Abstract

Some spectroscopic studies of lightning from 1901 to the present are reviewed, with special emphasis on slitless techniques—time-integrated and time-resolved. Some of the best examples of the authors’ time-integrated spectra are reproduced to display and identify emission and absorption features from 3000 Å to almost 9000 Å on a nearly uniform scale approximating 20 Å/mm. Time-resolved spectra in the visible region are reproduced in the range of milliseconds for a continuing-current luminosity, and microseconds for a return stroke and a stepped leader.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Pickering, Astrophys. J. 14, 367 (1901).
    [CrossRef]
  2. P. Fox, Astrophys. J. 14, 294 (1903).
    [CrossRef]
  3. V. M. Slipher, “The Spectrum of Lightning,” Lowell Obs. Bull. No. 79, Flagstaff, Ariz. 55, (1917).
  4. D. Alter, Amer. Sci. (2) 19, 213, (1855).
  5. H. Israel, K. Wurm, Naturwissenshaften 52, 778, (1941).
    [CrossRef]
  6. L. E. Salanave, Science 134, 1395 (1961).
    [CrossRef] [PubMed]
  7. M. A. Uman, Lightning (McGraw-Hill, New York, 1969), p. 159.
  8. M. Dufay, Ann. Geophys. 5, 255, (1949).
  9. C. F. Knuckles, J. W. Swensson, Ann. Geophys. 8, 333 (1952).
  10. B. F. J. Schonland, Handbuch der Physik (Springer-Verlag OHG, Berlin, 1956) Vol. 22, p. 576.
    [CrossRef]
  11. L. Wallace, Astrophys. J. 139, 944 (1964).
    [CrossRef]
  12. C. E. Moore, “A Multiplet Table of Astrophysical Interest,” rev. ed., Contrib. Princeton Univ. Obs., No. 20 (1945).
  13. L. E. Salanave, Advan. Geophys. 10, 83 (1964).
    [CrossRef]
  14. A. B. Meinel, L. E. Salanave, J. Atmospheric Sci. 21, 157 (1964).
    [CrossRef]
  15. R. E. Orville, J. Geophys. Res. 72, 3557 (1967).
    [CrossRef]
  16. L. E. Salanave, Planetary Electrodynamics, edited by S. Coroniti, J. Hughes (Gordon and Breach, New York, 1969), p. 449.
  17. L. E. Salanave, R. E. Orville, C. N. Richards, J. Geophys. Res. 67, 1877 (1962).
    [CrossRef]
  18. M. L. Prueitt, J. Geophys. Res. 68, 803 (1963).
    [CrossRef]
  19. M. A. Uman, J. Atmospheric Terrest. Phys. 26, 123 (1964).
    [CrossRef]
  20. N. Kitagawa, M. Brook, E. J. Workman, J. Geophys. Res. 67, 637 (1962).
    [CrossRef]
  21. M. Brook, N. Kitagawa, E. J. Workman, J. Geophys. Res. 67, 649 (1962).
    [CrossRef]
  22. D. P. Williams, M. Brook, J. Geophys. Res. 68, 3243 (1963).
    [CrossRef]
  23. D. M. Fuquay, R. G. Baughman, A. R. Taylor, R. G. Hawe, J. Geophys. Res. 72, 6371 (1967).
    [CrossRef]
  24. M. A. Uman, Spectrum 3, 102 (1966).
    [CrossRef]
  25. J. M. Somerville, The Electric Arc (John Wiley, New York, 1959), p 28.
  26. R. E. Orville, J. Geophys. Res. 73, 6999 (1968).
    [CrossRef]
  27. M. A. Uman, J. Geophys. Res. 74, 949 (1969).
    [CrossRef]
  28. R. E. Orville, J. Atmospheric Sci., 25; (a), 827; (b), 839; and (c), 852 (1968); in three parts.
    [CrossRef]
  29. M. A. Uman, R. E. Orville, A. M. Sletten, E. P. Krider, J. Appl. Phys. 39, 5162 (1968).
    [CrossRef]
  30. K. Berger, J. Franklin Inst. 283, 478 (1967).
    [CrossRef]

1969 (1)

M. A. Uman, J. Geophys. Res. 74, 949 (1969).
[CrossRef]

1968 (3)

