Abstract

The principles of use of gratings as laser wavelength-selective end reflectors are reviewed. A useful output beam can be derived from a grating’s zeroth-order reflection. This beam moves when the grating is rotated to select various laser wavelengths, but can be made stationary by the addition of auxiliary mirrors. The grating–mirror combination has been applied to a CO2 laser in the ir and to a dye laser in the visible.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. White, Appl. Opt. 3, 431 (1964).
    [CrossRef]
  2. G. Moeller, J. D. Rigden, Appl. Phys. Lett. 8, 69 (1966).
    [CrossRef]
  3. R. McClellan, F. Denton, Opt. Spectra, July/August, 49 (1968).
  4. T. J. Manuccia, G. J. Wolga, Second Conf. on Chemical and Molecular Lasers (St. Louis, 22–24 May 1969).
  5. V. Daneu, Appl. Opt. 8, 1745 (1969).
    [CrossRef] [PubMed]
  6. A. Wirgin, R. Deleuil, J. Opt. Soc. Amer. 59, 1348 (1969).
    [CrossRef]
  7. T. M. Hard, J. Quantum Electron. QE-5, 321A (1969).
    [CrossRef]
  8. E. Lau, W. Krug, Ann. Physik 4, 161 (1948).
    [CrossRef]
  9. H. B. Holl, R. F. Glaser, J. Opt. Soc. Amer. 59, 1520A (1969).
  10. R. A. McFarlane, U.S. Patent3,448,404. In this invention the angle between the beam splitter and the flat mirror was restricted to 90°.
  11. H. Marantz (unpublished results, this laboratory).
  12. H. Furumoto, H. Ceccon, (unpublished results, this laboratory).

1969

A. Wirgin, R. Deleuil, J. Opt. Soc. Amer. 59, 1348 (1969).
[CrossRef]

T. M. Hard, J. Quantum Electron. QE-5, 321A (1969).
[CrossRef]

H. B. Holl, R. F. Glaser, J. Opt. Soc. Amer. 59, 1520A (1969).

V. Daneu, Appl. Opt. 8, 1745 (1969).
[CrossRef] [PubMed]

1968

R. McClellan, F. Denton, Opt. Spectra, July/August, 49 (1968).

1966

G. Moeller, J. D. Rigden, Appl. Phys. Lett. 8, 69 (1966).
[CrossRef]

1964

1948

E. Lau, W. Krug, Ann. Physik 4, 161 (1948).
[CrossRef]

Ceccon, H.

H. Furumoto, H. Ceccon, (unpublished results, this laboratory).

Daneu, V.

Deleuil, R.

A. Wirgin, R. Deleuil, J. Opt. Soc. Amer. 59, 1348 (1969).
[CrossRef]

Denton, F.

R. McClellan, F. Denton, Opt. Spectra, July/August, 49 (1968).

Furumoto, H.

H. Furumoto, H. Ceccon, (unpublished results, this laboratory).

Glaser, R. F.

H. B. Holl, R. F. Glaser, J. Opt. Soc. Amer. 59, 1520A (1969).

Hard, T. M.

T. M. Hard, J. Quantum Electron. QE-5, 321A (1969).
[CrossRef]

Holl, H. B.

H. B. Holl, R. F. Glaser, J. Opt. Soc. Amer. 59, 1520A (1969).

Krug, W.

E. Lau, W. Krug, Ann. Physik 4, 161 (1948).
[CrossRef]

Lau, E.

E. Lau, W. Krug, Ann. Physik 4, 161 (1948).
[CrossRef]

Manuccia, T. J.

T. J. Manuccia, G. J. Wolga, Second Conf. on Chemical and Molecular Lasers (St. Louis, 22–24 May 1969).

Marantz, H.

H. Marantz (unpublished results, this laboratory).

McClellan, R.

R. McClellan, F. Denton, Opt. Spectra, July/August, 49 (1968).

McFarlane, R. A.

