Abstract

The polarization properties of ring resonators for the case of a single discharge tube with Brewster angle windows in the optical circuit are investigated. The azimuths of polarization of the traveling waves and the related reflection losses due to the Brewster angle windows are calculated as a function of the orientation angle of the Brewster angle windows for different anisotropic reflectances of the reflecting mirrors of the resonators. The experiments are made on a triangular ring laser which is operated at the 6328 Å He–Ne line. The measured polarization and intensity of the output light agree very well with the theoretical predictions.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. N. Bagaev, Yu. V. Troitskii, B. I. Troshin, Opt. Spectrosc. 21, 420 (1966).
  2. R. C. Jones, J. Opt. Soc. Amer. 31, 488 (1941).
    [CrossRef]

1966

S. N. Bagaev, Yu. V. Troitskii, B. I. Troshin, Opt. Spectrosc. 21, 420 (1966).

1941

R. C. Jones, J. Opt. Soc. Amer. 31, 488 (1941).
[CrossRef]

Bagaev, S. N.

S. N. Bagaev, Yu. V. Troitskii, B. I. Troshin, Opt. Spectrosc. 21, 420 (1966).

Jones, R. C.

R. C. Jones, J. Opt. Soc. Amer. 31, 488 (1941).
[CrossRef]

Troitskii, Yu. V.

S. N. Bagaev, Yu. V. Troitskii, B. I. Troshin, Opt. Spectrosc. 21, 420 (1966).

Troshin, B. I.

S. N. Bagaev, Yu. V. Troitskii, B. I. Troshin, Opt. Spectrosc. 21, 420 (1966).

J. Opt. Soc. Amer.

R. C. Jones, J. Opt. Soc. Amer. 31, 488 (1941).
[CrossRef]

Opt. Spectrosc.

S. N. Bagaev, Yu. V. Troitskii, B. I. Troshin, Opt. Spectrosc. 21, 420 (1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of a ring laser and the experimental arrangement: F, filter; P, Nicol prism; PM, photomultiplier; Mi, reflecting mirror.

Fig. 2
Fig. 2

Calculated azimuths of polarization of the traveling waves as a function of the orientation angle of the Brewster angle windows for different anisotropic reflectances of the mirrors.

Fig. 3
Fig. 3

Calculated reflection losses due to the Brewster angle windows associated with the azimuths of polarization shown in Fig. 2.

Fig. 4
Fig. 4

Dependence of the azimuth of polarization of the traveling wave on the orientation angle of the Brewster angle windows for an equilateral triangle ring laser (He–Ne 6328 Å).

Fig. 5
Fig. 5

Measured intensity and calculated reflection losses, associated with the azimuth of polarization shown in Fig. 4.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( E x E y ) ,
λ ( E x E y ) = ( cos θ sin θ sin θ cos θ ) ( μ 0 0 u ) ( cos θ sin θ sin θ cos θ ) × ( r x 0 0 r y ) ( E x E y ) ,
λ ± = 1 2 r u ( cos 2 θ + υ sin 2 θ + ( sin 2 θ + υ cos 2 θ ) r ± { [ cos 2 + r sin 2 θ υ ( sin 2 θ + r cos 2 θ ) ] 2 + 4 υ ( 1 r ) 2 × cos 2 θ sin 2 θ } 1 2 ) ,
( E y E x ) ± = λ ± / ( r x u ) ( cos 2 θ + υ sin 2 θ ) r ( 1 υ ) sin θ cos θ ,
r = r y / r x , υ = u / u .
ϕ ± = tan 1 ( E y E x ) ± ( 90 ° < ϕ ± 90 ° ) .
L ± = 1 λ ± 2 .
l ± = 1 u 2 cos 2 ( ψ ± θ ) u 2 sin 2 ( ψ ± θ ) ,
ψ ± = tan 1 [ r ( E y / E x ) ± ]

Metrics