R. E. Orville, J. Atmospheric Sci., 25; (a), 827; (b), 839; and (c), 852 (1968); in three parts.
[CrossRef]

M. A. Uman, R. E. Orville, A. M. Sletten, E. P. Krider, J. Appl. Phys. 39, 5162 (1968).
[CrossRef]

R. E. Orville, J. Geophys. Res. 73, 6999 (1968).
[CrossRef]

1967 (3)

D. M. Fuquay, R. G. Baughman, A. R. Taylor, R. G. Hawe, J. Geophys. Res. 72, 6371 (1967).
[CrossRef]

K. Berger, J. Franklin Inst. 283, 478 (1967).
[CrossRef]

R. E. Orville, J. Geophys. Res. 72, 3557 (1967).
[CrossRef]

1966 (1)

M. A. Uman, Spectrum 3, 102 (1966).
[CrossRef]

1964 (4)

L. Wallace, Astrophys. J. 139, 944 (1964).
[CrossRef]

L. E. Salanave, Advan. Geophys. 10, 83 (1964).
[CrossRef]

A. B. Meinel, L. E. Salanave, J. Atmospheric Sci. 21, 157 (1964).
[CrossRef]

M. A. Uman, J. Atmospheric Terrest. Phys. 26, 123 (1964).
[CrossRef]

1963 (2)

M. L. Prueitt, J. Geophys. Res. 68, 803 (1963).
[CrossRef]

D. P. Williams, M. Brook, J. Geophys. Res. 68, 3243 (1963).
[CrossRef]

1962 (3)

N. Kitagawa, M. Brook, E. J. Workman, J. Geophys. Res. 67, 637 (1962).
[CrossRef]

M. Brook, N. Kitagawa, E. J. Workman, J. Geophys. Res. 67, 649 (1962).
[CrossRef]

L. E. Salanave, R. E. Orville, C. N. Richards, J. Geophys. Res. 67, 1877 (1962).
[CrossRef]

1961 (1)

L. E. Salanave, Science 134, 1395 (1961).
[CrossRef] [PubMed]

1952 (1)

C. F. Knuckles, J. W. Swensson, Ann. Geophys. 8, 333 (1952).

1949 (1)

M. Dufay, Ann. Geophys. 5, 255, (1949).

1941 (1)

H. Israel, K. Wurm, Naturwissenshaften 52, 778, (1941).
[CrossRef]

1917 (1)

V. M. Slipher, “The Spectrum of Lightning,” Lowell Obs. Bull. No. 79, Flagstaff, Ariz. 55, (1917).

1903 (1)

P. Fox, Astrophys. J. 14, 294 (1903).
[CrossRef]

1901 (1)

E. C. Pickering, Astrophys. J. 14, 367 (1901).
[CrossRef]

1855 (1)

D. Alter, Amer. Sci. (2) 19, 213, (1855).

Alter, D.

D. Alter, Amer. Sci. (2) 19, 213, (1855).

Baughman, R. G.

D. M. Fuquay, R. G. Baughman, A. R. Taylor, R. G. Hawe, J. Geophys. Res. 72, 6371 (1967).
[CrossRef]

Berger, K.

K. Berger, J. Franklin Inst. 283, 478 (1967).
[CrossRef]

Brook, M.

D. P. Williams, M. Brook, J. Geophys. Res. 68, 3243 (1963).
[CrossRef]

N. Kitagawa, M. Brook, E. J. Workman, J. Geophys. Res. 67, 637 (1962).
[CrossRef]

M. Brook, N. Kitagawa, E. J. Workman, J. Geophys. Res. 67, 649 (1962).
[CrossRef]

Dufay, M.

M. Dufay, Ann. Geophys. 5, 255, (1949).

Fox, P.

P. Fox, Astrophys. J. 14, 294 (1903).
[CrossRef]

Fuquay, D. M.

D. M. Fuquay, R. G. Baughman, A. R. Taylor, R. G. Hawe, J. Geophys. Res. 72, 6371 (1967).
[CrossRef]

Hawe, R. G.

D. M. Fuquay, R. G. Baughman, A. R. Taylor, R. G. Hawe, J. Geophys. Res. 72, 6371 (1967).
[CrossRef]

Israel, H.

H. Israel, K. Wurm, Naturwissenshaften 52, 778, (1941).
[CrossRef]

Kitagawa, N.

M. Brook, N. Kitagawa, E. J. Workman, J. Geophys. Res. 67, 649 (1962).
[CrossRef]

N. Kitagawa, M. Brook, E. J. Workman, J. Geophys. Res. 67, 637 (1962).
[CrossRef]

Knuckles, C. F.

