Abstract

A new germanium photodiode having an extremely uniform quantum efficiency from the visible to 1.65 μ has been developed. The device consists of a lithium-drifted junction in which the light enters in a direction parallel to the junction, thereby allowing absorption path lengths of several centimeters, if desired, with essentially zero dead layer. Sensitive areas up to about 10 mm in one dimension and several centimeters in the other dimension are possible. Typical characteristics for a device 2 cm long having a sensitive area 7 mm × 7 mm are: diode capacitance, 3 pF; charge collection time, 75% of charge collected in 25 nsec at 500 V; measured NEP, 3.7 × 10−15 WHz12 at 1.625 μm and 77 K for frequencies up to 30 kHz, and 5.5 × 10−13 WHz12 at 1.625 μm and 195 K for frequencies up to 40 kHz. At low frequencies, the detectivity can be background limited by 300-K blackbody radiation. The device must be used and stored at reduced temperatures. A convenient cryostat, capable of maintaining the device at or near 77 K for 150 h without refilling, is described.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Williams, P. P. Webb, Nucl. Ins'rum. Methods 22, No. 2, 361 (1963).
  2. See, for example, G. Dearnaley, D. C. Northrop, Semiconductor Counters for Nuclear Radiations (John Wiley & Sons, Inc., New York, 1966).
  3. W. L. Brown, W. A. Higinbotham, G. L. Miller, R. L. Chase, Eds., Semiconductor Nuclear-Particle Detectors and Circuits (Publ. 1593, National Academy of Sciences, Washington, D.C., 1969).
  4. H. R. Phillipp, E. A. Taft, Phys. Rev. 120, 37 (1960).
    [CrossRef]
  5. W. C. Dash, R. Newman, Phys. Rev. 99, 1151 (1955).
    [CrossRef]
  6. T. P. McLean, in Progress in Semiconductors (John Wiley & Sons, Inc., New York, 1960), Vol. 5.
  7. E. Sakai, H. L. Malm, I. L. Fowler, “Performance of Ge(Li) Detectors Over a Wide Temperature Range,” Chalk River Rep. No. AECL-2762 (May1967); also published in Ref. 3, p. 101.
  8. “Integrated Detector–Preamplifier Assemblies,” Final Rep. (December1964), Contr. AF33(615)-1113 ARPA Order No. 268, RCA Victor Rep. No. RES-66-525-7.

1963 (1)

R. L. Williams, P. P. Webb, Nucl. Ins'rum. Methods 22, No. 2, 361 (1963).

1960 (1)

H. R. Phillipp, E. A. Taft, Phys. Rev. 120, 37 (1960).
[CrossRef]

1955 (1)

W. C. Dash, R. Newman, Phys. Rev. 99, 1151 (1955).
[CrossRef]

Dash, W. C.

W. C. Dash, R. Newman, Phys. Rev. 99, 1151 (1955).
[CrossRef]

Dearnaley, G.

See, for example, G. Dearnaley, D. C. Northrop, Semiconductor Counters for Nuclear Radiations (John Wiley & Sons, Inc., New York, 1966).

Fowler, I. L.

E. Sakai, H. L. Malm, I. L. Fowler, “Performance of Ge(Li) Detectors Over a Wide Temperature Range,” Chalk River Rep. No. AECL-2762 (May1967); also published in Ref. 3, p. 101.

Malm, H. L.

E. Sakai, H. L. Malm, I. L. Fowler, “Performance of Ge(Li) Detectors Over a Wide Temperature Range,” Chalk River Rep. No. AECL-2762 (May1967); also published in Ref. 3, p. 101.

McLean, T. P.

T. P. McLean, in Progress in Semiconductors (John Wiley & Sons, Inc., New York, 1960), Vol. 5.

Newman, R.

W. C. Dash, R. Newman, Phys. Rev. 99, 1151 (1955).
[CrossRef]

Northrop, D. C.

See, for example, G. Dearnaley, D. C. Northrop, Semiconductor Counters for Nuclear Radiations (John Wiley & Sons, Inc., New York, 1966).

Phillipp, H. R.

H. R. Phillipp, E. A. Taft, Phys. Rev. 120, 37 (1960).
[CrossRef]

Sakai, E.

