Abstract

It is shown that sufficient progress in the design and manufacture of thin film interference filters has been made to consider the construction of filters with the rather complicated spectral characteristics necessary for the adjustment of the spectral response and spectral power distributions. By way of example, the calculated and experimental performance of filters for changing the color temperature of a light source and for duplicating the color mixture functions of the CIE standard observer are given. Other examples discussed are filters for obtaining a uniform spectral response of optical systems consisting of a light source and a monochromator, with or without a detector.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dresler, Das Licht 3, 41 (1933).
  2. G. Geutler, Die Farbe 7, 153 (1958).
  3. W. E. R. Davies, G. Wyszecki, J. Opt. Soc. Amer. 52, 679 (1962).
    [Crossref]
  4. H. Wright, C. L. Sanders, D. Gignac, Appl. Opt. 8, 2449 (1969).
    [Crossref] [PubMed]
  5. M. R. Nagel, J. Opt. Soc. Amer. 44, 621 (1954).
    [Crossref]
  6. H. Schröder, Z. Angew. Physik 3, 53 (1951).
  7. W. Geffken, in Landolt-Börnstein, Zahlenwerte und Funktionen (Springer, Berlin-Göttingen-Heidelberg, 1957), 6th ed., Vol. 4, Pt. 3, p. 925.
  8. A. J. Thelen, Power Information Center, Univ. of Pennsylvania, PIC-SOL 209/2.1, Sec. 7 (1962).
  9. J. A. Dobrowolski, Appl. Opt. 4, 937 (1965).
    [Crossref]
  10. O. S. Heavens, H. M. Liddell, Opt. Acta 15, 129 (1968).
  11. R. Jacobsson, J. O. Mårtensson. Jap. J. Appl. Phys. 4, Suppl. I, 333 (1965).
  12. L. Young, Appl. Opt. 6, 297 (1967).
    [Crossref] [PubMed]
  13. H. Wright, N.R.C., private communication.
  14. CIE Proceedings, Washington Meeting, 1967, [Bureau Central de la Commission Internationale de l’Eclairage, (CIE), Paris, 1968], Vol. A, p. 95.
  15. G. B. Maxwell, D. D. Doonan, Appl. Opt. 7, 599 (1968).
    [Crossref] [PubMed]
  16. D. A. Wayne, G. Dillman, Appl. Opt. 8, 603 (1969).
    [Crossref] [PubMed]

1969 (2)

1968 (2)

G. B. Maxwell, D. D. Doonan, Appl. Opt. 7, 599 (1968).
[Crossref] [PubMed]

O. S. Heavens, H. M. Liddell, Opt. Acta 15, 129 (1968).

1967 (1)

1965 (2)

R. Jacobsson, J. O. Mårtensson. Jap. J. Appl. Phys. 4, Suppl. I, 333 (1965).

J. A. Dobrowolski, Appl. Opt. 4, 937 (1965).
[Crossref]

1962 (1)

W. E. R. Davies, G. Wyszecki, J. Opt. Soc. Amer. 52, 679 (1962).
[Crossref]

1958 (1)

G. Geutler, Die Farbe 7, 153 (1958).

1954 (1)

M. R. Nagel, J. Opt. Soc. Amer. 44, 621 (1954).
[Crossref]

1951 (1)

H. Schröder, Z. Angew. Physik 3, 53 (1951).

1933 (1)

A. Dresler, Das Licht 3, 41 (1933).

Davies, W. E. R.

W. E. R. Davies, G. Wyszecki, J. Opt. Soc. Amer. 52, 679 (1962).
[Crossref]

Dillman, G.

Dobrowolski, J. A.

Doonan, D. D.

Dresler, A.

A. Dresler, Das Licht 3, 41 (1933).

Geffken, W.

W. Geffken, in Landolt-Börnstein, Zahlenwerte und Funktionen (Springer, Berlin-Göttingen-Heidelberg, 1957), 6th ed., Vol. 4, Pt. 3, p. 925.

Geutler, G.

G. Geutler, Die Farbe 7, 153 (1958).

Gignac, D.

Heavens, O. S.

O. S. Heavens, H. M. Liddell, Opt. Acta 15, 129 (1968).

Jacobsson, R.

R. Jacobsson, J. O. Mårtensson. Jap. J. Appl. Phys. 4, Suppl. I, 333 (1965).

Landolt-Börnstein,

W. Geffken, in Landolt-Börnstein, Zahlenwerte und Funktionen (Springer, Berlin-Göttingen-Heidelberg, 1957), 6th ed., Vol. 4, Pt. 3, p. 925.

Liddell, H. M.

O. S. Heavens, H. M. Liddell, Opt. Acta 15, 129 (1968).

Mårtensson, J. O.