C. F. Knuckles, J. W. Swensson, Ann. Geophys. 8, 333 (1952).

Krider, E. P.

M. A. Uman, R. E. Orville, A. M. Sletten, E. P. Krider, J. Appl. Phys. 39, 5162 (1968).
[CrossRef]

Meinel, A. B.

A. B. Meinel, L. E. Salanave, J. Atmospheric Sci. 21, 157 (1964).
[CrossRef]

Moore, C. E.

C. E. Moore, “A Multiplet Table of Astrophysical Interest,” rev. ed., Contrib. Princeton Univ. Obs., No. 20 (1945).

Orville, R. E.

M. A. Uman, R. E. Orville, A. M. Sletten, E. P. Krider, J. Appl. Phys. 39, 5162 (1968).
[CrossRef]

R. E. Orville, J. Geophys. Res. 73, 6999 (1968).
[CrossRef]

R. E. Orville, J. Atmospheric Sci., 25; (a), 827; (b), 839; and (c), 852 (1968); in three parts.
[CrossRef]

R. E. Orville, J. Geophys. Res. 72, 3557 (1967).
[CrossRef]

L. E. Salanave, R. E. Orville, C. N. Richards, J. Geophys. Res. 67, 1877 (1962).
[CrossRef]

Pickering, E. C.

E. C. Pickering, Astrophys. J. 14, 367 (1901).
[CrossRef]

Prueitt, M. L.

M. L. Prueitt, J. Geophys. Res. 68, 803 (1963).
[CrossRef]

Richards, C. N.

L. E. Salanave, R. E. Orville, C. N. Richards, J. Geophys. Res. 67, 1877 (1962).
[CrossRef]

Salanave, L. E.

L. E. Salanave, Advan. Geophys. 10, 83 (1964).
[CrossRef]

A. B. Meinel, L. E. Salanave, J. Atmospheric Sci. 21, 157 (1964).
[CrossRef]

L. E. Salanave, R. E. Orville, C. N. Richards, J. Geophys. Res. 67, 1877 (1962).
[CrossRef]

L. E. Salanave, Science 134, 1395 (1961).
[CrossRef] [PubMed]

L. E. Salanave, Planetary Electrodynamics, edited by S. Coroniti, J. Hughes (Gordon and Breach, New York, 1969), p. 449.

Schonland, B. F. J.

B. F. J. Schonland, Handbuch der Physik (Springer-Verlag OHG, Berlin, 1956) Vol. 22, p. 576.
[CrossRef]

Sletten, A. M.

M. A. Uman, R. E. Orville, A. M. Sletten, E. P. Krider, J. Appl. Phys. 39, 5162 (1968).
[CrossRef]

Slipher, V. M.

V. M. Slipher, “The Spectrum of Lightning,” Lowell Obs. Bull. No. 79, Flagstaff, Ariz. 55, (1917).

Somerville, J. M.

J. M. Somerville, The Electric Arc (John Wiley, New York, 1959), p 28.

Swensson, J. W.

C. F. Knuckles, J. W. Swensson, Ann. Geophys. 8, 333 (1952).

Taylor, A. R.

D. M. Fuquay, R. G. Baughman, A. R. Taylor, R. G. Hawe, J. Geophys. Res. 72, 6371 (1967).
[CrossRef]

Uman, M. A.

M. A. Uman, J. Geophys. Res. 74, 949 (1969).
[CrossRef]

M. A. Uman, R. E. Orville, A. M. Sletten, E. P. Krider, J. Appl. Phys. 39, 5162 (1968).
[CrossRef]

M. A. Uman, Spectrum 3, 102 (1966).
[CrossRef]

M. A. Uman, J. Atmospheric Terrest. Phys. 26, 123 (1964).
[CrossRef]

M. A. Uman, Lightning (McGraw-Hill, New York, 1969), p. 159.

Wallace, L.

L. Wallace, Astrophys. J. 139, 944 (1964).
[CrossRef]

Williams, D. P.

D. P. Williams, M. Brook, J. Geophys. Res. 68, 3243 (1963).
[CrossRef]

Workman, E. J.

M. Brook, N. Kitagawa, E. J. Workman, J. Geophys. Res. 67, 649 (1962).
[CrossRef]

N. Kitagawa, M. Brook, E. J. Workman, J. Geophys. Res. 67, 637 (1962).
[CrossRef]

Wurm, K.