E. Sakai, H. L. Malm, I. L. Fowler, “Performance of Ge(Li) Detectors Over a Wide Temperature Range,” Chalk River Rep. No. AECL-2762 (May1967); also published in Ref. 3, p. 101.

Taft, E. A.

H. R. Phillipp, E. A. Taft, Phys. Rev. 120, 37 (1960).
[CrossRef]

Webb, P. P.

R. L. Williams, P. P. Webb, Nucl. Ins'rum. Methods 22, No. 2, 361 (1963).

Williams, R. L.

R. L. Williams, P. P. Webb, Nucl. Ins'rum. Methods 22, No. 2, 361 (1963).

Nucl. Ins'rum. Methods (1)

R. L. Williams, P. P. Webb, Nucl. Ins'rum. Methods 22, No. 2, 361 (1963).

Phys. Rev. (2)

H. R. Phillipp, E. A. Taft, Phys. Rev. 120, 37 (1960).
[CrossRef]

W. C. Dash, R. Newman, Phys. Rev. 99, 1151 (1955).
[CrossRef]

Other (5)

T. P. McLean, in Progress in Semiconductors (John Wiley & Sons, Inc., New York, 1960), Vol. 5.

E. Sakai, H. L. Malm, I. L. Fowler, “Performance of Ge(Li) Detectors Over a Wide Temperature Range,” Chalk River Rep. No. AECL-2762 (May1967); also published in Ref. 3, p. 101.

“Integrated Detector–Preamplifier Assemblies,” Final Rep. (December1964), Contr. AF33(615)-1113 ARPA Order No. 268, RCA Victor Rep. No. RES-66-525-7.

See, for example, G. Dearnaley, D. C. Northrop, Semiconductor Counters for Nuclear Radiations (John Wiley & Sons, Inc., New York, 1966).

W. L. Brown, W. A. Higinbotham, G. L. Miller, R. L. Chase, Eds., Semiconductor Nuclear-Particle Detectors and Circuits (Publ. 1593, National Academy of Sciences, Washington, D.C., 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Ge(Li) photodiode structure and orientation with respect to incident radiation.

Fig. 2
Fig. 2

Absorption coefficient of germanium at several temperatures. (Refs. 46.)

Fig. 3
Fig. 3

Calculated and measured quantum efficiencies vs wavelength.

Fig. 4
Fig. 4

(a) Current and (b) charge pulses resulting from a delta function light pulse, assuming the depletion layer width to be uniformly illuminated.

Fig. 5
Fig. 5

Electron transit time vs depletion layer width for a number of diode voltages.

Fig. 6
Fig. 6

Leakage current vs temperature for diode having l = 2 cm, t2 = w = 0.7 cm. Proper surface treatment should reduce IR to less than 10−12 A at 77 K.

Fig. 7
Fig. 7

Equivalent circuit assumed for calculation of noise-equivalent circuit.

Fig. 8
Fig. 8

Calculated values of attainable noise-equivalent power vs frequency for various values of IR, RS, and Ci.

Fig. 9
Fig. 9

Circuit diagram of the cooled preamplifier.

Fig. 10
Fig. 10

Signal and noise vs frequency.

Fig. 11
Fig. 11

Background photocurrent generated per unit area of detector surface which sees π sr of blackbody.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

η ( λ ) = ( 1 r 1 ) e α d ( 1 e α l ) ( 1 + r 2 e α l ) 1 r 1 r 2 e 2 α l ξ P c ,
C = 1.4 w l / t 2 ( pF ) ,
R = 0.806 λ η ,
NEP = ( 1 / R ) [ i n 2 + e n 2 ( g i 2 + ω 2 C i 2 ) ] 1 2 .
i n 2 = ( 4 k T g i + 2 q I r ) B ,
e n 2 = δ × ( 4 k T / g m ) B = 4 k T R s B ,
NEP = R 1 ( 2 q I r + 4 k T R s ω 2 C i 2 ) 1 2 B 1 2 .
I r = q A π Ω 0 η ( λ ) Q λ ( T ) d λ = A Ω π J r ( T ) ,
Q λ ( T ) = ( 1.884 / λ 4 ) × 10 11 [ exp ( 1.4388 / λ T ) 1 ] 1 photons cm 2 sec 1 ( cm wavelength ) 1 ,

Metrics