R. Jacobsson, J. O. Mårtensson. Jap. J. Appl. Phys. 4, Suppl. I, 333 (1965).

Maxwell, G. B.

Nagel, M. R.

M. R. Nagel, J. Opt. Soc. Amer. 44, 621 (1954).
[Crossref]

Sanders, C. L.

Schröder, H.

H. Schröder, Z. Angew. Physik 3, 53 (1951).

Thelen, A. J.

A. J. Thelen, Power Information Center, Univ. of Pennsylvania, PIC-SOL 209/2.1, Sec. 7 (1962).

Wayne, D. A.

Wright, H.

Wyszecki, G.

W. E. R. Davies, G. Wyszecki, J. Opt. Soc. Amer. 52, 679 (1962).
[Crossref]

Young, L.

Appl. Opt. (5)

Das Licht (1)

A. Dresler, Das Licht 3, 41 (1933).

Die Farbe (1)

G. Geutler, Die Farbe 7, 153 (1958).

J. Opt. Soc. Amer. (2)

W. E. R. Davies, G. Wyszecki, J. Opt. Soc. Amer. 52, 679 (1962).
[Crossref]

M. R. Nagel, J. Opt. Soc. Amer. 44, 621 (1954).
[Crossref]

Jap. J. Appl. Phys. (1)

R. Jacobsson, J. O. Mårtensson. Jap. J. Appl. Phys. 4, Suppl. I, 333 (1965).

Opt. Acta (1)

O. S. Heavens, H. M. Liddell, Opt. Acta 15, 129 (1968).

Z. Angew. Physik (1)

H. Schröder, Z. Angew. Physik 3, 53 (1951).

Other (4)

W. Geffken, in Landolt-Börnstein, Zahlenwerte und Funktionen (Springer, Berlin-Göttingen-Heidelberg, 1957), 6th ed., Vol. 4, Pt. 3, p. 925.

A. J. Thelen, Power Information Center, Univ. of Pennsylvania, PIC-SOL 209/2.1, Sec. 7 (1962).

H. Wright, N.R.C., private communication.

CIE Proceedings, Washington Meeting, 1967, [Bureau Central de la Commission Internationale de l’Eclairage, (CIE), Paris, 1968], Vol. A, p. 95.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Three different types of filter construction: (a) series filter arrangement; (b) series and parallel arrangement; (c) mosaic filter.

Fig. 2
Fig. 2

Typical correction and rejection filters of various types: 1, (L.3H)2(L.5H)2(L.7H)2(L.9H)2(L.11H.L); 2, (L.5H)4.L; 3, (L.3H)21.L; 4, (3H.3L)4.3H. The substrate and medium indexes were 1.52 for all filters in Figs. 23, except filter 1, for which they were 1.46. Similarly, nH = 1.50, nL = 1.38 for all filters except filter 4, for which the corresponding values were 1.76 and 1.33, respectively.

Fig. 3
Fig. 3

Typical correction and rejection filters: 5, (LH)33.L; 6, (LH)12.L; 7, (LH)9.L; 8, (L.3H)4.L.

Fig. 4
Fig. 4

The full line represents the standard D6500 illuminant. The broken line represents the spectral irradiance of a xenon lamp with a four-filter combination developed at the N.R.C.13

Fig. 5
Fig. 5

Curves 1 and 2 represent the relative intensity from a xenon arc lamp before and after the introduction of the rejection filter (Fig. 2, filter 1).

Fig. 6
Fig. 6

The desired (dotted curve) and calculated (full curve) transmittance of a filter for a constant output monochromator. The filter system consists of 15 filters A and 5 filters B (Table I) placed in series.

Fig. 7
Fig. 7

Filter for a source, monochromator, and detector system with a uniform response: (a) the desired and the calculated transmittance of the synthesized filter (filter C in Table II); (b) the calculated and the experimental spectral variation of the system with the filter.

Fig. 8
Fig. 8

The desired spectral transmittance curve of a 2854 K to 3000 K temperature conversion filter is shown in (a) above. The calculated and two measured departures from the desired transmittance curve are shown in (b) and (c).

Fig. 9
Fig. 9

The relative spectral sensitivity of a Gillod-Boutry photocell used for the design of the tristimulus filters.

Fig. 10
Fig. 10

Results for the x ¯ λ tristimulus filter (see text for the explanation).

Fig. 11
Fig. 11

Results for the z ¯ λ tristimulus filter.

Fig. 12
Fig. 12

Results for the y ¯ λ tristimulus filter.

Tables (2)

Tables Icon

Table I Optical Thicknesses (μ) and Refractive Indexes of Multilayer Filters A, B, and Da

Tables Icon

Table II Optical Thicknesses (μ) and Refractive Indexes of Multilayer Filters C, E, F, and G

Metrics