H. Israel, K. Wurm, Naturwissenshaften 52, 778, (1941).
[CrossRef]

Advan. Geophys. (1)

L. E. Salanave, Advan. Geophys. 10, 83 (1964).
[CrossRef]

Amer. Sci. (1)

D. Alter, Amer. Sci. (2) 19, 213, (1855).

Ann. Geophys. (2)

M. Dufay, Ann. Geophys. 5, 255, (1949).

C. F. Knuckles, J. W. Swensson, Ann. Geophys. 8, 333 (1952).

Astrophys. J. (3)

E. C. Pickering, Astrophys. J. 14, 367 (1901).
[CrossRef]

P. Fox, Astrophys. J. 14, 294 (1903).
[CrossRef]

L. Wallace, Astrophys. J. 139, 944 (1964).
[CrossRef]

J. Appl. Phys. (1)

M. A. Uman, R. E. Orville, A. M. Sletten, E. P. Krider, J. Appl. Phys. 39, 5162 (1968).
[CrossRef]

J. Atmospheric Sci. (2)

R. E. Orville, J. Atmospheric Sci., 25; (a), 827; (b), 839; and (c), 852 (1968); in three parts.
[CrossRef]

A. B. Meinel, L. E. Salanave, J. Atmospheric Sci. 21, 157 (1964).
[CrossRef]

J. Atmospheric Terrest. Phys. (1)

M. A. Uman, J. Atmospheric Terrest. Phys. 26, 123 (1964).
[CrossRef]

J. Franklin Inst. (1)

K. Berger, J. Franklin Inst. 283, 478 (1967).
[CrossRef]

J. Geophys. Res. (9)

R. E. Orville, J. Geophys. Res. 73, 6999 (1968).
[CrossRef]

M. A. Uman, J. Geophys. Res. 74, 949 (1969).
[CrossRef]

N. Kitagawa, M. Brook, E. J. Workman, J. Geophys. Res. 67, 637 (1962).
[CrossRef]

M. Brook, N. Kitagawa, E. J. Workman, J. Geophys. Res. 67, 649 (1962).
[CrossRef]

D. P. Williams, M. Brook, J. Geophys. Res. 68, 3243 (1963).
[CrossRef]

D. M. Fuquay, R. G. Baughman, A. R. Taylor, R. G. Hawe, J. Geophys. Res. 72, 6371 (1967).
[CrossRef]

R. E. Orville, J. Geophys. Res. 72, 3557 (1967).
[CrossRef]

L. E. Salanave, R. E. Orville, C. N. Richards, J. Geophys. Res. 67, 1877 (1962).
[CrossRef]

M. L. Prueitt, J. Geophys. Res. 68, 803 (1963).
[CrossRef]

Lowell Obs. Bull. No. 79, Flagstaff, Ariz. (1)

V. M. Slipher, “The Spectrum of Lightning,” Lowell Obs. Bull. No. 79, Flagstaff, Ariz. 55, (1917).

Naturwissenshaften (1)

H. Israel, K. Wurm, Naturwissenshaften 52, 778, (1941).
[CrossRef]

Science (1)

L. E. Salanave, Science 134, 1395 (1961).
[CrossRef] [PubMed]

Spectrum (1)

M. A. Uman, Spectrum 3, 102 (1966).
[CrossRef]

Other (5)

J. M. Somerville, The Electric Arc (John Wiley, New York, 1959), p 28.

M. A. Uman, Lightning (McGraw-Hill, New York, 1969), p. 159.

B. F. J. Schonland, Handbuch der Physik (Springer-Verlag OHG, Berlin, 1956) Vol. 22, p. 576.
[CrossRef]

C. E. Moore, “A Multiplet Table of Astrophysical Interest,” rev. ed., Contrib. Princeton Univ. Obs., No. 20 (1945).

L. E. Salanave, Planetary Electrodynamics, edited by S. Coroniti, J. Hughes (Gordon and Breach, New York, 1969), p. 449.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A spectrum of lightning obtained in 1901 at Harvard College Observatory with the Draper telescope of 115-cm focal length, and an objective prism. The bright spectrum is that of a cloud-to-ground flash; the faint one above it could have originated either from a branch off the main discharge or a separate cloud-to-cloud flash. The best available photographic emulsion of that time limited the recorded spectrum just short of 6000 Å (right), while the flint glass in the optics cut it off near 3800 Å (left). (Compare with Fig. 3.) (Courtesy, Harvard College Observatory.)

