm. 3, 293 (1965).
[Crossref]

Fan, H. Y.

P. Fisher, H. Y. Fan, Phys. Rev. Letters 5, 195 (1960).
[Crossref]

Fisher, P.

P. Fisher, H. Y. Fan, Phys. Rev. Letters 5, 195 (1960).
[Crossref]

Helstrom, C. W.

C. W. Helstrom, J. Opt. Soc. Amer. 57, 353 (1967).
[Crossref]

Hutchinson, W. G.

R. A. Chapman, W. G. Hutchinson, Solid State Comm. 3, 293 (1965).
[Crossref]

Levinstein, H.

S. R. Borrello, H. Levinstein, J. Appl. Phys. 33, 2947 (1962).
[Crossref]

Oliver, B. M.

B. M. Oliver, Proc. IRE 49, 1960 (1961).

Picus, G. S.

C. J. Buczek, G. S. Picus, Appl. Phys. Lett. 11, 125 (1967).
[Crossref]

A. Yariv, C. Buczek, G. S. Picus, Proc. Internat. Conf. Solid State Phys.9–10, 500 (Moscow, 1967).

Van der Ziel, A.

A. Van der Ziel, Noise (Prentice-Hall, Englewood Cliffs, N. J., 1956).

van Vliet, K. M.

Yariv, A.

A. Yariv, C. Buczek, G. S. Picus, Proc. Internat. Conf. Solid State Phys.9–10, 500 (Moscow, 1967).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. J. Buczek, G. S. Picus, Appl. Phys. Lett. 11, 125 (1967).
[Crossref]

J. Appl. Phys. (1)

S. R. Borrello, H. Levinstein, J. Appl. Phys. 33, 2947 (1962).
[Crossref]

J. Opt. Soc. Amer. (1)

C. W. Helstrom, J. Opt. Soc. Amer. 57, 353 (1967).
[Crossref]

Phys. Rev. Letters (1)

P. Fisher, H. Y. Fan, Phys. Rev. Letters 5, 195 (1960).
[Crossref]

Proc. IRE (1)

B. M. Oliver, Proc. IRE 49, 1960 (1961).

Solid State Comm. (1)

R. A. Chapman, W. G. Hutchinson, Solid State Comm. 3, 293 (1965).
[Crossref]

Other (4)

J. Blakemore, Semiconductor Statistics (Pergamon Press, New York, 1962), Chap. 3.

For a discussion of the physical mechanisms underlying the observed behavior of μ(T,E), τ(T,E), see Ref. 4.

A. Yariv, C. Buczek, G. S. Picus, Proc. Internat. Conf. Solid State Phys.9–10, 500 (Moscow, 1967).

A. Van der Ziel, Noise (Prentice-Hall, Englewood Cliffs, N. J., 1956).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Hole mobility as a function of absolute temperature for compensated mercury-doped germanium (sample No. 44). 10.6-μ laser excitation was used to photoexcite free holes. The solid line is an empirical fit to the data.

Fig. 2
Fig. 2

Hole mobility as a function of applied electric field for compensated mercury-doped germanium (sample No. 44). 10.6-μ laser excitation was used to photoexcite free holes.

Fig. 3
Fig. 3

Free hole concentration as a function of absolute temperature for compensated mercury-doped germanium (sample No. 44). The solid line is an empirical fit to the data.

Fig. 4
Fig. 4

Hole lifetime as a function of applied electric field for compensated mercury-doped germanium. Data from both resistivity measurements (Fig. 3) and heterodyne measurements (see Refs. 3 and 4) are shown.

Fig. 5
Fig. 5

Calculated maximum operating frequency as a function of absolute temperature for an infrared radiation detector fabricated from material having the properties of Ge:Hg sample No. 44.

Fig. 6
Fig. 6

Calculated minimum power required for quantum noise limited operation at a bandwidth of 107 Hz of a heterodyne mode infrared detector fabricated from material having the properties of Ge:Hg sample No. 44. For any given curve, the transition from dashed to solid lines marks the transition from amplifier noise dominance to generation–recombination noise dominance [see Eq. (16)].

Fig. 7
Fig. 7

Calculated minimum power required for quantum noise limited operation at a bandwidth of 108 Hz of a heterodyne mode infrared detector fabricated from material having the properties of Ge:Hg sample No. 44.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

α N A N D ,
τ 1 / ( N D σ υ ¯ ) .
F = F 0 + F s + 2 ( F 0 F s ) 1 2 cos ω t ,
Δ p = η τ [ ( F 0 + F s ) + 2 ( F 0 F s ) 1 2 ( 1 + ω 2 τ 2 ) 1 2 cos ( ω t ϕ ) ] ,
| ı ¯ s ( ω ) | 2 = 2 e 2 η 2 ( τ τ r ) 2 ( 1 1 + ω 2 τ 2 ) F 0 F s .
| ı ¯ n ( ω ) | 2 = 4 e τ τ r ( 1 1 + ω 2 τ 2 ) I d c B ,
I 1 = e η ( τ / τ r ) ( F 0 + F s ) .
I 2 = e η ( τ / τ r ) F B .
p T = N A N D N D N V exp ( E a / k T ) ,
I 3 = e V p T / τ r ,
| ı ¯ r ( ω ) 2 | 2 = ( 4 k T e / R L ) B ,
| ı ¯ r ( ω ) | 2 = 8 π k T e C B 2 .
| i s ( ω ) | 2 = 2 e 2 η 2 ( τ τ r ) 2 ( 1 1 + ω 2 τ 2 ) F 0 F s ,
| i n ( ω ) | 2 = 4 e 2 τ τ r 2 ( 1 1 + ω 2 τ 2 ) × B [ η τ ( F 0 + F B + F s ) + p T V ] + 8 π k T e C B 2 .
| i s ( ω ) | 2 | i n ( ω ) | 2 = η F s 2 B .
P s min = h ν F s = 2 B h ν η ,
F 0 min = F B + 2 π f m V η p T + 8 π 3 k T e C e 2 L 2 μ 2 E 2 f m 2 B η
P 0 min = h ν F 0 min .
I d c = e η ( τ / τ r ) F 0 .
P bias = ( P 0 / h v ) e η μ τ E 2 .
P total = P 0 + P bias = P 0 ( 1 + e η μ τ E 2 h ν ) .
P total 4 π 2 k T e C e L 2 μ f m B
N A = 5.4 × 10 15 cm 3 , N D = 1.9 × 10 14 cm 3 , E A = 0.088 eV , 1 / β ( m * / m ) E = 0.1277.
μ ( T , E ) μ 1 ( T ) · μ 2 ( E ) , μ 1 ( T ) = 1.74 T 0.182 , 0 < T < 100 , μ 2 ( E ) = { 2.35 × 10 4 0 < E < 10.2 2.5 × 10 4 1.5 × 10 2 E 10.2 < E < 40 1.2 × 10 5 E 0.5 40 < E < 1000.
τ ( T , E ) = τ 1 ( T ) . τ 2 ( E ) , τ 1 ( T ) = 2.2 × 10 10 T 0.5 , 0 < T < 100 , τ 2 ( E ) = { 0.305 0.28 + 0.007 E 0.03 + 0.083 E 0.56 0 < E < 4 4 < E < 10 10 < E < 1000.

Metrics