R. A. McFarlane, U.S. Patent3,448,404. In this invention the angle between the beam splitter and the flat mirror was restricted to 90°.

Moeller, G.

G. Moeller, J. D. Rigden, Appl. Phys. Lett. 8, 69 (1966).
[CrossRef]

Rigden, J. D.

G. Moeller, J. D. Rigden, Appl. Phys. Lett. 8, 69 (1966).
[CrossRef]

White, A. D.

Wirgin, A.

A. Wirgin, R. Deleuil, J. Opt. Soc. Amer. 59, 1348 (1969).
[CrossRef]

Wolga, G. J.

T. J. Manuccia, G. J. Wolga, Second Conf. on Chemical and Molecular Lasers (St. Louis, 22–24 May 1969).

Ann. Physik

E. Lau, W. Krug, Ann. Physik 4, 161 (1948).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G. Moeller, J. D. Rigden, Appl. Phys. Lett. 8, 69 (1966).
[CrossRef]

J. Opt. Soc. Amer.

A. Wirgin, R. Deleuil, J. Opt. Soc. Amer. 59, 1348 (1969).
[CrossRef]

H. B. Holl, R. F. Glaser, J. Opt. Soc. Amer. 59, 1520A (1969).

J. Quantum Electron.

T. M. Hard, J. Quantum Electron. QE-5, 321A (1969).
[CrossRef]

Opt. Spectra

R. McClellan, F. Denton, Opt. Spectra, July/August, 49 (1968).

Other

T. J. Manuccia, G. J. Wolga, Second Conf. on Chemical and Molecular Lasers (St. Louis, 22–24 May 1969).

R. A. McFarlane, U.S. Patent3,448,404. In this invention the angle between the beam splitter and the flat mirror was restricted to 90°.

H. Marantz (unpublished results, this laboratory).

H. Furumoto, H. Ceccon, (unpublished results, this laboratory).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Grating serving as Littrow wavelength selector in a laser. G—grating; M—laser medium; R—reflector; i—angle of incidence. View parallel to grating grooves.

Fig. 2
Fig. 2

Groove profile of an idealized grating. b—blaze angle.

Fig. 3
Fig. 3

Efficiency of a commercial grating ruled for the visible region, 1180 grooves/mm. (Courtesy of Richard G. Schmitt, Jarrell-Ash Co., Waltham, Mass.)

Fig. 4
Fig. 4

Device A. G—grating; S—spherical mirror; F—flat mirror; O—rotation axis of device and center of curvature of S.

Fig. 5
Fig. 5

Geometrical principle of device A, as described in text.

Fig. 6
Fig. 6

Device B. G—grating; F—flat mirror; O—rotation axis.

Fig. 7
Fig. 7

Diagram to illustrate (a), (b), and (c) in text. 1—incident ray; 2—reflected ray; P—arbitrary point in surface of mirror.

Fig. 8
Fig. 8

Geometrical principle of device B, described in text.

Fig. 9
Fig. 9

Useful configurations of device B.

Fig. 10
Fig. 10

Configurations of device B, superimposed on a given pair of input and output rays.

Fig. 11
Fig. 11

External Fabry-Perot cavity coupled to a laser cavity through the specular reflection of a grating. E—external mirror normal to laser output. The Littrow condition is automatically satisfied at the same wavelength in both cavities.

Fig. 12
Fig. 12

Collinear output. L—stationary flat mirror.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

m λ = d ( sin i + sin r ) ,
m L λ L = 2 d sin i .
d = m L λ L / 2 sin i ,
2 m / m L 1 = sin r / sin i .
1 > sin i > ( 2 ( m L + 1 ) / m L 1 ) 1 .
1 2 ( m L + 2 ) λ L > d > 1 2 m L λ L .
1.5 λ L > d > 0.5 λ L ,
d r d λ L = m L d cos r = [ ( d m L ) 2 ( λ L 2 ) 2 ] 1 2 .

Metrics