Fig. 2
Fig. 2

(a) The luminous features of a lightning flash as would be recorded by a camera with fixed lens and moving film. Increasing time is to the right. For clarity the time scale has been distorted. (b) The same lightning flash as recorded by a camera with stationary film. (Courtesy, McGraw-Hill7.)

Fig. 3
Fig. 3

A spectrum of lightning obtained on Royal Pan film in 1960 at the University of Arizona, with an Aero Tessar lens of 61-cm focal length and an optical transmission grating with fore-prism. The sharp, bright emission feature at the left is N ii (3995 Å) and the broad, faint one at the right is O i (6157 Å) [Compare Fig. 4(b)]. The bright rectangles are images of two illuminated faces on the campus clock tower, deviated by the fore-prism into the zero order of the grating. The short, bright streaks on the skyline are spectra of street lights, formed in the same manner. The entire flash below cloud base is shown; it is approximately 3 km long. Horizontal streaks show the continuous spectrum, enhanced at points where possibly the discharge channel is oriented in the line of sight or along the direction of dispersion, or perhaps the discharge channel continuum for some reason is intrinsically brighter.

Fig. 4
Fig. 4

(a) The uv spectrum of lightning obtained on Kodak Plus X film with a transmission grating and fore-prism, both of fused quartz. A Schott UG-5 filter cuts off the unwanted visible spectrum; ozone around the channel and/or in the intervening air path cuts off the atmospheric transmission somewhat below 3006 Å, as shown by the fading streak of continuum in the lower part of the figure (sharp horizontal streak in upper part of picture is a scratch on the film). Four unassigned features at 3150, 3550, 3840, and 3883 Å, and a fifth at 3914 Å (unmarked), sometimes exhibit strong emission from N2, N2+, or CN. These emissions are generally believed to occur in the continuing current luminosity. Usually weak or absent in slitless spectra and generally prominent in slit spectra, these features can be identified in the examples of the latter published by Wallace.11 Numbers in parentheses refer to Moore’s multiplet designations for atomic emission.12 (b) The visible spectrum of lightning, photographed on Tri-X Aerecon film with slitless spectrograph. The wavelengths, in angstroms are only approximate and are merely intended, along with the emitting atom or ion to identify the source, or the principal emitter in cases of a blend. H-beta and H-gamma are weak and greatly broadened by the Stark effect. (c) The infrared spectrum of lightning obtained on Kodak High-Speed Infrared film and using the same spectrograph as for Fig. 4(b). The Aero Tessar lens is designed to perform especially well in the red to infrared region, hence the excellent focus over the entire spectrum of H-alpha to nearly 8700 Å. The detailed resolution along the length of the channel is shown by the image of H-alpha; the vertical section is approximately 350 m. In some instances, use can be made of the fact that a multiplet such as N i (8) contains well resolved lines covering a stepped range of intensities—in this case, four lines and a five-to-one range. This can provide some latitude in locating the nearly optimum exposure for a channel detail of particular interest.

Fig. 5
Fig. 5

Time-resolved spectrum in the visible region of a lightning flash composed of three return strokes. Time increases upwards. [Compare Fig. 4(b)]

Fig. 6
Fig. 6

Time-resolution of a part of the spectrum of a lightning stroke (left and subsequent continuing current luminosity (right). The continuing luminosity had a total duration of slightly over 0.1 sec, with two peaks. The stroke spectrum was greatly overexposed on the negative; therefore, the time required to print it was increased for the purpose of reproduction. Note that the continuum radiation increases momentarily in two phases of the post-stroke luminosity, but the N ii emission at 5680 Å appears only in the stroke spectrum. On the other hand, H-alpha and the O i line at 6157 Å are prominent in the continuing luminosity. Since at least five unlabeled emissions in the stroke spectrum (one above 6157 Å, two above and below Hα) continue on very prominently, it follows that they are from N i or O i rather than N ii. They are, respectively, 6004 N i (16), 6456 O i (6), and/or N i (22), 6483 N i (21), 6650 N i (2) and 6723 N i (31).

Fig. 7
Fig. 7

The time-resolved spectrum of a 10-in section of a lightning return stroke. N ii emissions are superimposed on a strong continuum. Absorption in the 5942-Å region, apparent in the continuum radiation, is due to water vapor in the intervening path. (Kodak 2475 recording film.)

Fig. 8
Fig. 8

Time-resolved spectrum of a return stroke preceded by the spectrum of the stepped leader. (Kodak 2475 recording film.)

Metrics